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For myself, I am interested in science and in philosophy only because I want to
learn something about the riddle of the world in which we live, and the riddle
of man’s knowledge of that world. And I believe that only a revival of interest
in these riddles can save the sciences and philosophy from narrow specialization
and from an obscurantist faith in the expert’s special skill, and in his personal
knowledge and authority; a faith that so well fits our ‘post-rationalist’ and ‘post-
critical’ age, proudly dedicated to the destruction of the tradition of rational
philosophy, and of rational thought itself.

—Karl Popper. The logic of scientific discovery. 1959.
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1 Introduction

GNU Astronomy Utilities (Gnuastro) is an official GNU package consisting of separate
programs and libraries for the manipulation and analysis of astronomical data. All the
programs share the same basic command-line user interface for the comfort of both the
users and developers. Gnuastro is written to comply fully with the GNU coding standards
so it integrates finely with the GNU/Linux operating system. This also enables astronomers
to expect a fully familiar experience in the source code, building, installing and command-
line user interaction that they have seen in all the other GNU software that they use. The
official and always up to date version of this book (or manual) is freely available under
Appendix C [GNU Free Doc. License], page 381, in various formats (pdf, html, plain text,
info, and as its Texinfo source) at http://www.gnu.org/software/gnuastro/manual/.

For users who are new to the GNU/Linux environment, unless otherwise specified most of
the topics in Chapter 3 [Installation], page 42, and Chapter 4 [Common program behavior],
page 65, are common to all GNU software, for example installation, managing command-
line options or getting help (also see Section 1.6 [New to GNU/Linux?], page 7). So if you
are new to this empowering environment, we encourage you to go through these chapters
carefully. They can be a starting point from which you can continue to learn more from
each program’s own manual and fully benefit from and enjoy this wonderful environment.
Gnuastro also comes with a large set of libraries, so you can write your own programs using
Gnuastro’s building blocks, see Section 10.1 [Review of library fundamentals], page 253, for
an introduction.

Finally it must be mentioned that in Gnuastro, no change to any program will be released
before it has been fully documented in this here first. As discussed in Section 1.2 [Science
and its tools], page 2, this is the founding basis of the Gnuastro.

1.1 Quick start

The latest official release tarball is always available as gnuastro-latest.tar.gz (http://
ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.gz). For better compression (faster
download), and robust archival features, an Lzip (http://www.nongnu.org/lzip/lzip.
html) compressed tarball is also available at gnuastro-latest.tar.lz (http://ftp.gnu.
org/gnu/gnuastro/gnuastro-latest.tar.lz), see Section 3.2.1 [Release tarball], page 49,
for more details on the tarball release.

The Gzip library and program are commonly available on most systems. However, Gnu-
astro recommends Lzip as described above and the beta-releases are also only distributed in
tar.lz. You can download and install Lzip’s source (in .tar.gz format) from its webpage
and follow the same process as below: Lzip has no dependencies, so simply decompress,
then run ./configure, make, sudo make install.

Let’s assume the downloaded tarball is in the TOPGNUASTRO directory. The first two
commands below can be used to decompress the source. If you download tar.lz and your
Tar implementation doesn’t recognize Lzip (the second command fails), run the third and
fourth lines. Note that lines starting with ## don’t need to be typed.

## Go into the download directory.

$ cd TOPGNUASTRO

http://www.gnu.org/software/gnuastro/manual/
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.gz
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.gz
http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz
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## Also works on ‘tar.gz’. GNU Tar recognizes both formats.

$ tar xf gnuastro-latest.tar.lz

## Only when previous command fails.

$ lzip -d gnuastro-latest.tar.lz

$ tar xf gnuastro-latest.tar

Gnuastro has three mandatory dependencies and some optional dependencies for extra
functionality, see Section 3.1 [Dependencies], page 42, for the full list. Links to the de-
pendency sources and instructions on installing each are fully described there. When the
mandatory dependencies are ready, you can configure, compile, check and install Gnuastro
on your system with the following commands.

$ cd gnuastro-X.X # Replace X.X with version number.

$ ./configure

$ make -j8 # Replace 8 with no. CPU threads.

$ make check

$ sudo make install

See Section 3.3.4 [Known issues], page 63, if you confront any complications. For each
program there is an ‘Invoke ProgramName’ sub-section in this book which explains how
the programs should be run on the command-line (for example Section 5.3.1 [Invoking
Table], page 113). You can read the same section on the command-line by running $ info

astprogname (for example info asttable). The ‘Invoke ProgramName’ sub-section starts
with a few examples of each program and goes on to explain the invocation details. See
Section 4.7 [Getting help], page 92, for all the options you have to get help. In Chapter 2
[Tutorials], page 14, some real life examples of how these programs might be used are given.

1.2 Science and its tools

History of science indicates that there are always inevitably unseen faults, hidden assump-
tions, simplifications and approximations in all our theoretical models, data acquisition and
analysis techniques. It is precisely these that will ultimately allow future generations to
advance the existing experimental and theoretical knowledge through their new solutions
and corrections.

In the past, scientists would gather data and process them individually to achieve an
analysis thus having a much more intricate knowledge of the data and analysis. The theo-
retical models also required little (if any) simulations to compare with the data. Today both
methods are becoming increasingly more dependent on pre-written software. Scientists are
dissociating themselves from the intricacies of reducing raw observational data in experi-
mentation or from bringing the theoretical models to life in simulations. These ‘intricacies’
are precisely those unseen faults, hidden assumptions, simplifications and approximations
that define scientific progress.

Unfortunately, most persons who have recourse to a computer for statistical
analysis of data are not much interested either in computer programming or in
statistical method, being primarily concerned with their own proper business.
Hence the common use of library programs and various statistical packages. ...
It’s time that was changed.

—F. J. Anscombe. The American Statistician, Vol. 27, No. 1. 1973
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Anscombe’s quartet (http: / / en . wikipedia . org / wiki / Anscombe%27s_quartet)
demonstrates how four data sets with widely different shapes (when plotted) give nearly
identical output from standard regression techniques. Anscombe uses this (now famous)
quartet, which was introduced in the paper quoted above, to argue that “Good statistical
analysis is not a purely routine matter, and generally calls for more than one pass
through the computer”. Anscombe’s quartet can be generalized to say that users of a
software cannot claim to understand how it works only based on the experience they have
gained by frequently using it. This kind of subjective experience is prone to very serious
mis-understandings about the data, what the software/statistical-method really does
(especially as it gets more complicated), and thus the scientific interpretation of the result.
This attitude is further encouraged through non-free software1. This approach to scientific
software only helps in producing dogmas and an “obscurantist faith in the expert’s special
skill, and in his personal knowledge and authority”2.

Program or be programmed. Choose the former, and you gain access to the
control panel of civilization. Choose the latter, and it could be the last real
choice you get to make.

—Douglas Rushkoff. Program or be programmed, O/R Books (2010).

It is obviously impractical for any one human being to gain the intricate knowledge
explained above for every step of an analysis. On the other hand, scientific data can be
very large and numerous, for example images produced by telescopes in astronomy. This
requires very efficient algorithms. To make things worse, natural scientists have generally
not been trained in the advanced software techniques, paradigms and architecture that are
taught in computer science or engineering courses and thus used in most software. The
GNU Astronomy Utilities are an effort to tackle this issue.

Gnuastro is not just a software, this book is as important to the idea behind Gnuastro as
the source code (software). This book has tried to learn from the success of the “Numerical
Recipes” book in educating those who are not software engineers and computer scientists
but still heavy users of computational algorithms, like astronomers. There are two major
differences: the code and the explanations are segregated: the code is moved within the
actual Gnuastro software source code and the underlying explanations are given here. In
the source code every non-trivial step is heavily commented and correlated with this book,
it follows the same logic of this book, and all the programs follow a similar internal data,
function and file structure, see Section 11.4 [Program source], page 361. Complementing
the code, this book focuses on thoroughly explaining the concepts behind those codes (his-
tory, mathematics, science, software and usage advise when necessary) along with detailed
instructions on how to run the programs. At the expense of frustrating “professionals”
or “experts”, this book and the comments in the code also intentionally avoid jargon and
abbreviations. The source code and this book are thus intimately linked, and when con-
sidered as a single entity can be thought of as a real (an actual software accompanying the
algorithms) “Numerical Recipes” for astronomy.

The other major and arguably more important difference is that “Numerical Recipes”
does not allow you to distribute any code that you have learned from it. So while it empowers

1 https://www.gnu.org/philosophy/free-sw.html
2 Karl Popper. The logic of scientific discovery. 1959. Larger quote is given at the start of the PDF (for

print) version of this book.

http://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://www.gnu.org/philosophy/free-sw.html
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the privileged individual who has access to it, it exacerbates social ignorance. For example
it does not allow you to release your software’s source code if you have used their codes, you
can only publicly release binaries (a black box) to the community. Exactly at the opposite
end of the spectrum, Gnuastro’s source code is released under the GNU general public
license (GPL) and this book is released under the GNU free documentation license. You
are therefore free to distribute any software you create using parts of Gnuastro’s source code
or text, or figures from this book, see Section 1.3 [Your rights], page 5. While developing the
source code and this book together, the developers of Gnuastro aim to impose the minimum
requirements on you (in computer science, engineering and even the mathematics behind
the tools) to understand and modify any step of Gnuastro if you feel the need to do so, see
Section 11.1 [Why C programming language?], page 355, and Section 11.2 [Program design
philosophy], page 357.

Imagine if Galileo did not have the technical knowledge to build a telescope. Astro-
nomical objects could not be seen with the Dutch military design of the telescope. In the
beginning of his “The Sidereal Messenger” (1610) he cautions the readers on this issue and
instructs them on how to build a suitable instrument: without a detailed description of
“how” he made his observations, no one would believe him. The same is true today, sci-
ence cannot progress with a black box. Before he actually saw the moons of Jupiter, the
mountains on the Moon or the crescent of Venus, he was “evasive” to Kepler3. Science is
not independent of its tools.

Bjarne Stroustrup (creator of the C++ language) says: “Without understanding soft-
ware, you are reduced to believing in magic”. Ken Thomson (the designer or the Unix
operating system) says “I abhor a system designed for the ‘user’ if that word is a coded
pejorative meaning ‘stupid and unsophisticated’.” Certainly no scientist (user of a scientific
software) would want to be considered a believer in magic, or ‘stupid and unsophisticated’.
However, this can happen when scientists get too distant from the raw data and are mainly
indulging themselves in their own high-level (abstract) models (creations). For example,
roughly five years before special relativity and about two decades before quantum mechanics
fundamentally changed Physics, Kelvin is quoted as saying:

There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.

—William Thomson (Lord Kelvin), 1900

A few years earlier, in a speech Albert. A. Michelson said:

The more important fundamental laws and facts of physical science have all been
discovered, and these are now so firmly established that the possibility of their
ever being supplanted in consequence of new discoveries is exceedingly remote....
Our future discoveries must be looked for in the sixth place of decimals.

—Albert. A. Michelson, dedication of Ryerson Physics Lab, U. Chicago 1894

If scientists are considered to be more than mere “puzzle solvers”4 (simply adding to
the decimals of known values or observing a feature in 10, 100, or 100000 more galaxies
or stars, as Kelvin and Michelson clearly believed), they cannot just passively sit back and
uncritically repeat the previous (observational or theoretical) methods/tools on new data.

3 Galileo G. (Translated by Maurice A. Finocchiaro). The essential Galileo. Hackett publishing company,
first edition, 2008.

4 Thomas S. Kuhn. The Structure of Scientific Revolutions, University of Chicago Press, 1962.
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Today there is a wealth of raw telescope images ready (mostly for free) at the finger tips
of anyone who is interested with a fast enough internet connection to download them. The
only thing lacking is new ways to analyze this data and dig out the treasure that is lying
hidden in them to existing methods and techniques.

New data that we insist on analyzing in terms of old ideas (that is, old models
which are not questioned) cannot lead us out of the old ideas. However many
data we record and analyze, we may just keep repeating the same old errors,
missing the same crucially important things that the experiment was competent
to find.

—Jaynes, Probability theory, the logic of science. Cambridge U. Press (2003).

1.3 Your rights

The paragraphs below, in this section, belong to the GNU Texinfo5 manual and are not
written by us! The name “Texinfo” is just changed to “GNU Astronomy Utilities” or
“Gnuastro” because they are released under the same licenses and it is beautifully written
to inform you of your rights.

GNU Astronomy Utilities is “free software”; this means that everyone is free to use it
and free to redistribute it on certain conditions. Gnuastro is not in the public domain; it is
copyrighted and there are restrictions on its distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of Gnuastro that they might
get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Gnuastro, that you receive the source code or else can get it if you
want it, that you can change these programs or use pieces of them in new free programs,
and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Gnuastro related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Gnuastro. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to Gnuastro are found in the GNU General Public license (http://www.gnu.org/
copyleft/gpl.html) that accompany them. This book is covered by the GNU Free Docu-
mentation License (http://www.gnu.org/copyleft/fdl.html).

1.4 Naming convention

Gnuastro is a package of independent programs and a collection of libraries, here we are
mainly concerned with the programs. Each program has an official name which consists of

5 Texinfo is the GNU documentation system. It is used to create this book in all the various formats.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
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one or two words, describing what they do. The latter are printed with no space, for example
NoiseChisel or Crop. On the command-line, you can run them with their executable names
which start with an ast and might be an abbreviation of the official name, for example
astnoisechisel or astcrop, see Section 3.3.1.3 [Executable names], page 60.

We will use “ProgramName” for a generic official program name and astprogname for a
generic executable name. In this book, the programs are classified based on what they do
and thoroughly explained. An alphabetical list of the programs that are installed on your
system with this installation are given in Appendix A [Gnuastro programs list], page 376.
That list also contains the executable names and version numbers along with a one line
description.

1.5 Version numbering

Gnuastro can have two formats of version numbers, for official and unofficial releases. Official
Gnuastro releases are announced on the info-gnuastro mailing list, they have a version
control tag in Gnuastro’s development history, and their version numbers are formatted
like “A.B”. A is a major version number, marking a significant planned achievement (for
example see Section 1.5.1 [GNU Astronomy Utilities 1.0], page 7), while B is a minor version
number, see below for more on the distinction. Note that the numbers are not decimals, so
version 2.34 is much more recent than version 2.5, which is not equal to 2.50.

Gnuastro also allows a unique version number for unofficial releases. Unofficial releases
can mark any point in Gnuastro’s development history. This is done to allow astronomers
to easily use any point in the version controlled history for their data-analysis and research
publication. See Section 3.2.2 [Version controlled source], page 50, for a complete introduc-
tion. This section is not just for developers and is very straightforward, so please have a
look if you are interested in the cutting-edge. This unofficial version number is a meaningful
and easy to read string of characters, unique to that particular point of history. With this
feature, users can easily stay up to date with the most recent bug fixes and additions that
are committed between official releases.

The unofficial version number is formatted like: A.B.C-D. A and B are the most recent
official version number. C is the number of commits that have been made after version A.B.
D is the first 4 or 5 characters of the commit hash number6. Therefore, the unofficial version
number ‘3.92.8-29c8’, corresponds to the 8th commit after the official version 3.92 and its
commit hash begins with 29c8. The unofficial version number is sort-able (unlike the raw
hash) and as shown above is very descriptive of the state of the unofficial release. Of course
an official release is preferred for publication (since its tarballs are easily available and it
has gone through more tests, making it more stable), so if an official release is announced
prior to your publication’s final review, please consider updating to the official release.

The major version number is set by a major goal which is defined by the developers
and user community before hand, for example see Section 1.5.1 [GNU Astronomy Utilities
1.0], page 7. The incremental work done in minor releases are commonly small steps in
achieving the major goal. Therefore, there is no limit on the number of minor releases

6 Each point in Gnuastro’s history is uniquely identified with a 40 character long hash which is created
from its contents and previous history for example: 5b17501d8f29ba3cd610673261e6e2229c846d35. So
the string D in the version for this commit could be 5b17, or 5b175.
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and the difference between the (hypothetical) versions 2.927 and 3.0 can be a very small
(negligible to the user) improvement that finalizes the defined goals.

1.5.1 GNU Astronomy Utilities 1.0

Currently (prior to Gnuastro 1.0), the aim of Gnuastro is to have a complete system for
data manipulation and analysis at least similar to IRAF7. So an astronomer can take all
the standard data analysis steps (starting from raw data to the final reduced product and
standard post-reduction tools) with the various programs in Gnuastro.

The maintainers of each camera or detector on a telescope can provide a completely
transparent shell script or Makefile to the observer for data analysis. This script can set
configuration files for all the required programs to work with that particular camera. The
script can then run the proper programs in the proper sequence. The user/observer can
easily follow the standard shell script to understand (and modify) each step and the param-
eters used easily. Bash (or other modern GNU/Linux shell scripts) are very powerful and
made for this gluing job. This will simultaneously improve performance and transparency.
Shell scripting (or Makefiles) are also very basic constructs that are easy to learn and readily
available as part of the Unix-like operating systems. If there is no program to do a desired
step, Gnuastro’s libraries can be used to build specific programs.

The main factor is that all observatories or projects can freely contribute to Gnuastro
and all simultaneously benefit from it (since it doesn’t belong to any particular one of them),
much like how for-profit organizations (for example RedHat, or Intel and many others) are
major contributors to free and open source software for their shared benefit. Gnuastro’s
copyright has been fully awarded to GNU, so it doesn’t belong to any particular astronomer
or astronomical facility or project.

1.6 New to GNU/Linux?

Some astronomers initially install and use the GNU/Linux operating systems because the
software that their research community use can only be run in this environment, the tran-
sition is not necessarily easy. To encourage you in investing the patience and time to make
this transition, we define the GNU/Linux system and argue for the command-line interface
of scientific software and how it is worth the (apparently steep) learning curve. Section 1.6.1
[Command-line interface], page 8, contains a short overview of the very powerful command-
line user interface. Chapter 2 [Tutorials], page 14, is a complete chapter with some real
world example applications of Gnuastro making good use of GNU/Linux capabilities written
for newcomers to this environment. It is fully explained, easy and (hopefully) entertaining.

You might have already noticed that we are not using the name “Linux”, but
“GNU/Linux”. Please take the time to have a look at the following essays and FAQs for
a complete understanding of this very important distinction. In short, the Linux kernel
is built using the GNU C library (glibc) and GNU compiler collection (gcc). The Linux
kernel software alone is useless, in order have an operating system you need many more
packages and the majority of such low-level packages in most distributions are developed
as part of the GNU project: “the whole system is basically GNU with Linux loaded”. In
the form of an analogy: to say “running Linux”, is like saying “driving your carburetor”.

• https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html

7 http://iraf.noao.edu/

https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html
http://iraf.noao.edu/
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• https://www.gnu.org/gnu/linux-and-gnu.html

• https://www.gnu.org/gnu/why-gnu-linux.html

• https://www.gnu.org/gnu/gnu-linux-faq.html

1.6.1 Command-line interface

One aspect of Gnuastro that might be a little troubling to new GNU/Linux users is that
(at least for the time being) it only has a command-line user interface (CLI). This might be
contrary to the mostly graphical user interface (GUI) experience with proprietary operating
systems. To a first time user, the command-line does appear much more complicated and
adapting to it might not be easy and a little frustrating at first. This is understandable and
also experienced by anyone who started using the computer (from childhood) in a graphical
user interface. Here we hope to convince you of the unique benefits of this interface which
can greatly enhance your productivity while complementing your GUI experience.

Through GNOME 38, most GNU/Linux based operating systems now have a very ad-
vanced and useful GUI. Since the GUI was created long after the command-line, some
wrongly consider the command line to be obsolete. Both interfaces are very useful for dif-
ferent tasks (for example you can’t view an image, video, pdf document or web page on
the command-line!), on the other hand you can’t reproduce your results easily in the GUI.
Therefore they should not be regarded as rivals but as complementary user interfaces, here
we will outline how the CLI can be useful in scientific programs.

You can think of the GUI as a veneer over the CLI to facilitate a small subset of all
the possible CLI operations. Each click you do on the GUI, can be thought of as internally
running a different CLI command. So asymptotically (if a good designer can design a GUI
which is able to show you all the possibilities to click on) the GUI is only as powerful as
the command-line. In practice, such graphical designers are very hard to find for every
program, so the GUI operations are always a subset of the internal CLI commands. For
programs that are only made for the GUI, this results in not including lots of potentially
useful operations. It also results in ‘interface design’ to be a crucially important part of any
GUI program. Scientists don’t usually have enough resources to hire a graphical designer,
also the complexity of the GUI code is far more than CLI code, which is harmful for a
scientific software, see Section 1.2 [Science and its tools], page 2.

For programs that have a GUI, one action on the GUI (moving and clicking a mouse, or
tapping a touchscreen) might be more efficient and easier than its CLI counterpart (typing
the program name and your desired configuration). However, if you have to repeat that
same action more than once, the GUI will soon become very frustrating and prone to errors.
Unless the designers of a particular program decided to design such a system for a particular
GUI action, there is no general way to run any possible series of actions automatically on
the GUI.

On the command-line, you can run any series of of actions which can come from var-
ious CLI capable programs you have decided your self in any possible permutation with
one command9. This allows for much more creativity and exact reproducibility that is not
possible to a GUI user. For technical and scientific operations, where the same operation

8 http://www.gnome.org/
9 By writing a shell script and running it, for example see the tutorials in Chapter 2 [Tutorials], page 14.

https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/why-gnu-linux.html
https://www.gnu.org/gnu/gnu-linux-faq.html
http://www.gnome.org/
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(using various programs) has to be done on a large set of data files, this is crucially im-
portant. It also allows exact reproducibility which is a foundation principle for scientific
results. The most common CLI (which is also known as a shell) in GNU/Linux is GNU
Bash, we strongly encourage you to put aside several hours and go through this beautifully
explained web page: https://flossmanuals.net/command-line/. You don’t need to read
or even fully understand the whole thing, only a general knowledge of the first few chapters
are enough to get you going.

Since the operations in the GUI are very limited and they are visible, reading a manual
is not that important in the GUI (most programs don’t even have any!). However, to give
you the creative power explained above, with a CLI program, it is best if you first read the
manual of any program you are using. You don’t need to memorize any details, only an
understanding of the generalities is needed. Once you start working, there are more easier
ways to remember a particular option or operation detail, see Section 4.7 [Getting help],
page 92.

To experience the command-line in its full glory and not in the GUI terminal emulator,
press the following keys together: CTRL+ALT+F410 to access the virtual console. To return
back to your GUI, press the same keys above replacing F4 with F7 (or F1, or F2, depending
on your GNU/Linux distribution). In the virtual console, the GUI, with all its distracting
colors and information, is gone. Enabling you to focus entirely on your actual work.

For operations that use a lot of your system’s resources (processing a large number of
large astronomical images for example), the virtual console is the place to run them. This
is because the GUI is not competing with your research work for your system’s RAM and
CPU. Since the virtual consoles are completely independent, you can even log out of your
GUI environment to give even more of your hardware resources to the programs you are
running and thus reduce the operating time.

Since it uses far less system resources, the CLI is also very convenient for remote access
to your computer. Using secure shell (SSH) you can log in securely to your system (similar
to the virtual console) from anywhere even if the connection speeds are low. There are apps
for smart phones and tablets which allow you to do this.

1.7 Report a bug

According to Wikipedia “a software bug is an error, flaw, failure, or fault in a computer
program or system that causes it to produce an incorrect or unexpected result, or to behave
in unintended ways”. So when you see that a program is crashing, not reading your input
correctly, giving the wrong results, or not writing your output correctly, you have found a
bug. In such cases, it is best if you report the bug to the developers. The programs will also
report bugs in known impossible situations (which are caused by something unexpected)
and will ask the users to report the bug.

Prior to actually filing a bug report, it is best to search previous reports. The issue
might have already been found and even solved. The best place to check if your bug has
already been discussed is the bugs tracker on Section 11.9 [Gnuastro project webpage],
page 368, at https://savannah.gnu.org/bugs/ ?group=gnuastro. In the top search

10 Instead of F4, you can use any of the keys from F1 to F6 for different virtual consoles depending on your
GNU/Linux distribution, try them all out. You can also run a separate GUI from within this console if
you want to.

https://flossmanuals.net/command-line/
https://savannah.gnu.org/bugs/?group=gnuastro
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fields (under “Display Criteria”) set the “Open/Closed” drop-down menu to “Any” and
choose the respective program or general category of the bug in “Category” and click the
“Apply” button. The results colored green have already been solved and the status of those
colored in red is shown in the table.

Recently corrected bugs are probably not yet publicly released because they are scheduled
for the next Gnuastro stable release. If the bug is solved but not yet released and it is
an urgent issue for you, you can get the version controlled source and compile that, see
Section 3.2.2 [Version controlled source], page 50.

To solve the issue as readily as possible, please follow the following to guidelines in your
bug report. The How to Report Bugs Effectively (http://www.chiark.greenend.org.uk/
~sgtatham/bugs.html) and How To Ask Questions The Smart Way (http://catb.org/
~esr/faqs/smart-questions.html) essays also provide some very good generic advice for
all software (don’t contact their authors for Gnuastro’s problems). Mastering the art of
giving good bug reports (like asking good questions) can greatly enhance your experience
with any free and open source software. So investing the time to read through these essays
will greatly reduce your frustration after you see something doesn’t work the way you feel
it is supposed to for a large range of software, not just Gnuastro.

Be descriptive
Please provide as many details as possible and be very descriptive. Explain
what you expected and what the output was: it might be that your expectation
was wrong. Also please clearly state which sections of the Gnuastro book (this
book), or other references you have studied to understand the problem. This can
be useful in correcting the book (adding links to likely places where users will
check). But more importantly, it will be very encouraging for the developers,
since you are showing how serious you are about the problem and that you
have actually put some thought into it. “To be able to ask a question clearly
is two-thirds of the way to getting it answered.” – John Ruskin (1819-1900).

Individual and independent bug reports
If you have found multiple bugs, please send them as separate (and independent)
bugs (as much as possible). This will significantly help us in managing and
resolving them sooner.

Reproducible bug reports
If we cannot exactly reproduce your bug, then it is very hard to resolve it. So
please send us a Minimal working example11 along with the description. For
example in running a program, please send us the full command-line text and
the output with the -P option, see Section 4.1.2.3 [Operating mode options],
page 73. If it is caused only for a certain input, also send us that input file.
In case the input FITS is large, please use Crop to only crop the problematic
section and make it as small as possible so it can easily be uploaded and down-
loaded and not waste the archive’s storage, see Section 6.1 [Crop], page 115.

There are generally two ways to inform us of bugs:

11 http://en.wikipedia.org/wiki/Minimal_Working_Example

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html
http://en.wikipedia.org/wiki/Minimal_Working_Example


Chapter 1: Introduction 11

• Send a mail to bug-gnuastro@gnu.org. Any mail you send to this address will be
distributed through the bug-gnuastro mailing list12. This is the simplest way to send
us bug reports. The developers will then register the bug into the project webpage
(next choice) for you.

• Use the Gnuastro project webpage at https: / / savannah . gnu . org / projects /

gnuastro/: There are two ways to get to the submission page as listed below. Fill
in the form as described below and submit it (see Section 11.9 [Gnuastro project
webpage], page 368, for more on the project webpage).

• Using the top horizontal menu items, immediately under the top page title. Hov-
ering your mouse on “Support” will open a drop-down list. Select “Submit new”.

• In the main body of the page, under the “Communication tools” section, click on
“Submit new item”.

Once the items have been registered in the mailing list or webpage, the developers will
add it to either the “Bug Tracker” or “Task Manager” trackers of the Gnuastro project
webpage. These two trackers can only be edited by the Gnuastro project developers, but
they can be browsed by anyone, so you can follow the progress on your bug. You are most
welcome to join us in developing Gnuastro and fixing the bug you have found maybe a good
starting point. Gnuastro is designed to be easy for anyone to develop (see Section 1.2 [Sci-
ence and its tools], page 2) and there is a full chapter devoted to developing it: Chapter 11
[Developing], page 355.

