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Abstract

Bayesian models use posterior predictive distributions to quantify the uncertainty of their

predictions. Similarly, the point predictions of neural networks and other machine learning

algorithms may be converted to predictive distributions by various bootstrap methods. The

predictive performance of each algorithm can then be assessed by quantifying the performance

of its predictive distribution. Previous methods for assessing such performance are relative,

indicating whether certain algorithms perform better than others. This paper proposes perfor-

mance measures that are absolute in the sense that they indicate whether or not an algorithm

performs adequately without requiring comparisons to other algorithms. The first proposed

performance measure is a predictive p value that generalizes a prior predictive p value with

the prior distribution equal to the posterior distribution of previous data. The other proposed

performance measures use the generalized predictive p value for each prediction to estimate

the proportion of target values that are compatible with the predictive distribution. The new

performance measures are illustrated by using them to evaluate the predictive performance of

deep neural networks when applied to the analysis of a large housing price data set that is used

as a standard in machine learning.

Keywords: big data; data science; deep learning; deep neural network; model predictive distribu-

tion; model predictive p value; regression



1 Introduction

Today’s challenges of interpreting and using big data sets create many opportunities for the devel-

opment of machine learning algorithms and other methods of statistical data analysis. Examples of

big data include records of customer purchases and interactions on web sites used to suggest pur-

chases, email messages used to detect spam, and voice recordings used to interpret speech. Since

2012, deep learning algorithms in the form of deep neural networks have often dramatically outper-

formed more conventional machine learning algorithms, where “deep” refers to the multiplicity of

hidden layers of parameters fit to data (e.g., Charniak, 2019; Krohn et al., 2019; Wani et al., 2020).

In spite of the successes of data science, uncertainty in classification and prediction performance

measures is usually neglected. That is unfortunate since performance uncertainty can be substantial

even with big data. The reason is that a data set that is large when measured by how much disk

space it requires can be small in terms of its effective sample size, even without a strong dependence

between variables. For example, the first large-scale studies of gene expression measured gene

expression over thousands of genes—in a single individual.

An advantage of Bayesian models is that they not only make predictions but also quantify

the uncertainty in those predictions. That is accomplished in the form of a posterior predictive

distribution, from which error bars and utility-maximizing decisions may be derived. Ideally, non-

Bayesian prediction algorithms would also generate distributions of predictions rather than a single

prediction. Simple ways to generate predictive distributions from point predictions are reviewed in

Section 2.

The performance of each algorithm’s predictive distribution may then be measured in such a

way as to discourage both suppressing the uncertainty on one hand and exaggerating it on the

other hand. Previous measures of the performance of predictive distributions (e.g., Quiñonero-

Candela et al., 2006) are comparative in the sense that they indicate whether one prediction model

performs better than another. An absolute measure, by contrast, could indicate whether a predictive

distribution performs adequately or whether alternative prediction models should be considered.

The difference between relative and absolute measures of predictive performance is analogous

to relative and absolute measures used in hypothesis testing. In Bayesian hypothesis testing, the

posterior probability that the null hypothesis is true cannot be considered without simultaneously

considering the probability that the null hypothesis is false. The posterior probability of the null

hypothesis depends on the Bayes factor, a comparative measure of how much the evidence favors

the truth of the null hypothesis compared to how much it favors the falsity of the null hypothesis.
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On the other hand, in null hypothesis significance testing, a sufficiently low p value indicates a

problem with the null hypothesis without comparing it to other hypotheses. The problem could

be that the value of the parameter of interest differs from the null value or that the assumptions

behind the statistical test are violated. How low is low enough to indicate a problem and other

pragmatic issues are debated (Benjamin et al., 2017). In any case, the p value is an absolute measure

of the compatibility of the null hypothesis with the data in a way that the posterior probability

is not. While Bayesian model selection is certainly ideal in the presence of enough information

about the hyperprior distribution over the models, null hypothesis significance testing arguably

plays important roles in its absence. That is largely due to the ability of a p value to test a null

hypothesis without specifying distributions under alternative hypotheses.

