
User Manual & Algorithm Description Document

“skullanalyzer” v1.0

Andreas Bertsatos*, 26.10.2019

Department of Animal and Human Physiology,
National and Kapodistrian University of Athens,

Panepistimioupolis 157 01, Athens, Greece
*email: abertsatos@biol.uoa.gr

Introduction

The present document serves both as a user manual as well as an algorithm description document

for the skullanalyzer (v1.0) computer program. The skullanalyzer loads a 3D triangular mesh

cranial model along with a number of user-defined landmarks and extracts a set of cranial geometric

features, which can be used for further analyses. In order to minimize observer error, the landmarks

most sensitive to induce bias into the extracted features are optimized consistently for their correct

location on the cranial 3D model. The first part of the document, the user manual, describes how to

download, compile, and use the skullanalyzer along with the requirements of the cranial 3D

models and landmark acquisition for its correct operation. The second part of the document

concerns the algorithm description and particularly focuses on the geometric properties of the

extracted features as well as the optimization of the nasion and mastoidale landmarks’ positioning

on the cranial surface.

About the “skullanalyzer”

The skullanalyzer is an open source command line program published under the GNU General

Public License v3.0. The source code can be found at https://github.com/pr0m1th3as/ skullanalyzer

along with a precompiled binary for Linux 64-bit operating systems as well as a supplementary

GNU Octave function (plot_features.m), which can be used within the GNU Octave

programming environment for visualizing the extracted cranial geometric features.

The skullanalyzer requires two input files, one Alias Wavefront file (model_name.obj)

containing a triangular mesh of the cranial model to be analyzed and a Meshlab PickedPoints

(model_name.pp) sidecar file, which contains the 3D coordinates of a few user-defined landmarks

that correspond to the 3D model described in the OBJ file. These landmarks can be easily captured

and saved in appropriate format with the open source Meshlab software and should follow the

naming convention shown in Table 1. A prepared testing cranial sample can be download from here.

1

https://github.com/pr0m1th3as/skullanalyzer
https://doi.org/10.5281/zenodo.3519103
http://www.meshlab.net/
https://www.gnu.org/software/octave/
https://github.com/pr0m1th3as/skullanalyzer

Table 1: User-defined landmarks and appropriate naming conventions in Meshlab PickedPoint file

Landmark Naming convention Landmark Naming convention

nasion name=1 bregma name=2

opisthion name=3 left mastoidale name=4

right mastoidale name=5 left orbitale name=6

left porion name=7 right porion name=8

2

It should be noted that despite the cranial model shown in Table 1 contains texture information,

the skullanalyzer does not require texture information or any other information that can be

embedded in the OBJ file, such as vertex normals, except for the vertex coordinates and their

associated faces. Of course, the skullanalyzer can handle any OBJ files that meet the Wavefront

Alias standard as long as it contains a pure triangular mesh model. One important aspect of the 3D

models contained in the OBJ file is that the triangular mesh needs to be relatively dense in order for

the program to properly handle all necessary geometric computations. Although there is not a

precise limit for minimum area of each face, it is strongly advised that the analyzed 3D mesh should

contain at least 100,000 faces. Furthermore, the 3D model should preferably contain only the

ectocranial surface of the skull and it should be watertight across the entire cranial vault and at the

two mastoid processes if these are to be analyzed.

User-defined landmarks captured with Meshlab’s pickpoint tool are illustrated in Figure 1 below.

However, in case of existing landmark dataset for a given 3D model in a raw table format or

preference of different software for obtaining landmark positions from a given 3D mesh, the user

can utilize the GNU Octave function (write_MeshlabPoints.m), which is freely available at

https:// github.com/pr0m1th3as/ long-bone-diaphyseal-CSG-Toolkit , to save the required list of

landmarks along with their respective coordinates to the appropriate Meshlab PickedPoints format.

Figure 1: All necessary landmarks captured with Meshlab's pickpoint tool

3

https://github.com/pr0m1th3as/long-bone-diaphyseal-CSG-Toolkit
https://github.com/pr0m1th3as/long-bone-diaphyseal-CSG-Toolkit
https://github.com/pr0m1th3as/long-bone-diaphyseal-CSG-Toolkit

Downloading and compiling the “skullanalyzer”

Downloading and compiling skullanalyzer from source is a straightforward procedure on

Ubuntu and can be easily achieved through the terminal. The only requirement is having a recent

version of the G++ compiler. If you don’t have one or not sure, open up a terminal and enter:

$ sudo apt install build-essential

Downloading source code directly from github repository and compiling the program can be

accomplished with the following two commands:

$ wget https://github.com/pr0m1th3as/skullanalyzer/raw/master/skullanalyzer.cpp

$ g++ skullanalyzer.cpp -o skullanalyzer

To confirm that skullanalyzer has been compiled successfully, you can test the produced binary by

entering:

$./skullanalyzer --help

which should print a compact help file on the terminal, or enter:

$./skullanalyzer --citation

to see how you can cite it if useful in academic work :)

If compiling from source is not an option, the user can download a precompiled binary, which has

been compiled on Ubuntu 18.04LTS with g++ version 7.4, directly from github and make it

executable by entering:

$ wget https://github.com/pr0m1th3as/skullanalyzer/raw/master/skullanalyzer

$ chmod +x skullanalyzer

$./skullanalyzer --help

Ubuntu users willing to run the skullanalyzer program from any folder in their terminal can move

the binary into the home/user/.local/bin folder in their home directory. This way, skullanalyzer

can be called from any directory containing the necessary .obj and .pp files without being present in

the same directory. The extracted geometric features (saved as csv files) will still be saved in the

same directory as the input files. Note that in such case, the ./ preceding the program’s name

should be omitted. Users of other Linux distributions can take the same steps perhaps with slight

variation according to the specifics of their distribution, whereas Windows users should be able to

use the skullanalyzer precompiled binary through a bash emulator like Cyg w in or compile from

source with a tool like MinGW to produce a native Windows executable.