1.8 Suggest new feature

We would always be very happy to hear of suggested new features. For every program
there are already lists of features that we are planning to add. You can see the current list
of plans from the Gnuastro project webpage at https://savannah.gnu.org/projects/
gnuastro/ and following “Tasks”→“Browse” on the horizontal menu at the top of the page
immediately under the title, see Section 11.9 [Gnuastro project webpage], page 368. If you
want to request a feature to an existing program, click on the “Display Criteria” above the
list and under “Category”, choose that particular program. Under “Category” you can also
see the existing suggestions for new programs or other cases like installation, documentation
or libraries. Also be sure to set the “Open/Closed” value to “Any”.

If the feature you want to suggest is not already listed in the task manager, then follow the
steps that are fully described in Section 1.7 [Report a bug], page 9. Please have in mind that
the developers are all very busy with their own astronomical research, and implementing
existing “task”s to add or resolving bugs. Gnuastro is a volunteer effort and none of the
developers are paid for their hard work. So, although we will try our best, please don’t
not expect that your suggested feature be immediately included (with the next release of
Gnuastro).

The best person to apply the exciting new feature you have in mind is you, since you
have the motivation and need. In fact Gnuastro is designed for making it as easy as possible
for you to hack into it (add new features, change existing ones and so on), see Section 1.2
[Science and its tools], page 2. Please have a look at the chapter devoted to developing
(Chapter 11 [Developing], page 355) and start applying your desired feature. Once you

12 https://lists.gnu.org/mailman/listinfo/bug-gnuastro

https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://lists.gnu.org/mailman/listinfo/bug-gnuastro


Chapter 1: Introduction 12

have added it, you can use it for your own work and if you feel you want others to benefit
from your work, you can request for it to become part of Gnuastro. You can then join the
developers and start maintaining your own part of Gnuastro. If you choose to take this
path of action please contact us before hand (Section 1.7 [Report a bug], page 9) so we can
avoid possible duplicate activities and get interested people in contact.� �
Gnuastro is a collection of low level programs: As described in Section 11.2 [Program design
philosophy], page 357, a founding principle of Gnuastro is that each library or program
should be very basic and low-level. High level jobs should be done by running the separate
programs or using separate functions in succession through a shell script or calling the
libraries by higher level functions, see the examples in Chapter 2 [Tutorials], page 14. So
when making the suggestions please consider how your desired job can best be broken into
separate steps and modularized.
 	
1.9 Announcements

Gnuastro has a dedicated mailing list for making announcements. Anyone that is interested
can subscribe to this mailing list to stay up to date with new releases or when the depen-
dencies (see Section 3.1 [Dependencies], page 42) have been updated. To subscribe to this
list, please visit https://lists.gnu.org/mailman/listinfo/info-gnuastro.

1.10 Conventions

In this book we have the following conventions:

• All commands that are to be run on the shell (command-line) prompt as the user start
with a $. In case they must be run as a super-user or system administrator, they will
start with a single #. If the command is in a separate line and next line is also in

the code type face, but doesn’t have any of the $ or # signs, then it is the output of
the command after it is run. As a user, you don’t need to type those lines. A line that
starts with ## is just a comment for explaining the command to a human reader and
must not be typed.

• If the command becomes larger than the page width a \ is inserted in the code. If
you are typing the code by hand on the command-line, you don’t need to use multiple
lines or add the extra space characters, so you can omit them. If you want to copy and
paste these examples (highly discouraged!) then the \ should stay.

The \ character is a shell escape character which is used commonly to make characters
which have special meaning for the shell loose that special place (the shell will not treat
them specially if there is a \ behind them). When it is a last character in a line (the
next character is a new-line character) the new-line character looses its meaning an the
shell sees it as a simple white-space character, enabling you to use multiple lines to
write your commands.
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2 Tutorials

In this chapter we give several tutorials or cookbooks on how to use the various tools in
Gnuastro for your scientific purposes. In these tutorials, we have intentionally avoided too
many cross references to make it more easily readable. To get more information about a
particular program, you can visit the section with the same name as the program in this
book. Each program section starts by explaining the general concepts behind what it does.
If you only want to see an explanation of the options and arguments of any program, see
the subsection titled ‘Invoking ProgramName’. See Section 1.10 [Conventions], page 12, for
an explanation of the conventions we use in the example codes through the book.

The tutorials in this section use a fictional setting of some historical figures in the history
of astronomy. We have tried to show how Gnuastro would have been helpful for them in
making their discoveries if there were GNU/Linux computers in their times! Please excuse
us for any historical inaccuracy, this is not intended to be a historical reference. This form
of presentation can make the tutorials more pleasant and entertaining to read while also
being more practical (explaining from a user’s point of view)1. The main reference for the
historical facts mentioned in these fictional settings was Wikipedia.

2.1 Hubble visually checks and classifies his catalog

In 1924 Hubble2 announced his discovery that some of the known nebulous objects are too
distant to be within the the Milky Way (or Galaxy) and that they were probably distant
Galaxies3 in their own right. He had also used them to show that the redshift of the nebulae
increases with their distance. So now he wants to study them more accurately to see what
they actually are. Since they are nebulous or amorphous, they can’t be modeled (like stars
that are always a point) easily. So there is no better way to distinguish them than to
visually inspect them and see if it is possible to classify these nebulae or not.

Hubble has stored all the FITS images of the objects he wants to visually inspect in his
/mnt/data/images directory. He has also stored his catalog of extra-galactic nebulae in
/mnt/data/catalogs/extragalactic.txt. Any normal user on his GNU/Linux system
(including himself) only has read access to the contents of the /mnt/data directory. He has
done this by running this command as root:

# chmod -R 755 /mnt/data

1 This form of presenting a tutorial was influenced by the PGF/TikZ and Beamer manuals. The first
provides graphic capabilities, while with the second you can make presentation slides in TEX and LATEX.
In these manuals, Till Tantau (author of the manual) uses Euclid as the protagonist. There are also some
nice words of wisdom for Unix-like systems called “Rootless Root”: http://catb.org/esr/writings/

unix-koans/. These also have a similar style but they use a mythical figure named Master Foo. If
you already have some experience in Unix-like systems, you will definitely find these “Unix Koans” very
entertaining.

2 Edwin Powell Hubble (1889 – 1953 A.D.) was an American astronomer who can be considered as the
father of extra-galactic astronomy, by proving that some nebulae are too distant to be within the Galaxy.
He then went on to show that the universe appears to expand and also done a visual classification of the
galaxies that is known as the Hubble fork.

3 Note that at that time, “Galaxy” was a proper noun used to refer to the Milky way. The concept of
a galaxy as we define it today had not yet become common. Hubble played a major role in creating
today’s concept of a galaxy.

http://catb.org/esr/writings/unix-koans/
http://catb.org/esr/writings/unix-koans/
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Hubble has done this intentionally to avoid mistakenly deleting or modifying the valuable
images he has taken at Mount Wilson while he is working as an ordinary user. Retaking
all those images and data is simply not an option. In fact they are also in another hard
disk (/dev/sdb1). So if the hard disk which stores his GNU/Linux distribution suddenly
malfunctions due to work load, his data is not in harms way. That hard disk is only mounted
to this directory when he wants to use it with the command:

# mount /dev/sdb1 /mnt/data

In short, Hubble wants to keep his data safe and fortunately by default Gnuastro allows
for this. Hubble creates a temporary visualcheck directory in his home directory for this
check. He runs the following commands to make the directory and change to it4:

$ mkdir ~/visualcheck

$ cd ~/visualcheck

$ pwd

/home/edwin/visualcheck

$ ls

Hubble has multiple images in /mnt/data/images, some of his targets might be on the
edges of an image and so several images need to be stitched to give a good view of them. Also
his extra-galactic targets belong to various pointings in the sky, so they are not in one large
image. Gnuastro’s Crop is just the program he wants. The catalog in extragalactic.txt

is a plain text file which stores the basic information of all his known 200 extra-galactic
nebulae. In its second column it has each object’s Right Ascension (the first column is a
label he has given to each object) and in the third the object’s declination.

$ astcrop --coordcol=2 --coordcol=3 /mnt/data/images/*.fits \

--mode=wcs /mnt/data/catalogs/extragalactic.txt

Crop started on Tue Jun 14 10:18:11 1932

---- ./4_crop.fits 1 1

---- ./2_crop.fits 1 1

---- ./1_crop.fits 1 1

[[[ Truncated middle of list ]]]

---- ./198_crop.fits 1 1

---- ./195_crop.fits 1 1

- 200 images created.

- 200 were filled in the center.

- 0 used more than one input.

Crop finished in: 2.429401 (seconds)

Hubble already knows that thread allocation to the the CPU cores is asynchronous. Hence
each time you run it, the order of which job gets done first differs. When using Crop the
order of outputs is irrelevant since each crop is independent of the rest. This is why the
crops are not necessarily created in the same input order. He is satisfied with the default
width of the outputs (which he inspected by running $ astcrop -P). If he wanted a different
width for the cropped images, he could do that with the --wwidth option which accepts
a value in arc-seconds. When he lists the contents of the directory again he finds his 200
objects as separate FITS images.

4 The pwd command is short for “Print Working Directory” and ls is short for “list” which shows the
contents of a directory.



Chapter 2: Tutorials 16

$ ls

1_crop.fits 2_crop.fits ... 200_crop.fits

The FITS image format was not designed for efficient/fast viewing, but mainly for ac-
curate storing of the data. So he chooses to convert the cropped images to a more common
image format to view them more quickly and easily through standard image viewers (which
load much faster than FITS image viewer). JPEG is one of the most recognized image
formats that is supported by most image viewers. Fortunately Gnuastro has just such a
tool to convert various types of file types to and from each other: ConvertType. Hubble has
already heard of GNU Parallel from one of his colleagues at Mount Wilson Observatory. It
allows multiple instances of a command to be run simultaneously on the system, so he uses
it in conjunction with ConvertType to convert all the images to JPEG.

$ parallel astconvertt -ojpg ::: *_crop.fits

For his graphical user interface Hubble is using GNOME which is the default in most
distributions in GNU/Linux. The basic image viewer in GNOME is the Eye of GNOME,
which has the executable file name eog5. Since he has used it before, he knows that once it
opens an image, he can use the ENTER or SPACE keys on the keyboard to go to the next image
in the directory or the Backspace key to go the previous image. So he opens the image of
the first object with the command below and with his cup of coffee in his other hand, he
flips through his targets very fast to get a good initial impression of the morphologies of
these extra-galactic nebulae.

$ eog 1_crop.jpg

Hubble’s cup of coffee is now finished and he also got a nice general impression of the
shapes of the nebulae. He tentatively/mentally classified the objects into three classes while
doing the visual inspection. One group of the nebulae have a very simple elliptical shape
and seem to have no internal special structure, so he gives them code 1. Another clearly
different class are those which have spiral arms which he associates with code 2 and finally
there seems to be a class of nebulae in between which appear to have a disk but no spiral
arms, he gives them code 3.

Now he wants to know how many of the nebulae in his extra-galactic sample are within
each class. Repeating the same process above and writing the results on paper is very time
consuming and prone to errors. Fortunately Hubble knows the basics of GNU Bash shell
programming, so he writes the following short script with a loop to help him with the job.
After all, computers are made for us to operate and knowing basic shell programming gives
Hubble this ability to creatively operate the computer as he wants. So using GNU Emacs6

(his favorite text editor) he puts the following text in a file named classify.sh.

for name in *.jpg

do

eog $name &

processid=$!

echo -n "$name belongs to class: "

read class

5 Eye of GNOME is only available for users of the GNOME graphical desktop environment which is the
default in most GNU/Linux distributions. If you use another graphical desktop environment, replace
eog with any other image viewer.

6 This can be done with any text editor
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echo $name $class >> classified.txt

kill $processid

done

Fortunately GNU Emacs or even simpler editors like Gedit (part of the GNOME graph-
ical user interface) will display the variables and shell constructs in different colors which
can really help in understanding the script. Put simply, the for loop gets the name of each
JPEG file in the directory this script is run in and puts it in name. In the shell, the value
of a variable is used by putting a $ sign before the variable name. Then Eye of GNOME
is run on the image in the background to show him that image and its process ID is saved
internally (this is necessary to close Eye of GNOME later). The shell then prompts the
user to specify a class and after saving it in class, it prints the file name and the given
class in the next line of a file named classified.txt. To make the script executable (so
he can run it later any time he wants) he runs:

$ chmod +x classify.sh

Now he is ready to do the classification, so he runs the script:

$ ./classify.sh

In the end he can delete all the JPEG and FITS files along with Crop’s log file with the
following short command. The only files remaining are the script and the result of the
classification.

$ rm *.jpg *.fits astcrop.txt

$ ls

classified.txt classify.sh

He can now use classified.txt as input to a plotting program to plot the histogram of
the classes and start making interpretations about what these nebulous objects that are
outside of the Galaxy are.

2.2 Sufi simulates a detection

It is the year 953 A.D. and Sufi7 is in Shiraz as a guest astronomer. He had come there
to use the advanced 123 centimeter astrolabe for his studies on the Ecliptic. However,
something was bothering him for a long time. While mapping the constellations, there
were several non-stellar objects that he had detected in the sky, one of them was in the
Andromeda constellation. During a trip he had to Yemen, Sufi had seen another such
object in the southern skies looking over the Indian ocean. He wasn’t sure if such cloud-like
non-stellar objects (which he was the first to call ‘Sahābi’ in Arabic or ‘nebulous’) were real
astronomical objects or if they were only the result of some bias in his observations. Could
such diffuse objects actually be detected at all with his detection technique?

He still had a few hours left until nightfall (when he would continue his studies on
the ecliptic) so he decided to find an answer to this question. He had thoroughly studied
Claudius Ptolemy’s (90 – 168 A.D) Almagest and had made lots of corrections to it, in
particular in measuring the brightness. Using his same experience, he was able to measure
a magnitude for the objects and wanted to simulate his observation to see if a simulated

7 Abd al-rahman Sufi (903 – 986 A.D.), also known in Latin as Azophi was an Iranian astronomer. His
manuscript “Book of fixed stars” contains the first recorded observations of the Andromeda galaxy, the
Large Magellanic Cloud and seven other non-stellar or ‘nebulous’ objects.
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object with the same brightness and size could be detected in a simulated noise with the
same detection technique. The general outline of the steps he wants to take are:

1. Make some mock profiles in an oversampled image. The initial mock image has to
be oversampled prior to convolution or other forms of transformation in the image.
Through his experiences, Sufi knew that this is because the image of heavenly bodies
is actually transformed by the atmosphere or other sources outside the atmosphere
(for example gravitational lenses) prior to being sampled on an image. Since that
transformation occurs on a continuous grid, to best approximate it, he should do all
the work on a finer pixel grid. In the end he can re-sample the result to the initially
desired grid size.

2. Convolve the image with a PSF image that is oversampled to the same value as the
mock image. Since he wants to finish in a reasonable time and the PSF kernel will be
very large due to oversampling, he has to use frequency domain convolution which has
the side effect of dimming the edges of the image. So in the first step above he also
has to build the image to be larger by at least half the width of the PSF convolution
kernel on each edge.

3. With all the transformations complete, the image should be re-sampled to the same
size of the pixels in his detector.

4. He should remove those extra pixels on all edges to remove frequency domain convolu-
tion artifacts in the final product.

5. He should add noise to the (until now, noise-less) mock image. After all, all observations
have noise associated with them.

Fortunately Sufi had heard of GNU Astronomy Utilities from a colleague in Isfahan
(where he worked) and had installed it on his computer a year before. It had tools to do all
the steps above. He had used MakeProfiles before, but wasn’t sure which columns he had
chosen in his user or system wide configuration files for which parameters, see Section 4.2
[Configuration files], page 77. So to start his simulation, Sufi runs MakeProfiles with the
-P option to make sure what columns in a catalog MakeProfiles currently recognizes and
the output image parameters. In particular, Sufi is interested in the recognized columns
(shown below).

$ astmkprof -P

[[[ ... Truncated lines ... ]]]

# Output:

type float32 # Type of output: e.g., int16, float32, etc...

naxis 1000,1000 # Number of pixels along first FITS axis.

oversample 5 # Scale of oversampling (>0 and odd).

[[[ ... Truncated lines ... ]]]

# Columns, by info (see ‘--searchin’), or number (starting from 1):

ccol 2 # Center along first FITS axis (horizontal).

ccol 3 # Center along second FITS axis (vertical).

fcol 4 # sersic (1), moffat (2), gaussian (3),
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# point (4), flat (5), circumference (6).

rcol 5 # Effective radius or FWHM in pixels.

ncol 6 # Sersic index or Moffat beta.

pcol 7 # Position angle.

qcol 8 # Axis ratio.

mcol 9 # Magnitude.

tcol 10 # Truncation in units of radius or pixels.

[[[ ... Truncated lines ... ]]]

In Gnuastro, column counting starts from 1, so the columns are ordered such that the first
column (number 1) can be an ID he specifies for each object (and MakeProfiles ignores),
each subsequent column is used used for another property of the profile. It is also possible
to use column names for the values of these options and change these defaults, but Sufi
preferred to stick to the defaults. Fortunately MakeProfiles has the capability to also make
the PSF which is to be used on the mock image and using the --prepforconv option, he
can also make the mock image to be larger by the correct amount and all the sources to be
shifted by the correct amount.

For his initial check he decides to simulate the nebula in the Andromeda constellation.
The night he was observing, the PSF had roughly a FWHM of about 5 pixels, so as the first
row (profile), he defines the PSF parameters and sets the radius column (rcol above, fifth
column) to 5.000, he also chooses a Moffat function for its functional form. Remembering
how diffuse the nebula in the Andromeda constellation was, he decides to simulate it with
a mock Sérsic index 1.0 profile. He wants the output to be 500 pixels by 500 pixels, so he
puts the mock profile in the center. Looking at his drawings of it, he decides a reasonable
effective radius for it would be 40 pixels on this image pixel scale, he sets the axis ratio and
position angle to approximately correct values too and finally he sets the total magnitude
of the profile to 3.44 which he had accurately measured. Sufi also decides to truncate both
the mock profile and PSF at 5 times the respective radius parameters. In the end he decides
to put four stars on the four corners of the image at very low magnitudes as a visual scale.

Using all the information above, he creates the catalog of mock profiles he wants in a file
named cat.txt (short for catalog) using his favorite text editor and stores it in a directory
named simulationtest in his home directory. [The cat command prints the contents of
a file, short for concatenation. So please copy-paste the lines after “cat cat.txt” into
cat.txt when the editor opens in the steps above it, note that there are 7 lines, first one
starting with #]:

$ mkdir ~/simulationtest

$ cd ~/simulationtest

$ pwd

/home/rahman/simulationtest

$ emacs cat.txt

$ ls

cat.txt

$ cat cat.txt

# Column 4: PROFILE_NAME [,str7] Radial profile’s functional name

1 0.0000 0.0000 moffat 5.000 4.765 0.0000 1.000 30.000 5.000
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2 250.00 250.00 sersic 40.00 1.000 -25.00 0.400 3.4400 5.000

3 50.000 50.000 point 0.000 0.000 0.0000 0.000 9.0000 0.000

4 450.00 50.000 point 0.000 0.000 0.0000 0.000 9.2500 0.000

5 50.000 450.00 point 0.000 0.000 0.0000 0.000 9.5000 0.000

6 450.00 450.00 point 0.000 0.000 0.0000 0.000 9.7500 0.000

The zero-point magnitude for his observation was 18. Now he has all the necessary param-
eters and runs MakeProfiles with the following command:

$ astmkprof --prepforconv --naxis=500,500 --zeropoint=18.0 cat.txt

MakeProfiles started on Sat Oct 6 16:26:56 953

- 6 profiles read from cat.txt

- Random number generator (RNG) type: mt19937

- Using 8 threads.

---- row 2 complete, 5 left to go

---- row 3 complete, 4 left to go

---- row 4 complete, 3 left to go

---- row 5 complete, 2 left to go

---- ./0_cat.fits created.

---- row 0 complete, 1 left to go

---- row 1 complete, 0 left to go

- ./cat.fits created. 0.041651 seconds

MakeProfiles finished in 0.267234 seconds

$ls

0_cat.fits cat.fits cat.txt

The file 0_cat.fits is the PSF Sufi had asked for and cat.fits is the image containing
the other 5 objects. The PSF is now available to him as a separate file for the convolution
step. While he was preparing the catalog, one of his students approached him and was also
following the steps. When he opened the image, the student was surprised to see that all
the stars are only one pixel and not in the shape of the PSF as we see when we image the
sky at night. So Sufi explained to him that the stars will take the shape of the PSF after
convolution and this is how they would look if we didn’t have an atmosphere or an aperture
when we took the image. The size of the image was also surprising for the student, instead
of 500 by 500, it was 2630 by 2630 pixels. So Sufi had to explain why oversampling is very
important for parts of the image where the flux change is significant over a pixel. Sufi then
explained to him that after convolving we will re-sample the image to get our originally
desired size. To convolve the image, Sufi ran the following command:

$ astconvolve --kernel=0_cat.fits cat.fits

Convolve started on Mon Apr 6 16:35:32 953

- Using 8 CPU threads.

- Input: cat.fits (hdu: 1)

- Kernel: 0_cat.fits (hdu: 1)

- Input and Kernel images padded. 0.075541 seconds

- Images converted to frequency domain. 6.728407 seconds

- Multiplied in the frequency domain. 0.040659 seconds

- Converted back to the spatial domain. 3.465344 seconds
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- Padded parts removed. 0.016767 seconds

Convolve finished in: 10.422161 seconds

$ls

0_cat.fits cat_convolved.fits cat.fits cat.txt

When convolution finished, Sufi opened the cat_convolved.fits file and showed the effect
of convolution to his student and explained to him how a PSF with a larger FWHM would
make the points even wider. With the convolved image ready, they were prepared to re-
sample it to the original pixel scale Sufi had planned [from the $ astmkprof -P command
above, recall that MakeProfiles had oversampled the image by 5 times]. Sufi explained
the basic concepts of warping the image to his student and ran Warp with the following
command:

$ astwarp --scale=1/5 --centeroncorner cat_convolved.fits

Warp started on Mon Apr 6 16:51:59 953

Using 8 CPU threads.

Input: cat_convolved.fits (hdu: 1)

matrix:

0.2000 0.0000 0.4000

0.0000 0.2000 0.4000

0.0000 0.0000 1.0000

$ ls

0_cat.fits cat_convolved_scaled.fits cat.txt

cat_convolved.fits cat.fits

$ astfits -p cat_convolved_scaled.fits | grep NAXIS

NAXIS = 2 / number of data axes

NAXIS1 = 526 / length of data axis 1

NAXIS2 = 526 / length of data axis 2

cat_convolved_warped.fits now has the correct pixel scale. However, the image is still
larger than what we had wanted, it is 526 (500 + 13 + 13) by 526 pixels. The student is
slightly confused, so Sufi also resamples the PSF with the same scale and shows him that it
is 27 (2× 13+1) by 27 pixels. Sufi goes on to explain how frequency space convolution will
dim the edges and that is why he added the --prepforconv option to MakeProfiles, see
Section 8.1.2 [If convolving afterwards], page 226. Now that convolution is done, Sufi can
remove those extra pixels using Crop with the command below. Crop’s --section option
accepts coordinates inclusively and counting from 1 (according to the FITS standard), so
the crop’s first pixel has to be 14, not 13.

$ astcrop cat_convolved_scaled.fits --section=14:*-13,14:*-13 \

--zeroisnotblank

Crop started on Sat Oct 6 17:03:24 953

- Read metadata of 1 image. 0.001304 seconds

---- ...nvolved_scaled_cropped.fits created: 1 input.

Crop finished in: 0.027204 seconds

$ls
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0_cat.fits cat_convolved_scaled_cropped.fits cat.fits

cat_convolved.fits cat_convolved_scaled.fits cat.txt

Finally, cat_convolved_scaled_cropped.fits has the same dimensions as Sufi had de-
sired in the beginning. All this trouble was certainly worth it because now there is no
dimming on the edges of the image and the profile centers are more accurately sampled.
The final step to simulate a real observation would be to add noise to the image. Sufi set
the zeropoint magnitude to the same value that he set when making the mock profiles and
looking again at his observation log, he had measured the background flux near the nebula
had a magnitude of 7 that night. So using these values he ran MakeNoise:

$ astmknoise --zeropoint=18 --background=7 --output=out.fits \

cat_convolved_warped_crop.fits

MakeNoise started on Mon Apr 6 17:05:06 953

- Generator type: mt19937

- Generator seed: 1428318100

MakeNoise finished in: 0.033491 (seconds)

$ls

0_cat.fits cat_convolved_scaled_cropped.fits cat.fits out.fits

cat_convolved.fits cat_convolved_scaled.fits cat.txt

The out.fits file now contains the noised image of the mock catalog Sufi had asked for.
Seeing how the --output option allows the user to specify the name of the output file,
the student was confused and wanted to know why Sufi hadn’t used it before? Sufi then
explained to him that for intermediate steps it is best to rely on the automatic output, see
Section 4.8 [Automatic output], page 95. Doing so will give all the intermediate files the
same basic name structure, so in the end you can simply remove them all with the Shell’s
capabilities. So Sufi decided to show this to the student by making a shell script from the
commands he had used before.

The command-line shell has the capability to read all the separate input commands from
a file. This is very useful when you want to do the same thing multiple times, with only the
names of the files or minor parameters changing between the different instances. Using the
shell’s history (by pressing the up keyboard key) Sufi reviewed all the commands and then
he retrieved the last 5 commands with the $ history 5 command. He selected all those
lines he had input and put them in a text file named mymock.sh. Then he defined the edge
and base shell variables for easier customization later. Finally, before every command, he
added some comments (lines starting with #) for future readability.

# Basic settings:

edge=13

base=cat

# Remove any existing image to avoid confusion.

rm out.fits

# Run MakeProfiles to create an oversampled FITS image.

astmkprof --prepforconv --naxis=500,500 --zeropoint=18.0 "$base".txt

# Convolve the created image with the kernel.
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astconvolve --kernel=0_"$base".fits "$base".fits

# Scale the image back to the intended resolution.

astwarp --scale=1/5 --centeroncorner "$base"_convolved.fits

# Crop the edges out (dimmed during convolution). ‘--section’ accepts

# inclusive coordinates, so the start of start of the section must be

# one pixel larger than its end.

st_edge=$(( edge + 1 ))

astcrop "$base"_convolved_scaled.fits --zeroisnotblank \

--section=$st_edge:*-$edge,$st_edge:*-$edge

# Add noise to the image.

astmknoise --zeropoint=18 --background=7 --output=out.fits \

"$base"_convolved_scaled_cropped.fits

# Remove all the temporary files.

rm 0*.fits cat*.fits

He used this chance to remind the student of the importance of comments in code or
shell scripts: when writing the code, you have a very good mental picture of what you are
doing, so writing comments might seem superfluous and excessive. However, in one month
when you want to re-use the script, you have lost that mental picture and rebuilding it
is can be very time-consuming and frustrating. The importance of comments is further
amplified when you want to share the script with a friend/colleague. So it is very good
to accompany any script/code with useful comments while you are writing it (have a good
mental picture of what/why you are doing something).

Sufi then explained to the eager student that you define a variable by giving it a name,
followed by an = sign and the value you want. Then you can reference that variable from
anywhere in the script by calling its name with a $ prefix. So in the script whenever you
see $base, the value we defined for it above is used. If you use advanced editors like GNU
Emacs or even simpler ones like Gedit (part of the GNOME graphical user interface) the
variables will become a different color which can really help in understanding the script.
We have put all the $base variables in double quotation marks (") so the variable name
and the following text do not get mixed, the shell is going to ignore the " after replacing
the variable value. To make the script executable, Sufi ran the following command:

$ chmod +x mymock.sh

Then finally, Sufi ran the script, simply by calling its file name:

$ ./mymock.sh

After the script finished, the only file remaining is the out.fits file that Sufi had wanted
in the beginning. Sufi then explained to the student how he could run this script anywhere
that he has a catalog if the script is in the same directory. The only thing the student had
to modify in the script was the name of the catalog (the value of the base variable in the
start of the script) and the value to the edge variable if he changed the PSF size. The
student was also very happy to hear that he won’t need to make it executable again when
he makes changes later, it will remain executable unless he explicitly changes the executable
flag with chmod.
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The student was really excited, since now, through simple shell scripting, he could really
speed up his work and run any command in any fashion he likes allowing him to be much
more creative in his works. Until now he was using the graphical user interface which doesn’t
have such a facility and doing repetitive things on it was really frustrating and some times
he would make mistakes. So he left to go and try scripting on his own computer.