The p value concept is generalized in Section 3 to serve as an absolute measure of the predictive

performance of a frequentist or Bayesian regression model, a neural network, or another machine

learning algorithm. It is intended to answer the question of whether a statistical model or algorithm

predicts well or not rather than the usual question of whether it predicts well relative to other

methods.

Absolute performance measures are also useful when multiple methods are available. When all

methods tried initially perform poorly, ranking them in terms of relative performance is of little

value. Absolute measures of performance would in that case indicate that other methods should be

considered. In addition, when it is advantageous to average the predictions of multiple methods,

absolute measures of performance provide feedback on the performance of the average.

With one generalized p value per prediction, multiple p values may be used together to generate

additional measures of absolute predictive performance. Those proposed in Section 4 apply to

neural networks and many other models, where the term “model” is much broader than a statistical

model in the sense of a parametric family of distributions. The term prediction model refers to any

mathematical construct that can make predictions about future data on the basis of data already

observed. Following Breiman (2001), there are two broad types of prediction models: data models

are mathematical expressions specifying possible distributions of data; and algorithmic models are

other mathematical expressions that make predictions on the basis of data. Whereas data models

are associated with parametric and nonparametric statistical inference, algorithmic models are

associated with data science in general and machine learning in particular. Both data models

and algorithmic models include prediction models with and those without prior distributions. The

former are called Bayesian models, and all other prediction models are called prior-free models.

For example, a data model may be parametric or nonparametric, prior-free or Bayesian. Successful
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algorithmic models include random forests, support vector machines, prior-free neural networks,

and Bayesian neural networks.

Even after deciding on a neural network of a certain structure as the type of prediction model,

one must set many hyperparameters before it can fit its adaptive parameters to the data. Such

hyperparameters include the distributions of random initial parameter values and the number of

layers of adaptive parameters in the network. Each combination of hyperparameter values corre-

sponds to a different prediction model. Models of different types and of different hyperparameter

values may be assessed for predictive performance according to the proposed measures.

A data set often used in machine learning has 13 independent variables used to predict the

value of houses in an area of Boston. There is considerable uncertainty about the type of prediction

model to use to predict the value of houses from the independent variables, whether the prediction

model is a data model or an algorithmic model. In Section 5, the data are analyzed using three

deep neural networks to illustrate the proposed measures of predictive performance.

2 A predictive distribution for each prediction model

Let mdl denote an integer serving as the index of a prediction model. The ith of n observations

consists of y i, a value of the dependent variable, and of x i, a vector of m independent variables.

Given x = (x 1, . . . , xn) and y = (y1, . . . , yn), the predictive probability density for predicting yn +1

by ŷn +1 on the basis of xn +1 is f
prdct
mdl

(
ŷn +1; (x , y) , xn +1

)
. The corresponding probability density

function f
prdct
mdl

(•; (x , y) , xn +1) is called the model predictive distribution of mdl.

Example 1. According to data model mdl, y was drawn from a probability density function

f mdl (•| x , θ, λmdl), where θ is a vector of unknown parameter values of interest and λmdl a nuisance

parameter consisting of all other relevant unknowns. If mdl is a Bayesian model, then the pair

(θ, λmdl) has a prior distribution represented as a probability density πmdl (θ, λmdl). The posterior

predictive distribution is the probability density function defined by

f
prdct
mdl

(
ŷn +1; (x , y) , xn +1

)
=

∫
f mdl

(
ŷn +1| xn +1, θ, λmdl

)
πmdl (θ, λmdl| (x , y)) dθdλmdl,

where πmdl (θ, λmdl| (x , y)) is the posterior probability density determined by Bayes’s theorem. N

Example 2. Consider the prediction ŷ
mdl,n +1 = ηmdl ((x , y) , xn +1) of yn +1, where ηmdl is a

function determined by prediction model mdl. For example, if mdl is a prior-free data model

with the f
mdl

(•| x , θ, λmdl) of Example 1, then yn +1 could be predicted by its expected value as
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determined by plugging in the maximum likelihood estimates (MLEs) as the parameter values:

ŷmdl,n +1 = ηmdl ((x , y) , xn +1) =

∫
y ′
n +1 f mdl

(
y ′
n +1 | xn +1, θ̂ (x , y) , λ̂mdl (x , y)

)
d y ′

n +1; (1)

(
θ̂ (x , y) , λ̂mdl (x , y)

)
= arg sup

(θ,λmdl)

f mdl (y | x , θ, λmdl) .