4

http://www.mingw.org/
https://cygwin.com/
https://cygwin.com/
https://cygwin.com/

Using the “skullanalyzer”

For the rest of the document, we are assuming that the program binary is placed in a folder

present in the system’s PATH variable (such as the home/user/.local/bin folder as explained

earlier), so it can be called from any directory, which contains the 3D model (ABH073-

Cranium.obj) and landmark coordinates (ABH073-Cranium.pp) files, as follows:

$ skullanalyzer ABH073-Cranium.obj ABH073-Cranium.pp

Resulting in the following output to the terminal.

Loading Vertices and Faces from ABH073-Cranium.obj file... OK
Mesh contains 249919 vertices and 500000 faces.
Reading landmarks from ABH073-Cranium.pp file... OK
Defining anatomical position by Frankfurt plane.
Optimizing landmark coordinates for nasion
User coordinates are: x=47.2995 y=14.1996 z=53.623
Optimal coordinates are: x=47.2884 y=13.9098 z=53.6361
Slicing along sagittal plane at nasion:
Calculating intersection points... OK
 2587 faces were intersected.
Nasion - Opisthocranion horizontal length is 164.268
Raster grid size is 299 rows by 366 columns at a resolution of 0.5mm/pixel.
Extracting Nasion - Bregma midsagittal curve:
 235 polyline 2D coordinates calculated.
Number of harmonics up to 99.99% cumulative power spectral density: 11
Extracting occipital bone height map image:
 18204 faces were retained from a 36.6789mm diameter circular projection area.
 Height Map Image centered on 90 by 90 pixels of 1mm^2 square area each.
Extracting supraorbital ridge height map image:
 2659 faces were retained from a 49.1581mm x 21.9174mm rectangular projection area.
 Height Map Image horizontally aligned on 60 by 50 pixels of 1mm^2 square area each.
Optimizing landmark coordinates for mastoidale left
User coordinates are: x=-51.7873 y=65.9968 z=6.29839
Optimal coordinates are: x=-52.0828 y=66.049 z=5.73321
Extracting left mastoid process lateral height map image:
 9148 faces were retained from a 51.5099mm x 27.439mm rectangular projection area.
 Height Map Image extracted on 100 by 80 pixels of 0.5mm^2 square area each.
Extracting left mastoid process inferior height map image:
 11603 faces were retained from a 30mm x 30mm rectangular projection area.
 Height Map Image extracted on 60 by 60 pixels of 0.5mm^2 square area each.
Optimizing landmark coordinates for mastoidale right
User coordinates are: x=29.5555 y=61.2756 z=-56.8551
Optimal coordinates are: x=28.8134 y=61.5484 z=-56.613
Extracting right mastoid process lateral height map image:
 10830 faces were retained from a 57.6372mm x 28.8312mm rectangular projection area.
 Height Map Image extracted on 100 by 80 pixels of 0.5mm^2 square area each.
Extracting right mastoid process inferior height map image:
 11745 faces were retained from a 30mm x 30mm rectangular projection area.
 Height Map Image extracted on 60 by 60 pixels of 0.5mm^2 square area each.

As shown above, the skullanalyzer loads both files and goes through all necessary calculations

to extract the required geometric features from the cranial 3D mesh while optimizing for nasion and

mastoidale landmarks along the way and provide certain feedback regarding its calculations.

However, when called with only 2 input arguments (i.e. the input files) no results are exported into

relevant output files, which can be utilized in further analyses. For this purpose, the program can be

invoked with a number of parameters set as an extra string argument preceding the input files, e.g.:

$ skullanalyzer -peos ABH073-Cranium.obj ABH073-Cranium.pp

5

The program can take up to 4 discrete and independent parameters bundled in a single string

argument beginning with a dash (-) as shown with previous command line example. The four

letters, “p”, “e”, “o”, “s”, can be set in any random order after the initial (-) character. The

following table lists the functionality of each parameter as well as the default behaviour. Note that

any other characters are ignored by the skullanalyzer.

Table 2: User parameters for controlling the program’s output

Character Functionality when set in parameter string Default operation when missing

p Save the updated list of landmarks including the
optimized points into a new separate .pp file.

Does not export updated
landmark coordinates.

e Export the geometric features into the relevant .csv files.
This includes the 2D polyline of the nasion-bregma
segment as well as all available HMIs.

Does not export the .csv files of
any geometric feature.

o Save all calculated features into GNU Octave text data
format. This includes both the EFDs of the nasion-
bregma segment as well as all available HMIs.

Does not export the .mat file with
all calculated results.

s Silence output to terminal. Suitable for batch processing
several samples through a bash script or other programs.

All requested operations are
reported in the terminal.

So, the previous command would save all results and calculations to the appropriate files without

producing any output to the terminal, whereas the following command would save exactly the same

files in the working directory but also print all feedback regarding its processing steps as shown

bellow. Note that the order of characters in the parameter string is irrelevant. Also note that the

working directory (where skullanalyzer is called from) must always be the directory where the 3D

model (.obj) and landmark coordinates (.pp) files are present.