Sufi could now get back to his own work and see if the simulated nebula which resembled
the one in the Andromeda constellation could be detected or not. Although it was extremely
faint8, fortunately it passed his detection tests and he wrote it in the draft manuscript that
would later become “Book of fixed stars”. He still had to check the other nebula he saw
from Yemen and several other such objects, but they could wait until tomorrow (thanks to
the shell script, he only has to define a new catalog). It was nearly sunset and they had to
begin preparing for the night’s measurements on the ecliptic.

2.3 General program usage tutorial

Measuring colors of astronomical objects in broad-band or narrow-band images is one of
the most basic and common steps in astronomical analysis. Here, we will use Gnuastro’s
programs to detect objects in a Hubble Space Telescope (HST) image and measure their
colors. We will use the eXtreme Deep Field (https://archive.stsci.edu/prepds/
xdf) dataset. Like almost all astronomical surveys, this dataset is free for download and
usable by the public. This tutorial was first prepared for the “Exploring the Ultra-Low
Surface Brightness Universe” workshop (November 2017) at the International Space Science
Institute (ISSI) in Bern, Switzerland. We would like to thank them and the attendees for
a very fruitful week.

You will need the following tools in this tutorial: Gnuastro, SAO DS99, GNU Wget10,
and AWK (most common implementation is GNU AWK11).� �
Type the example commands: Try to type the example commands on your terminal and
don’t simply copy and paste them. This will help simulate future situations when you are
processing your own datasets.
 	

A handy feature of Gnuastro is that all program names start with ast. This will allow
your command-line processor to easily list and auto-complete Gnuastro’s programs for you.
Try typing the following command (press TAB key when you see <TAB>) to see the list:

$ ast<TAB><TAB>

Any program that starts with ast (including all Gnuastro programs) will be shown. By
choosing the subsequent characters of your desired program and pressing <TAB><TAB> again,
the list will narrow down and the program name will auto-complete once your input charac-
ters are unambiguous. In short, you often don’t need to type the full name of the program
you want to run.

8 The brightness of a diffuse object is added over all its pixels to give its final magnitude, see Section 8.1.3
[Flux Brightness and magnitude], page 227. So although the magnitude 3.44 (of the mock nebula) is
orders of magnitude brighter than 6 (of the stars), the central galaxy is much fainter. Put another way,
the brightness is distributed over a large area in the case of a nebula.

9 See Section B.1 [SAO ds9], page 378, available at http://ds9.si.edu/site/Home.html.
10 https://www.gnu.org/software/wget.
11 https://www.gnu.org/software/gawk.

https://archive.stsci.edu/prepds/xdf
https://archive.stsci.edu/prepds/xdf
http://ds9.si.edu/site/Home.html
https://www.gnu.org/software/wget
https://www.gnu.org/software/gawk
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Gnuastro contains a large number of programs and it is natural to forget the details
of each program’s options. Therefore, before starting the analysis, let’s review how you
can refresh your memory any time you want on the command-line while working (without
taking your hands off the keyboard). This book comes with your installation, so it will
always correspond to your installed version of Gnuastro. Please see Section 4.7.4 [Info],
page 94, for more.

GNU Info12 is the program in charge of displaying the manual on the command-line.
To see this whole book on your command-line, please run the following command and
subsequent keys. Info has its own mini-environment, therefore we’ll show the keys that
must be pressed in the mini-environment after a -> sign. You can also ignore anything after
the # sign in the middle of the line, they are only for your information.

$ info gnuastro # Open the top of the manual.

-> <SPACE> # All the book chapters.

-> <SPACE> # Continue down: show sections.

-> <SPACE> ... # Keep pressing space to go down.

-> q # Quit Info, return to the command-line.

The thing that greatly simplifies navigation in Info is the links (regions with an under-
line). You can immediately go to the next link in the page with the <TAB> key and press
<ENTER> on it to go into that part of the manual. Try the commands above again, but this
time also use <TAB> to go to the links and press <ENTER> on them to go to the respective
section of the book. Then follow a few more links and go deeper into the book. To return to
the previous page, press l (small L). If you are searching for a specific phrase in the whole
book (for example an option name), press s and type your search phrase and end it with
an <ENTER>.

You don’t need to start from the top of the manual every time. For example, to get to
Section 7.2.2 [Invoking NoiseChisel], page 184, run the following command. In general, all
programs have such an “Invoking ProgramName” section in this book. These sections are
specifically for the description of inputs, outputs and configuration options of each program.
You can access them directly for each program by giving its executable name to Info.

$ info astnoisechisel

The other sections don’t have such shortcuts. To directly access them from the command-
line, you need to tell Info to look into Gnuastro’s manual, then look for the specific section
(an unambiguous title is necessary). For example, if you only want to review/remember
NoiseChisel’s Section 7.2.2.2 [Detection options], page 189, or Section 7.2.2.3 [Segmentation
options], page 194), just run any of these commands. Note how case is irrelevant for Info
when calling a title in this manner.

$ info gnuastro "Detection options"

$ info gnuastro "segmentation options"

In general, Info is a wonderful and powerful way to access this whole book with detailed
information about the programs you are running very fast. If you are not already familiar
with it, please run the following command and just read along and do what it says to
learn it. Don’t stop until you feel have become sufficiently fluent in it. Please invest the

12 GNU Info is already available on almost all Unix-like operating systems.
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half an hour’s time necessary to start using Info comfortably. It will greatly improve your
productivity and you will start reaping the rewards of this investment very soon.

$ info info

As a good scientist you need to feel comfortable to play with the features/options and
avoid (be critical to) using default values as much as possible. On the other hand, our
human memory is very limited, so it is important to be able to easily access any part of
this book fast and remember the option names, what they do and their acceptable values.

If you just want the option names and a short description, calling the program with the
--help option might also be a good solution like the first example below. If you know a
few characters of the option name, you can feed the output to grep like the second or third
example commands.

$ astnoisechisel --help

$ astnoisechisel --help | grep quant

$ astnoisechisel --help | grep check

Let’s start the processing. First, to keep things clean, let’s create a gnuastro-tutorial

directory and continue all future steps in it:

$ mkdir gnuastro-tutorial

$ cd gnuastro-tutorial

We will be using the near infra-red Wide Field Camera (http://www.stsci.edu/hst/
wfc3) dataset. If you already have them in another directory (for example XDFDIR), you
can set the download directory to be a symbolic link to XDFDIR with a command like this:

ln -s XDFDIR download

If the following images aren’t already present on your system, you can make a download

directory and download them there.

$ mkdir download

$ cd download

$ xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f105w_v1_sci.fits

$ wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_v1_sci.fits

$ cd ..

In this tutorial, we’ll just use these two filters. Later, you will probably need to download
more filters, you can use the shell’s for loop to download them all in series (one after the
other13) with one command like the one below for the WFC3 filters. Put this command
instead of the two wget commands above. Recall that all the extra spaces, back-slashes (\),
and new lines can be ignored if you are typing on the lines on the terminal.

$ for f in f105w f125w f140w f160w; do \

wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_v1_sci.fits; \

done

First, let’s visually inspect the dataset. Let’s take F160W image as an example. Do
the steps below with the other image(s) too (and later with any dataset that you want to
work on). It is very important to understand your dataset visually. Note how ds9 doesn’t

13 Note that you only have one port to the internet, so downloading in parallel will actually be slower than
downloading in series.

http://www.stsci.edu/hst/wfc3
http://www.stsci.edu/hst/wfc3
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follow the GNU style of options where “long” and “short” options are preceded by -- and
- respectively (for example --width and -w, see Section 4.1.1.2 [Options], page 67).

Ds9’s -zscale option is a good scaling to highlight the low surface brightness regions,
and as the name suggests, -zoom to fit will fit the whole dataset in the window. If the
window is too small, expand it with your mouse, then press the “zoom” button on the top
row of buttons above the image, then in the row below it, press “zoom fit”. You can also
zoom in and out by scrolling your mouse or the respective operation on your touch-pad
when your cursor/pointer is over the image.

$ ds9 download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_v1_sci.fits \

-zscale -zoom to fit

The first thing you might notice is that the regions with no data have a value of zero
in this image. The next thing might be that the dataset actually has two “depth”s (see
Section 7.3.2 [Quantifying measurement limits], page 199). The exposure time of the inner
region is more than 4 times more than the outer parts. Fortunately the XDF survey webpage
(above) contains the vertices of the deep flat WFC3-IR field. You can use those vertices
in Section 6.1 [Crop], page 115, to cutout this deep infra-red region from the larger image.
We’ll make a directory called flat-ir and keep the flat infra-red regions in that directory
(with a ‘xdf-’ suffix for a shorter and easier filename).

$ mkdir flat-ir

$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f105w.fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208" \

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f105w_v1_sci.fits

$ astcrop --mode=wcs -h0 --output=flat-ir/xdf-f160w.fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208" \

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_v1_sci.fits

The only thing varying in the two calls to Gnuastro’s Crop program is the filter name.
Therefore, to simplify the command, and later allow work on more filters, we can use the
shell’s for loop. Notice how the two places where the filter names (f105w and f160w) are
used above have been replaced with $f (the shell variable that for is in charge of setting)
below. To generalize this for more filters later, you can simply add the other filter names
in the first line before the semi-colon (;).

$ for f in f105w f160w; do \

astcrop --mode=wcs -h0 --output=flat-ir/xdf-$f.fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208" \

download/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_v1_sci.fits; \

done

Please open these images and inspect them with the same ds9 commands you used
above. You will see how it is completely flat now and doesn’t have varying depths. Another
important result of this crop is that regions with no data now have a NaN (blank) value, not
zero. Zero is a meaningful value and especially when using NoiseChisel, the input should
have NaN values for pixels with no data, not zero.
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This is the deepest image we currently have of the sky. The first thing that comes
to mind may be this: “How large is this field?”. Let’s find the answer to this question
with the commands below. The lines starting with ## are just comments for you to help
in following the steps. Don’t type them on the terminal. The commands are intentionally
repetitive in some places to better understand each step and also to demonstrate the beauty
of command-line features like variables, pipes and loops. Later, if you would like to repeat
this process on another dataset, you can just use commands 3, 7, and 9.� �
Use shell history: Don’t forget to make effective use of your shell’s history. This is especially
convenient when you just want to make a small change to your previous command. Press
the “up” key on your keyboard (possibly multiple times) to see your previous command(s).
 	

## (1) See the general statistics of non-blank pixel values.

$ aststatistics flat-ir/xdf-f160w.fits

## (2) We only want the number of non-blank pixels.

$ aststatistics flat-ir/xdf-f160w.fits --number

## (3) Keep the result of the command above in the shell variable ‘n’.

$ n=$(aststatistics flat-ir/xdf-f160w.fits --number)

## (4) See what is stored the shell variable ‘n’.

$ echo $n

## (5) Show all the FITS keywords of this image.

$ astfits flat-ir/xdf-f160w.fits -h1

## (6) The resolution (in degrees/pixel) is in the ‘CDELT’ keywords.

## Only show lines that contain these characters, by feeding

## the output of the previous command to the ‘grep’ program.

$ astfits flat-ir/xdf-f160w.fits -h1 | grep CDELT

## (7) Save the resolution (same in both dimensions) in the variable

## ‘r’. The last part uses AWK to print the third ‘field’ of its

## input line. The first two fields were ‘CDELT1’ and ‘=’.

$ r=$(astfits flat-ir/xdf-f160w.fits -h1 | grep CDELT1 \

| awk ’{print $3}’)

## (8) Print the values of ‘n’ and ‘r’.

$ echo $n $r

## (9) Use the number of pixels (first number passed to AWK) and

## length of each pixel’s edge (second number passed to AWK)

## to estimate the area of the field in arc-minutes squared.

$ area=(echo $n $r | awk ’{print $1 * ($2^2) * 3600}’)
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The area of this field is 4.03817 (or 4.04) arc-minutes squared. Just for comparison,
this is roughly 175 times smaller than the average moon’s angular area (with a diameter of
30arc-minutes or half a degree).� �
AWK for table/value processing: AWK is a powerful and simple tool for text processing.
Above (and further below) some simple examples are shown. GNU AWK (the most common
implementation) comes with a free and wonderful book (https://www.gnu.org/software/
gawk/manual/) in the same format as this book which will allow you to master it nicely. Just
like this manual, you can also access GNU AWK’s manual on the command-line whenever
necessary without taking your hands off the keyboard as described above.
 	

This takes us to the second question that you have probably asked yourself when you
saw the field for the first time: “How large is this area at different redshifts?”. To get a
feeling of the tangential area that this field covers at redshift 2, you can use Section 9.1
[CosmicCalculator], page 244. In particular, you need the tangential distance covered by
1 arc-second as raw output. Combined with the field’s area, we can then calculate the
tangential distance in Mega Parsecs squared (Mpc2).

## Print general cosmological properties at redshift 2.

$ astcosmiccal -z2

## When given a "Specific calculation" option, CosmicCalculator

## will just print that particular calculation. See the options

## under this title in the output of ‘--help’ for more.

$ astcosmiccal --help

## Only print the "Tangential dist. covered by 1arcsec at z (kpc)".

## in units of kpc/arc-seconds.

$ astcosmiccal -z2 --arcsectandist

## Convert this distance to kpc^2/arcmin^2 and save in ‘k’.

$ k=$(astcosmiccal -z2 --arcsectandist | awk ’{print ($1*60)^2}’)

## Multiply by the area of the field (in arcmin^2) and divide by

## 10^6 to return value in Mpc^2.

$ echo $k $area | awk ’{print $1 * $2 / 1e6}’

At redshift 2, this field therefore covers 1.07145 Mpc2. If you would like to see how this
tangential area changes with redshift, you can use a shell loop like below.

$ for z in 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0; do \

k=$(astcosmiccal -z$z --arcsectandist); \

echo $z $k $area | awk ’{print $1, ($2*60)^2 * $3 / 1e6}’; \

done

Fortunately, the shell has a very useful tool/program to print a sequence of numbers that is
nicely called seq. You can use it instead of typing all the different redshifts in this example.
For example the loop below will print the same range of redshifts (between 0.5 and 5) but
with increments of 0.1.

$ for z in $(seq 0.5 0.1 5); do \

https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/
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k=$(astcosmiccal -z$z --arcsectandist); \

echo $z $k $area | awk ’{print $1, ($2*60)^2 * $3 / 1e6}’; \

done

If you want a fast result and commonly need such processing for a larger number of
redshifts, the command above can be slow. This is because the CosmicCalculator program
has a lot of overhead: it has to parse the command-line and all configuration files (see below).
These are both human-readable characters, not computer-readable bits. CosmicCalculator
then has to check the sanity of its inputs and check which of its many options you have
asked for. It has to do all of these for every redshift. To greatly speed up the processing,
Gnuastro gives you direct access to the root work-horse of CosmicCalculator without all
that overhead: Section 10.3 [Gnuastro library], page 264.

Using Gnuastro’s library, you can write your own tiny little program for this same
calculation, without all that extra overhead of CosmicCalculator (or any of Gnuastro’s
programs, see Chapter 10 [Library], page 253). For this particular job, you want Gnuastro’s
Section 10.3.24 [Cosmology library (cosmology.h)], page 345. Here is one example: put
the following small C program in a file called myprogram.c.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/cosmology.h>

int

main(void)

{

double area=4.03817; /* Area of field (arcmin^2). */

double z, adist, tandist; /* Temporary variables. */

/* Constants from Plank 2015 (Paper XIII, A&A 594, 2016) */

double H0=67.74, olambda=0.6911, omatter=0.3089, oradiation=0;

/* Do the same thing for all redshifts (z) between 0.1 and 5. */

for(z=0.1; z<5; z+=0.1)

{

/* Calculate the angular diameter distance. */

adist=gal_cosmology_angular_distance(z, H0, olambda,

omatter, oradiation);

/* Calculate the tangential distance of one arcsecond. */

tandist = adist * 1000 * M_PI / 3600 / 180;

/* Print the redshift and area. */

printf("%-5.2f %g\n", z, pow(tandist * 60,2) * area / 1e6);

}

/* Tell the system that everything finished successfully. */

return EXIT_SUCCESS;
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}

To build and run this C program, you can use Section 10.2 [BuildProgram], page 260. It
is designed to manage Gnuastro’s dependencies, compile the program you give it and then
run it. In short, it hides all the complexities of compiling, linking and running C programs
based on Gnuastro’s library. The library will later be usable higher level languages like
Python or Julia, for now it is only usable by C and C++ programs.

$ astbuildprog myprogram.c

See how much faster this is compared to the shell loop we wrote above? You might
have noticed that a new file called myprogram is also created in the directory. This is the
compiled program that was created and run by the command above (its in binary machine
code, not human-readable any more). You can run it again to get the same results with a
command like this:

$ ./myprogram

The efficiency of myprogram compared to CosmicCalculator is because the requested
processing is faster/comparable to the overheads. For other programs that take large input
datasets (images for example), the overhead is usually negligible compared to the processing.
In such cases, the libraries are only useful if you want a different/new processing compared
to the functionalities in Gnuastro’s existing programs.

Gnuastro has a large library which all the programs use for various steps their processing.
For the full list of available functions classified by context, please see Section 10.3 [Gnuastro
library], page 264. Gnuastro’s library and BuildProgram are created to make it easy for
you to use these powerful features and get to your scientific results as efficiently (fast)
and accurately as possible. Several other complete working examples (involving images and
tables) of Gnuastro’s libraries can be see in Section 10.4 [Library demo programs], page 347.
We’ll stop with the libraries at this point in this tutorial and get back to Gnuastro’s already
built programs which ready to be used on the command-line.

None of Gnuastro’s programs keep a default value internally within their code. However,
when you ran CosmicCalculator with the -z2 option above, it completed its processing and
printed results. So where did the “default” cosmological parameter values (like the matter
density and etc) come from? The values come from the command-line or a configuration
file (see Section 4.2.2 [Configuration file precedence], page 78).

CosmicCalculator has a very limited set of parameters and doesn’t need any particular
file inputs. Therefore, we’ll use it to discuss configuration files which are an important part
of all Gnuastro’s programs (see Section 4.2 [Configuration files], page 77).

Once you get comfortable with configuration files, you can easily do the same for the
options of all Gnuastro programs. For example, NoiseChisel has the largest number of
options in the programs. Therefore configuration files will be very useful for it when you
use different datasets (with different noise properties or in different research contexts). The
configuration of each program (besides its version) is vital for the reproducibility of your
results, so it is very important to manage them properly.

As we saw above, the full list of the options in all Gnuastro programs can be seen with the
--help option. Try calling it with CosmicCalculator as shown below. Note how options are
grouped by context to make it easier to find your desired option. However, in each group,
options are ordered alphabetically.

$ astcosmiccal --help
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The options that need a value have an = sign after their long version and FLT, INT or STR for
floating point numbers, integer numbers and strings (filenames for example) respectively.
All options have a long format and some have a short format (a single character), for more
see Section 4.1.1.2 [Options], page 67.

When you are using a program, it is often necessary to check the value the option has just
before the program starts its processing. In other words, after it has parsed the command-
line options and all configuration files. You can see the values of all options that need one
with the --printparams or -P option that is common to all programs (see Section 4.1.2
[Common options], page 69). In the command below, try replacing -P with --printparams

to see how both do the same operation.

$ astcosmiccal -P

Let’s say you want a different Hubble constant. Try running the following command to
see how the Hubble constant in the output of the command above has changed. Afterwards,
delete the -P and add a -z2 to see the results with the new cosmology (or configuration).

$ astcosmiccal -P --H0=70

From the output of the --help option, note how the option for Hubble constant has
both short (-H) and long (--H0) formats. One final note is that the equal (=) sign is not
mandatory. In the short format, the value can stick to the actual option (the short option
name is just one character after-all and thus easily identifiable) and in the long format, a
white-space character is also enough.

$ astcosmiccal -H70 -z2

$ astcosmiccal --H0 70 -z2 --arcsectandisk

Let’s assume that in one project, you want to only use rounded cosmological parameters
(H0 of 70km/s/Mpc and matter density of 0.3). You should therefore run CosmicCalculator
like this:

$ astcosmiccal --H0=70 --olambda=0.7 --omatter=0.3 -z2

But having to type these extra options every time you run CosmicCalculator will be
prone to errors (typos in particular) and also will be frustrating and slow. Therefore in
Gnuastro, you can put all the options and their values in a “Configuration file” and tell the
programs to read the option values from there.

Let’s create a configuration file. In your favorite text editor, make a file named
my-cosmology.conf (or my-cosmology.txt, the suffix doesn’t matter) which contains the
following lines. One space between the option value and name is enough, the values are
just under each other to help in readability. Also note that you can only use long option
names in configuration files.

H0 70

olambda 0.7

omatter 0.3

You can now tell CosmicCalculator to read this file for option values immediately using the
--config option as shown below. Do you see how the output of the following command
corresponds to the option values in my-cosmology.txt (previous command)?

$ astcosmiccal --config=my-cosmology.conf -z2

If you need this cosmology every time you are working in a specific directory, you can
benefit from Gnuastro’s default configuration files to avoid having to call the --config op-
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tion. Let’s assume that you want any CosmicCalculator call you make in the my-cosmology
directory to use these parameters. You just have to copy the above configuration file into
a special directory and file:

$ mkdir my-cosmology

$ mkdir my-cosmology/.gnuastro

$ mv my-cosmology.conf my-cosmology/.gnuastro/astcosmiccal.conf

Once you run CosmicCalculator within my-cosmology as shown below, you will see
how your cosmology has been implemented without having to type anything extra on the
command-line.

$ cd my-cosmology

$ astcosmiccal -z2

$ cd ..

To further simplify the process, you can use the --setdirconf option. If you are already
in your desired directory, calling this option with the others will automatically write the
final values (along with descriptions) in .gnuastro/astcosmiccal.conf. For example the
commands below will make the same configuration file automatically (with one extra call
to CosmicCalculator).

$ mkdir my-cosmology2

$ cd my-cosmology2

$ astcosmiccal --H0 70 --olambda=0.7 --omatter=0.3 --setdirconf

$ astcosmiccal -z2

$ cd ..

Gnuastro’s programs also have default configuration files for a specific user (when run in
any directory). This allows you to set a special behavior every time a program is run by a
specific user. Only the directory and filename differ from the above, the rest of the process
is similar to before. Finally, there are also system-wide configuration files that can be used
to define the option values for all users on a system. See Section 4.2.2 [Configuration file
precedence], page 78, for a more detailed discussion.

We are now ready to start processing the downloaded images. Since these datasets are
already aligned, you don’t need to align them to make sure the pixel grid covers the same
region in all inputs. Gnuastro’s Warp program has features for such pixel-grid warping (see
Section 6.4 [Warp], page 156). Therefore, just for a demonstration, let’s assume one image
needs to be rotated by 20 degrees to correspond to the other. To do that, you can run the
following command:

$ astwarp flat-ir/xdf-f160w.fits --rotate=20

Open the output and see the output. If your final image is already aligned with RA and
Dec, you can simply use the --align option and let Warp calculate the necessary rotation.

Warp can generally be used for any kind of pixel grid manipulation (warping). For exam-
ple the outputs of the commands below will respectively have larger pixels (new resolution
being one quarter the original resolution), get shifted by 2.8 (by sub-pixel), get a shear of
2, and be tilted (projected). After running each, please open the output file and see the
effect.

$ astwarp flat-ir/xdf-f160w.fits --scale=0.25

$ astwarp flat-ir/xdf-f160w.fits --translate=2.8



Chapter 2: Tutorials 34

$ astwarp flat-ir/xdf-f160w.fits --shear=2

$ astwarp flat-ir/xdf-f160w.fits --project=0.001,0.0005

You can also combine multiple warps in one command. For example to first rotate the
image, then scale it, run this command:

$ astwarp flat-ir/xdf-f160w.fits --rotate=20 --scale=0.25

If you have multiple warps, do them all in one command. Don’t warp them in separate
commands because the correlated noise will become too strong. As you see in the matrix
that is printed when you run Warp, it merges all the warps into a single warping matrix
(see Section 6.4.1 [Warping basics], page 157, and Section 6.4.2 [Merging multiple warpings],
page 159) and simply applies that just once. Recall that since this is done through matrix
multiplication, order matters in the separate operations. In fact through Warp’s --matrix
option, you can directly request your desired final warp and don’t have to break it up into
different warps like above (see Section 6.4.4 [Invoking Warp], page 161).

Fortunately these datasets are already aligned to the same pixel grid, so you don’t
actually need the files that were just generated. You can safely delete them all with the
following command. Here, you see why we put the processed outputs that we need later
into a separate directory. In this way, the top directory can be used for temporary files for
testing that you can simply delete with a generic command like below.

$ rm *.fits

To detect the objects in the image, we’ll run NoiseChisel:

$ mkdir noisechisel

$ astnoisechisel flat-ir/xdf-f160w.fits -onoisechisel/xdf-f160w.fits

Read what NoiseChisel writes on the command-line. The curious thing you will notice is
that while there were more than 3000 pseudo detections to find the pseudo-detection S/N,
but there were only slightly more than 100 clumps to find the false clump S/N. We will see
what caused this after a short review on the output of NoiseChisel.

NoiseChisel’s output is a single file containing multiple extensions. You can get basic in-
formation about the extensions in a FITS file with Gnuastro’s Fits program (see Section 5.1
[Fits], page 98) as shown below. It contains 6 extensions and the first (counted as zero) is
blank (has no data).

$ astfits noisechisel/xdf-f160w.fits

NoiseChisel puts some general information on its outputs in the FITS header of the
respective extension. To see the full list of keywords, you can again use the Fits program
like above, but also give it your desired extension/HDU. You can also give the extension
number (as listed in the output above), for example -h2 instead of -hOBJECTS.

$ astfits noisechisel/xdf-f160w.fits -hOBJECTS

The NUMLABS keyword in NoiseChisel’s OBJECTS extension contains the number of objects
that was found by NoiseChisel in that run. Try to visually find it in the header keywords
you saw above.

To simplify the process, you can pipe the output of the command above into grep (a
program for matching lines which is available on almost all Unix-like operating systems).

$ astfits noisechisel/xdf-f160w.fits -hOBJECTS | grep NUMLABS

If you just want the value of the keyword and not the full FITS keyword line, you can
use AWK. In the example below, AWK will print the third word (separated by white space
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characters) in any line that has a first column value of NUMLABS. You can also try this for
the third HDU (called CLUMPS) to see the number of clumps.

$ astfits noisechisel/xdf-f160w.fits -h2 \

| awk ’$1=="NUMLABS" {print $3}’

Grep and AWK are simple, but very powerful command-line software for processing
text files. Learning them properly can greatly simplify your processing, while improve your
creativity, productivity and speed. When you get time, it is highly recommended to master
them. The most common implementation of both is from GNU. Like almost all GNU
software, both GNU Grep and GNU AWK have wonderful manuals which come with the
program for free. You don’t have to read the whole manual at once, they both start with
great generic introductions to get you going fast. As described above, you can read both
manuals or refresh your memory on your command-line with these commands:

$ info awk

$ info grep

You can now open NoiseChisel’s output with SAO DS9 and visually inspect it. Just note
that since there are multiple extensions, the easiest way to view the whole file is to open it as
a “Multi-extension data cube” with the -mecube option as shown below. If you use GNOME
(another GNU software, most common graphic user interface in GNU/Linux operating
systems), please see Section B.1.1 [Viewing multiextension FITS images], page 378, to open
DS9 in multi-extension cube mode by default when using the GUI (double clicking on the
file).

$ ds9 -mecube noisechisel/xdf-f160w.fits -zscale -zoom to fit

Using Gnuastro’s Fits program, you can also copy a HDU from one FITS file to another
(for more, see Section 5.1.1.1 [HDU manipulation], page 101). So if you want to have a
FITS file with only the detected objects, you can run this command:

$ astfits noisechisel/xdf-f160w.fits --copy=OBJECTS -oobjects.fits

One good way to see if you have missed any signal is to mask all the detected pixels and
inspect the noise pixels. For this, you can use Gnuastro’s Arithmetic program (in particular
its where operator as shown below, see Section 6.2.2 [Arithmetic operators], page 126). With
this command, all input pixels that have a value larger than zero in the OBJECTS extension
will be set to NaN in the output (written in det-masked.fits). If you change the gt (for
“greater than”) operator to eq (for “equal”), all the un-detected (sky) pixels will be masked
and you can see the detections.