To define a model predictive distribution, generate
(
x (b), y(b)

)
, the bth of B bootstrap samples

by taking n independent draws, with replacement, from the observations (x1, y1) , . . . , (xn , yn).

The bootstrap samples
(
x (1), y(1)

)
, . . . ,

(
x (B), y(B)

)
in turn generate the bootstrap predictions

ŷ
(1)
mdl,n +1, . . . , ŷ

(B)
mdl,n +1, where ŷ

(b)
mdl,n +1 = ηmdl

((
x (b), y(b)

)
, xn +1

)
. In parametric bootstrapping

(e.g., HARRIS, 1989), the bootstrap predictions then estimate the parameter values of another dis-

tribution. The probability density function fitted to the bootstrap predictions, called the bootstrap

predictive distribution, is then used as f
prdct
mdl

(•; (x , y) , xn +1). A simple case is N
(
µ̂2

mdl
, σ̂2

mdl

)
, the

normal distribution that has a mean of µ̂2
mdl

, the sample mean of the bootstrap predictions, and

a variance equal to σ̂2
mdl

, the usual unbiased estimate of the variance of the bootstrap predictions.

When considered as a point prediction, µ̂2
mdl

is an example of what Breiman (1996) calls a “bagging

predictor.” N

Many variations of parametric bootstrapping are possible. Here is one:

Example 3. As an alternative to the MLE-based approach of equation (1), let ŷ
mdl,n +1 =

ηmdl ((x , y) , xn +1) denote the prediction of yn +1 according to a neural network or another an algo-

rithmic model. In this context, (x , y) is called the training set to distinguish it from
(
xn +1, yn +1

)
,

called the validation set or test set, depending on whether or not it is used to select another algorith-

mic model for additional predictions. With (x , y) fixed, the function ηmdl ((x , y) , •) is then consid-

ered to be a trained model. Training the model on the bootstrap samples
(
x (1), y(1)

)
, . . . ,

(
x (B), y(B)

)

results in the B trained models ηmdl

((
x (1), y(1)

)
, •
)
, . . . , ηmdl

((
x (B), y(B)

)
, •
)
. Applying them to

xn +1 yields ŷ
(1)
mdl,n +1, . . . , ŷ

(B)
mdl,n +1 as the bootstrap predictions of yn +1. The bootstrap predictive

distribution used as f
prdct
mdl

(•; (x , y) , xn +1) is the probability density function of N
(
ŷmdl,n +1, σ̂

2
mdl

)
.

That is not a special case of the bootstrap predictive distributions of Example 2, which would have

µ̂2
mdl

in place of ŷmdl,n +1. N

In some cases, parametric bootstrap predictive distributions and nonparametric bootstrap pre-

dictive distributions (e.g., Fushiki et al., 2005) have the frequentist properties needed to qualify

as predictive confidence distributions (Schweder and Hjort, 2016). For other ways to generate a

predictive confidence distribution as f
prdct
mdl

(•; (x , y) , xn +1), see Shen et al. (2018). The predic-
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tive likelihood methods described in Eklund and Karlsson (2007) might also be used to generate

f
prdct
mdl

(•; (x , y) , xn +1).

For concision, this paper presents y as continuous. Applying the proposed framework to discrete

dependent variables would require using a probability mass function as f
prdct
mdl

(•; (x , y) , xn +1) and

approximating integrals by sums.

3 P values for assessing predictive performance

Consider a data model mdl with the f
mdl

(•| x , θ, λmdl) of Example 1. Recall that for testing the

null hypothesis that θ = θH 0
, an observed test statistic T (y , θH 0

) and its random counterpart

T (Y , θH 0
) together define the p value

pmdl ((x , y) , θH 0
) = Prob

Y∼f
mdl(•| x ,θH0

,λmdl) (T (Y , θH 0
) ≥ T (y , θH0

))

=

∫ ∞

T(y,θH0)
T (y ′, θH 0

) f mdl (y
′ | x , θ, λmdl) d y ′ .