$ skullanalyzer -poe ABH073-Cranium.obj ABH073-Cranium.pp

Loading Vertices and Faces from ABH073-Cranium.obj file... OK
Mesh contains 249919 vertices and 500000 faces.
Reading landmarks from ABH073-Cranium.pp file... OK
Defining anatomical position by Frankfurt plane.
Optimizing landmark coordinates for nasion
User coordinates are: x=47.2995 y=14.1996 z=53.623
Optimal coordinates are: x=47.2884 y=13.9098 z=53.6361
Slicing along sagittal plane at nasion:
Calculating intersection points... OK
 2587 faces were intersected.
Nasion - Opisthocranion horizontal length is 164.268
Writing to ABH073-Cranium_a.pp file... OK
Raster grid size is 299 rows by 366 columns at a resolution of 0.5mm/pixel.
Extracting Nasion - Bregma midsagittal curve:
 235 polyline 2D coordinates calculated.
 Writing to ABH073-Cranium_NasionBregmaSegment.csv file... OK
Number of harmonics up to 99.99% cumulative power spectral density: 11
Extracting occipital bone height map image:
 18204 faces were retained from a 36.6789mm diameter circular projection area.
 Height Map Image centered on 90 by 90 pixels of 1mm^2 square area each.
 Writing to ABH073-Cranium_occipitalHeightMapImage.csv file... OK
Extracting supraorbital ridge height map image:
 2659 faces were retained from a 49.1581mm x 21.9174mm rectangular projection area.
 Height Map Image horizontally aligned on 60 by 50 pixels of 1mm^2 square area each.
 Writing to ABH073-Cranium_supraorbitalHeightMapImage.csv file... OK

6

Optimizing landmark coordinates for mastoidale left
User coordinates are: x=-51.7873 y=65.9968 z=6.29839
Optimal coordinates are: x=-52.0828 y=66.049 z=5.73321
Writing to ABH073-Cranium_a.pp file... OK
Extracting left mastoid process lateral height map image:
 9148 faces were retained from a 51.5099mm x 27.439mm rectangular projection area.
 Height Map Image extracted on 100 by 80 pixels of 0.5mm^2 square area each.
 Writing to ABH073-Cranium_mastoidLeftLateralHeightMapImage.csv file... OK
Extracting left mastoid process inferior height map image:
 11603 faces were retained from a 30mm x 30mm rectangular projection area.
 Height Map Image extracted on 60 by 60 pixels of 0.5mm^2 square area each.
 Writing to ABH073-Cranium_mastoidLeftInferiorHeightMapImage.csv file... OK
Optimizing landmark coordinates for mastoidale right
User coordinates are: x=29.5555 y=61.2756 z=-56.8551
Optimal coordinates are: x=28.8134 y=61.5484 z=-56.613
Writing to ABH073-Cranium_a.pp file... OK
Extracting right mastoid process lateral height map image:
 10830 faces were retained from a 57.6372mm x 28.8312mm rectangular projection area.
 Height Map Image extracted on 100 by 80 pixels of 0.5mm^2 square area each.
 Writing to ABH073-Cranium_mastoidRightLateralHeightMapImage.csv file... OK
Extracting right mastoid process inferior height map image:
 11745 faces were retained from a 30mm x 30mm rectangular projection area.
 Height Map Image extracted on 60 by 60 pixels of 0.5mm^2 square area each.
 Writing to ABH073-Cranium_mastoidRightInferiorHeightMapImage.csv file... OK
Data saved to ABH073-Cranium.mat

As shown in the terminal output above, the skullanalyzer saves each file with an intuitive

naming convention by keeping the 3D model’s or landmark coordinates’ filenames as a baseline. It

should be noted that it is not necessary for the two input files to share the same filename as in the

present example. All extracted geometric features saved in .csv files acquire their baseline filename

(i.e. “ABH073-Cranium”) from the 3D model’s .obj filename and then a descriptive filename (i.e.

_NasionBregmaSegment) is appended before the file’s extension (.csv). On the contrary, the

updated Meshlab PickedPoint file (i.e. “ABH073-Cranium_a.pp”) acquires its baseline filename

from the landmark coordinates’ input file and (“_a”) is appended before the file’s extension. For

example, if the landmark coordinates’ input file was named “points.pp” the updated landmark

coordinates’ output file would have been renamed to “points_a.pp”. Finally, the GNU octave text

data format file shares the same filename with the 3D model but with a “.mat” extension.

The skullanalyzer requires at least 5 landmarks for determining the correct orientation of the

cranium model into its anatomical (Frankfurt) position. These are the nasion, opisthion, left

orbitale, left porion and right porion landmarks. Depending on which other landmarks are present

into the landmark coordinates’ input file, the program will extract a different number of geometric

features accordingly. If the minimum number of landmarks is present, then only the supraorbital

ridge and occipital protuberance HMIs will be extracted. Note that the supraorbital ridge HMI is

only extracted if there is a protruding surface of the supraorbital ridge with respect to the nasion

landmark after it is optimally located. If bregma is given, then the nasion-bregma segment will be

extracted and its EFDs calculated. If left and/or right mastoidale landmarks are given, then they are

also optimally located and the lateral and inferior HMIs are extracted for each mastoid process

respectively.

7

The following table summarizes the possible combinations of present landmark coordinates in

the input file and the resulting extracted geometric features. Note, that the same combinations apply

to the fields of structures being present in the saved GNU octave text data format file.