$ astarithmetic noisechisel/xdf-f160w.fits \

noisechisel/xdf-f160w.fits 0 gt nan where -h1 -h2 \

--output=nc-masked.fits

In some cases, you might want to use a different kernel with NoiseChisel (not the default
one). To do that, you can use MakeProfiles (see Section 8.1 [MakeProfiles], page 221) in
the following manner to build a 2D Gaussian kernel with a FWHM of 3 pixels that extends
5 times the FWHM. This new kernel can later be fed into NoiseChisel with the --kernel

option.

$ astmkprof --kernel=gaussian,3,5 --oversample=1 -okernel-g-3-5.fits

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel-g-3-5.fits \

--output=nc-my-kernel.fits
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NoiseChisel can produce “Check images” to help you visualize how each step is com-
pleted. You can see all the check images it can produce with this command.

$ astnoisechisel --help | grep check

The check images are also multi-extension FITS files. After each check image is produced,
open it with ds9 like NoiseChisel’s output above and flip through the extensions to see each
processing in detail. It is strongly encouraged to play with the different parameters and use
the respective check images to see which step is affected by your change. The three most
useful check images are --checkqthresh, --checkdetection, and --checksegmentation.

We can now get back to the curious situation we noticed after running NoiseChisel: the
number of false clumps to find an S/N limit was very small (given the extent of this image).
This is bad, because we use quantiles in NoiseChisel and such a small number will result
in a relatively large scatter. Since this is a segmentation issue, let’s see why this happens
with --checksegmentation.

$ astnoisechisel flat-ir/xdf-f160w.fits --checksegmentation

To help you get a result faster, when check images are requested, NoiseChisel doesn’t
finish its processing (unless you also call --continueaftercheck). NoiseChisel aborts with
an explanation of why it stopped without finishing and the file name of the check image
that it produced. The first five extensions are: the input image, the convolved image, the
initially labeled detected regions, all the sky region (false) clumps, and those that will be
used for S/N. The sky clumps are found over NoiseChisel’s “large tiles” independently.
When inspecting the fourth extension of the check image, it is interesting how NoiseChisel
has ignored most large tiles and only used the few that we see, mostly on the edge.

The reason that almost all internal large tiles are ignored is that galaxies are extended
and this is a very deep (and small) image. Thanks to the PSF (see Section 8.1.1.2 [Point
Spread Function], page 222), no object will have a sharp truncation. We have not seen
any abrupt break in the light profile of any galaxy: galaxies are always larger when we get
deeper datasets. Therefore, in a noisy image, some light will always be left un-detected.
To be less affected by this un-detected light, NoiseChisel has the --minskyfrac option (see
Section 7.2.2.1 [General NoiseChisel options], page 185): any tile that has a larger fraction
of detected pixels will be ignored. So let’s see what the default value of this option is (recall
that with -P, you can list all the options with their values in Gnuastro’s programs):

$ astnoisechisel -P | grep minskyfrac

Try decreasing this value and re-running NoiseChisel to see the effect on the fraction of
large tiles that will be used for finding false/sky clumps. Play a little with this parameter
(give it different values and check the result).

$ astnoisechisel flat-ir/xdf-f160w.fits --minskyfrac=0.5 \

--checksegmentation

The smaller the value to --minskyfrac, the more probable that un-detected light in the
wings of galaxies will bias/affect the derived false clump S/N. So it is always important
to find a good balance between a larger --minskyfrac while having a sufficient number of
resulting clumps (to avoid scatter).

NoiseChisel doesn’t just find the labeled pixels, it also finds the Sky value and the Sky
standard deviation in the final two extensions of its output. To generate a catalog of the
colors, we will be using the NoiseChisel labeled image from the F160W image. But the Sky
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and Sky standard deviation values for each different filter will also be necessary. So we’ll
run NoiseChisel with our finalized parameters value on both filters (you can also put this
option’s value in a configuration file to avoid repeating it).

$ astnoisechisel flat-ir/xdf-f105w.fits -onoisechisel/xdf-f105w.fits \

--minskyfrac=0.5

$ astnoisechisel flat-ir/xdf-f160w.fits -onoisechisel/xdf-f160w.fits \

--minskyfrac=0.5

Now, we are ready to make a catalog. We want the object and clump labels from the
F160W image. But the input, Sky and Sky standard deviation images should come from
each filter. So, we’ll run MakeCatalog on NoiseChisel’s output differently for each filter.
When making the F105W catalog, we’ll use the --objectsfile and --clumpsfile options
to tell MakeCatalog to read the object and clump labels from the F160W NoiseChisel
output. When these options aren’t given, MakeCatalog will look into the same input file
for object and clump labels.

For both filters, we’ll ask for the ID, RA, Dec, Magnitude and signal-to-noise ratio (see
Section 7.3.2 [Quantifying measurement limits], page 199). To see a list of all the parameters
that MakeCatalog can measure for you, run it with --help option.

$ mkdir catalog

$ astmkcatalog noisechisel/xdf-f160w.fits --zeropoint=25.94 \

--ids --ra --dec --magnitude --sn \

--output=catalog/xdf-f160w.fits

$ astmkcatalog noisechisel/xdf-f105w.fits --zeropoint=26.27 \

--objectsfile=noisechisel/xdf-f160w.fits \

--clumpsfile=noisechisel/xdf-f160w.fits \

--ids --ra --dec --magnitude --sn \

--output=catalog/xdf-f105w.fits

MakeCatalog can also produce catalogs in plain text format. Please run the MakeCatalog
commands above again and replace the .fits suffix, in the value to --output, with .txt

(we will also be using the text file outputs later).

When a clumps image is also given14, like this example, two catalogs will be made.
If you asked for a plain text file output, two files will be made with the _c.txt and _

o.txt suffixes. If MakeCatalog’s output is requested to be FITS, the two catalogs will
be in separate extensions of a single file. You can inspect the separate extensions with
the Fits program like before (as shown below). Afterwards, you can inspect the table in
each extension with Gnuastro’s Table program (see Section 5.3 [Table], page 112) as shown
below.

$ astfits catalog/xdf-f105w.fits # Extension information

$ asttable catalog/xdf-f105w.fits -h1 --info # Objects catalog info.

$ asttable catalog/xdf-f105w.fits -h1 # Objects catalog columns.

$ asttable catalog/xdf-f105w.fits -h2 -i # Clumps catalog info.

$ asttable catalog/xdf-f105w.fits -h2 # Clumps catalog columns.

14 MakeCatalog will look at the WCLUMPS keyword in the objects image to see if it should also use a clumps
image or not.
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As you see above, to see the column contents of each table, you can just remove the
--info (or -i) option. If you want to print the contents of special column(s), just specify
the column number(s) (counting from 1, same as output of the command above) or the
column name(s) (if they have one). For example, if you just want the objects and clumps
magnitude and signal-to-noise ratio in the F160W filter. You can get it with the following
commands.

$ asttable catalog/xdf-f160w.fits -h1 -cMAGNITUDE -cSN

$ asttable catalog/xdf-f160w.fits -h2 -cMAGNITUDE -cSN

The clumps catalog has two ID columns (one for the over-all clump ID and one for
the ID of the clump in its host object), the magnitude column numbers differ between the
object and clumps catalog. So if you want to specify the columns by number, you will
need to change the numbers when viewing the clump and objects catalogs. This is a useful
advantage of having/using column names.

$ asttable catalog/xdf-f160w.fits -h1 -c4 -c5

$ asttable catalog/xdf-f160w.fits -h2 -c5 -c6

Finally, the comments in MakeCatalog’s output (in FITS headers or lines starting with
# in plain text) contain some important information about the dataset that can be useful.
Open catalog/xdf-f160w_o.txt in a text editor to see them.

Since we used the same labeled image on both filters, the number of rows in both catalogs
are the same. So, let’s measure the colors of the objects in this image. We’ll merge the
two clump catalogs together into one using the paste program on the command-line. The
output file will have each line of both catalogs merged into a single line.

$ paste catalog/xdf-f160w_c.txt catalog/xdf-f105w_c.txt \

> xdf-f160w-f105w_c_p.txt

Open xdf-f160w-f105w_c_p.txt after making it to see how paste has operated. We
can now use AWK to find the colors. We’ll ask AWK to only use lines that don’t start with
# and don’t have a NaN magnitude in the 9th column (F105W magnitude15). We will also
ignore columns which don’t have reliable F105W magnitudes (with a S/N less than 716).
For the other lines, AWK will print the ID, positional columns and the difference between
the respective magnitude columns.

$ awk ’!/^#/ && $11!="nan" && $12>7 {print $1, $2, $3, $4, $11-$5}’ \

xdf-f160w-f105w_c_p.txt > catalog/xdf-f105w-f160w_c.txt

Gnuastro has a simple program for basic statistical analysis. The command below will
print some basic information about the distribution (minimum, maximum, median and etc),
along with a cute little ASCII histogram to visually help you understand the distribution on
the command-line without the need for a graphic user interface (see Section 7.1.4 [Invoking
Statistics], page 172). This ASCII histogram can be useful when you just want some coarse
and general information on the input dataset. It is also useful when working on a server
(where you may not have graphic user interface), and finally, its fast.

$ aststatistics catalog/xdf-f105w-f160w_c.txt -c5

15 Recall that the objects and clumps labels were made on the F160W image. On the F105W image, there
might not be enough signal, so random scatter may give a negative total brightness and thus a NaN
magnitude.

16 The value of 7 is taken from the clump S/N threshold in F160W (where the clumps were defined).
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You can later use Gnuastro’s Statistics program with the --histogram option to build
a much more fine-grained histogram as a table to feed into your favorite plotting program
for a much more accurate/appealing plot. If you just want a specific measure, for example
the mean, median and standard deviation, you can ask for them specifically:

$ aststatistics catalog/xdf-f105w-f160w_c.txt -c5 --mean --median --std

Some researchers prefer to have colors in a fixed aperture for all the objects. The colors
we calculated above used a different segmentation map for each object. This might not
satisfy some science cases. To make a fixed aperture catalog, we should make a labeled
image which has a fixed label for each aperture. That labeled image can be given to
MakeCatalog instead of NoiseChisel’s labeled detection image.

We’ll use the objects catalog in the F160W catalog we generated before for the positions
and set the other parameters of each profile to be a fixed circle of radius 5 pixels (we want
all apertures to be fixed after all). AWK is a wonderful tool for such jobs as the command
below shows.

$ awk ’!/^#/{print $1, $2, $3, 5, 5, 0, 0, 1, $1, 1}’ \

catalog/xdf-f160w_c.txt > catalog/apertures.txt

We can now feed this catalog into MakeProfiles to build the apertures for us. See
Section 8.1.5 [Invoking MakeProfiles], page 228, for a description of the options. The most
important for this particular job is --mforflatpix, it tells MakeProfiles that the values in
the magnitude column should be used for each pixel of a flat profile. Without it, MakePro-
files would build the profiles such that the sum of the pixels of each profile would have a
magnitude (in log-scale) of the value given in that column (what you would expect when
simulating a galaxy for example).

$ astmkprof catalog/apertures.txt --background=flat-ir/xdf-f160w.fits \

--clearcanvas --replace --type=int16 --mforflatpix \

--mode=wcs

The first thing you might notice in the printed information is that the profiles are not
built in order. This is because MakeProfiles works in parallel and parallel CPU operations
are asynchronous. Without --replace, the output is the same in any case. You can try
running MakeProfiles with one thread (using --numthreads=1 to see how order is respected
in that case.

Open the output apertures.fits file and see the result. Where the apertures overlap,
you will notice that one label has replaced the other (because of the --replace option).
In the future, MakeCatalog will be able to work with overlapping labels, but currently it
doesn’t. If you are interested, please join us in completing Gnuastro with added improve-
ments like this (see task 1475017).

apertures.fits labeled image can now be fed input into MakeCatalog. Similar to how
we used the F160W labels for the F105W catalog: the labels don’t have to be produced by
NoiseChisel. In comparison with the previous MakeCatalog call, notice how 1) we have no
more clumps image, 2) that we have set --objectshdu=1 (since apertures.fits is not the
output of NoiseChisel where the labeled image is in the third extension), and 3) that we
are now using --objid instead of --ids to avoid warnings that some ID columns are only
for clumps.

17 https://savannah.gnu.org/task/index.php?14750

https://savannah.gnu.org/task/index.php?14750
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$ astmkcatalog noisechisel/xdf-f105w.fits --zeropoint=26.27 \

--objectsfile=apertures.fits --objectshdu=1 \

--objid --ra --dec --magnitude --sn \

--output=catalog/xdf-f105w-aper.fits

Change the filter name and zeropoint magnitudes and run this command again to have
the fixed aperture magnitude in the F160W filter also. From this point on, you can follow
the previous steps to derive the color in a fixed aperture.

We will now find some of the objects with the strongest color difference and make a
cutout to inspect them visually: let’s see what the objects with a color more than two
magnitudes look like.

We’ll use the catalog/xdf-f105w-f160w_c.txt file that we produced above. With the
command below, all lines with a color value more than 2 will be put in reddest.txt and
inspect it using cat.

$ awk ’$5>1’ catalog/xdf-f105w-f160w_c.txt > reddest.txt

$ cat reddest.txt

We can now feed reddest.txt into Gnuastro’s crop to see what these objects look like.
To keep things clean, we’ll make a directory called reddest and ask Crop to save the crops
in this directory. We’ll also add a -f160w.fits suffix to the crops.

$ mkdir crop

$ astcrop --mode=wcs --coordcol=3 --coordcol=4 flat-ir/xdf-f160w.fits \

--catalog=reddest.txt --width=15/3600,15/3600 \

--suffix=-f160w.fits --output=crop

Like the MakeProfiles command above, you might notice that the crops aren’t made in
order. Since each crop is independent of the rest, the crops are done in parallel and parallel
operations are asynchronous. In the command above, change f160w to f105w to make the
crops in both filters.

To view the crops more easily (not having to open ds9 for each image), you can convert
the FITS crops into the JPEG format.

$ for f in *.fits; do \

astconvertt $f --fluxlow=-0.001 --fluxhigh=0.005 --invert -ojpg; \

done

The loop above is in series: each file is processed only after the previous ones are com-
plete. If you have GNU Parallel (https://www.gnu.org/software/parallel), you can
greatly speed up this conversion. GNU Parallel will run the separate commands simultane-
ously on different CPU threads in parallel. For more information on efficiently using your
threads, see Section 4.3 [Multi-threaded operations], page 80.

$ parallel astconvertt --fluxlow=-0.001 --fluxhigh=0.005 --invert \

-ojpg ::: *.fits

You can now easily use your general GUI image viewer to flip through the images more
easily. On GNOME, you can use the “Eye of GNOME” image viewer (with executable
name of eog). Run the command below and by pressing the <SPACE> key, you can flip
through the images and compare them visually more easily. Of course, the flux ranges have
been chosen generically here for seeing the fainter parts. Therefore, brighter objects will be
fully black.

$ eog 1-f105w.jpg

https://www.gnu.org/software/parallel
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Another thing that is commonly needed is to visually mark these objects on the image.
DS9 has “Region”s for this purpose. You just have to convert your catalog into a “region
file” to feed into DS9. To do that, you can use AWK again as shown below.

$ cd ..

$ awk ’BEGIN{print "# Region file format: DS9 version 4.1"; \

print "global color=green width=2"; \

print "fk5";} \

{printf "circle(%s,%s,1\")\n", $3, $4;}’ reddest.txt \

> reddest.reg

This region file can be loaded into DS9 with its -regions option as shown below (see
above for the other options):

$ ds9 -mecube noisechisel/xdf-f160w.fits -zscale -zoom to fit \

-regions load all reddest.reg

Finally, if this book or any of the programs in Gnuastro have been useful for your
research, please cite the respective papers. All Gnuastro programs have a --cite option to
help you cite the authors’ work more easily. For example:

$ astmkcatalog --cite
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3 Installation

The latest released version of Gnuastro source code is always available at the following URL:

http://ftpmirror.gnu.org/gnuastro/gnuastro-latest.tar.gz

Section 1.1 [Quick start], page 1, describes the commands necessary to configure, build,
and install Gnuastro on your system. This chapter will be useful in cases where the simple
procedure above is not sufficient, for example your system lacks a mandatory/optional
dependency (in other words, you can’t pass the $ ./configure step), or you want greater
customization, or you want to build and install Gnuastro from other random points in its
history, or you want a higher level of control on the installation. Thus if you were happy
with downloading the tarball and following Section 1.1 [Quick start], page 1, then you can
safely ignore this chapter and come back to it in the future if you need more customization.

Section 3.1 [Dependencies], page 42, describes the mandatory, optional and bootstrap-
ping dependencies of Gnuastro. Only the first group are required/mandatory when you are
building Gnuastro using a tarball (see Section 3.2.1 [Release tarball], page 49), they are
very basic and low-level tools used in most astronomical software, so you might already
have them installed, if not they are very easy to install as described for each. Section 3.2
[Downloading the source], page 49, discusses the two methods you can obtain the source
code: as a tarball (a significant snapshot in Gnuastro’s history), or the full history1. The
latter allows you to build Gnuastro at any random point in its history (for example to get
bug fixes or new features that are not released as a tarball yet).

The building and installation of Gnuastro is heavily customizable, to learn more about
them, see Section 3.3 [Build and install], page 53. This section is essentially a thorough
explanation of the steps in Section 1.1 [Quick start], page 1. It discusses ways you can
influence the building and installation. If you encounter any problems in the installation
process, it is probably already explained in Section 3.3.4 [Known issues], page 63. In
Appendix B [Other useful software], page 378, the installation and usage of some other free
software that are not directly required by Gnuastro but might be useful in conjunction with
it is discussed.

3.1 Dependencies

The dependencies needed to build and install Gnuastro are defined by the features you want
and how you would like to obtain the source code (see Section 3.2 [Downloading the source],
page 49). A minimal set of dependencies are mandatory, if they are not present you cannot
get passed the configuration step. Such mandatory dependencies are therefore very basic
(low-level) tools which are easy to obtain, build and install, see Section 3.1.1 [Mandatory
dependencies], page 43, for a full discussion.

If you have the packages of Section 3.1.2 [Optional dependencies], page 45, Gnuastro
will have additional functionality (for example converting FITS images to JPEG or PDF).
If you are installing from a tarball as explained in Section 1.1 [Quick start], page 1, you can
stop reading after this section. However, if you decided to use the version controlled source
instead of the tarball (see Section 3.2.2 [Version controlled source], page 50), an additional
bootstrapping step is required before configuration and its dependencies are explained in
Section 3.1.3 [Bootstrapping dependencies], page 46.

1 Section 3.1.3 [Bootstrapping dependencies], page 46, are required if you clone the full history.

http://ftpmirror.gnu.org/gnuastro/gnuastro-latest.tar.gz
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3.1.1 Mandatory dependencies

The mandatory Gnuastro dependencies are very basic and low-level tools. They all follow
the same basic GNU based build system (like that shown in Section 1.1 [Quick start],
page 1), so even if you don’t have them, installing them should be pretty straightforward.
In this section we explain each program and any specific note that might be necessary in
the installation.

The most basic choice is to build the packages from source yourself, instead of relying on
your distribution’s package management system. While the latter choice is indeed possible,
we recommend that you build these dependencies yourself as discussed below. We will
send out notifications in the info-gnuastro mailing list, see Section 1.9 [Announcements],
page 12, when we find out that these requirements are updated.

1. For each package, Gnuastro might preform better (or require) certain configuration
options that your distribution’s package managers didn’t add for you. If present, these
configuration options are explained during the installation of each in the sections below.
When the proper configuration has not been set, the programs should complain and
inform you.

2. Your distribution’s pre-built package might not be the most recent release.

3. For the libraries, they might separate the binary file from the header files, see
Section 3.3.4 [Known issues], page 63.

4. Like any other tool, the science you derive from Gnuastro’s tools highly depend on
these lower level dependencies, so generally it is much better to have a close connection
with them. By reading their manuals, installing them and staying up to date with
changes/bugs in them, your scientific results and understanding will also correspond-
ingly improve.

3.1.1.1 GNU Scientific library

The GNU Scientific Library (http://www.gnu.org/software/gsl/), or GSL, is a large
collection of functions that are very useful in scientific applications, for example integra-
tion, random number generation, and Fast Fourier Transform among many others. To
install GSL from source, you can run the following commands after you have downloaded
gsl-latest.tar.gz (ftp://ftp.gnu.org/gnu/gsl/gsl-latest.tar.gz):

$ tar xf gsl-latest.tar.gz

$ cd gsl-X.X # Replace X.X with version number.

$ ./configure

$ make -j8 # Replace 8 with no. CPU threads.

$ make check

$ sudo make install

3.1.1.2 CFITSIO

CFITSIO (http://heasarc.gsfc.nasa.gov/fitsio/) is the closest you can get to the
pixels in a FITS image while remaining faithful to the FITS standard (http://fits.gsfc.
nasa.gov/fits_standard.html). It is written by William Pence, the principal author of

http://www.gnu.org/software/gsl/
ftp://ftp.gnu.org/gnu/gsl/gsl-latest.tar.gz
http://heasarc.gsfc.nasa.gov/fitsio/
http://fits.gsfc.nasa.gov/fits_standard.html
http://fits.gsfc.nasa.gov/fits_standard.html
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the FITS standard2, and is regularly updated. Setting the definitions for all other software
packages using FITS images.

Some GNU/Linux distributions have CFITSIO in their package managers, if it is avail-
able and updated, you can use it. One problem that might occur is that CFITSIO might not
be configured with the --enable-reentrant option by the distribution. This option allows
CFITSIO to open a file in multiple threads, it can thus provide great speed improvements.
If CFITSIO was not configured with this option, any program which needs this capability
will warn you and abort when you ask for multiple threads (see Section 4.3 [Multi-threaded
operations], page 80).

To install CFITSIO from source, we strongly recommend that you have a look through
Chapter 2 (Creating the CFITSIO library) of the CFITSIO manual and understand the
options you can pass to $ ./configure (they aren’t too much). This is a very basic package
for most astronomical software and it is best that you configure it nicely with your system.
Once you download the source and unpack it, the following configure script should be enough
for most purposes. Don’t forget to read chapter two of the manual though, for example the
second option is only for 64bit systems. The manual also explains how to check if it has
been installed correctly.

CFITSIO comes with two executables called fpack and funpack. From their manual:
they “are standalone programs for compressing and uncompressing images and tables that
are stored in the FITS (Flexible Image Transport System) data format. They are analogous
to the gzip and gunzip compression programs except that they are optimized for the types
of astronomical images that are often stored in FITS format”. The commands below will
compile and install them on your system along with CFITSIO. They are not essential for
Gnuastro, since they are just wrappers for functions within CFITSIO, but they can come
in handy. The make utils command is only available for versions above 3.39, it will build
these executables along with several other test executables which are deleted before the
installation (otherwise they will also be installed).

The CFITSIO installation from source process is given below. Let’s assume you have
downloaded cfitsio_latest.tar.gz (http://heasarc.gsfc.nasa.gov/FTP/software/
fitsio/c/cfitsio_latest.tar.gz) and are in the same directory:

$ tar xf cfitsio_latest.tar.gz

$ cd cfitsio

$ ./configure --prefix=/usr/local --enable-sse2 --enable-reentrant

$ make

$ make utils

$ ./testprog > testprog.lis

$ diff testprog.lis testprog.out # Should have no output

$ cmp testprog.fit testprog.std # Should have no output

$ rm cookbook fitscopy imcopy smem speed testprog

$ sudo make install

2 Pence, W.D. et al. Definition of the Flexible Image Transport System (FITS), version 3.0. (2010)
Astronomy and Astrophysics, Volume 524, id.A42, 40 pp.

http://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/cfitsio_latest.tar.gz
http://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/cfitsio_latest.tar.gz
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3.1.1.3 WCSLIB

WCSLIB (http://www.atnf.csiro.au/people/mcalabre/WCS/) is written and main-
tained by one of the authors of the World Coordinate System (WCS) definition in the FITS
standard (http://fits.gsfc.nasa.gov/fits_standard.html)3, Mark Calabretta. It
might be already built and ready in your distribution’s package management system. How-
ever, here the installation from source is explained, for the advantages of installation from
source please see Section 3.1.1 [Mandatory dependencies], page 43. To install WCSLIB you
will need to have CFITSIO already installed, see Section 3.1.1.2 [CFITSIO], page 43.

WCSLIB also has plotting capabilities which use PGPLOT (a plotting library for C). If
you wan to use those capabilities in WCSLIB, Section B.2 [PGPLOT], page 379, provides
the PGPLOT installation instructions. However PGPLOT is old4, so its installation is not
easy, there are also many great modern WCS plotting tools (mostly in written in Python).
Hence, if you will not be using those plotting functions in WCSLIB, you can configure it
with the --without-pgplot option as shown below. Let’s assume you have downloaded
wcslib.tar.bz2 (ftp://ftp.atnf.csiro.au/pub/software/wcslib/wcslib.tar.bz2)
and are in the same directory:

$ tar xf wcslib.tar.bz2

$ cd wcslib-X.X # Replace X.X with version number

$ ./configure --without-pgplot LIBS="-pthread -lm" --disable-fortran

$ make

$ make check

$ sudo make install

3.1.2 Optional dependencies

The libraries listed here are only used for very specific applications, therefore if you don’t
want these operations, Gnuastro will be built and installed without them and you don’t
have to have the dependencies.

If the ./configure script can’t find these requirements, it will warn you in the end that
they are not present and notify you of the operation(s) you can’t do due to not having
them. If the output you request from a program requires a missing library, that program
is going to warn you and abort. In the case of executables like GPL GhostScript, if you
install them at a later time, the program will run. This is because if required libraries are
not present at build time, the executables cannot be built, but an executable is called by
the built program at run time so if it becomes available, it will be used. If you do install an
optional library later, you will have to rebuild Gnuastro and reinstall it for it to take effect.

GNU Libtool
Libtool is a program to simplify managing of the libraries to build an exe-
cutable (a program). GNU Libtool has some added functionality compared
to other implementations. If GNU Libtool isn’t present on your system at
configuration time a warning will be printed and Section 10.2 [BuildProgram],
page 260, won’t be built or installed. The configure script will look into your
search path (PATH) for GNU Libtool through the following executable names:

3 Greisen E.W., Calabretta M.R. (2002) Representation of world coordinates in FITS. Astronomy and
Astrophysics, 395, 1061-1075.

4 As of early June 2016, its most recent version was uploaded in February 2001.

http://www.atnf.csiro.au/people/mcalabre/WCS/
http://fits.gsfc.nasa.gov/fits_standard.html
http://fits.gsfc.nasa.gov/fits_standard.html
ftp://ftp.atnf.csiro.au/pub/software/wcslib/wcslib.tar.bz2
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libtool (acceptable only if it is the GNU implementation) or glibtool. See
Section 3.3.1.2 [Installation directory], page 55, for more on PATH.

GNU Libtool (the binary/executable file) is a low-level program that is probably
already present on your system, and if not, is available in your operating system
package manager5. If you want to install GNU Libtool’s latest version from
source, please visit its webpage (https://www.gnu.org/software/libtool/).

Gnuastro’s tarball is shipped with an internal implementation of GNU Libtool.
Even if you have GNU Libtool, Gnuastro’s internal implementation is used for
the building and installation of Gnuastro. As a result, you can still build, install
and use Gnuastro even if you don’t have GNU Libtool installed on your system.
However, this internal Libtool does not get installed. Therefore, after Gnuas-
tro’s installation, if you want to use Section 10.2 [BuildProgram], page 260, to
compile and link your own C source code which uses the Section 10.3 [Gnuastro
library], page 264, you need to have GNU Libtool available on your system
(independent of Gnuastro). See Section 10.1 [Review of library fundamentals],
page 253, to learn more about libraries.

libgit2 Git is one of the most common version control systems (see Section 3.2.2 [Ver-
sion controlled source], page 50). When libgit2 is present, and Gnuastro’s
programs are run within a version controlled directory, outputs will contain the
version number of the working directory’s repository for future reproducibility.
See the COMMIT keyword header in Section 4.9 [Output headers], page 96, for a
discussion.

libjpeg libjpeg is only used by ConvertType to read from and write to JPEG images.
libjpeg (http://www.ijg.org/) is a very basic library that provides tools
to read and write JPEG images, most of the GNU/Linux graphic programs
and libraries use it. Therefore you most probably already have it installed.
libjpeg-turbo (http://libjpeg-turbo.virtualgl.org/) is an alternative to
libjpeg. It uses SIMD instructions for ARM based systems that significantly
decreases the processing time of JPEG compression and decompression algo-
rithms.

