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Our Work: A Technique for 
Examining Trained Neural 
Networks
Specifically, computing succinct representation of the network restricted to a line.



Overview: Neural Networks
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Neural Networks: sequential composition of other functions. Can transform individual points 
through each layer to find the output of the network.
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Overview: Neural Networks

Affine ReLU Affine ReLU Affine

Neural Networks: sequential composition of other functions. Can transform individual points 
through each layer to find the output of the network.

However, when analyzing the network we would like to understand its behavior over infinitely-
many points, eg. a line.
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ExactLine Formal Definition
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Computing ExactLine: Single Layer
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Computing ExactLine: Single Layer

1. Partition input space according to PWL 
function.

2. “Follow” line from an endpoint.

3. When a PWL boundary reached, add 
an endpoint.

4. Continue until last endpoint reached.Input Space
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Computing ExactLine: Multiple Layers

ReLU MaxPool

1. Transform by the first 
layer.

2. Transform intermediate-
space segments by second 
layer.

3. Project the new endpoints 
(and partitions) back onto the 
input space.



Three Initial Applications

1.Understanding Decision Boundaries
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With ExactLine, we can exactly determine 
decision boundaries along a line segment.
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Three Initial Applications

1.Understanding Decision Boundaries
2.Exact Computation of Integrated Gradients Attribution Method



Integrated Gradients

“Fireboat”

Black Baseline

Popular DNN attribution method (“why did the 
network call this a fireboat?”).

Relies on computing a path integral between a 
baseline and the image.



Integrated Gradients

“Fireboat”

Black Baseline

Popular DNN attribution method (“why did the 
network call this a fireboat?”).

Prior work did not have an analytic form for the partial 
derivative, so could not compute this integral. Instead, 
relied on a left Riemann sum approximation that does not 
guarantee the same theoretical properties.

Would be exact
if gradient were
constant within

partitions!

Relies on computing a path integral between a 
baseline and the image.



Integrated Gradients

“Fireboat”

Black Baseline

Popular DNN attribution method (“why did the 
network call this a fireboat?”).

Prior work did not have an analytic form for the partial 
derivative, so could not compute this integral. Instead, 
relied on a left Riemann sum approximation that does not 
guarantee the same theoretical properties.

Would be exact
if gradient were
constant within

partitions!

Relies on computing a path integral between a 
baseline and the image.

Let’s use ExactLine!



Integrated Gradients

“Fireboat”

Black Baseline

Popular DNN attribution method (“why did the 
network call this a fireboat?”).

Prior work did not have an analytic form for the partial 
derivative, so could not compute this integral. Instead, 
relied on a left Riemann sum approximation that does not 
guarantee the same theoretical properties.

ExactLine
guarantees a

partitioning with
constant gradients!

Relies on computing a path integral between a 
baseline and the image.

Let’s use ExactLine!



Integrated Gradients: Results

• How accurate is the prior best-practice approximation?

– 25-45% error

•How many samples are needed to get to 5% error?

– Usually about 100-300

•Do different sampling methods perform better/worse?

– Trapezoidal rule is 20-40% more sample-efficient than left/right 
approximations.



Three Initial Applications

1.Understanding Decision Boundaries

2.Exact Computation of Integrated Gradients Attribution Method

3.Investigating Adversarial Examples, and Falsifying the Linearity Hypothesis



Adversarial Examples and the Linear Explanation

• Adversarial examples: small perturbations cause big classification 
changes.
• Goodfellow et al. introduce influential "Linear Explanation"

• Linearity Assumption: around 'natural' input images, the network behaves 
linearly (i.e., tangent plane at point matches output).

• Theoretical Claim: classification boundaries of linear classifiers become closer 
with higher dimensionality.

• Conclusion: adversarial examples are natural consequence of linearity 
hypothesis, so we need more non-linear neural networks.

• Theoretical discussion of claim, but (until now) underlying assumption 
untested.



Investigating the Linearity Hypothesis

• Q1: Is the area around input points linear?
• A1: No!

We will draw blue lines to 
delineates different linear 
partitions (i.e. show where non-
linearities are introduced).
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linear,” so should have few linear 
partitions.



Investigating the Linearity Hypothesis

• Q1: Is the area around input points linear?
• A1: No!

We will draw blue lines to 
delineates different linear 
partitions (i.e. show where non-
linearities are introduced).

Original Image
Randomly 
Perturbed 
Images Prediction: network is “mostly-

linear,” so should have few linear 
partitions.

Reality: network is extremely non-
linear, with often thousands of 
different partitions.



Investigating the Linearity Hypothesis

• Perhaps only the adversarial direction lies on the same linear 
partition.
• Q2: Are adversarial directions particularly linear?
• A2: No!

Adversarial perturbations in fact lie in a more 
non-linear direction than random 
perturbations.



Investigating the Linearity Hypothesis

• Perhaps the gradients in each partition are "relatively close" to that 
around the natural point.

• Q3: Are the gradients in each partition close to that of the natural 
point?

• A3: No!

• Experiment:
• On each partition, find relative error between that partition's gradient and 

the gradient at the natural point.
• Average the relative errors, weighted by width of partition.
• Result: >250% relative error.



Investigating the Linearity Hypothesis

• Q4: Are all models this non-linear?

• A4: Surprisingly, no! DiffAI- and PGD-trained models show less non-
linearity.

• Interesting direction for future work.



Linearity Hypothesis: Takeaways and 
Future Work
• Linearity Hypothesis (and surrogate assumptions) empirically 

falsified -> Linear Explanation rejected.
• Need to find new explanations for adversarial examples and tools (like 

ExactLine!) to empirically verify/falsify them.
• Eg., “A Boundary Tilting Perspective on the Phenomenon of 

Adversarial Examples” (Tanay and Griffin):



Conclusion

• ExactLine efficiently and precisely decomposes a neural network 
into affine partitions.
• When restricted to a line in the input domain.

• Wide variety of uses, we tried three:
• Decision boundary understanding.
• Exact computation of IG
• Investigating adversarial examples



Questions?



ExactLine Generalization

• In a preprint, we extend ExactLine to 2-dimensional regions.

• Can understand entire decision boundary.

• Can do bounded model checking.

• Can patch neural networks.



Comparison to Other 'White Box' Techniques

Slow (NP-Hard), But Precise

• ReluPlex
• Decision procedure (Y/N)
• "Is there anyone for whom the 

model recommends 'no 
approval?'"

• Linear partitioners
• "What are all the people for 

whom the model recommends 'no 
approval?'"

Fast, But Imprecise

• ERAN
• Decision procedure (Y/N)
• Over-approximation (some Y are 

N!)
• "Is it possible that there is 

someone for whom the model 
recommends 'no approval?'"

• Sampling
• "What does the model 

recommend for these N people?"



Exploring a New Dimension of Analysis

Prior work: Speed versus Precision
ExactLine: Dimensionality versus (Speed & Precise)
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