Table 3: Combinations of landmarks and extracted features

Landmarks Extracted features in csv files
Extracted features in GNU Octave’s
data structures and respective fields

nasion, opisthion,
left orbitale,
left porion,
right porion

_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv

FCC.NasionBregma = 0
EFD.NasionBregma = [0 0 0 0]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]

nasion, opisthion,
bregma,
left orbitale,
left porion,
right porion

_NasionBregmaSegment.csv
_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv

FCC.NasionBregma = [1:n]
EFD.NasionBregma = [n,4]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]

nasion, opisthion,
bregma,
left mastoidale,
left orbitale,
left porion,
right porion

_NasionBregmaSegment.csv
_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv
_mastoidLeftLateralHeightMapImage.csv
_mastoidLeftInferiorHeightMapImage.csv

FCC.NasionBregma = [1:n]
EFD.NasionBregma = [n,4]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]
HMI.LeftMastoidLateral = [80,100]
HMI.LeftMastoidInferior = [60,60]

nasion, opisthion,
bregma,
right mastoidale,
left orbitale,
left porion,
right porion

_NasionBregmaSegment.csv
_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv
_mastoidRightLateralHeightMapImage.csv
_mastoidRightInferiorHeightMapImage.csv

FCC.NasionBregma = [1:n]
EFD.NasionBregma = [n,4]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]
HMI.RightastoidLateral = [80,100]
HMI.RightMastoidInferior = [60,60]

nasion, opisthion,
bregma,
left mastoidale,
right mastoidale,
left orbitale,
left porion,
right porion

_NasionBregmaSegment.csv
_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv
_mastoidLeftLateralHeightMapImage.csv
_mastoidLeftInferiorHeightMapImage.csv
_mastoidRightLateralHeightMapImage.csv
_mastoidRightInferiorHeightMapImage.csv

FCC.NasionBregma = [1:n]
EFD.NasionBregma = [n,4]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]
HMI.LeftMastoidLateral = [80,100]
HMI.LeftMastoidInferior = [60,60]
HMI.RightastoidLateral = [80,100]
HMI.RightMastoidInferior = [60,60]

nasion, opisthion,
left mastoidale,
left orbitale,
left porion,
right porion

_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv
_mastoidLeftLateralHeightMapImage.csv
_mastoidLeftInferiorHeightMapImage.csv

FCC.NasionBregma = 0
EFD.NasionBregma = [0 0 0 0]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]
HMI.LeftMastoidLateral = [80,100]
HMI.LeftMastoidInferior = [60,60]

nasion, opisthion,
right mastoidale,
left orbitale,
left porion,
right porion

_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv
_mastoidRightLateralHeightMapImage.csv
_mastoidRightInferiorHeightMapImage.csv

FCC.NasionBregma = 0
EFD.NasionBregma = [0 0 0 0]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]
HMI.RightastoidLateral = [80,100]
HMI.RightMastoidInferior = [60,60]

nasion, opisthion,
left mastoidale,
right mastoidale,
left orbitale,
left porion,
right porion

_occipitalHeightMapImage.csv
_supraorbitalHeightMapImage.csv
_mastoidLeftLateralHeightMapImage.csv
_mastoidLeftInferiorHeightMapImage.csv
_mastoidRightLateralHeightMapImage.csv
_mastoidRightInferiorHeightMapImage.csv

FCC.NasionBregma = 0
EFD.NasionBregma = [0 0 0 0]
HMI.OccipitalProtuberance = [90,90]
HMI.SupraorbitalRidge = [50,60]
HMI.LeftMastoidLateral = [80,100]
HMI.LeftMastoidInferior = [60,60]
HMI.RightastoidLateral = [80,100]
HMI.RightMastoidInferior = [60,60]

8

All testing presented in this document has been performed with a 3D model of a cranial sample

from the Athens modern reference skeletal collection, which has been digitized by 3D

photogrammetry and contains approximately 250,000 vertices. This 3D model sample (ABH073-

Cranium.obj) and its sidecar landmark coordinates’ file (ABH073-Cranium.pp) bundled together

with all extracted features and updated landmark coordinates saved in respective files as shown in

Table 3 are freely available as a testing dataset from zenodo repository.

Algorithm Description

The following flowchart illustrates the base components of the algorithm implemented in the
skullanalyzer for extracting the geometric features from a 3D model.

9

calculate normals
of anatomical planes

Read 3D model &
Landmark coordinates

Read 3D model &
Landmark coordinates

Check user arguments

Slice model along the
midsagittal plane at
user defined nasion

Project sliced curve to 2D
Rasterize at 0.5mm2

Apply MooreNeighbor
boundary tracing

Find local minimum near
nasion for optimizing

its location

Slice model along the
midsagittal plane at

optimized nasion

Calculate FCC & EFDs
for nasion-bregma

IF
landmark bregma

Is available

Extract nasion-bregma
segment

IF
nasion local

minimum
exists

YES

NO

Calculate HMI for
occipital protuberance

Calculate HMI for
occipital protuberance

YES

IF
left mastoidale

landmark
exists

NO

Calculate Lateral &
Inferior HMIs for
left mastoidale

IF
right mastoidale

landmark
exists

Calculate Lateral &
Inferior HMIs for
right mastoidale

Save results to GNU
Octave test data format

NO

NO

YES

YES

optimize
left mastoidale

optimize
right mastoidale

https://doi.org/10.5281/zenodo.3519103

Optimizing the locations of landmarks

The skullanalyzer automatically optimizes the locations of the nasion, left mastoidale and right

mastoidale landmarks as a means of minimizing the effect of the observer error in landmark

acquisition on the accuracy of the extracted geometric features. It should be noted that different

optimization algorithms are implemented for the nasion landmark and the mastoidale landmarks.