GPL Ghostscript
GPL Ghostscript’s executable (gs) is called used by ConvertType to compile a
PDF file from a source PostScript file, see Section 5.2 [ConvertType], page 105.
Therefore its headers (and libraries) are not needed. With a very high prob-
ability you already have it in your GNU/Linux distribution. Unfortunately it
does not follow the standard GNU build style so installing it is very hard. It is
best to rely on your distribution’s package managers for this.

3.1.3 Bootstrapping dependencies

Bootstrapping is only necessary if you have decided to obtain the full version controlled his-
tory of Gnuastro, see Section 3.2.2 [Version controlled source], page 50, and Section 3.2.2.1
[Bootstrapping], page 51. Using the version controlled source enables you to always be

5 Note that we want the binary/executable Libtool program which can be run on the command-line. In
Debian-based operating systems which separate various parts of a package, you want want libtool-bin,
the libtool package won’t contain the executable program.

https://www.gnu.org/software/libtool/
http://www.ijg.org/
http://libjpeg-turbo.virtualgl.org/


Chapter 3: Installation 47

up to date with the most recent development work of Gnuastro (bug fixes, new function-
alities, improved algorithms and etc). If you have downloaded a tarball (see Section 3.2
[Downloading the source], page 49), then you can ignore this subsection.

To successfully run the bootstrapping process, there are some additional dependencies
to those discussed in the previous subsections. These are low level tools that are used by a
large collection of Unix-like operating systems programs, therefore they are most probably
already available in your system. If they are not already installed, you should be able
to easily find them in any GNU/Linux distribution package management system (apt-get,
yum, pacman and etc). The short names in parenthesis in typewriter font after the package
name can be used to search for them in your package manager. For the GNU Portability
Library, GNU Autoconf Archive and TEX Live, it is recommended to use the instructions
here, not your operating system’s package manager.

GNU Portability Library (Gnulib)
To ensure portability for a wider range of operating systems (those that don’t in-
clude GNU C library, namely glibc), Gnuastro depends on the GNU portability
library, or Gnulib. Gnulib keeps a copy of all the functions in glibc, imple-
mented (as much as possible) to be portable to other operating systems. The
bootstrap script can automatically clone Gnulib (as a gnulib/ directory inside
Gnuastro), however, as described in Section 3.2.2.1 [Bootstrapping], page 51,
this is not recommended.

The recommended way to bootstrap Gnuastro is to first clone Gnulib and the
Autoconf archives (see below) into a local directory outside of Gnuastro. Let’s
call it DEVDIR6 (which you can set to any directory). Currently in Gnuastro,
both Gnulib and Autoconf archives have to be cloned in the same top directory7

like the case here8:

$ DEVDIR=/home/yourname/Development

$ cd $DEVDIR

$ git clone git://git.sv.gnu.org/gnulib.git

$ git clone git://git.sv.gnu.org/autoconf-archive.git

You now have the full version controlled source of these two repositories in
separate directories. Both these packages are regularly updated, so every once
in a while, you can run $ git pull within them to get any possible updates.

6 If you are not a developer in Gnulib or Autoconf archives, DEVDIR can be a directory that you don’t
backup. In this way the large number of files in these projects won’t slow down your backup process or
take bandwidth (if you backup to a remote server).

7 If you already have the Autoconf archives in a separate directory, or can’t clone it in the same directory
as Gnulib, or you have it with another directory name (not autoconf-archive/), you can follow this
short step. Set AUTOCONFARCHIVES to your desired address. Then define a symbolic link in DEVDIR with
the following command so Gnuastro’s bootstrap script can find it:
$ ln -s $AUTOCONFARCHIVES $DEVDIR/autoconf-archive.

8 If your internet connection is active, but Git complains about the network, it might be due to your
network setup not recognizing the git protocol. In that case use the following URL for the HTTP
protocol instead (for Autoconf archives, replace the name): http://git.sv.gnu.org/r/gnulib.git
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GNU Automake (automake)
GNU Automake will build the Makefile.in files in each sub-directory using the
(hand-written) Makefile.am files. The Makefile.ins are subsequently used to
generate the Makefiles when the user runs ./configure before building.

GNU Autoconf (autoconf)
GNU Autoconf will build the configure script using the configurations we have
defined (hand-written) in configure.ac.

GNU Autoconf Archive
These are a large collection of tests that can be called to run at ./configure
time. See the explanation under GNU Portability Library above for instructions
on obtaining it and keeping it up to date.

GNU Libtool (libtool)
GNU Libtool is in charge of building all the libraries in Gnuastro. The libraries
contain functions that are used by more than one program and are installed for
use in other programs. They are thus put in a separate directory (lib/).

GNU help2man (help2man)
GNU help2man is used to convert the output of the --help option (Section 4.7.2
[--help], page 93) to the traditional Man page (Section 4.7.3 [Man pages],
page 94).

LATEX and some TEX packages
Some of the figures in this book are built by LATEX (using the PGF/TikZ pack-
age). The LATEX source for those figures is version controlled for easy mainte-
nance not the actual figures. So the ./boostrap script will run LATEX to build
the figures. The best way to install LATEX and all the necessary packages is
through TEX live (https://www.tug.org/texlive/) which is a package man-
ager for TEX related tools that is independent of any operating system. It is
thus preferred to the TEX Live versions distributed by your operating system.

To install TEX Live, go to the webpage and download the appropriate installer
by following the “download” link. Note that by default the full package repos-
itory will be downloaded and installed (around 4 Giga Bytes) which can take
very long to download and to update later. However, most packages are not
needed by everyone, it is easier, faster and better to install only the “Basic
scheme” (consisting of only the most basic TEX and LATEX packages, which is
less than 200 Mega bytes)9.

After the installation, be sure to set the environment variables as suggested in
the end of the outputs. Any time you confront (need) a package you don’t have,
simply install it with a command like below (similar to how you install software
from your operating system’s package manager)10. To install all the necessary
TEX packages for a successful Gnuastro bootstrap, run this command:

$ su

9 You can also download the DVD iso file at a later time to keep as a backup for when you don’t have
internet connection if you need a package.

10 After running TEX, or LATEX, you might get a warning complaining about a missingfile. Run ‘tlmgr
info missingfile’ to see the package(s) containing that file which you can install.

https://www.tug.org/texlive/
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# tlmgr install epsf jknapltx caption biblatex biber iftex \

etoolbox logreq xstring xkeyval pgf ms \

xcolor pgfplots times rsfs pstools epspdf

ImageMagick (imagemagick)
ImageMagick is a wonderful and robust program for image manipulation on the
command-line. bootsrap uses it to convert the book images into the formats
necessary for the various book formats.

3.2 Downloading the source

Gnuastro’s source code can be downloaded in two ways. As a tarball, ready to be con-
figured and installed on your system (as described in Section 1.1 [Quick start], page 1),
see Section 3.2.1 [Release tarball], page 49. If you want official releases of stable versions
this is the best, easiest and most common option. Alternatively, you can clone the version
controlled history of Gnuastro, run one extra bootstrapping step and then follow the same
steps as the tarball. This will give you access to all the most recent work that will be
included in the next release along with the full project history. The process is thoroughly
introduced in Section 3.2.2 [Version controlled source], page 50.

3.2.1 Release tarball

A release tarball (commonly compressed) is the most common way of obtaining free and
open source software. A tarball is a snapshot of one particular moment in the Gnuastro
development history along with all the necessary files to configure, build, and install Gnu-
astro easily (see Section 1.1 [Quick start], page 1). It is very straightforward and needs the
least set of dependencies (see Section 3.1.1 [Mandatory dependencies], page 43). Gnuastro
has tarballs for official stable releases and pre-releases for testing. See Section 1.5 [Version
numbering], page 6, for more on the two types of releases and the formats of the version
numbers. The URLs for each type of release are given below.

Official stable releases (http://ftp.gnu.org/gnu/gnuastro):
This URL hosts the official stable releases of Gnuastro. Always use the most
recent version (see Section 1.5 [Version numbering], page 6). By clicking on the
“Last modified” title of the second column, the files will be sorted by their date
which you can also use to find the latest version. It is recommended to use a
mirror to download these tarballs, please visit http://ftpmirror.gnu.org/
gnuastro/ and see below.

Pre-release tar-balls (http://alpha.gnu.org/gnu/gnuastro):
This URL contains unofficial pre-release versions of Gnuastro. The pre-release
versions of Gnuastro here are for enthusiasts to try out before an official release.
If there are problems, or bugs then the testers will inform the developers to fix
before the next official release. See Section 1.5 [Version numbering], page 6,
to understand how the version numbers here are formatted. If you want to re-
main even more up-to-date with the developing activities, please clone the ver-
sion controlled source as described in Section 3.2.2 [Version controlled source],
page 50.

Gnuastro’s official/stable tarball is released with two formats: Gzip (with suffix .tar.gz)
and Lzip (with suffix .tar.lz). The pre-release tarballs (after version 0.3) are released only

http://ftp.gnu.org/gnu/gnuastro
http://ftpmirror.gnu.org/gnuastro/
http://ftpmirror.gnu.org/gnuastro/
http://alpha.gnu.org/gnu/gnuastro
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as an Lzip tarball. Gzip is a very well-known and widely used compression program created
by GNU and available in most systems. However, Lzip provides a better compression ratio
and more robust archival capacity. For example Gnuastro 0.3’s tarball was 2.9MB and
4.3MB with Lzip and Gzip respectively, see the Lzip webpage (http://www.nongnu.org/
lzip/lzip.html) for more. Lzip might not be pre-installed in your operating system, if
so, installing it from your operating system’s package manager or from source is very easy
and fast (it is a very small program).

The GNU FTP server is mirrored (has backups) in various locations on the globe
(http://www.gnu.org/order/ftp.html). You can use the closest mirror to your location
for a more faster download. Note that only some mirrors keep track of the pre-release
(alpha) tarballs. Also note that if you want to download immediately after and announce-
ment (see Section 1.9 [Announcements], page 12), the mirrors might need some time to
synchronize with the main GNU FTP server.

3.2.2 Version controlled source

The publicly distributed Gnuastro tar-ball (for example gnuastro-X.X.tar.gz) does not
contain the revision history, it is only a snapshot of the source code at one significant instant
of Gnuastro’s history (specified by the version number, see Section 1.5 [Version numbering],
page 6), ready to be configured and built. To be able to develop successfully, the revision
history of the code can be very useful to track when something was added or changed, also
some updates that are not yet officially released might be in it.

We use Git for the version control of Gnuastro. For those who are not familiar with it,
we recommend the Pro Git11 book. The whole book is publicly available for online reading
and downloading and does a wonderful job at explaining the concepts and best practices.

Let’s assume you want to keep Gnuastro in the TOPGNUASTRO directory (can be any
directory, change the value below). The full version controlled history of Gnuastro can be
cloned in TOPGNUASTRO/gnuastro by running the following commands12:

$ TOPGNUASTRO=/home/yourname/Research/projects/

$ cd $TOPGNUASTRO

$ git clone git://git.sv.gnu.org/gnuastro.git

The $TOPGNUASTRO/gnuastro directory will contain hand-written (version controlled)
source code for Gnuastro’s programs, libraries, this book and the tests. All are divided
into sub-directories with standard and very descriptive names. The version controlled files
in the top cloned directory are either mainly in capital letters (for example THANKS and
README) or mainly written in small-caps (for example configure.ac and Makefile.am).
The former are non-programming, standard writing for human readers containing
high-level information about the whole package. The latter are instructions to customize
the GNU build system for Gnuastro.

The cloned Gnuastro source cannot immediately be configured, compiled, or installed
since it only contains hand-written files, not automatically generated or imported files which
do all the hard work of the build process. See Section 3.2.2.1 [Bootstrapping], page 51,

11 https://progit.org/
12 If your internet connection is active, but Git complains about the network, it might be due to your

network setup not recognizing the Git protocol. In that case use the following URL which uses the
HTTP protocol instead: http://git.sv.gnu.org/r/gnuastro.git

http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
http://www.gnu.org/order/ftp.html
https://progit.org/
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for the process of generating and importing those files (it is very easy!). Once you have
bootstrapped Gnuastro, you can run the standard procedures (in Section 1.1 [Quick start],
page 1). Very soon after you have cloned it, Gnuastro’s main master branch will be updated
on the main repository (since the developers are actively working on Gnuastro), for the best
practices in keeping your local history in sync with the main repository see Section 3.2.2.2
[Synchronizing], page 52.

3.2.2.1 Bootstrapping

The version controlled source code lacks the source files that we have not written or are
automatically built. These automatically generated files are included in the distributed
tar ball for each distribution (for example gnuastro-X.X.tar.gz, see Section 1.5 [Version
numbering], page 6) and make it easy to immediately configure, build, and install Gnuastro.
However from the perspective of version control, they are just bloatware and sources of
confusion (since they are not changed by Gnuastro developers).

The process of automatically building and importing necessary files into the cloned
directory is known as bootstrapping. All the instructions for an automatic bootstrapping are
available in bootstrap and configured using bootstrap.conf. bootstrap is the only file not
written by Gnuastro developers but is under version control to enable simple bootstrapping
immediately after cloning. It is maintained by the GNU Portability Library (Gnulib) and
this file is an identical copy, so do not make any changes in this file since it will be replaced
when Gnulib releases an update. Make all your changes in bootstrap.conf.

The bootstrapping process has its own separate set of dependencies, the full list is given in
Section 3.1.3 [Bootstrapping dependencies], page 46. They are generally very low-level and
used by a very large set of commonly used programs, so they are probably already installed
on your system. The simplest way to bootstrap Gnuastro is to simply run the bootstrap
script within your cloned Gnuastro directory as shown below. However, please read the
next paragraph before doing so (see Section 3.2.2 [Version controlled source], page 50, for
TOPGNUASTRO).

$ cd TOPGNUASTRO/gnuastro

$ ./bootstrap # Requires internet connection

Without any options, bootstrap will clone Gnulib within your cloned Gnuastro directory
(TOPGNUASTRO/gnuastro/gnulib) and download the necessary Autoconf archives macros.
So if you run bootstrap like this, you will need an internet connection every time you decide
to bootstrap. Also, Gnulib is a large package and cloning it can be slow. It will also keep the
full Gnulib repository within your Gnuastro repository, so if another one of your projects
also needs Gnulib, and you insist on running bootstrap like this, you will have two copies.
In case you regularly backup your important files, Gnulib will also slow down the backup
process. Therefore while the simple invocation above can be used with no problem, it is
not recommended. To do better, see the next paragraph.

The recommended way to get these two packages is thoroughly discussed in Section 3.1.3
[Bootstrapping dependencies], page 46, (in short: clone them in the separate DEVDIR/

directory). The following commands will take you into the cloned Gnuastro directory and
run the bootstrap script, while telling it to copy some files (instead of making symbolic
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links, with the --copy option, this is not mandatory13) and where to look for Gnulib (with
the --gnulib-srcdir option). Please note that the address given to --gnulib-srcdir has
to be an absolute address (so don’t use ~ or ../ for example).

$ cd $TOPGNUASTRO/gnuastro

$ ./bootstrap --copy --gnulib-srcdir=$DEVDIR/gnulib

Since Gnulib and Autoconf archives are now available in your local directories, you don’t
need an internet connection every time you decide to remove all untracked files and redo the
bootstrap (see box below). You can also use the same command on any other project that
uses Gnulib. All the necessary GNU C library functions, Autoconf macros and Automake
inputs are now available along with the book figures. The standard GNU build system
(Section 1.1 [Quick start], page 1) will do the rest of the job.� �
Undoing the bootstrap: During the development, it might happen that you want to remove
all the automatically generated and imported files. In other words, you might want to
reverse the bootstrap process. Fortunately Git has a good program for this job: git clean.
Run the following command and every file that is not version controlled will be removed.

git clean -fxd

It is best to commit any recent change before running this command. You might have
created new files since the last commit and if they haven’t been committed, they will all be
gone forever (using rm). To get a list of the non-version controlled files instead of deleting
them, add the n option to git clean, so it becomes -fxdn.
 	

Besides the bootstrap and bootstrap.conf, the bootstrapped/ directory and
README-hacking file are also related to the bootstrapping process. The former hosts all
the imported (bootstrapped) directories. Thus, in the version controlled source, it only
contains a REAME file, but in the distributed tar-ball it also contains sub-directories filled
with all bootstrapped files. README-hacking contains a summary of the bootstrapping
process discussed in this section. It is a necessary reference when you haven’t built this
book yet. It is thus not distributed in the Gnuastro tarball.

3.2.2.2 Synchronizing

The bootstrapping script (see Section 3.2.2.1 [Bootstrapping], page 51) is not regularly
needed: you mainly need it after you have cloned Gnuastro (once) and whenever you want
to re-import the files from Gnulib, or Autoconf archives14 (not too common). However,
Gnuastro developers are constantly working on Gnuastro and are pushing their changes
to the official repository. Therefore, your local Gnuastro clone will soon be out-dated.
Gnuastro has two mailing lists dedicated to its developing activities (see Section 11.10
[Developing mailing lists], page 370). Subscribing to them can help you decide when to
synchronize with the official repository.

To pull all the most recent work in Gnuastro, run the following command from the top
Gnuastro directory:

13 The --copy option is recommended because some backup systems might do strange things with symbolic
links.

14 https://savannah.gnu.org/task/index.php?13993 is defined for you to check if significant (for
Gnuastro) updates are made in these repositories, since the last time you pulled from them.

https://savannah.gnu.org/task/index.php?13993
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$ git pull && autoconf -f

GNU Autoconf is part of the GNU build system and will update the ./configure script
based on the hand-written configurations (in configure.ac, which is version controlled in
Gnuastro). The pulled changes might contain changes in the build system configurations.
However, The most important reason for running this command is to generate a version
number for your Gnuastro snapshot. This generated version number will include the com-
mit information if you are building Gnuastro from any point in Gnuastro’s history (see
Section 1.5 [Version numbering], page 6). Since the version number is included in nearly all
outputs of the programs, this can help you later exactly reproduce an old result by checking
out the exact point in Gnuastro’s history that produced those results. Therefore, be sure
to run ‘autoconf -f’ after every synchronization. You can also run them separately:

$ git pull

$ autoconf -f

If you would like to see what has changed since you last synchronized your local clone,
you can take the following steps instead of the simple command above (don’t type anything
after #):

$ git checkout master # Confirm if you are on master.

$ git fetch origin # Fetch all new commits from server.

$ git log master..origin/master # See all the new commit messages.

$ git merge origin/master # Update your master branch.

$ autoconf -f # Update ./configure.

By default git log prints the most recent commit first, add the --reverse option to see
the changes chronologically. To see exactly what has been changed in the source code along
with the commit message, add a -p option to the git log.

If you intend make changes in the code, have a look at Chapter 11 [Developing], page 355,
to get started easily. Be sure to commit your changes in a separate branch (keep your
master branch to follow the official repository) and re-run autoconf -f after the commit.
If you intend to send your changes to us (see Section 11.11 [Contributing to Gnuastro],
page 370) for the benefit of the whole community. If you send your work to us, you can
safely use your commit since it will be ultimately recorded in Gnuastro’s official history. If
not, please upload your separate branch to a public hosting service (for example GitLab,
see Section 11.11.4 [Forking tutorial], page 374) and link to it in your report, or run make

distcheck and upload the output gnuastro-X.X.X.XXXX.tar.gz to a publicly accessible
webpage so your results can be considered scientific (reproducible).

3.3 Build and install

This section is basically a longer explanation to the sequence of commands given in
Section 1.1 [Quick start], page 1. If you didn’t have any problems during the Section 1.1
[Quick start], page 1, steps, you want to have all the programs of Gnuastro installed in
your system, you don’t want to change the executable names during or after installation,
you have root access to install the programs in the default system wide directory, the
Letter paper size of the print book is fine for you or as a summary you don’t feel like going
into the details when everything is working, you can safely skip this section.

If you have any of the above problems or you want to understand the details for a better
control over your build and install, read along. The dependencies which you will need prior
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to configuring, building and installing Gnuastro are explained in Section 3.1 [Dependencies],
page 42. The first three steps in Section 1.1 [Quick start], page 1, need no extra explanation,
so we will skip them and start with an explanation of Gnuastro specific configuration options
and a discussion on the installation directory in Section 3.3.1 [Configuring], page 54, followed
by some smaller subsections: Section 3.3.2 [Tests], page 62, Section 3.3.3 [A4 print book],
page 62, and Section 3.3.4 [Known issues], page 63, which explains the solutions to known
problems you might encounter in the installation steps and ways you can solve them.

3.3.1 Configuring

The $ ./configure step is the most important step in the build and install process. All
the required packages, libraries, headers and environment variables are checked in this step.
The behaviors of make and make install can also be set through command line options to
this command.

The configure script accepts various arguments and options which enable the final user
to highly customize whatever she is building. The options to configure are generally very
similar to normal program options explained in Section 4.1.1 [Arguments and options],
page 65. Similar to all GNU programs, you can get a full list of the options along with a
short explanation by running

$ ./configure --help

A complete explanation is also included in the INSTALL file. Note that this file was written by
the authors of GNU Autoconf (which builds the configure script), therefore it is common
for all programs which use the $ ./configure script for building and installing, not just
Gnuastro. Here we only discuss cases where you don’t have super-user access to the system
and if you want to change the executable names. But before that, a review of the options
to configure that are particular to Gnuastro are discussed.

3.3.1.1 Gnuastro configure options

Most of the options to configure (which are to do with building) are similar for every program
which uses this script. Here the options that are particular to Gnuastro are discussed. The
next topics explain the usage of other configure options which can be applied to any program
using the GNU build system (through the configure script).

--enable-progname

Only build and install progname along with any other program that is enabled
in this fashion. progname is the name of the executable without the ast, for
example crop for Crop (with the executable name of astcrop). If this option is
called for any of the programs in Gnuastro, any program which is not explicitly
enabled will not be built or installed.

--disable-progname

--enable-progname=no

Do not build or install the program named progname. This is very similar to the
--enable-progname, but will build and install all the other programs except
this one.

--enable-gnulibcheck

Enable checks on the GNU Portability Library (Gnulib). Gnulib is used by
Gnuastro to enable users of non-GNU based operating systems (that don’t use
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GNU C library or glibc) to compile and use the advanced features that this
library provides. We make extensive use of such functions. If you give this
option to $ ./configure, when you run $ make check, first the functions in
Gnulib will be tested, then the Gnuastro executables. If your operating system
does not support glibc or has an older version of it and you have problems in the
build process ($ make), you can give this flag to configure to see if the problem
is caused by Gnulib not supporting your operating system or Gnuastro, see
Section 3.3.4 [Known issues], page 63.

--disable-guide-message

--enable-guide-message=no

Do not print a guiding message during the GNU Build process of Section 1.1
[Quick start], page 1. By default, after each step, a message is printed guiding
the user what the next command should be. Therefore, after ./configure, it
will suggest running make. After make, it will suggest running make check and
so on. If Gnuastro is configured with this option, for example

$ ./configure --disable-guide-message

Then these messages will not be printed after any step (like most programs).
For people who are not yet fully accustomed to this build system, these guide-
lines can be very useful and encouraging. However, if you find those messages
annoying, use this option.� �

Note: If some programs are enabled and some are disabled, it is equivalent to simply
enabling those that were enabled. Listing the disabled programs is redundant.
 	

The tests of some programs might depend on the outputs of the tests of other programs.
For example MakeProfiles is one the first programs to be tested when you run $ make check.
MakeProfiles’ test outputs (FITS images) are inputs to many other programs (which in turn
provide inputs for other programs). Therefore, if you don’t install MakeProfiles for example,
the tests for many the other programs will be skipped. To avoid this, in one run, you can
install all the programs and run the tests but not install. If everything is working correctly,
you can run configure again with only the programs you want. However, don’t run the tests
and directly install after building.

3.3.1.2 Installation directory

One of the most commonly used options to ./configure is --prefix, it is used to define
the directory that will host all the installed files (or the “prefix” in their final absolute file
name). For example, when you are using a server and you don’t have administrator or root
access. In this example scenario, if you don’t use the --prefix option, you won’t be able
to install the built files and thus access them from anywhere without having to worry about
where they are installed. However, once you prepare your startup file to look into the proper
place (as discussed thoroughly below), you will be able to easily use this option and benefit
from any software you want to install without having to ask the system administrators or
install and use a different version of a software that is already installed on the server.

The most basic way to run an executable is to explicitly write its full file name (including
all the directory information) and run it. One example is running the configuration script
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with the $ ./configure command (see Section 1.1 [Quick start], page 1). By giving a
specific directory (the current directory or ./), we are explicitly telling the shell to look
in the current directory for an executable file named ‘configure’. Directly specifying the
directory is thus useful for executables in the current (or nearby) directories. However,
when the program (an executable file) is to be used a lot, specifying all those directories
will become a significant burden. For example, the ls executable lists the contents in a given
directory and it is (usually) installed in the /usr/bin/ directory by the operating system
maintainers. So each time you want to use it you would have to run the following command
(which is very inconvenient, both in writing and in remembering the various directories).

$ /usr/bin/ls

To address this problem, we have the PATH environment variable. To understand it
better, we will start with a short introduction to the shell variables. Shell variable values
are basically treated as strings of characters. For example, it doesn’t matter if the value is
a name (string of alphabetic characters) or a number (string of numeric characters). You
can define a variable and a value for it by running

$ myvariable1=a_test_value

$ myvariable2="a test value"

As you see above, if the value contains white space characters, you have to put the whole
value (including white space characters) in double quotes ("). You can see the value it
represents by running

$ echo $myvariable1

$ echo $myvariable2

If a variable has no value or it wasn’t defined, the last command will only print an empty
line. A variable defined like this will be known as long as this shell or terminal is running.
Other terminals will have no idea it existed. The main advantage of shell variables is that
if they are exported15, subsequent programs that are run within that shell can access their
value. So by changing their value, you can change the “environment” of a program which
uses them. The shell variables which are accessed by programs are therefore known as
“environment variables”16. You can see the full list of exported variables that your shell
recognizes by running:

$ printenv

HOME is one commonly used environment variable, it is any user’s (the one that is logged
in) top directory. Try finding it in the command above. It is used so often that the shell
has a special expansion (alternative) for it: ‘~’. Whenever you see file names starting with
the tilde sign, it actually represents the value to the HOME environment variable, so ~/doc

is the same as $HOME/doc.

Another one of the most commonly used environment variables is PATH, it is a list of
directories to search for executable names. Its value is a list of directories (separated by a
colon, or ‘:’). When the address of the executable is not explicitly given (like ./configure
above), the system will look for the executable in the directories specified by PATH. If you
have a computer nearby, try running the following command to see which directories your

15 By running $ export myvariable=a_test_value instead of the simpler case in the text
16 You can use shell variables for other actions too, for example to temporarily keep some names or run

loops on some files.
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system will look into when it is searching for executable (binary) files, one example is printed
here (notice how /usr/bin, in the ls example above, is one of the directories in PATH):

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/bin

By default PATH usually contains system-wide directories, which are readable (but not
writable) by all users, like the above example. Therefore if you don’t have root (or admin-
istrator) access, you need to add another directory to PATH which you actually have write
access to. The standard directory where you can keep installed files (not just executables)
for your own user is the ~/.local/ directory. The names of hidden files start with a ‘.’
(dot), so it will not show up in your common command-line listings, or on the graphical
user interface. You can use any other directory, but this is the most recognized.