Analogously, for checking a more general prediction model mdl by testing the null hypothesis that

the data-generating distribution is the model predictive distribution f
prdct
mdl

(•; (x , y) , xn +1), a mea-

sure of data-model discrepancy D
((

xn +1, yn +1

)
,mdl

)
and its random counterpart D ((xn +1,Y n +1) ,mdl)

together define the model predictive p value

p
((

xn +1, yn +1

)
,mdl

)
=

Prob
Y n +1∼f

prdct

mdl
(•;(x ,y),xn +1)

(
D ((xn +1,Y n +1) ,mdl) ≥ D

((
xn +1, yn +1

)
,mdl

))
. (2)

Example 4. With Example 1’s posterior predictive distribution as f
prdct
mdl

(•; (x , y) , xn +1), the

model predictive p value reduces to a special case of the Bayesian p value defined by equation

(2.28) of Carlin and Louis (2000). That is closely related to two other Bayesian p values. First,

in considering the posterior distribution πmdl (•| (x , y)) from the analysis of (x , y) as the prior

distribution for predicting yn +1 from xn +1, we thereby consider f
prdct
mdl

(•; (x , y) , xn +1) as a prior

predictive distribution. From that viewpoint, p
((

xn +1, yn +1

)
,mdl

)
is a prior predictive p value;

see Ghosh et al. (2006, §6.5). Second, when “predicting” the observed y instead of yn +1, the

Bayesian “p value” p ((x , y) ,mdl) is instead a posterior predictive p value (Carlin and Louis, 2000,

(2.27)). Since the same data in that case are used for the model predictive distribution and the

value “predicted,” posterior predictive p values require calibration (Hjort et al., 2006). N
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Example 5. Let Fmdl denote the cumulative distribution function of f
prdct
mdl

(•; (x , y) , xn +1). A sim-

ple measure of data-model discrepancy that applies to any prediction model mdl is D
((

xn +1, yn +1

)
,mdl

)
=

1− q
((

xn +1, yn +1

)
,mdl

)
, where

q
((

xn +1, yn +1

)
,mdl

)
= 2min

(
Fmdl

(
yn +1

)
, 1− Fmdl

(
yn +1

))
.

Whereas

Fmdl

(
yn +1

)
=

∫ y
n +1

−∞

f
prdct
mdl

(
y ′
n +1; (x , y) , xn +1

)
d y ′

n +1

and 1 − Fmdl

(
yn +1

)
are one-sided predictive p values, q

((
xn +1, yn +1

)
,mdl

)
is a two-sided pre-

dictive p value for checking mdl. Plugging that D
((

xn +1, yn +1

)
,mdl

)
into equation (2) yields

p
((

xn +1, yn +1

)
,mdl

)
= Prob

Y n +1∼f
prdct

mdl
(•;(x ,y),xn +1)

(
1− q ((xn +1,Y n +1) ,mdl) ≥ 1− q

((
xn +1, yn +1

)
,mdl

))

= Prob
Y n +1∼f

prdct

mdl
(•;(x ,y),xn +1)

(
q ((xn +1,Y n +1) ,mdl) ≤ q

((
xn +1, yn +1

)
,mdl

))

= q
((

xn +1, yn +1

)
,mdl

)
,

with the last step following from the fact that q ((xn +1,Y n +1) ,mdl) ∼ U(0, 1) if Y n +1 ∼

f
prdct
mdl

(•; (x , y) , xn +1), where U(0, 1) is the standard uniform distribution. N

4 Measures of predictive performance based on multiple pre-

dictions

4.1 Relative predictive performance based on multiple predictions

Just as testing θ = θH0
can be informative even when θ cannot be exactly equal to θH 0

(Cox, 1977),

checking mdl on the basis of a single model predictive p value can be informative even though it

is known that yn +1 was not drawn from f
prdct
mdl

(•; (x , y) , xn +1). However, a model predictive p

value from checking mdl on the basis of a number nprdct of predicted values may be worthless as

a measure of absolute performance since it is guaranteed to generate very small model predictive

p values whenever nprdct is sufficiently large. On the other hand, such a p value may serve as a

measure of the performance of a prediction model relative to other prediction models. Alternatively,

model predictive p values may empower the fiducial averaging of prediction models in analogy with

Bickel (2018)’s use of prior predictive p values for the fiducial averaging of Bayesian models.