Nominally, the nasion is defined as the suture between the frontal and nasal bones on the

midsagittal plane, which is a distinctly depressed area directly between the eye orbits. This location

most often coincides with the most posterior point on the aforementioned depression. Hence, the

optimization algorithm for the nasion landmark calculates the midsagittal cross section based on the

user-defined nasion and then finds the local minimum (i.e. the most deep point on this local

depression) on the midsagittal curve, since accurate positioning of nasion can be problematic in

models without a texture component such as those derived from CT scans. A drawback of this

optimization approach is that the optimized position is partially dependent on that the user-defined

nasion defines the midsagittal plane, so the optimization algorithm actually operates along a 2D

plane instead of the 3D space that defines the overall local morphology. As a result, the optimized

coordinates can exhibit a slight variation between different iterations of user-defined nasion

landmarks as shown in Table 4. Although the embedded figures depict the optimized nasion in the

“same” position on the cranial surface, the actual 3D coordinates vary by an average of 0.5mm.

This margin of optimization error may be safely considered acceptable, since it produces negligible

variation in the extracted nasion-bregma segment and the subsequently calculated EFDs as shown

in Table 5. However, the user is advised to always inspect the cranial surface for accurately locating

the nasion landmark on the midline of the skull, which can be easily evaluated even on non-textured

models.

The optimization of the mastoidale landmark is much more straightforward, since by definition it

is the craniometric point at the lowest point of the mastoid process. Since the skullanalyzer

predetermines the anatomical position of the cranium under analysis, optimizing the left and right

mastoidale landmarks always results to the same optimized coordinates as shown in Table 6 and

Table 7 respectively. The only requirement for accurate optimization is that the user-defined points

must be within 8mm radius from their optimal position, which is by far a large margin for easily

picking the two mastoidale landmarks within the acceptable range allowing the skullanalyzer to

find their optimal positions. The optimization algorithm implemented for the mastoidale landmarks

practically eliminates any user induced error in the respective geometric features calculations.

However, the user is advised to always take into consideration the maximum radius limitation to

10

avoid any shortcomings, since the optimization algorithm will only look for the most inferior point

coordinates within a radius of 8mm from the user-defined mastoidale landmark.

Table 4: Optimized nasion iterations with different user defined coordinates

iteration skullanalyzer terminal output View in MeshLab

1

User coordinates are:

x=47.2995 y=14.1996 z=53.623

Optimal coordinates are:

x=47.2884 y=13.9098 z=53.6361

2

User coordinates are:

x=47.7112 y=16.1132 z=54.1253

Optimal coordinates are:

x=46.9836 y=13.179 z=53.4614

3

User coordinates are:

x=47.1697 y=11.5387 z=54.589

Optimal coordinates are:

x=46.6905 y=13.4176 z=53.7855

4

User coordinates are:

x=47.6101 y=15.4702 z=54.0303

Optimal coordinates are:

x=46.996 y=13.1877 z=53.4518

5

User coordinates are:

x=47.9655 y=16.9616 z=54.1944

Optimal coordinates are:

x=47.0849 y=13.142 z=53.4183

Note: The optimized nasion points can vary
depending on the initial user-defined alignment
points.

Note: Blue dot shows the user-defined point and
green dot shows the optimized location of the left
nasion landmark.