The top installation directory will be used to keep all the package’s components: pro-
grams (executables), libraries, include (header) files, shared data (like manuals), or configu-
ration files (see Section 10.1 [Review of library fundamentals], page 253, for a thorough in-
troduction to headers and linking). So it commonly has some of the following sub-directories
for each class of installed components respectively: bin/, lib/, include/ man/, share/,
etc/. Since the PATH variable is only used for executables, you can add the ~/.local/bin
directory (which keeps the executables/programs or more generally, “binary” files) to PATH

with the following command. As defined below, first the existing value of PATH is used, then
your given directory is added to its end and the combined value is put back in PATH (run
‘$ echo $PATH’ afterwards to check if it was added).

$ PATH=$PATH:~/.local/bin

Any executable that you installed in ~/.local/bin will now be usable without having
to remember and write its full address. However, as soon as you leave/close your current
terminal session, this modified PATH variable will be forgotten. Adding the directories which
contain executables to the PATH environment variable each time you start a terminal is also
very inconvenient and prone to errors. Fortunately, there are standard ‘startup files’ defined
by your shell precisely for this (and other) purposes. There is a special startup file for every
significant starting step:

/etc/profile and everything in /etc/profile.d/

These startup scripts are called when your whole system starts (for example
after you turn on your computer). Therefore you need administrator or root
privileges to access or modify them.

~/.bash_profile

If you are using (GNU) Bash as your shell, the commands in this file are run
once every time you log in to your account.

~/.bashrc

If you are using (GNU) Bash as your shell, the commands here will be run each
time you start a terminal (for example, when you open your terminal emulator
in the graphic user interface).

For security reasons, it is highly recommended to directly type in your HOME directory
value by hand in startup files instead of using variables. So in the following, let’s assume
your user name is ‘name’ (so ~ may be replaced with /home/name). To add ~/.local/bin
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to your PATH automatically on any startup file, you have to “export” the new value of PATH
in the startup file that is most relevant to you by adding this line:

export PATH=$PATH:/home/name/.local/bin

Now that you know your system will look into ~/.local/bin for executables, you can
tell Gnuastro’s configure script to install everything in the top ~/.local directory using the
--prefix option. When you subsequently run $ make install, all the install-able files will
be put in their respective directory under ~/.local/ (the executables in ~/.local/bin, the
compiled library files in ~/.local/lib, the library header files in ~/.local/include and
so on, to learn more about these different files, please see Section 10.1 [Review of library
fundamentals], page 253). Note that tilde (‘~’) expansion will not happen if you put a
‘=’ between --prefix and ~/.local17, so we have avoided the = character here which is
optional in GNU-style options, see Section 4.1.1.2 [Options], page 67.

$ ./configure --prefix ~/.local

You can install everything (including libraries like GSL, CFITSIO, or WCSLIB which are
Gnuastro’s mandatory dependencies, see Section 3.1.1 [Mandatory dependencies], page 43)
locally by configuring them as above. However, recall that PATH is only for executable files,
not libraries and that libraries can also depend on other libraries. For example WCSLIB
depends on CFITSIO and Gnuastro needs both. Therefore, when you installed a library in
a non-recognized directory, you have to guide the program that depends on them to look
into the necessary library and header file directories. To do that, you have to define the
LDFLAGS and CPPFLAGS environment variables respectively. This can be done while calling
./configure as shown below:

$ ./configure LDFLAGS=-L/home/name/.local/lib \

CPPFLAGS=-I/home/name/.local/include \

--prefix ~/.local

It can be annoying/buggy to do this when configuring every software that depends on
such libraries. Hence, you can define these two variables in the most relevant startup
file (discussed above). The convention on using these variables doesn’t include a colon to
separate values (as PATH-like variables do), they use white space characters and each value is
prefixed with a compiler option18: note the -L and -I above (see Section 4.1.1.2 [Options],
page 67), for -I see Section 10.1.1 [Headers], page 254, and for -L, see Section 10.1.2
[Linking], page 257. Therefore we have to keep the value in double quotation signs to keep
the white space characters and adding the following two lines to the startup file of choice:

export LDFLAGS="$LDFLAGS -L/home/name/.local/lib"

export CPPFLAGS="$CPPFLAGS -I/home/name/.local/include"

Dynamic libraries are linked to the executable every time you run a program that depends
on them (see Section 10.1.2 [Linking], page 257, to fully understand this important concept).
Hence dynamic libraries also require a special path variable called LD_LIBRARY_PATH (same
formatting as PATH). To use programs that depend on these libraries, you need to add
~/.local/lib to your LD_LIBRARY_PATH environment variable by adding the following line
to the relevant start-up file:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/name/.local/lib

17 If you insist on using ‘=’, you can use --prefix=$HOME/.local.
18 These variables are ultimately used as options while building the programs, so every value has be an

option name followed be a value as discussed in Section 4.1.1.2 [Options], page 67.
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If you also want to access the Info (see Section 4.7.4 [Info], page 94) and man pages
(see Section 4.7.3 [Man pages], page 94) documentations add ~/.local/share/info and
~/.local/share/man to your INFOPATH19 and MANPATH environment variables respectively.

A final note is that order matters in the directories that are searched for all the variables
discussed above. In the examples above, the new directory was added after the system
specified directories. So if the program, library or manuals are found in the system wide
directories, the user directory is no longer searched. If you want to search your local
installation first, put the new directory before the already existing list, like the example
below.

export LD_LIBRARY_PATH=/home/name/.local/lib:$LD_LIBRARY_PATH

This is good when a library, for example CFITSIO, is already present on the system, but the
system-wide install wasn’t configured with the correct configuration flags (see Section 3.1.1.2
[CFITSIO], page 43), or you want to use a newer version and you don’t have administrator
or root access to update it on the whole system/server. If you update LD_LIBRARY_PATH by
placing ~/.local/lib first (like above), the linker will first find the CFITSIO you installed
for yourself and link with it. It thus will never reach the system-wide installation.

There are important security problems with using local installations first: all important
system-wide executables and libraries (important executables like ls and cp, or libraries
like the C library) can be replaced by non-secure versions with the same file names and put
in the customized directory (~/.local in this example). So if you choose to search in your
customized directory first, please be sure to keep it clean from executables or libraries with
the same names as important system programs or libraries.� �
Summary: When you are using a server which doesn’t give you administrator/root access
AND you would like to give priority to your own built programs and libraries, not the
version that is (possibly already) present on the server, add these lines to your startup
file. See above for which startup file is best for your case and for a detailed explanation
on each. Don’t forget to replace ‘/YOUR-HOME-DIR’ with your home directory (for example
‘/home/your-id’):

export PATH="/YOUR-HOME-DIR/.local/bin:$PATH"

export LDFLAGS="-L/YOUR-HOME-DIR/.local/lib $LDFLAGS"

export MANPATH="/YOUR-HOME-DIR/.local/share/man/:$MANPATH"

export CPPFLAGS="-I/YOUR-HOME-DIR/.local/include $CPPFLAGS"

export INFOPATH="/YOUR-HOME-DIR/.local/share/info/:$INFOPATH"

export LD_LIBRARY_PATH="/YOUR-HOME-DIR/.local/lib:$LD_LIBRARY_PATH"

Afterwards, you just need to add an extra --prefix=/YOUR-HOME-DIR/.local to the
./configure command of the software that you intend to install. Everything else will
be the same as a standard build and install, see Section 1.1 [Quick start], page 1.
 	
19 Info has the following convention: “If the value of INFOPATH ends with a colon [or it isn’t defined] ..., the

initial list of directories is constructed by appending the build-time default to the value of INFOPATH.”
So when installing in a non-standard directory and if INFOPATH was not initially defined, add a colon
to the end of INFOPATH as shown below, otherwise Info will not be able to find system-wide installed
documentation:
echo ’export INFOPATH=$INFOPATH:/home/name/.local/share/info:’ >> ~/.bashrc

Note that this is only an internal convention of Info, do not use it for other *PATH variables.
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3.3.1.3 Executable names

At first sight, the names of the executables for each program might seem to be uncommonly
long, for example astnoisechisel or astcrop. We could have chosen terse (and cryptic)
names like most programs do. We chose this complete naming convention (something like
the commands in TEX) so you don’t have to spend too much time remembering what the
name of a specific program was. Such complete names also enable you to easily search for
the programs.

To facilitate typing the names in, we suggest using the shell auto-complete. With this
facility you can find the executable you want very easily. It is very similar to file name
completion in the shell. For example, simply by typing the letters below (where [TAB]

stands for the Tab key on your keyboard)

$ ast[TAB][TAB]

you will get the list of all the available executables that start with ast in your PATH envi-
ronment variable directories. So, all the Gnuastro executables installed on your system will
be listed. Typing the next letter for the specific program you want along with a Tab, will
limit this list until you get to your desired program.

In case all of this does not convince you and you still want to type short names, some
suggestions are given below. You should have in mind though, that if you are writing a shell
script that you might want to pass on to others, it is best to use the standard name because
other users might not have adopted the same customizations. The long names also serve as
a form of documentation in such scripts. A similar reasoning can be given for option names
in scripts: it is good practice to always use the long formats of the options in shell scripts,
see Section 4.1.1.2 [Options], page 67.

The simplest solution is making a symbolic link to the actual executable. For example
let’s assume you want to type ic to run Crop instead of astcrop. Assuming you installed
Gnuastro executables in /usr/local/bin (default) you can do this simply by running the
following command as root:

# ln -s /usr/local/bin/astcrop /usr/local/bin/ic

In case you update Gnuastro and a new version of Crop is installed, the default executable
name is the same, so your custom symbolic link still works.

The installed executable names can also be set using options to $ ./configure, see
Section 3.3.1 [Configuring], page 54. GNU Autoconf (which configures Gnuastro for your
particular system), allows the builder to change the name of programs with the three options
--program-prefix, --program-suffix and --program-transform-name. The first two
are for adding a fixed prefix or suffix to all the programs that will be installed. This will
actually make all the names longer! You can use it to add versions of program names to
the programs in order to simultaneously have two executable versions of a program.

The third configure option allows you to set the executable name at install time using
the SED program. SED is a very useful ‘stream editor’. There are various resources on
the internet to use it effectively. However, we should caution that using configure options
will change the actual executable name of the installed program and on every re-install (an
update for example), you have to also add this option to keep the old executable name
updated. Also note that the documentation or configuration files do not change from their
standard names either.
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For example, let’s assume that typing ast on every invocation of every program is really
annoying you! You can remove this prefix from all the executables at configure time by
adding this option:

$ ./configure --program-transform-name=’s/ast/ /’

3.3.1.4 Configure and build in RAM

The configure and build process involves the creation, reading, and modification of a large
number of files (input/output, or I/O). Therefore file I/O issues can directly affect the work
of developers who need to configure and build Gnuastro numerous times. Some of these
issues are listed below:

• I/O will cause wear and tear on both the HDDs (mechanical failures) and SSDs (de-
creasing the lifetime).

• Having the built files mixed with the source files can greatly affect backing up (syn-
chronization) of source files (since it involves the management of a large number of
small files that are regularly changed. Backup software can of course be configured to
ignore the built files and directories. However, since the built files are mixed with the
source files and can have a large variety, this will require a high level of customization.

One solution to address both these problems is to use the tmpfs file system (https://
en.wikipedia.org/wiki/Tmpfs). Any file in tmpfs is actually stored in the RAM (and
possibly SAWP), not on HDDs or SSDs. The RAM is built for extensive and fast I/O.
Therefore the large number of file I/Os associated with configuring and building will not
harm the HDDs or SSDs. Due to the volatile nature of RAM, files in the tmpfs file-system
will be permanently lost after a power-off. Since all configured and built files are derivative
files (not files that have been directly written by hand) there is no problem in this and this
feature can be considered as an automatic cleanup.

The modern GNU C library (and thus the Linux kernel) define the /dev/shm directory
for this purpose (POSIX shared memory). So using GNU Build System’s ability to build in
a separate directory (not necessarily in the source directory), we can configure and build the
programs in /dev/shm to benefit from the RAM. To simplify the process, Gnuastro comes
with a tmpfs-config-make script. This script will create a directory in the shared memory,
and put a symbolic link to it (called build) in the top source directory (the backup/sync
software therefore only needs to ignore this single link/file). The script will then internally
change to that directory and configure and build (make -kjN, where N is the number of
threads for a parallel build) Gnuastro in there. To benefit from this script, simply run the
following command instead of ./configure and make:

$ ./tmpfs-config-make

After this script is finished, you can ‘cd build’ and run other Make commands (for
example, ‘make check’, ‘make install’, or ‘make pdf’) from there. In Emacs, the command
to be run with the M-x compile command (by default: make -k) can be changed to ‘cd
build; make -kjN’, or ‘make -C build -kjN’ (N is the number of threads; an integer ≥ 1).
For subsequent builds (during development) the M-x recompile command will also do all
the building in the RAM while you modify the clean, and backed-up source files and make
minimal/efficient use of your non-volatile HDD or SSD.

This script can be used in any software which is configured and built using the GNU
Build System. Just copy it in the top source directory of that software and run it from

https://en.wikipedia.org/wiki/Tmpfs
https://en.wikipedia.org/wiki/Tmpfs
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there. The default number of threads and location of the shared memory (/dev/shm) are
currently hard-coded within the script. If you need to change them, please open the script
with a text editor and set their values manually.

3.3.2 Tests

After successfully building (compiling) the programs with the $ make command you can
check the installation before installing. To run the tests, run

$ make check

For every program some tests are designed to check some possible operations. Running
the command above will run those tests and give you a final report. If everything is ok
and you have built all the programs, all the tests should pass. In case any of the tests fail,
please have a look at Section 3.3.4 [Known issues], page 63, and if that still doesn’t fix your
problem, look that the ./tests/test-suite.log file to see if the source of the error is
something particular to your system or more general. If you feel it is general, please contact
us because it might be a bug. Note that the tests of some programs depend on the outputs
of other program’s tests, so if you have not installed them they might be skipped or fail.
Prior to releasing every distribution all these tests are checked. If you have a reasonably
modern terminal, the outputs of the successful tests will be colored green and the failed
ones will be colored red.

These scripts can also act as a good set of examples for you to see how the programs are
run. All the tests are in the tests/ directory. The tests for each program are shell scripts
(ending with .sh) in a sub-directory of this directory with the same name as the program.
See Section 11.7 [Test scripts], page 367, for more detailed information about these scripts
in case you want to inspect them.

3.3.3 A4 print book

The default print version of this book is provided in the letter paper size. If you would like
to have the print version of this book on paper and you are living in a country which uses
A4, then you can rebuild the book. The great thing about the GNU build system is that
the book source code which is in Texinfo is also distributed with the program source code,
enabling you to do such customizations (hacking).

In order to change the paper size, you will need to have GNU Texinfo installed. Open
doc/gnuastro.texi with any text editor. This is the source file that created this book. In
the first few lines you will see this line:

@c@afourpaper

In Texinfo, a line is commented with @c. Therefore, un-comment this line by deleting the
first two characters such that it changes to:

@afourpaper

Save the file and close it. You can now run

$ make pdf

and the new PDF book will be available in SRCdir/doc/gnuastro.pdf. By changing the
pdf in $ make pdf to ps or dvi you can have the book in those formats. Note that you can
do this for any book that is in Texinfo format, they might not have @afourpaper line, so
you can add it close to the top of the Texinfo source file.
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3.3.4 Known issues

Depending on your operating system and the version of the compiler you are using, you
might confront some known problems during the configuration ($ ./configure), compila-
tion ($ make) and tests ($ make check). Here, their solutions are discussed.

• $ ./configure: Configure complains about not finding a library even though you have
installed it. The possible solution is based on how you installed the package:

• From your distribution’s package manager. Most probably this is because your
distribution has separated the header files of a library from the library parts.
Please also install the ‘development’ packages for those libraries too. Just add a
-dev or -devel to the end of the package name and re-run the package manager.
This will not happen if you install the libraries from source. When installed from
source, the headers are also installed.

• From source. Then your linker is not looking where you installed the library. If
you followed the instructions in this chapter, all the libraries will be installed in
/usr/local/lib. So you have to tell your linker to look in this directory. To
do so, add LDFLAGS=-L/usr/local/lib to the Gnuastro configure script. If you
want to use the libraries for your other programming projects, then export this
environment variable similar to the case for LD_LIBRARY_PATH explained below.

• $ make: Complains about an unknown function on a non-GNU based operating system.
In this case, please run $ ./configure with the --enable-gnulibcheck option to
see if the problem is from the GNU Portability Library (Gnulib) not supporting your
system or if there is a problem in Gnuastro, see Section 3.3.1.1 [Gnuastro configure
options], page 54. If the problem is not in Gnulib and after all its tests you get the
same complaint from make, then please contact us at bug-gnuastro@gnu.org. The
cause is probably that a function that we have used is not supported by your operating
system and we didn’t included it along with the source tar ball. If the function is
available in Gnulib, it can be fixed immediately.

• $ make: Can’t find the headers (.h files) of libraries installed from source. Similar to
the case for LDFLAGS (above), your compiler is not looking in the right place, add
CPPFLAGS=-I/usr/local/include to ./configure to re-configure Gnuastro, then re-
run make.

• $ make check: Only one .sh test passes, all the rest fail. It is highly likely that your
distribution doesn’t look into the /usr/local/lib directory when searching for shared
libraries. To make sure it is added to the list of directories, run the following command
and restart your terminal: (you can ignore the \ and extra space if you type it, it
is only necessary if you copy and paste). See Section 3.3.1.2 [Installation directory],
page 55, for more details.

echo ’export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib’ \

>> ~/.bashrc

• $ make check: The tests relying on external programs (for example fitstopdf.sh fail.)
This is probably due to the fact that the version number of the external programs is
too old for the tests we have preformed. Please update the program to a more recent
version. For example to create a PDF image, you will need GPL Ghostscript, but older
versions do not work, we have successfully tested it on version 9.15. Older versions
might cause a failure in the test result.
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• $ make pdf: The PDF book cannot be made. To make a PDF book, you need to have
the GNU Texinfo program (like any program, the more recent the better). A working
TEX program is also necessary, which you can get from Tex Live20.

• After make check: do not copy the programs’ executables to another (for example,
the installation) directory manually (using cp, or mv for example). In the default
configuration21, the program binaries need to link with Gnuastro’s shared library which
is also built and installed with the programs. Therefore, to run successfully before and
after installation, linking modifications need to be made by GNU Libtool at installation
time. make install does this internally, but a simple copy might give linking errors
when you run it. If you need to copy the executables, you can do so after installation.

If your problem was not listed above, please file a bug report (Section 1.7 [Report a bug],
page 9).

20 https://www.tug.org/texlive/
21 If you configure Gnuastro with the --disable-shared option, then the libraries will be statically linked

to the programs and this problem won’t exist, see Section 10.1.2 [Linking], page 257.

https://www.tug.org/texlive/
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4 Common program behavior

All the programs in Gnuastro share a set of common behavior mainly to do with user
interaction to facilitate their usage. The most basic is how you can configure each program
to do what you want: define the input, change parameter/option values, or identify the
output. All Gnuastro programs can also read your desired configuration from pre-defined
or user-specified files so you don’t have to specify all the (sometimes numerous) parameters
on the command-line each time you run a program. These files define the “default” program
behavior in each directory, for each user, or on each system. In other cases, some programs
can greatly benefit from the many threads available in modern CPUs, so here we’ll also
discuss how you can get the most out of your hardware. Among some other issues, we will
also discuss how you can get immediate and distraction-free (without taking your hands off
the keyboard!) help, or access to this whole book, on the command-line.

4.1 Command-line

All the programs in Gnuastro are customized through the standard GNU style command-
line options. Thus, we’ll start by defining this general style that is very common in many
command-line tools on Unix-like operating systems. Finally, the options that are common
to all the programs in Gnuastro are discussed.

The command-line text that you type is passed onto the shell (or program managing
the command-line) as a string of characters. See the “Invoking ProgramName” sections in
this manual for some examples of commands with each program, for example Section 5.3.1
[Invoking Table], page 113. That string is then broken up into separate tokens or words by
any metacharacters (like space, tab, |, > or ;) that might exist in the text. To learn more,
please see the GNU Bash manual, for the complete list of meta-characters and other GNU
Bash definitions (GNU Bash is the most common shell program). Its “Shell Operation”
section has a short summary of the steps the shell takes before passing the commands to
the program you called.

4.1.1 Arguments and options

On the command-line, the first thing you usually enter is the name of the program you
want to run. After that, you can specify two types of input: arguments and options. In
the GNU-style, arguments are those tokens that are not preceded by any hyphens (-, see
Section 4.1.1.1 [Arguments], page 66). Here is one example:

$ astcrop --center=53.162551,-27.789676 -w10/3600 --mode=wcs udf.fits

In this example, the argument is udf.fits. Arguments are most commonly the input
file names containing your data. Options start with one or two hyphens, followed by an
identifier for the option (the option’s name) and its value (see Section 4.1.1.2 [Options],
page 67). Through options you tell the program how to interpret the data. In this example,
we are running Section 6.1 [Crop], page 115, to crop a region of width 10 arc-seconds
centered at the given RA and Dec from the input Hubble Ultra-Deep Field (UDF) FITS
image. So options come with an identifier (the option name which is separate from their
value).

Arguments can be both mandatory and optional and unlike options they don’t have any
identifiers (or help from you). Hence, their order might also matter (for example in cp



Chapter 4: Common program behavior 66

which is used for copying one file to another location). The outputs of --usage and --help

shows which arguments are optional and which are mandatory, see Section 4.7.1 [--usage],
page 92. As their name suggests, options on the command-line can be considered to be
optional and most of the time, you don’t have to worry about what order you specify them
in. When the order does matter, or the option can be invoked multiple times, it is explicitly
mentioned in the “Invoking ProgramName” section of each program.

In case your arguments or option values contain any of the shell’s meta-characters, you
have to quote them. If there is only one such character, you can use a backslash (\) before
it. If there are multiple, it might be easier to simply put your whole argument or option
value inside of double quotes ("). In such cases, everything inside the double quotes will be
seen as one token or word.

For example, let’s say you want to specify the header data unit (HDU) of your FITS file
using a complex expression like ‘3; images(exposure > 100)’. If you simply add these after
the --hdu (-h) option, the programs in Gnuastro will read the value to the HDU option
as ‘3’ and run. Then, Bash will attempt to run a separate command ‘images(exposure >

100)’ and complain about a syntax error. This is because the semicolon (;) is an ‘end of
command’ character in the shell. To solve this problem you can simply put double quotes
around the whole string you want to pass to --hdu as seen below:

$ astcrop --hdu="3; images(exposure > 100)" FITSimage.fits

Alternatively you can put a ‘\’ before every meta-character in this string, but try doing
that, and probably you will agree that the double quotes are much more easier, elegant and
readable.

4.1.1.1 Arguments

In Gnuastro, arguments are almost exclusively used as the input data file names. Please
consult the first few paragraph of the “Invoking ProgramName” section for each program
for a description of what it expects as input, how many arguments, or input data, it accepts,
or in what order. Everything particular about how a program treats arguments, is explained
under the “Invoking ProgramName” section for that program.

Generally, if there is a standard file name extension for a particular format, that filename
extension is used to separate the kinds of arguments. The list below shows the data formats
that are recognized in Gnuastro’s programs based on their file name endings. Any argument
that doesn’t end with the specified extensions below is considered to be a text file (usually
catalogs, see Section 4.5 [Tables], page 84). In some cases, a program can accept specific
formats, for example Section 5.2 [ConvertType], page 105, also accepts .jpg images.

• .fits: The standard file name ending of a FITS image.

• .fit: Alternative (3 character) FITS suffix.

• .fits.Z: A FITS image compressed with compress.

• .fits.gz: A FITS image compressed with GNU zip (gzip).

• .fits.fz: A FITS image compressed with fpack.

• .imh: IRAF format image file.

Through out this book and in the command-line outputs, whenever we want to generalize
all such astronomical data formats in a text place holder, we will use ASTRdata, we will
assume that the extension is also part of this name. Any file ending with these names is
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directly passed on to CFITSIO to read. Therefore you don’t necessarily have to have these
files on your computer, they can also be located on an FTP or HTTP server too, see the
CFITSIO manual for more information.

CFITSIO has its own error reporting techniques, if your input file(s) cannot be opened,
or read, those errors will be printed prior to the final error by Gnuastro.

4.1.1.2 Options

Command-line options allow configuring the behavior of a program in all GNU/Linux ap-
plications for each particular execution on a particular input data. A single option can be
called in two ways: long or short. All options in Gnuastro accept the long format which has
two hyphens an can have many characters (for example --hdu). Short options only have
one hyphen (-) followed by one character (for example -h). You can see some examples in
the list of options in Section 4.1.2 [Common options], page 69, or those for each program’s
“Invoking ProgramName” section. Both formats are shown for those which support both.
First the short is shown then the long.

Usually, the short options are for when you are writing on the command-line and want
to save keystrokes and time. The long options are good for shell scripts, where you aren’t
usually rushing. Long options provide a level of documentation, since they are more de-
scriptive and less cryptic. Usually after a few months of not running a program, the short
options will be forgotten and reading your previously written script will not be easy.

Some options need to be given a value if they are called and some don’t. You can
think of the latter type of options as on/off options. These two types of options can be
distinguished using the output of the --help and --usage options, which are common to
all GNU software, see Section 4.7 [Getting help], page 92. In Gnuastro we use the following
strings to specify when the option needs a value and what format that value should be
in. More specific tests will be done in the program and if the values are out of range (for
example negative when the program only wants a positive value), an error will be reported.

INT The value is read as an integer.

FLT The value is read as a float. There are generally two types, depending on the
context. If they are for fractions, they will have to be less than or equal to
unity.

STR The value is read as a string of characters (for example a file name) or other
particular settings like a HDU name, see below.

To specify a value in the short format, simply put the value after the option. Note that
since the short options are only one character long, you don’t have to type anything between
the option and its value. For the long option you either need white space or an = sign, for
example -h2, -h 2, --hdu 2 or --hdu=2 are all equivalent.

The short format of on/off options (those that don’t need values) can be concatenated for
example these two hypothetical sequences of options are equivalent: -a -b -c4 and -abc4.
As an example, consider the following command to run Crop:

$ astcrop -Dr3 --wwidth 3 catalog.txt --deccol=4 ASTRdata

The $ is the shell prompt, astcrop is the program name. There are two arguments
(catalog.txt and ASTRdata) and four options, two of them given in short format (-D,
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-r) and two in long format (--width and --deccol). Three of them require a value and
one (-D) is an on/off option.

If an abbreviation is unique between all the options of a program, the long option names
can be abbreviated. For example, instead of typing --printparams, typing --print or
maybe even --pri will be enough, if there are conflicts, the program will warn you and show
you the alternatives. Finally, if you want the argument parser to stop parsing arguments
beyond a certain point, you can use two dashes: --. No text on the command-line beyond
these two dashes will be parsed.

Gnuastro has two types of options with values, those that only take a single value are
the most common type. If these options are repeated or called more than once on the
command-line, the value of the last time it was called will be assigned to it. This is very
useful when you are testing/experimenting. Let’s say you want to make a small modification
to one option value. You can simply type the option with a new value in the end of the
command and see how the script works. If you are satisfied with the change, you can remove
the original option for human readability. If the change wasn’t satisfactory, you can remove
the one you just added and not worry about forgetting the original value. Without this
capability, you would have to memorize or save the original value somewhere else, run the
command and then change the value again which is not at all convenient and is potentially
cause lots of bugs.

On the other hand, some options can be called multiple times in one run of a program
and can thus take multiple values (for example see the --column option in Section 5.3.1
[Invoking Table], page 113. In these cases, the order of stored values is the same order that
you specified on the command-line.

Gnuastro’s programs don’t keep any internal default values, so some options are manda-
tory and if they don’t have a value, the program will complain and abort. Most programs
have many such options and typing them by hand on every call is impractical. To facili-
tate the user experience, after parsing the command-line, Gnuastro’s programs read special
configuration files to get the necessary values for the options you haven’t identified on the
command-line. These configuration files are fully described in Section 4.2 [Configuration
files], page 77.� �
CAUTION: In specifying a file address, if you want to use the shell’s tilde expansion (~)
to specify your home directory, leave at least one space between the option name and your
value. For example use -o ~/test, --output ~/test or --output= ~/test. Calling them
with -o~/test or --output=~/test will disable shell expansion.
 	� �
CAUTION: If you forget to specify a value for an option which requires one, and that
option is the last one, Gnuastro will warn you. But if it is in the middle of the command,
it will take the text of the next option or argument as the value which can cause undefined
behavior.
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� �
NOTE: In some contexts Gnuastro’s counting starts from 0 and in others 1. You can assume
by default that counting starts from 1, if it starts from 0 for a special option, it will be
explicitly mentioned.
 	