There are two ways to generate a model predictive p value p
((

xprdct, yprdct
)
,mdl

)
on the
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basis of mdl’s performance in predicting yprdct =
(
yn +1, . . . , yn +nprdct

)
on the basis of xprdct =

(xn +1, . . . , xn +nprdct) after fitting its parameters to (x , y):

1. First, such a model predictive p value may be defined by replacing xn +1, yn +1, and Y n +1

with xprdct, yprdct, and Y prdct in equation (2), where Y prdct is the random nprdct-vector of a

model predictive distribution f
prdct
mdl

(
•; (x , y) , xprdct

)
.

2. The second way is to combine equation (2)’s model predictive p values

p
((

xn +1, yn +1

)
,mdl

)
, . . . , p

((
xn + nprdct , yn + nprdct

)
,mdl

)
(3)

that are generated individually from predicting yn +1 on the basis of xn +1, predicting yn +2 on

the basis of xn +2, etc. Each of the methods of p value combination listed by Folks (1984) and

Singh et al. (2005) would generate a different p
((

xprdct, yprdct
)
,mdl

)
. For example, Fisher’s

method of combining p value has stood the test of time.

4.2 Absolute predictive performance based on multiple predictions

The model predictive p values (3) can also generate absolute measures of predictive performance.

Let p (i,mdl) = p
((

xn +i, yn +i

)
,mdl

)
for i = 1, . . . , nprdct. As an idealization, suppose some

proportion π0 of the nprdct predicted data points were drawn from f
prdct
mdl

(•; (x , y) , xn +i) for i =

1, . . . , nprdct. Then an estimate of π0 could serve as a measure of how well mdl predicts without

necessarily comparing its performance to that of other prediction models.

The literature has many complex methods for estimating the proportion of null hypotheses that

are true on the basis of a vector of p values (e.g., Nguyen, 2004; Broberg, 2005; Langaas et al., 2005;

Lai, 2006, 2007; Jin and Cai, 2007; Jiang and Doerge, 2008; Cai and Jin, 2010). While they could

be used to estimate π0 with
(
p (1,mdl) , . . . , p

(
nprdct,mdl

))
as the vector of p values and with

f
prdct
mdl

(•; (x , y) , xn +1) , . . . , f
prdct
mdl

(•; (x , y) , xn +nprdct)

as the null hypothesis distributions, two simpler approaches suffice for the purpose of measuring

predictive performance. They begin by estimating the ith prediction’s achieved nonlocal false

discovery rate (NFDR) by

N̂FDR (i,mdl) = min

(
p (i,mdl)nprdct

#nprdct

j=1 (p (j,mdl) ≤ p (i,mdl))
, 1

)
,

7



the denominator of which tells how many of the nprdct model predictive p values are less than or

equal to p (i,mdl).

Next, let (i) denote the index of the ith smallest N̂FDR (i,mdl), thereby ordering the estimates

by N̂FDR ((1) ,mdl) ≤ · · · ≤ N̂FDR
((

nprdct
)
,mdl

)
. The bias in N̂FDR (i,mdl) as an estimate

of the local false discovery rate (LFDR) may be corrected by either of these two LFDR estimates

(Bickel and Rahal, 2019; Bickel, 2020, chapter 6):

CFDR ((i) ,mdl) =

(
i∑

k=1

1

i− k + 1

)
N̂FDR ((i) ,mdl) ; (4)

RFDR ((i) ,mdl) =





N̂FDR (([1.6i]) ,mdl) if [1.6i] ≤ nprdct

1 if [1.6i] > nprdct

, (5)

where the square brackets indicate rounding to the nearest integer. Those two LFDR estimates are

called the corrected false discovery rate (CFDR) and the re-ranked false discovery rate (RFDR).