11

Table 5: Optimized nasion-bregma segments and resulted EFDs per iteration

iteration nasion-bregma segment Calculates EFDs

1

-49.159 0 105.5 0

65.219 -1.63E-13 -72.042 8.77E-14

-16.295 9.76E-14 -14.504 7.47E-15

5.4359 -8.30E-14 -5.6362 -7.45E-15

-2.7125 3.03E-14 -2.41 -6.94E-15

2.2255 -4.56E-14 -2.5855 1.53E-14

-1.6793 2.52E-14 -0.78335 -1.30E-14

0.27917 -1.93E-14 -1.4981 1.22E-14

-1.4789 2.10E-14 -0.64613 -6.51E-15

-0.035447 -1.82E-14 -0.92736 5.16E-15

-0.94211 1.54E-14 -0.28116 -9.04E-15

0.066239 -1.39E-14 -0.57783 7.73E-15

2

-48.56 0 104.49 0

65.228 -1.57E-13 -70.967 7.74E-14

-15.901 1.11E-13 -14.468 1.88E-14

5.5702 -4.64E-14 -5.7129 -2.19E-14

-2.6226 2.15E-14 -2.3897 -9.25E-15

2.3193 -3.73E-14 -2.5431 1.04E-14

-1.4699 2.14E-14 -0.78517 -1.31E-14

0.43493 -1.93E-14 -1.5156 1.56E-14

-1.4121 2.11E-14 -0.64264 -4.55E-15

-0.0079031 -1.44E-14 -0.92834 9.73E-15

-0.90067 1.69E-14 -0.32344 -8.16E-15

0.064687 -1.12E-14 -0.62079 1.15E-14

3

-48.465 0 105 0

65.332 -1.54E-13 -71.532 9.09E-14

-16.057 9.99E-14 -14.448 1.53E-14

5.3782 -5.77E-14 -5.5415 -4.56E-15

-2.6092 2.65E-14 -2.3643 -1.01E-14

2.3289 -4.15E-14 -2.6472 1.61E-14

-1.5874 2.29E-14 -0.77705 -1.13E-14

0.31434 -2.21E-14 -1.4414 1.13E-14

-1.4209 2.06E-14 -0.6557 -3.86E-15

0.011275 -1.94E-14 -0.96528 7.88E-15

-0.94812 1.90E-14 -0.29846 -3.09E-15

0.018646 -1.51E-14 -0.56953 5.75E-15

4

-48.56 0 104.49 0

65.228 -1.58E-13 -70.969 7.13E-14

-15.899 1.13E-13 -14.462 1.81E-14

5.5674 -4.50E-14 -5.7198 -1.81E-14

-2.622 1.99E-14 -2.3883 -8.87E-15

2.3225 -3.68E-14 -2.5355 1.02E-14

-1.4757 2.21E-14 -0.799 -1.11E-14

0.44005 -1.94E-14 -1.5033 1.52E-14

-1.4136 2.07E-14 -0.64626 -4.65E-15

-0.01061 -1.51E-14 -0.93487 8.51E-15

-0.89589 1.67E-14 -0.31189 -8.53E-15

0.060885 -1.11E-14 -0.62997 1.18E-14

5

-48.597 0 104.43 0

65.302 -1.57E-13 -71.037 1.61E-13

-15.905 1.22E-13 -14.425 1.72E-14

5.4804 -7.06E-14 -5.6376 -1.11E-15

-2.581 2.87E-14 -2.3831 -3.82E-15

2.3514 -3.56E-14 -2.5855 1.38E-14

-1.4953 2.02E-14 -0.77302 -8.68E-15

0.4189 -1.61E-14 -1.4713 9.24E-15

-1.378 1.70E-14 -0.65406 -8.36E-15

0.0038365 -1.73E-14 -0.95484 1.21E-14

-0.92374 2.02E-14 -0.30248 -9.95E-15

0.056692 -2.33E-14 -0.59701 5.90E-15

Note: The resulted polyline segments are nearly
identical between different iterations.

Note: Variation in the calculated EFDs is
insignificant as compared to EFD differences
between different individuals.

12

Table 6: Optimized left mastoidale iterations with different user defined coordinates

iteration GNU Octave’s console View in MeshLab

1

User coordinates are:

x=-51.7873 y=65.9968 z=6.29839

Optimal coordinates are:

x=-52.0828 y=66.049 z=5.73321

2

User coordinates are:

x=-51.0715 y=65.703 z=7.46316

Optimal coordinates are:

x=-52.0828 y=66.049 z=5.73321

3

User coordinates are:

x=-52.267 y=65.6986 z=7.38393

Optimal coordinates are:

x=-52.0828 y=66.049 z=5.73321

4

User coordinates are:

x=-50.8507 y=65.7805 z=6.80932

Optimal coordinates are:

x=-52.0828 y=66.049 z=5.73321

5

User coordinates are:

x=-53.372 y=65.6583 z=6.76208

Optimal coordinates are:

x=-52.0828 y=66.049 z=5.73321

Note: The optimized left mastoidale coordinates are
always the same regardless of how accurately the
user may initially pick the landmark.

Note: Blue dot shows the user defined point and
green dot shows the optimized location of the left
mastoidale landmark.

13

Table 7: Optimized right mastoidale iterations with different user defined coordinates

iteration GNU Octave’s console View in MeshLab

1

User coordinates are:

x=29.5555 y=61.2756 z=-56.8551

Optimal coordinates are:

x=28.8134 y=61.5484 z=-56.613

2

User coordinates are:

x=30.5673 y=60.8209 z=-56.0152

Optimal coordinates are:

x=28.8134 y=61.5484 z=-56.613

3

User coordinates are:

x=29.0715 y=61.0765 z=-55.2264

Optimal coordinates are:

x=28.8134 y=61.5484 z=-56.613

4

User coordinates are:

x=30.4065 y=60.9039 z=-55.6063

Optimal coordinates are:

x=28.8134 y=61.5484 z=-56.613

5

User coordinates are:

x=28.9993 y=60.8051 z=-54.7697

Optimal coordinates are:

x=28.8134 y=61.5484 z=-56.613

Note: The optimized right mastoidale coordinates
are always the same regardless of how accurately
the user may initially pick the landmark.

Note: Blue dot shows the user defined point and
green dot shows the optimized location of the right
mastoidale landmark.

14

Elliptic Fourier Descriptors of the nasion – bregma segment

The nasion-bregma segment is the 2D planar projection of the ectocranial mesh sliced along the

midsagittal plane, which passes through the optimized nasion landmark. The projection produces a

right hand side view of the skull, as shown in Figure 2, with the horizontal axis aligned with the

cranial dorsoventral (anteroposterior) axis and the vertical axis aligned with the craniocaudal axis.

The origin of the 2D projection plane coincides with the projection of the nasion landmark. The

segment starts at the optimized nasion and ends at the point along the sliced mesh, which is closer

to bregma. It should be noted that since the nasion optimization algorithm is not completely rigid

but introduces some small error as previously stated, this means that the starting point of the

nasion-bregma segment does not necessarily start at the deepest point of the local depression. This

may result in minor artifacts near the origin of the 2D plot as illustrated in the example shown

below. However, this minute variation may be regarded as non-significant as explained earlier. The

extracted 2D segment is saved in the respective *_NasionBregmaSegment.csv file as a two

column matrix, where the columns refer to x (horizontal) and y (vertical) dimensions of the 2D

projection and each row at a different projected point of the sliced segment.

Figure 2: nasion-bregma segment plotted in GNU Octave

The calculation of the EFDs relies on the prior calculation of Freeman Chain Code (FCC) that

describes the particular extracted segment. The FCC is derived from the raster image of the 2D

15

projection, which is rasterized at a resolution of 0.5mm. This further lowers the impact of the error

of the nasion optimization algorithm. Finally, the FCC of the nasion-bregma segment is calculated

from nasion to bregma and back to nasion to produce a closed contour, which facilitates the

calculation of the EFDs. The number of harmonics of the EFDs are calculated up to their 99.99%

cumulative power spectral density. This enables an accurate representation of the 2D nasion-

bregma segment without adding many higher harmonics, which mostly represent quantization noise

rather than actual shape variation. Furthermore, although a full range Fourier expansion is applied

on the previously calculated closed contour FCC, the resulted EFDs correspond to a half range

Fourier expansion applied on an open line. Hence, the b and d coefficients of the EFDs are zero, as

it is demonstrated in Table 5. Note that these values are nearly zero as a result of floating-numbers

operations, but they are practically zero and should not be considered for any further analysis.