4.1.2 Common options

To facilitate the job of the users and developers, all the programs in Gnuastro share some
basic command-line options for the options that are common to many of the programs.
The full list is classified as Section 4.1.2.1 [Input/Output options], page 69, Section 4.1.2.2
[Processing options], page 71, and Section 4.1.2.3 [Operating mode options], page 73. In
some programs, some of the options are irrelevant, but still recognized (you won’t get an
unrecognized option error, but the value isn’t used). Unless otherwise mentioned, these
options are identical between all programs.

4.1.2.1 Input/Output options

These options are to do with the input and outputs of the various programs.

-h STR/INT

--hdu=STR/INT

The name or number of the desired Header Data Unit, or HDU, in the FITS
image. A FITS file can store multiple HDUs or extensions, each with either
an image or a table or nothing at all (only a header). Note that counting of
the extensions starts from 0(zero), not 1(one). Counting from 0 is forced on
us by CFITSIO which directly reads the value you give with this option (see
Section 3.1.1.2 [CFITSIO], page 43). When specifying the name, case is not
important so IMAGE, image or ImAgE are equivalent.

CFITSIO has many capabilities to help you find the extension you want, far
beyond the simple extension number and name. See CFITSIO manual’s “HDU
Location Specification” section for a very complete explanation with several
examples. A # is appended to the string you specify for the HDU1 and the result
is put in square brackets and appended to the FITS file name before calling
CFITSIO to read the contents of the HDU for all the programs in Gnuastro.

-s STR

--searchin=STR

Where to match/search for columns when the column identifier wasn’t a num-
ber, see Section 4.5.3 [Selecting table columns], page 89. The acceptable values
are name, unit, or comment. This option is only relevant for programs that take
table columns as input.

-I

--ignorecase

Ignore case while matching/searching column meta-data (in the field specified
by the --searchin). The FITS standard suggests to treat the column names as
case insensitive, which is strongly recommended here also but is not enforced.
This option is only relevant for programs that take table columns as input.

1 With the # character, CFITSIO will only read the desired HDU into your memory, not all the existing
HDUs in the fits file.
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This option is not relevant to Section 10.2 [BuildProgram], page 260, hence in
that program the short option -I is used for include directories, not to ignore
case.

-o STR

--output=STR

The name of the output file or directory. With this option the automatic output
names explained in Section 4.8 [Automatic output], page 95, are ignored.

-T STR

--type=STR

The data type of the output depending on the program context. This option
isn’t applicable to some programs like Section 5.1 [Fits], page 98, and will
be ignored by them. The different acceptable values to this option are fully
described in Section 4.4 [Numeric data types], page 82.

-D

--dontdelete

By default, if the output file already exists, Gnuastro’s programs will silently
delete it and put their own outputs in its place. When this option is activated,
if the output file already exists, the programs will not delete it, will warn you,
and will abort.

-K

--keepinputdir

In automatic output names, don’t remove the directory information of the input
file names. As explained in Section 4.8 [Automatic output], page 95, if no output
name is specified (with --output), then the output name will be made in the
existing directory based on your input’s file name (ignoring the directory of the
input). If you call this option, the directory information of the input will be
kept and the automatically generated output name will be in the same directory
as the input (usually with a suffix added). Note that his is only relevant if you
are running the program in a different directory than the input data.

-t STR

--tableformat=STR

The output table’s type. This option is only relevant when the output is a table
and its format cannot be deduced from its filename. For example, if a name
ending in .fits was given to --output, then the program knows you want a
FITS table. But there are two types of FITS tables: FITS ASCII, and FITS
binary. Thus, with this option, the program is able to identify which type you
want. The currently recognized values to this option are:

txt A plain text table with white-space characters between the columns
(see Section 4.5.2 [Gnuastro text table format], page 87).

fits-ascii

A FITS ASCII table (see Section 4.5.1 [Recognized table formats],
page 85).
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fits-binary

A FITS binary table (see Section 4.5.1 [Recognized table formats],
page 85).

4.1.2.2 Processing options

Some processing steps are common to several programs, so they are defined as common
options to all programs. Note that this class of common options is thus necessarily less
common between all the programs than those described in Section 4.1.2.1 [Input/Output
options], page 69, or Section 4.1.2.3 [Operating mode options], page 73, options. Also, if
they are irrelevant for a program, these options will not display in the --help output of
the program.

--minmapsize=INT

The minimum size (in bytes) to store the contents of each main processing array
of a program as a file (on the non-volatile HDD/SSD), not in RAM. This can
be very useful for large datasets which can be very memory intensive such that
your RAM will not be sufficient to keep/process them. A random filename is
assigned to the array (in a .gnuastro directory within the running directory)
which will keep the contents of the array as long as it is necessary.

When this option has a value of 0 (zero), all arrays that use this option in a
program will actually be in a file (not in RAM). When the value is -1 (largest
possible number in the unsigned integer types) these arrays will be definitely
allocated in RAM. However, for complex programs like Section 7.2 [NoiseChisel],
page 181, it is recommended to not set it to 0, but a value like 10000 so the
many small arrays necessary during processing are stored in RAM and only
larger ones are saved as a file.

Please note that using a non-volatile file (in the HDD/SDD) instead of RAM
can significantly increase the program’s running time, especially on HDDs. So
it is best to give this option large values by default. You can then decrease it
for a specific program’s invocation on a large input after you see memory issues
arise (for example an error, or the program not aborting and fully consuming
your memory).

The random file will be deleted once it is no longer needed by the program. The
.gnuastro directory will also be deleted if it has no other contents (you may
also have configuration files in this directory, see Section 4.2 [Configuration
files], page 77). If you see randomly named files remaining in this directory,
please send us a bug report so we address the problem, see Section 1.7 [Report
a bug], page 9.

-Z INT[,INT[,...]]

--tilesize=[,INT[,...]]

The size of regular tiles for tessellation, see Section 4.6 [Tessellation], page 90.
For each dimension an integer length (in units of data-elements or pixels) is
necessary. If the number of input dimensions is different from the number of
values given to this option, the program will stop with an error. Values must be
separated by commas (,) and can also be fractions (for example 4/2). If they
are fractions, the result must be an integer, otherwise an error will be printed.
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-M INT[,INT[,...]]

--numchannels=INT[,INT[,...]]

The number of channels for larger input tessellation, see Section 4.6 [Tessel-
lation], page 90. The number and types of acceptable values are similar to
--tilesize. The only difference is that instead of length, the integers values
given to this option represent the number of channels, not their size.

-F FLT

--remainderfrac=FLT

The fraction of remainder size along all dimensions to add to the first tile. See
Section 4.6 [Tessellation], page 90, for a complete description. This option is
only relevant if --tilesize is not exactly divisible by the input dataset’s size
in a dimension. If the remainder size is larger than this fraction (compared to
--tilesize), then the remainder size will be added with one regular tile size
and divided between two tiles at the start and end of the given dimension.

--workoverch

Ignore the channel borders for the high-level job of the given application. As a
result, while the channel borders are respected in defining the small tiles (such
that no tile will cross a channel border), the higher-level program operation will
ignore them, see Section 4.6 [Tessellation], page 90.

--checktiles

Make a FITS file with the same dimensions as the input but each pixel is
replaced with the ID of the tile that it is associated with. Note that the tile
IDs start from 0. See Section 4.6 [Tessellation], page 90, for more on Tiling an
image in Gnuastro.

--oneelempertile

When showing the tile values (for example with --checktiles, or when the
program’s output is tessellated) only use one element for each tile. This can be
useful when only the relative values given to each tile compared to the rest are
important or need to be checked. Since the tiles usually have a large number
of pixels within them the output will be much smaller, and so easier to read,
write, store, or send.

Note that when the full input size in any dimension is not exactly divisible by
the given --tilesize in that dimension, the edge tile(s) will have different sizes
(in units of the input’s size), see --remainderfrac. But with this option, all
displayed values are going to have the (same) size of one data-element. Hence,
in such cases, the image proportions are going to be slightly different with this
option.

If your input image is not exactly divisible by the tile size and you want one
value per tile for some higher-level processing, all is not lost though. You can
see how many pixels were within each tile (for example to weight the values or
discard some for later processing) with Gnuastro’s Statistics (see Section 7.1
[Statistics], page 166) as shown below. The output FITS file is going to have
two extensions, one with the median calculated on each tile and one with the
number of elements that each tile covers. You can then use the where operator
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in Section 6.2 [Arithmetic], page 125, to set the values of all tiles that don’t
have the regular area to a blank value.

$ aststatistics --median --number --ontile input.fits \

--oneelempertile --output=o.fits

$ REGULAR_AREA=1600 # Check second extension of ‘o.fits’.

$ astarithmetic o.fits o.fits $REGULAR_AREA ne nan where \

-h1 -h2

Note that if input.fits also has blank values, then the median on tiles with
blank values will also be ignored with the command above (which is desirable).

--inteponlyblank

When values are to be interpolated, only change the values of the blank ele-
ments, keep the non-blank elements untouched.

--interpnumngb=INT

The number of nearby non-blank neighbors to use for interpolation.

4.1.2.3 Operating mode options

Another group of options that are common to all the programs in Gnuastro are those to do
with the general operation of the programs. The explanation for those that are not only
limited to Gnuastro but are common to all GNU programs start with (GNU option).

-- (GNU option) Stop parsing the command-line. This option can be useful in
scripts or when using the shell history. Suppose you have a long list of options,
and want to see if removing some of them (to read from configuration files, see
Section 4.2 [Configuration files], page 77) can give a better result. If the ones
you want to remove are the last ones on the command-line, you don’t have to
delete them, you can just add -- before them and if you don’t get what you
want, you can remove the -- and get the same initial result.

--usage (GNU option) Only print the options and arguments and abort. This is very
useful for when you know the what the options do, and have just forgot their
long/short identifiers, see Section 4.7.1 [--usage], page 92.

-?

--help (GNU option) Print all options with an explanation and abort. Adding this
option will print all the options in their short and long formats, also displaying
which ones need a value if they are called (with an = after the long format fol-
lowed by a string specifying the format, see Section 4.1.1.2 [Options], page 67).
A short explanation is also given for what the option is for. The program
will quit immediately after the message is printed and will not do any form of
processing, see Section 4.7.2 [--help], page 93.

-V

--version

(GNU option) Print a short message, showing the full name, version, copyright
information and program authors and abort. On the first line, it will print
the official name (not executable name) and version number of the program.
Following this is a blank line and a copyright information. The program will
not run.
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-q

--quiet Don’t report steps. All the programs in Gnuastro that have multiple major
steps will report their steps for you to follow while they are operating. If you do
not want to see these reports, you can call this option and only error/warning
messages will be printed. If the steps are done very fast (depending on the
properties of your input) disabling these reports will also decrease running time.

--cite Print the BibTEX entry for Gnuastro and the particular program (if that pro-
gram comes with a separate paper) and abort. Citations are vital for the
continued work on Gnuastro. Gnuastro started and is continued based on sep-
arate research projects. So if you find any of the tools offered in Gnuastro to
be useful in your research, please use the output of this command to cite the
program and Gnuastro in your research paper. Thank you.

Gnuastro is still new, there is no separate paper only devoted to Gnuastro yet.
Therefore currently the paper to cite for Gnuastro is the paper for NoiseChisel
which is the first published paper introducing Gnuastro to the astronomical
community. Upon reaching a certain point, a paper completely devoted to
Gnuastro will be published, see Section 1.5.1 [GNU Astronomy Utilities 1.0],
page 7.

-P

--printparams

With this option, Gnuastro’s programs will read your command-line options and
all the configuration files. If there is no problem (like a missing parameter or a
value in the wrong format or range) and immediately before actually running,
the programs will print the full list of option names, values and descriptions,
sorted and grouped by context and abort. They will also report the version
number, the date they were configured on your system and the time they were
reported.

As an example, you can give your full command-line options and even the input
and output file names and finally just add -P to check if all the parameters are
finely set. If everything is ok, you can just run the same command (easily
retrieved from the shell history, with the top arrow key) and simply remove the
last two characters that showed this option.

Since no program will actually start its processing when this option is called,
the otherwise mandatory arguments for each program (for example input image
or catalog files) are no longer required when you call this option.

--config=STR

Parse STR as a configuration file immediately when this option is confronted
(see Section 4.2 [Configuration files], page 77). The --config option can be
called multiple times in one run of any Gnuastro program on the command-line
or in the configuration files. In any case, it will be immediately read (before
parsing the rest of the options on the command-line, or lines in a configuration
file).

Note that by definition, later options on the command-line still take precedence
over those in these in any configuration file, including the file(s) given to this
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option. Also see --lastconfig and --onlyversion on how this option can be
used for reproducible results.

-S

--setdirconf

Update the current directory configuration file for the Gnuastro program and
quit. The full set of command-line and configuration file options will be parsed
and options with a value will be written in the current directory configuration
file for this program (see Section 4.2 [Configuration files], page 77). If the con-
figuration file or its directory doesn’t exist, it will be created. If a configuration
file exists it will be replaced (after it, and all other configuration files have been
read). In any case, the program will not run.

This is the recommended method2 to edit/set the configuration file for all future
calls to Gnuastro’s programs. It will internally check if your values are in
the correct range and type and save them according to the configuration file
format, see Section 4.2.1 [Configuration file format], page 77. So if there are
unreasonable values to some options, the program will notify you and abort
before writing the final configuration file.

When this option is called, the otherwise mandatory arguments, for example
input image or catalog file(s), are no longer mandatory (since the program will
not run).

-U

--setusrconf

Update the user configuration file and quit (see Section 4.2 [Configuration files],
page 77). See explanation under --setdirconf for more details.

--lastconfig

This is the last configuration file that must be read. When this option is
confronted in any stage of reading the options (on the command-line or in a
configuration file), no other configuration file will be parsed, see Section 4.2.2
[Configuration file precedence], page 78, and Section 4.2.3 [Current directory
and User wide], page 79. Like all on/off options, on the command-line, this
option doesn’t take any values. But in a configuration file, it takes the values
of 0 or 1, see Section 4.2.1 [Configuration file format], page 77. If it is present
in a configuration file with a value of 0, then all later occurrences of this option
will be ignored.

--onlyversion=STR

Only run the program if Gnuastro’s version is exactly equal to STR (see
Section 1.5 [Version numbering], page 6). Note that it is not compared as a
number, but as a string of characters, so 0, or 0.0 and 0.00 are different. If
the running Gnuastro version is different, then this option will report an error
and abort as soon as it is confronted on the command-line or in a configuration
file. If the running Gnuastro version is the same as STR, then the program will
run as if this option was not called.

2 Alternatively, you can use your favorite text editor.
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This is useful if you want your results to be exactly reproducible and not mis-
takenly run with an updated/newer or older version of the program. Besides
internal algorithmic/behavior changes in programs, the existence of options or
their names might change between versions (especially in these earlier versions
of Gnuastro).

Hence, when using this option (probably in a script or in a configuration file),
be sure to call it before other options. The benefit is that, when the version
differs, the other options won’t be parsed and you, or your collaborators/users,
won’t get errors saying an option in your configuration doesn’t exist in the
running version of the program.

Here is one example of how this option can be used in conjunction with the
--lastconfig option. Let’s assume that you were satisfied with the results
of this command: astnoisechisel image.fits --detquant=0.95 (along with
various options set in various configuration files). You can save the state of
NoiseChisel and reproduce that exact result on image.fits later by following
these steps (the the extra spaces, and \, are only for easy readability, if you
want to try it out, only one space between each token is enough).

$ echo "onlyversion X.XX" > reproducible.conf

$ echo "lastconfig 1" >> reproducible.conf

$ astnoisechisel image.fits --detquant=0.95 -P \

>> reproducible.conf

--onlyversion was available from Gnuastro 0.0, so putting it immediately
at the start of a configuration file will ensure that later, you (or others using
different version) won’t get a non-recognized option error in case an option
was added/removed. --lastconfig will inform the installed NoiseChisel to
not parse any other configuration files. This is done because we don’t want the
user’s user-wide or system wide option values affecting our results. Finally, with
the third command, which has a -P (short for --printparams), NoiseChisel will
print all the option values visible to it (in all the configuration files) and the shell
will append them to reproduce.conf. Hence, you don’t have to worry about
remembering the (possibly) different options in the different configuration files.

Afterwards, if you run NoiseChisel as shown below (telling it to read this con-
figuration file with the --config option). You can be sure that there will either
be an error (for version mis-match) or it will produce exactly the same result
that you got before.

$ astnoisechisel --config=reproducible.conf

--log Some programs can generate extra information about their outputs in a log file.
When this option is called in those programs, the log file will also be printed.
If the program doesn’t generate a log file, this option is ignored.

-N INT

--numthreads=INT

Use INT CPU threads when running a Gnuastro program (see Section 4.3 [Multi-
threaded operations], page 80). If the value is zero (0), or this option is not given
on the command-line or any configuration file, the value will be determined at
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run-time: the maximum number of threads available to the system when you
run a Gnuastro program.

Note that multi-threaded programming is only relevant to some programs. In
others, this option will be ignored.

4.2 Configuration files

Each program needs a certain number of parameters to run. Supplying all the necessary
parameters each time you run the program is very frustrating and prone to errors. Therefore
all the programs read the values for the necessary options you have not given in the command
line from one of several plain text files (which you can view and edit with any text editor).
These files are known as configuration files and are usually kept in a directory named etc/

according to the file system hierarchy standard3.

The thing to have in mind is that none of the programs in Gnuastro keep any internal
default value. All the values must either be stored in one of the configuration files or
explicitly called in the command-line. In case the necessary parameters are not given
through any of these methods, the program will print a missing option error and abort.
The only exception to this is --numthreads, whose default value is determined at run-
time using the number of threads available to your system, see Section 4.3 [Multi-threaded
operations], page 80. Of course, you can still provide a default value for the number of
threads at any of the levels below, but if you don’t, the program will not abort. Also note
that through automatic output name generation, the value to the --output option is also
not mandatory on the command-line or in the configuration files for all programs which
don’t rely on that value as an input4, see Section 4.8 [Automatic output], page 95.

4.2.1 Configuration file format

The configuration files for each program have the standard program executable name with
a ‘.conf’ suffix. When you download the source code, you can find them in the same
directory as the source code of each program, see Section 11.4 [Program source], page 361.

Any line in the configuration file whose first non-white character is a # is considered to
be a comment and is ignored. An empty line is also similarly ignored. The long name of the
option should be used as an identifier. The parameter name and parameter value have to be
separated by any number of ‘white-space’ characters: space, tab or vertical tab. By default
several space characters are used. If the value of an option has space characters (most
commonly for the hdu option), then the full value can be enclosed in double quotation signs
(", similar to the example in Section 4.1.1 [Arguments and options], page 65). If it is an
option without a value in the --help output (on/off option, see Section 4.1.1.2 [Options],
page 67), then the value should be 1 if it is to be ‘on’ and 0 otherwise.

In each non-commented and non-blank line, any text after the first two words (option
identifier and value) is ignored. If an option identifier is not recognized in the configuration
file, the name of the file, the line number of the unrecognized option, and the unrecognized
identifier name will be reported and the program will abort. If a parameter is repeated

3 http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
4 One example of a program which uses the value given to --output as an input is ConvertType, this value

specifies the type of the output through the value to --output, see Section 5.2.3 [Invoking ConvertType],
page 109.

http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
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more more than once in the configuration files, accepts only one value, and is not set on
the command-line, then only the first value will be used, the rest will be ignored.

You can build or edit any of the directories and the configuration files yourself using
any text editor. However, it is recommended to use the --setdirconf and --setusrconf

options to set default values for the current directory or this user, see Section 4.1.2.3 [Op-
erating mode options], page 73. With these options, the values you give will be checked
before writing in the configuration file. They will also print a set of commented lines guiding
the reader and will also classify the options based on their context and write them in their
logical order to be more understandable.

4.2.2 Configuration file precedence

The option values in all the programs of Gnuastro will be filled in the following order. If
an option only takes one value which is given in an earlier step, any value for that option
in a later step will be ignored. Note that if the lastconfig option is specified in any step
below, all later files will be ignored (see Section 4.1.2.3 [Operating mode options], page 73).
The basic idea behind setting this progressive state of checking for parameter values is that
separate users of a computer or separate folders in a user’s file system might need different
values for some parameters.

In each step, there can also be a configuration file containing the common options in all
the programs: gnuastro.conf (see Section 4.1.2 [Common options], page 69). If options
specific to one program are specified in this file, there will be un-recognized option errors,
or unexpected behavior if the option has different behavior in another program. On the
other hand, there is no problem with astprogname.conf containing common options5.

1. Command-line options, for a particular run of ProgramName.

2. .gnuastro/astprogname.conf is parsed by ProgramName in the current directory.

3. .gnuastro/gnuastro.conf is parsed by all Gnuastro programs in the current directory.

4. $HOME/.local/etc/astprogname.conf is parsed by ProgramName in the user’s home
directory (see Section 4.2.3 [Current directory and User wide], page 79).

5. $HOME/.local/etc/gnuastro.conf is parsed by all Gnuastro programs in the user’s
home directory (see Section 4.2.3 [Current directory and User wide], page 79).

6. prefix/etc/astprogname.conf is parsed by ProgramName in the system-wide instal-
lation directory (see Section 4.2.4 [System wide], page 79, for prefix).

7. prefix/etc/gnuastro.conf is parsed by all Gnuastro programs in the system-wide
installation directory (see Section 4.2.4 [System wide], page 79, for prefix).

5 As an example, the --setdirconf and --setusrconf options will also write the common options they
have read in their produced astprogname.conf.
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� �
Manipulating the order: You can manipulate this order or add new files with the following
two options which are fully described in Section 4.1.2.3 [Operating mode options], page 73:

--config Allows you to define any file to be parsed as a configuration file on the
command-line or within the any other configuration file. Recall that the file
given to --config is parsed immediately when this option is confronted (on
the command-line or in a configuration file).

--lastconfig

Allows you to stop the parsing of subsequent configuration files. Note that if
this option is given in a configuration file, it will be fully read, so its position
in the configuration doesn’t matter (unlike --config).
 	

One example of benefiting from these configuration files can be this: raw telescope images
usually have their main image extension in the second FITS extension, while processed FITS
images usually only have one extension. If your system-wide default input extension is 0 (the
first), then when you want to work with the former group of data you have to explicitly
mention it to the programs every time. With this progressive state of default values to
check, you can set different default values for the different directories that you would like
to run Gnuastro in for your different purposes, so you won’t have to worry about this issue
any more.

The same can be said about the gnuastro.conf files: by specifying a behavior in this
single file, all Gnuastro programs in the respective directory, user, or system-wide steps will
behave similarly. For example to keep the input’s directory when no specific output is given
(see Section 4.8 [Automatic output], page 95), or to not delete an existing file if it has the
same name as a given output (see Section 4.1.2.1 [Input/Output options], page 69).

4.2.3 Current directory and User wide

For the current (local) and user-wide directories, the configuration files are stored in the
hidden sub-directories named .gnuastro/ and $HOME/.local/etc/ respectively. Unless
you have changed it, the $HOME environment variable should point to your home directory.
You can check it by running $ echo $HOME. Each time you run any of the programs in
Gnuastro, this environment variable is read and placed in the above address. So if you
suddenly see that your home configuration files are not being read, probably you (or some
other program) has changed the value of this environment variable.

Although it might cause confusions like above, this dependence on the HOME environ-
ment variable enables you to temporarily use a different directory as your home directory.
This can come in handy in complicated situations. To set the user or current directory
configuration files based on your command-line input, you can use the --setdirconf or
--setusrconf, see Section 4.1.2.3 [Operating mode options], page 73.

4.2.4 System wide

When Gnuastro is installed, the configuration files that are shipped with the distribution
are copied into the (possibly system wide) prefix/etc/ directory. For more details on
prefix, see Section 3.3.1.2 [Installation directory], page 55, (by default it is: /usr/local).
This directory is the final place (with the lowest priority) that the programs in Gnuastro
will check to retrieve parameter values.
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If you remove an option and its value from the system wide configuration files, you either
have to specify it in more immediate configuration files or set it each time in the command-
line. Recall that none of the programs in Gnuastro keep any internal default values and will
abort if they don’t find a value for the necessary parameters (except the number of threads
and output file name). So even though you might never expect to use an optional option,
it safe to have it available in this system-wide configuration file even if you don’t intend to
use it frequently.

Note that in case you install Gnuastro from your distribution’s repositories, prefix will
either be set to / (the root directory) or /usr, so you can find the system wide configuration
variables in /etc/ or /usr/etc/. The prefix of /usr/local/ is conventionally used for
programs you install from source by your self as in Section 1.1 [Quick start], page 1.

4.3 Multi-threaded operations

Some of the programs benefit significantly when you use all the threads your computer’s
CPU has to offer to your operating system. The number of threads available can be larger
than the number of physical (hardware) cores in the CPU (also known as Simultaneous
multithreading). For example, in Intel’s CPUs (those that implement its Hyper-threading
technology) the number of threads is usually double the number of physical cores in your
CPU. On a GNU/Linux system, the number of threads available can be found with the
command $ nproc command (part of GNU Coreutils).

Gnuastro’s programs can find the number of threads available to your system inter-
nally at run-time (when you execute the program). However, if a value is given to the
--numthreads option, the given number will be used, see Section 4.1.2.3 [Operating mode
options], page 73, and Section 4.2 [Configuration files], page 77, for ways to use this option.
Thus --numthreads is the only common option in Gnuastro’s programs with a value that
doesn’t have to be specified anywhere on the command-line or in the configuration files.

4.3.1 A note on threads

Spinning off threads is not necessarily the most efficient way to run an application. Creating
a new thread isn’t a cheap operation for the operating system. It is most useful when the
input data are fixed and you want the same operation to be done on parts of it. For example
one input image to Crop and multiple crops from various parts of it. In this fashion, the
image is loaded into memory once, all the crops are divided between the number of threads
internally and each thread cuts out those parts which are assigned to it from the same image.
On the other hand, if you have multiple images and you want to crop the same region(s)
out of all of them, it is much more efficient to set --numthreads=1 (so no threads spin off)
and run Crop multiple times simultaneously, see Section 4.3.2 [How to run simultaneous
operations], page 81.

You can check the boost in speed by first running a program on one of the data sets with
the maximum number of threads and another time (with everything else the same) and only
using one thread. You will notice that the wall-clock time (reported by most programs at
their end) in the former is longer than the latter divided by number of physical CPU cores
(not threads) available to your operating system. Asymptotically these two times can be
equal (most of the time they aren’t). So limiting the programs to use only one thread and
running them independently on the number of available threads will be more efficient.
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Note that the operating system keeps a cache of recently processed data, so usually, the
second time you process an identical data set (independent of the number of threads used),
you will get faster results. In order to make an unbiased comparison, you have to first clean
the system’s cache with the following command between the two runs.

$ sync; echo 3 | sudo tee /proc/sys/vm/drop_caches� �
SUMMARY: Should I use multiple threads? Depends:

• If you only have one data set (image in most cases!), then yes, the more threads you
use (with a maximum of the number of threads available to your OS) the faster you
will get your results.

• If you want to run the same operation on multiple data sets, it is best to set the number
of threads to 1 and use Make, or GNU Parallel, as explained in Section 4.3.2 [How to
run simultaneous operations], page 81.
 	

4.3.2 How to run simultaneous operations

There are two6 approaches to simultaneously execute a program: using GNU Parallel or
Make (GNU Make is the most common implementation). The first is very useful when you
only want to do one job multiple times and want to get back to your work without actually
keeping the command you ran. The second is usually for more important operations, with
lots of dependencies between the different products (for example a full scientific research).