Since the LFDR of a null hypothesis is a posterior probability that the null hypothesis is

true, the expected value of the LFDR of a randomly selected null hypothesis is a posterior ex-

pected value of the proportion of null hypotheses that are true. That suggests estimating π0 by

π̂CFDR
0 or by π̂RFDR

0 , which are the means of CFDR ((1) ,mdl) , . . . ,CFDR
((

nprdct
)
,mdl

)
and of

RFDR ((1) ,mdl) , . . . ,RFDR
((

nprdct
)
,mdl

)
.

5 Application to deep neural networks

5.1 The deep neural networks

Net 10 will refer to the neural network that is defined on https://reference.wolfram.com/

language/tutorial/NeuralNetworksRegression.html (accessed 18 October 2019) by the code

NetChain[{LinearLayer[15],BatchNormalizationLayer[],

ElementwiseLayer[Ramp],LinearLayer[10],BatchNormalizationLayer[],

ElementwiseLayer[Ramp],LinearLayer[1]},"Input"->13,"Output"->"Scalar"]

in the language of Wolfram Research, Inc. (2019). It is 7 layers deep. Its second linear layer has

an output of 10 numbers, which is why it is called Net 10. Net 8 and Net 5 are exactly the same

except for their values of that hyperparameter; their second linear layers have outputs of 8 and 5

numbers, respectively.
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5.2 The housing data

The data analyzed are from the Boston Standard Metropolitan Statistical Area in 1970 (Belsley

et al., 1980, App. 4A). Each observation in the data set consists of the values of 13 scalar indepen-

dent variables and 1 dependent variable, the logarithm of the median value of homes occupied by

owners. Wolfram Research, Inc. (2019) divides the data into a TrainingData set of 338 observations

and a TestData set of 168 observations associated with its command ExampleData[{"MachineLearning",

"BostonHomes"}]. The data are also available as boston_housing in the Keras Python deep learn-

ing library according to https://keras.io/datasets/ (accessed 18 October 2019), which cites

StatLib as its source.

In the data analysis of Section 5.3, the entire TrainingData set was used as (x , y) to train each

neural network. In the notation of Example 3, the trained models are η10 ((x , y) , •), η8 ((x , y) , •),

and η5 ((x , y) , •) for Net 10, Net 8, and Net 5. The entire TestData set was used as the
(
xprdct, yprdct

)

of Section 4 to assess the performance of the model predictive distribution generated by each neural

network.

5.3 Assessing each neural network’s predictive performance

For convenience, the three neural networks used to analyze the data of Section 5.2 are labeled Net

10, Net 8, and Net 5, where the number is the value of a hyperparameter explained in Section 5.1.

The bootstrap method of Example 3 was used to generate the model predictive distributions, and

the measure of discrepancy proposed in Example 5 was used to determine the model predictive p

values. The empirical distributions of the model predictive p values are plotted in Figure 1.

Figure 1 also reports three measures of predictive performance for each neural network:

1. log10 p
((

xprdct, yprdct
)
,mdl

)
, with Fisher’s combined p value

2. π̂CFDR
0 , based on equation (4)

3. π̂RFDR
0 , based on equation (5)

While the three measures agree that Net 5 predicts best and that Net 10 predicts worst, π̂CFDR
0

and π̂RFDR
0 are more interpretable as absolute measures of performance, according to these consid-

erations:

1. All three of the combined p values are low enough to reject the joint null hypothesis (that all

168 predictions come from the predictive distributions of the neural networks) at the α = 10−5
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level of statistical significance. As that joint null hypothesis is of little relevance, the combined

p value of a neural network only serves as a measure of performance relative to that of the

other neural networks.

2. By contrast, for each neural network considered without comparison to other neural networks,

the farther its π̂CFDR
0 or π̂RFDR

0 is from 1, the more room there is for improving its predictive

performance.

For reference, the last panel of Figure 1 displays log10 p
((

xprdct, yprdct
)
,mdl

)
, π̂CFDR

0 , and π̂RFDR
0

for a simulated case of π0 = 1.
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