Height Map Images: orientation and rasterization details

Occipital Protuberance HMI

The HMI of the occipital protuberance area is the negative height map of a circular projection

disk, whose diameter is determined by the user-defined opisthion landmark and the pseudo-

opistocranion landmark, which is automatically calculated by the skullanalyzer as the most distant

point from the optimized nasion along the dorsoventral axis at the back of the skull. The projection

produces an inferoposterior view of the skull, as shown in Figure 3. The HMI’s horizontal axis is

aligned with the cranial frontal (left-to-right) axis and its vertical axis is aligned with the vector

defined by pseudo-opisthion (top) and opisthion (bottom) landmarks.

Figure 3: occipital protuberance HMI plotted in GNU Octave

16

The occipital protuberance HMI is an 8-bit gray scale image with a fixed size of 90x90 pixels.

Each pixel covers a 1mm2 square area upon which the circular projection disk is centered. The 8-bit

projected height resolution of the occipital protuberance HMI is set at 0.1mm and projected heights

in excess of 25.5mm are set to zero. The extracted HMI is saved in the respective

*_occipitalHeightMapImage.csv file as a 90x90 (rows, columns) matrix containing values from

0 to 255. By negative height map it is meant that the faces further away from the projection disk are

assigned with lower values. Hence, the more pronounced the occipital protuberance is, the darker it

will appear on the HMI plot.

Supraorbital Ridge HMI

The HMI of the supraorbital ridge area is the negative height map of a rectangular projection

area, which is located at the optimized nasion landmark with coronal orientation. The projected

cranial mesh concerns only the faces that lie anterosuperiorly of the optimized nasion landmark.

This projection produces an anterior view of the skull, as shown in Figure 4. The HMI’s horizontal

axis is aligned with the cranial frontal (right-to-left) axis and its vertical axis is aligned with the

craniocaudal axis. Note that the left side of the HMI corresponds to the right hand side of the skull.

Figure 4: supraorbital ridge HMI plotted in GNU Octave

The projected faces are horizontally centered on a rectangular projection plate of 60mm width

and 50mm height with the optimized nasion landmark positioned at the midpoint of its base

(horizontal) edge. The supraorbital ridge HMI is an 8-bit gray scale image with a fixed size of

60x50 pixels, each of which cover a 1mm2 square area. The 8-bit projected height resolution of the

17

supraorbital ridge HMI is set at 0.05mm and projected heights in excess of 12.75mm are set to

zero. The extracted HMI is saved in the respective *_supraorbitalHeightMapImage.csv file as a

50x60 (rows, columns) matrix containing values from 0 to 255. Once again, the negative height

map means that the more pronounced the supraorbittal ridge is, the darker it will appear on the HMI

plot.

Left Mastoid Process Lateral HMI

The left mastoid process lateral HMI is the negative height map of a rectangular projection area,

which is located laterally of the left mastoidale landmark displaced by 20mm and parallel to the

sagittal plane. The projected cranial mesh concerns only the faces that lie inferiorly and posteriorly

of the left porion landmark displaced anteriorly by 3mm and laterally of the left mastoidale

landmark displaced medially by 5mm. This projection produces a lateral view of the skull from the

left hand side, as shown in Figure 5. The HMI’s horizontal axis is aligned with the cranial

dorsoventral axis and its vertical axis is aligned with the craniocaudal axis. Note that the left side of

the HMI corresponds to the anterior side of the skull.

Figure 5: left mastoid process lateral HMI plotted in GNU Octave

The projected faces are top-left aligned on a rectangular projection plate of 50mm width and

40mm height. The left mastoid process lateral HMI is an 8-bit gray scale image with fixed

dimensions of 100x80 pixels and a spatial resolution of 0.5mm. The 8-bit projected height

resolution of the left mastoid process lateral HMI is set at 0.1mm and projected heights in excess of

25.5mm are set to zero. The extracted HMI is saved in the respective

18

*_mastoidLeftLateralHeightMapImage.csv file as a 80x100 (rows, columns) matrix containing

values from 0 to 255.

Left Mastoid Process Inferior HMI

The left mastoid process inferior HMI is the negative height map of a square projection area,

which is located inferiorly of the left porion landmark displaced by 40mm and parallel to the

transverse plane. The projected cranial mesh concerns only the faces that lie inferiorly of the left

porion landmark and are bounded by a square area of 30mm x 30mm with its center defined by the

left mastoidale landmark and extruded along the craniocaudal axis. This projection produces an

inferior view of the skull centrally aligned below the left mastoidale, as shown in Figure 6. The

HMI’s horizontal axis is aligned with the cranial frontal axis and its vertical axis is aligned with the

dorsoventral axis. Note that the left side of the HMI corresponds to the medial side of the skull,

whereas the top faces anteriorly.

Figure 6: left mastoid process inferior HMI plotted in GNU Octave

The projected faces are centered on a square projection plate of 30mm width and 30mm height.

The left mastoid process inferior HMI is an 8-bit gray scale image with a fixed size of 60x60 pixels

and a spatial resolution of 0.5mm. The 8-bit projected height resolution of the left mastoid process

HMI is set at 0.15mm and projected heights in excess of 38.25mm are set to zero. The extracted

HMI is saved in the respective *_mastoidLeftInferiorHeightMapImage.csv file as a 60x60

(rows, columns) matrix containing values from 0 to 255.

19

Right Mastoid Process Lateral HMI

The right mastoid process lateral HMI is the negative height map of a rectangular projection

area, which is located laterally of the right mastoidale landmark displaced by 20mm and parallel to

the sagittal plane. The projected cranial mesh concerns only the faces that lie inferiorly and

posteriorly of the right porion landmark displaced anteriorly by 3mm and laterally of the right

mastoidale landmark displaced medially by 5mm. This projection produces a lateral view of the

skull from the right hand side, as shown in Figure 7. The HMI’s horizontal axis is aligned with the

cranial dorsoventral axis and its vertical axis is aligned with the craniocaudal axis. Note that the

right side of the HMI corresponds to the anterior side of the skull.

Figure 7: right mastoid process lateral HMI plotted in GNU Octave

The projected faces are top-right aligned on a rectangular projection plate of 50mm width and

40mm height. The right mastoid process lateral HMI is an 8-bit gray scale image with fixed

dimensions of 100x80 pixels and a spatial resolution of 0.5mm. The 8-bit projected height

resolution of the right mastoid process lateral HMI is set at 0.1mm and projected heights in excess

of 25.5mm are set to zero. The extracted HMI is saved in the respective

*_mastoidRightLateralHeightMapImage.csv file as a 80x100 (rows, columns) matrix containing

values from 0 to 255.

20

Right Mastoid Process Inferior HMI

The right mastoid process inferior HMI is the negative height map of a square projection area,

which is located inferiorly of the right porion landmark displaced by 40mm and parallel to the

transverse plane. The projected cranial mesh concerns only the faces that lie inferiorly of the right

porion landmark and are bounded by a square area of 30mm x 30mm with its center defined by the

right mastoidale landmark and extruded along the craniocaudal axis. This projection produces an

inferior view of the skull centrally aligned below the right mastoidale, as shown in Figure 8. The

HMI’s horizontal axis is aligned with the cranial frontal axis and its vertical axis is aligned with the

dorsoventral axis. Note that the right side of the HMI corresponds to the medial side of the skull,

whereas the top faces anteriorly.

Figure 8: right mastoid process inferior HMI plotted in GNU Octave

The projected faces are centered on a square projection plate of 30mm width and 30mm height.

The right mastoid process inferior HMI is an 8-bit gray scale image with a fixed size of 60x60

pixels and a spatial resolution of 0.5mm. The 8-bit projected height resolution of the right mastoid

process HMI is set at 0.15mm and projected heights in excess of 38.25mm are set to zero. The

extracted HMI is saved in the respective *_mastoidRightInferiorHeightMapImage.csv file as a

60x60 (rows, columns) matrix containing values from 0 to 255.

21

Limitations of the “skullanalyzer” program

As mentioned earlier the skullanalyzer has certain limitations regarding the properties of the

cranial 3D mesh models that it can handle properly. These concern the amount of faces and the

absence of holes from particular areas of the ectocranial surface. Although a completely watertight

mesh is the most safe approach to avoid segmentation errors, it is not mandatory. For example, the

cranial model used in the present manual is not watertight (i.e. foramen magnum). Furthermore, the

skullanalyzer has been implemented in such manner that it can handle cranial meshes that may also

contain endocranial geometry, such as a double layer configuration or a folded surface, which can

be the case with 3D models produced from CT scans etc. This is achieved by utilizing the Moore

Neighbor tracing algorithm to automatically detect the outer surface of the skull along the

midsagittal curve. This algorithm poses a limitation in that the midsagittal curve must be rasterized

in order to apply the Moore Neighbor tracing, which further implies that any small holes or sparse

faces on the ectocranial surface can be problematic. Furthermore, the rasterization and Moore

Neighbor tracing are also responsible for the small error in the nasion optimization. These

limitations have been partially compensated with particular techniques such as resampling, which

have been implemented in the skullanalyzer. However, the user is strongly advised to always check

the quality and appropriateness of the 3D mesh prior to analysis and use the supplementary GNU

Octave function to visualize the extracted geometric features prior to utilizing the HMIs or the .mat

file for any further analysis.

Known Bugs

A known issue concerns the HMI calculation of the inferior view of the mastoid processes,

which often results in miscalculation of the grayscale value of a couple of vertical border pixels of

the extracted HMI. Despite all efforts to debug the underlying implemented algorithm of the HMI

extraction, which is fairly complex, this miscalculation persists every now and then. This erratic

behaviour explicitly appears on the inferior view of the mastoid processes, is always limited to the

medial border of the projected height map and affects a very small number of pixels if any.

However, this bug does not interfere with the overall view of mastoid process and hence it may be

regarded as non-significant for all practical purposes such as image pattern recognition.

Acknowledgements

The author would like to thank Nefeli Garoufi and Dr. Maria-Eleni Chovalopoulou for revising

the present manual and offering valuable suggestions to improve its readability.

22

	Introduction
	About the “skullanalyzer”
	Downloading and compiling the “skullanalyzer”
	Using the “skullanalyzer”
	Algorithm Description
	Optimizing the locations of landmarks
	Elliptic Fourier Descriptors of the nasion – bregma segment
	Height Map Images: orientation and rasterization details
	Occipital Protuberance HMI
	Supraorbital Ridge HMI
	Left Mastoid Process Lateral HMI
	Left Mastoid Process Inferior HMI
	Right Mastoid Process Lateral HMI
	Right Mastoid Process Inferior HMI

	Limitations of the “skullanalyzer” program
	Known Bugs
	Acknowledgements