GNU Parallel
When you only want to run multiple instances of a command on different
threads and get on with the rest of your work, the best method is to use GNU
parallel. Surprisingly GNU Parallel is one of the few GNU packages that has
no Info documentation but only a Man page, see Section 4.7.4 [Info], page 94.
So to see the documentation after installing it please run

$ man parallel

As an example, let’s assume we want to crop a region fixed on the pixels (500,
600) with the default width from all the FITS images in the ./data directory
ending with sci.fits to the current directory. To do this, you can run:

$ parallel astcrop --numthreads=1 --xc=500 --yc=600 ::: \

./data/*sci.fits

GNU Parallel can help in many more conditions, this is one of the simplest, see
the man page for lots of other examples. For absolute beginners: the backslash
(\) is only a line breaker to fit nicely in the page. If you type the whole command
in one line, you should remove it.

Make Make is a program for building “targets” (e.g., files) using “recipes” (a set of
operations) when their known “prerequisites” (other files) have been updated.
It elegantly allows you to define dependency structures for building your final

6 A third way would be to open multiple terminal emulator windows in your GUI, type the commands
separately on each and press Enter once on each terminal, but this is far too frustrating, tedious and
prone to errors. It’s therefore not a realistic solution when tens, hundreds or thousands of operations
(your research targets, multiplied by the operations you do on each) are to be done.
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output and updating it efficiently when the inputs change. It is the most
common infra-structure to build software today.

Scientific research methodology is very similar to software development: you
start by testing a hypothesis on a small sample of objects/targets with a sim-
ple set of steps. As you are able to get promising results, you improve the
method and use it on a larger, more general, sample. In the process, you
will confront many issues that have to be corrected (bugs in software develop-
ment jargon). Make a wonderful tool to manage this style of development. It
has been used to make reproducible papers, for example see the reproduction
pipeline (https://gitlab.com/makhlaghi/NoiseChisel-paper) of the paper
introducing Section 7.2 [NoiseChisel], page 181, (one of Gnuastro’s programs).

GNU Make7 is the most common implementation which (similar to nearly all
GNU programs, comes with a wonderful manual8). Make is very basic and
simple, and thus the manual is short (the most important parts are in the first
roughly 100 pages) and easy to read/understand.

Make comes with a --jobs (-j) option which allows you to specify the maxi-
mum number of jobs that can be done simultaneously. For example if you have
8 threads available to your operating system. You can run:

$ make -j8

With this command, Make will process your Makefile and create all the targets
(can be thousands of FITS images for example) simultaneously on 8 threads,
while fully respecting their dependencies (only building a file/target when its
prerequisites are successfully built). Make is thus strongly recommended for
managing scientific research where robustness, archivability, reproducibility and
speed9 are very important.

4.4 Numeric data types

At the lowest level, the computer stores everything in terms of 1 or 0. For example, each
program in Gnuastro, or each astronomical image you take with the telescope is actually a
string of millions of these zeros and ones. The space required to keep a zero or one is the
smallest unit of storage, and is known as a bit. However, understanding and manipulating
this string of bits is extremely hard for most people. Therefore, we define packages of these
bits along with a standard on how to interpret the bits in each package as a type.

The most basic standard for reading the bits is integer numbers (...,−2,−1, 0, 1, 2, ...,
more bits will give larger limits). The common integer types are 8, 16, 32, and 64 bits
wide. For each width, there are two standards for reading the bits: signed and unsigned
integers. In the former, negative numbers are allowed and in the latter, they aren’t. The
unsigned types thus have larger positive limits (one extra bit), but no negative value. When

7 https://www.gnu.org/software/make/
8 https://www.gnu.org/software/make/manual/
9 Besides its multi-threaded capabilities, Make will only re-build those targets that depend on a change you

have made, not the whole work. For example, if you have set the prerequisites properly, you can easily
test the changing of a parameter on your paper’s results without having to re-do everything (which is
much faster). This allows you to be much more productive in easily checking various ideas/assumptions
of the different stages of your research and thus produce a more robust result for your exciting science.

https://gitlab.com/makhlaghi/NoiseChisel-paper
https://gitlab.com/makhlaghi/NoiseChisel-paper
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/manual/
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the context of your work doesn’t involve negative numbers (for example counting, where
negative is not defined), it is best to use the unsigned types. For full numerical range of
all integer types, see below.

Another standard of converting a given number of bits to numbers is the floating point
standard, this standard can approximately store any real number with a given precision.
There are two common floating point types: 32-bit and 64-bit, for single and double precision
floating point numbers respectively. The former is sufficient for data with less than 8
significant decimal digits (most astronomical data), while the latter is good for less than 16
significant decimal digits. The representation of real numbers as bits is much more complex
than integers. If you are interested, you can start with the Wikipedia article (https://en.
wikipedia.org/wiki/Floating_point).

With the conversion operators in Gnuastro’s Arithmetic, you can change the types of
data to each other, which is necessary in some contexts. For example the program/library,
that you intend to feed the data into, only accepts floating point values, but you have an
integer image. Another situation that conversion can be helpful is when you know that your
data only has values that fit within int8 or uint16. However it is currently formatted in the
float64 type. Operations involving floating point or larger integer types are significantly
slower than integer or smaller-width types respectively. In the latter case, it also requires
much more (by 8 or 4 times in the example above) storage space. So when you confront
such situations and want to store/archive/transfter the data, it is best convert them to the
most efficient type.

The short and long names for the recognized numeric data types in Gnuastro are listed
below. Both short and long names can be used when you want to specify a type. For exam-
ple, as a value to the common option --type (see Section 4.1.2.1 [Input/Output options],
page 69), or in the information comment lines of Section 4.5.2 [Gnuastro text table format],
page 87. The ranges listed below are inclusive.

u8

uint8 8-bit un-signed integers, range:
[0 to 28 − 1] or [0 to 255].

i8

int8 8-bit signed integers, range:
[−27 to 27 − 1] or [−128 to 127].

u16

uint16 16-bit un-signed integers, range:
[0 to 216 − 1] or [0 to 65535].

i16

int16 16-bit signed integers, range:
[−215 to 215 − 1] or [−32768 to 32767].

u32

uint32 32-bit un-signed integers, range:
[0 to 232 − 1] or [0 to 4294967295].

i32

int32 32-bit signed integers, range:
[−231 to 231 − 1] or [−2147483648 to 2147483647].

https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Floating_point
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u64

uint64 64-bit un-signed integers, range
[0 to 264 − 1] or [0 to 18446744073709551615].

i64

int64 64-bit signed integers, range:
[−263 to 263 − 1] or [−9223372036854775808 to 9223372036854775807].

f32

float32 32-bit (single-precision) floating point types. The maximum (minimum is its
negative) possible value is 3.402823× 1038. Single-precision floating points can
accurately represent a floating point number up to ∼ 7.2 significant decimals.
Given the heavy noise in astronomical data, this is usually more than sufficient
for storing results.

f64

float64 64-bit (double-precision) floating point types. The maximum (minimum is its
negative) possible value is ∼ 10308. Double-precision floating points can accu-
rately represent a floating point number ∼ 15.9 significant decimals. This is
usually good for processing (mixing) the data internally, for example a sum of
single precision data (and later storing the result as float32).� �

Some file formats don’t recognize all types. Some file formats don’t recognize all the types,
for example the FITS standard (see Section 5.1 [Fits], page 98) does not define uint64 in
binary tables or images. When a type is not acceptable for output into a given file format,
the respective Gnuastro program or library will let you know and abort. On the command-
line, you can use the Section 6.2 [Arithmetic], page 125, program to convert the numerical
type of a dataset, in the libraries, you can call gal_data_copy_to_new_type.
 	
4.5 Tables

“A table is a collection of related data held in a structured format within a database. It
consists of columns, and rows.” (from Wikipedia). Each column in the table contains
the values of one property and each row is a collection of properties (columns) for one
target object. For example, let’s assume you have just ran MakeCatalog (see Section 7.3
[MakeCatalog], page 197) on an image to measure some properties for the labeled regions
(which might be detected galaxies for example) in the image. For each labeled region
(detected galaxy), there will be a row which groups its measured properties as columns,
one column for each property. One such property can be the object’s magnitude, which is
the sum of pixels with that label, or its center can be defined as the light-weighted average
value of those pixels. Many such properties can be derived from the raw pixel values and
their position, see Section 7.3.5 [Invoking MakeCatalog], page 207, for a long list.

As a summary, for each labeled region (or, galaxy) we have one row and for each mea-
sured property we have one column. This high-level structure is usually the first step for
higher-level analysis, for example finding the stellar mass or photometric redshift from mag-
nitudes in multiple colors. Thus, tables are not just outputs of programs, in fact it is much
more common for tables to be inputs of programs. For example, to make a mock galaxy
image, you need to feed in the properties of each galaxy into Section 8.1 [MakeProfiles],



Chapter 4: Common program behavior 85

page 221, for it do the inverse of the process above and make a simulated image from a
catalog, see Section 2.2 [Sufi simulates a detection], page 17. In other cases, you can feed a
table into Section 6.1 [Crop], page 115, and it will crop out regions centered on the positions
within the table, see Section 2.1 [Hubble visually checks and classifies his catalog], page 14.
So to end this relatively long introduction, tables play a very important role in astronomy,
or generally all branches of data analysis.

In Section 4.5.1 [Recognized table formats], page 85, the currently recognized table
formats in Gnuastro are discussed. You can use any of these tables as input or ask for them
to be built as output. The most common type of table format is a simple plain text file
with each row on one line and columns separated by white space characters, this format is
easy to read/write by eye/hand. To give it the full functionality of more specific table types
like the FITS tables, Gnuastro has a special convention which you can use to give each
column a name, type, unit, and comments, while still being readable by other plain text
table readers. This convention is described in Section 4.5.2 [Gnuastro text table format],
page 87.

When tables are input to a program, the program reading it needs to know which
column(s) it should use for its desired purposes. Gnuastro’s programs all follow a similar
convention, on the way you can select columns in a table. They are thoroughly discussed
in Section 4.5.3 [Selecting table columns], page 89.

4.5.1 Recognized table formats

The list of table formats that Gnuastro can currently read from and write to are described
below. Each has their own advantage and disadvantages, so a short review of the format is
also provided to help you make the best choice based on how you want to define your input
tables or later use your output tables.

Plain text table
This is the most basic and simplest way to create, view, or edit the table by
hand on a text editor. The other formats described below are less eye-friendly
and have a more formal structure (for easier computer readability). It is fully
described in Section 4.5.2 [Gnuastro text table format], page 87.

FITS ASCII tables
The FITS ASCII table extension is fully in ASCII encoding and thus easily
readable on any text editor (assuming it is the only extension in the FITS
file). If the FITS file also contains binary extensions (for example an image or
binary table extensions), then there will be many hard to print characters. The
FITS ASCII format doesn’t have new line characters to separate rows. In the
FITS ASCII table standard, each row is defined as a fixed number of characters
(value to the NAXIS1 keyword), so to visually inspect it properly, you would
have to adjust your text editor’s width to this value. All columns start at given
character positions and have a fixed width (number of characters).

Numbers in a FITS ASCII table are printed into ASCII format, they are not
in binary (that the CPU uses). Hence, they can take a larger space in memory,
loose their precision, and take longer to read into memory. If you are deal-
ing with integer type columns (see Section 4.4 [Numeric data types], page 82),
another issue with FITS ASCII tables is that the type information for the col-
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umn will be lost (there is only one integer type in FITS ASCII tables). One
problem with the binary format on the other hand is that it isn’t portable
(different CPUs/compilers) have different standards for translating the zeros
and ones. But since ASCII characters are defined on a byte and are well rec-
ognized, they are better for portability on those various systems. Gnuastro’s
plain text table format described below is much more portable and easier to
read/write/interpret by humans manually.

Generally, as the name implies, this format is useful for when your table mainly
contains ASCII columns (for example file names, or descriptions). They can be
useful when you need to include columns with structured ASCII information
along with other extensions in one FITS file. In such cases, you can also consider
header keywords (see Section 5.1 [Fits], page 98).

FITS binary tables
The FITS binary table is the FITS standard’s solution to the issues discussed
with keeping numbers in ASCII format as described under the FITS ASCII
table title above. Only columns defined as a string type (a string of ASCII
characters) are readable in a text editor. The portability problem with binary
formats discussed above is mostly solved thanks to the portability of CFITSIO
(see Section 3.1.1.2 [CFITSIO], page 43) and the very long history of the FITS
format which has been widely used since the 1970s.

In the case of most numbers, storing them in binary format is more memory
efficient than ASCII format. For example, to store -25.72034 in ASCII for-
mat, you need 9 bytes/characters. But if you keep this same number (to the
approximate precision possible) as a 4-byte (32-bit) floating point number, you
can keep/transmit it with less than half the amount of memory. When catalogs
contain thousands/millions of rows in tens/hundreds of columns, this can lead
to significant improvements in memory/band-width usage. Moreover, since the
CPU does its operations in the binary formats, reading the table in and writing
it out is also much faster than an ASCII table.

When you are dealing with integer numbers, the compression ratio can be even
better, for example if you know all of the values in a column are positive and
less than 255, you can use the unsigned char type which only takes one byte!
If they are between -128 and 127, then you can use the (signed) char type. So
if you are thoughtful about the limits of your integer columns, you can greatly
reduce the size of your file and also the speed at which it is read/written. This
can be very useful when sharing your results with collaborators or publishing
them. To decrease the file size even more you can name your output as ending
in .fits.gz so it is also compressed after creation. Just note that compres-
sion/decompressing is CPU intensive and can slow down the writing/reading of
the file.

Fortunately the FITS Binary table format also accepts ASCII strings as column
types (along with the various numerical types). So your dataset can also contain
non-numerical columns.
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4.5.2 Gnuastro text table format

Plain text files are the most generic, portable, and easiest way to (manually) create, (visu-
ally) inspect, or (manually) edit a table. In this format, the ending of a row is defined by
the new-line character (a line on a text editor). So when you view it on a text editor, every
row will occupy one line. The delimiters (or characters separating the columns) are white
space characters (space, horizontal tab, vertical tab) and a comma (,). The only further
requirement is that all rows/lines must have the same number of columns.

The columns don’t have to be exactly under each other and the rows can be arbitrarily
long with different lengths. For example the following contents in a file would be interpreted
as a table with 4 columns and 2 rows, with each element interpreted as a double type (see
Section 4.4 [Numeric data types], page 82).

1 2.234948 128 39.8923e8

2 , 4.454 792 72.98348e7

However, the example above has no other information about the columns (it is just raw
data, with no meta-data). To use this table, you have to remember what the numbers in
each column represent. Also, when you want to select columns, you have to count their
position within the table. This can become frustrating and prone to bad errors (getting the
columns wrong) especially as the number of columns increase. It is also bad for sending to
a colleague, because they will find it hard to remember/use the columns properly.

To solve these problems in Gnuastro’s programs/libraries you aren’t limited to using the
column’s number, see Section 4.5.3 [Selecting table columns], page 89. If the columns have
names, units, or comments you can also select your columns based on searches/matches in
these fields, for example see Section 5.3 [Table], page 112. Also, in this manner, you can’t
guide the program reading the table on how to read the numbers. As an example, the first
and third columns above can be read as integer types: the first column might be an ID and
the third can be the number of pixels an object occupies in an image. So there is no need
to read these to columns as a double type (which takes more memory, and is slower).

In the bare-minimum example above, you also can’t use strings of characters, for example
the names of filters, or some other identifier that includes non-numerical characters. In the
absence of any information, only numbers can be read robustly. Assuming we read columns
with non-numerical characters as string, there would still be the problem that the strings
might contain space (or any delimiter) character for some rows. So, each ‘word’ in the
string will be interpreted as a column and the program will abort with an error that the
rows don’t have the same number of columns.

To correct for these limitations, Gnuastro defines the following convention for storing
the table meta-data along with the raw data in one plain text file. The format is primarily
designed for ease of reading/writing by eye/fingers, but is also structured enough to be read
by a program.

When the first non-white character in a line is #, or there are no non-white characters
in it, then the line will not be considered as a row of data in the table (this is a pretty
standard convention in many programs, and higher level languages). In the former case,
the line is interpreted as a comment. If the comment line starts with ‘# Column N:’, then it
is assumed to contain information about column N (a number, counting from 1). Comment
lines that don’t start with this pattern are ignored and you can use them to include any
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further information you want to store with the table in the text file. A column information
comment is assumed to have the following format:

# Column N: NAME [UNIT, TYPE, BLANK] COMMENT

Any sequence of characters between ‘:’ and ‘[’ will be interpreted as the column name (so
it can contain anything except the ‘[’ character). Anything between the ‘]’ and the end
of the line is defined as a comment. Within the brackets, anything before the first ‘,’ is
the units (physical units, for example km/s, or erg/s), anything before the second ‘,’ is the
short type identifier (see below, and Section 4.4 [Numeric data types], page 82). Finally
(still within the brackets), any non-white characters after the second ‘,’ are interpreted as
the blank value for that column (see Section 6.1.3 [Blank pixels], page 118). Note that
blank values will be stored in the same type as the column, not as a string10.

When a formatting problem occurs (for example you have specified the wrong type code,
see below), or the the column was already given meta-data in a previous comment, or the
column number is larger than the actual number of columns in the table (the non-commented
or empty lines), then the comment information line will be ignored.

When a comment information line can be used, the leading and trailing white space
characters will be stripped from all of the elements. For example in this line:

# Column 5: column name [km/s, f32,-99] Redshift as speed

The NAME field will be ‘column name’ and the TYPE field will be ‘f32’. Note how all
the white space characters before and after strings are not used, but those in the middle
remained. Also, white space characters aren’t mandatory. Hence, in the example above,
the BLANK field will be given the value of ‘-99’.

Except for the column number (N), the rest of the fields are optional. Also, the column
information comments don’t have to be in order. In other words, the information for
column N +m (m > 0) can be given in a line before column N . Also, you don’t have to
specify information for all columns. Those columns that don’t have this information will
be interpreted with the default settings (like the case above: values are double precision
floating point, and the column has no name, unit, or comment). So these lines are all
acceptable for any table (the first one, with nothing but the column number is redundant):

# Column 5:

# Column 1: ID [,i] The Clump ID.

# Column 3: mag_f160w [AB mag, f] Magnitude from the F160W filter

The data type of the column should be specified with one of the following values:

• For a numeric column, you can use any of the numeric types (and their recognized
identifiers) described in Section 4.4 [Numeric data types], page 82.

• ‘strN’: for strings. The N value identifies the length of the string (how many characters
it has). The start of the string on each row is the first non-delimiter character of the
column that has the string type. The next N characters will be interpreted as a string
and all leading and trailing white space will be removed.

If the next column’s characters, are closer than N characters to the start of the string
column in that line/row, they will be considered part of the string column. If there is a
new-line character before the ending of the space given to the string column (in other

10 For floating point types, the nan, or inf strings (both not case-sensitive) refer to IEEE NaN (not a
number) and infinity values respectively and will be stored as a floating point, so they are acceptable.
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words, the string column is the last column), then reading of the string will stop, even
if the N characters are not complete yet. See tests/table/table.txt for one example.
Therefore, the only time you have to pay attention to the positioning and spaces given
to the string column is when it is not the last column in the table.

The only limitation in this format is that trailing and leading white space characters will
be removed from the columns that are read. In most cases, this is the desired behavior,
but if trailing and leading white-spaces are critically important to your analysis, define
your own starting and ending characters and remove them after the table has been read.
For example in the sample table below, the two ‘|’ characters (which are arbitrary) will
remain in the value of the second column and you can remove them manually later.
If only one of the leading or trailing white spaces is important for your work, you can
only use one of the ‘|’s.

# Column 1: ID [label, uc]

# Column 2: Notes [no unit, str50]

1 leading and trailing white space is ignored here 2.3442e10

2 | but they will be preserved here | 8.2964e11

Note that the FITS binary table standard does not define the unsigned int and
unsigned long types, so if you want to convert your tables to FITS binary tables, use
other types. Also, note that in the FITS ASCII table, there is only one integer type (long).
So if you convert a Gnuastro plain text table to a FITS ASCII table with the Section 5.3
[Table], page 112, program, the type information for integers will be lost. Conversely if
integer types are important for you, you have to manually set them when reading a FITS
ASCII table (for example with the Table program when reading/converting into a file, or
with the gnuastro/table.h library functions when reading into memory).

4.5.3 Selecting table columns

At the lowest level, the only defining aspect of a column in a table is its number, or position.
But selecting columns purely by number is not very convenient and, especially when the
tables are large it can be very frustrating and prone to errors. Hence, table file formats
(for example see Section 4.5.1 [Recognized table formats], page 85) have ways to store
additional information about the columns (meta-data). Some of the most common pieces
of information about each column are its name, the units of data in the it, and a comment
for longer/informal description of the column’s data.

To facilitate research with Gnuastro, you can select columns by matching, or searching
in these three fields, besides the low-level column number. To view the full list of informa-
tion on the columns in the table, you can use the Table program (see Section 5.3 [Table],
page 112) with the command below (replace table-file with the filename of your table,
if its FITS, you might also need to specify the HDU/extension which contains the table):

$ asttable --information table-file

Gnuastro’s programs need the columns for different purposes, for example in Crop,
you specify the columns containing the central coordinates of the crop centers with the
--coordcol option (see Section 6.1.4.1 [Crop options], page 120). On the other hand, in
MakeProfiles, to specify the column containing the profile position angles, you must use the
--pcol option (see Section 8.1.5.1 [MakeProfiles catalog], page 229). Thus, there can be
no unified common option name to select columns for all programs (different columns have
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different purposes). However, when the program expects a column for a specific context,
the option names end in the col suffix like the examples above. These options accept values
in integer (column number), or string (metadata match/search) format.

If the value can be parsed as a positive integer, it will be seen as the low-level column
number. Note that column counting starts from 1, so if you ask for column 0, the respective
program will abort with an error. When the value can’t be interpreted as an a integer
number, it will be seen as a string of characters which will be used to match/search in
the table’s meta-data. The meta-data field which the value will be compared with can
be selected through the --searchin option, see Section 4.1.2.1 [Input/Output options],
page 69. --searchin can take three values: name, unit, comment. The matching will be
done following this convention:

• If the value is enclosed in two slashes (for example -x/RA_/, or --coordcol=/RA_

/, see Section 6.1.4.1 [Crop options], page 120), then it is assumed to be a regular
expression with the same convention as GNU AWK. GNU AWK has a very well written
chapter (https://www.gnu.org/software/gawk/manual/html_node/Regexp.html)
describing regular expressions, so we we will not continue discussing them here. Regular
expressions are a very powerful tool in matching text and useful in many contexts. We
thus strongly encourage reviewing this chapter for greatly improving the quality of your
work in many cases, not just for searching column meta-data in Gnuastro.

• When the string isn’t enclosed between ‘/’s, any column that exactly matches the given
value in the given field will be selected.

Note that in both cases, you can ignore the case of alphabetic characters with the
--ignorecase option, see Section 4.1.2.1 [Input/Output options], page 69. Also, in both
cases, multiple columns may be selected with one call to this function. In this case, the
order of the selected columns (with one call) will be the same order as they appear in the
table.

4.6 Tessellation

It is sometimes necessary to classify the elements in a dataset (for example pixels in an
image) into a grid of individual, non-overlapping tiles. For example when background sky
gradients are present in an image, you can define a tile grid over the image. When the tile
sizes are set properly, the background’s variation over each tile will be negligible, allowing
you to measure (and subtract) it. In other cases (for example spatial domain convolution in
Gnuastro, see Section 6.3 [Convolve], page 135), it might simply be for speed of processing:
each tile can be processed independently on a separate CPU thread. In the arts and
mathematics, this process is formally known as tessellation (https://en.wikipedia.org/
wiki/Tessellation).

The size of the regular tiles (in units of data-elements, or pixels in an image) can be de-
fined with the --tilesize option. It takes multiple numbers (separated by a comma) which
will be the length along the respective dimension (in FORTRAN/FITS dimension order).
Divisions are also acceptable, but must result in an integer. For example --tilesize=30,40
can be used for an image (a 2D dataset). The regular tile size along the first FITS axis
(horizontal when viewed in SAO ds9) will be 30 pixels and along the second it will be 40
pixels. Ideally, --tilesize should be selected such that all tiles in the image have exactly

https://www.gnu.org/software/gawk/manual/html_node/Regexp.html
https://en.wikipedia.org/wiki/Tessellation
https://en.wikipedia.org/wiki/Tessellation
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the same size. In other words, that the dataset length in each dimension is divisible by the
tile size in that dimension.

However, this is not always possible: the dataset can be any size and every pixel in it
is valuable. In such cases, Gnuastro will look at the significance of the remainder length,
if it is not significant (for example one or two pixels), then it will just increase the size of
the first tile in the respective dimension and allow the rest of the tiles to have the required
size. When the remainder is significant (for example one pixel less than the size along that
dimension), the remainder will be added to one regular tile’s size and the large tile will be
cut in half and put in the two ends of the grid/tessellation. In this way, all the tiles in the
central regions of the dataset will have the regular tile sizes and the tiles on the edge will be
slightly larger/smaller depending on the remainder significance. The fraction which defines
the remainder significance along all dimensions can be set through --remainderfrac.

The best tile size is directly related to the spatial properties of the property you want
to study (for example, gradient on the image). In practice we assume that the gradient is
not present over each tile. So if there is a strong gradient (for example in long wavelength
ground based images) or the image is of a crowded area where there isn’t too much blank
area, you have to choose a smaller tile size. A larger mesh will give more pixels and and so
the scatter in the results will be less (better statistics).

For raw image processing, a single tessellation/grid is not sufficient. Raw images are
the unprocessed outputs of the camera detectors. Modern detectors usually have multiple
readout channels each with its own amplifier. For example the Hubble Space Telescope
Advanced Camera for Surveys (ACS) has four amplifiers over its full detector area dividing
the square field of view to four smaller squares. Ground based image detectors are not
exempt, for example each CCD of Subaru Telescope’s Hyper Suprime-Cam camera (which
has 104 CCDs) has four amplifiers, but they have the same height of the CCD and divide
the width by four parts.

The bias current on each amplifier is different, and initial bias subtraction is not perfect.
So even after subtracting the measured bias current, you can usually still identify the
boundaries of different amplifiers by eye. See Figure 11(a) in Akhlaghi and Ichikawa (2015)
for an example. This results in the final reduced data to have non-uniform amplifier-shaped
regions with higher or lower background flux values. Such systematic biases will then
propagate to all subsequent measurements we do on the data (for example photometry and
subsequent stellar mass and star formation rate measurements in the case of galaxies).

Therefore an accurate analysis requires a two layer tessellation: the top layer contains
larger tiles, each covering one amplifier channel. For clarity we’ll call these larger tiles “chan-
nels”. The number of channels along each dimension is defined through the --numchannels.
Each channel is then covered by its own individual smaller tessellation (with tile sizes de-
termined by the --tilesize option). This will allow independent analysis of two adjacent
pixels from different channels if necessary. If the image is processed or the detector only
has one amplifier, you can set the number of channels in both dimension to 1.

The final tessellation can be inspected on the image with the --checktiles option that
is available to all programs which use tessellation for localized operations. When this option
is called, a FITS file with a _tiled.fits suffix will be created along with the outputs, see
Section 4.8 [Automatic output], page 95. Each pixel in this image has the number of the
tile that covers it. If the number of channels in any dimension are larger than unity, you
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will notice that the tile IDs are defined such that the first channels is covered first, then
the second and so on. For the full list of processing-related common options (including
tessellation options), please see Section 4.1.2.2 [Processing options], page 71.

4.7 Getting help

Probably the first time you read this book, it is either in the PDF or HTML formats. These
two formats are very convenient for when you are not actually working, but when you are
only reading. Later on, when you start to use the programs and you are deep in the middle
of your work, some of the details will inevitably be forgotten. Going to find the PDF file
(printed or digital) or the HTML webpage is a major distraction.

GNU software have a very unique set of tools for aiding your memory on the command-
line, where you are working, depending how much of it you need to remember. In the past,
such command-line help was known as “online” help, because they were literally provided
to you ‘on’ the command ‘line’. However, nowadays the word “online” refers to something
on the internet, so that term will not be used. With this type of help, you can resume your
exciting research without taking your hands off the keyboard.

Another major advantage of such command-line based help routines is that they are
installed with the software in your computer, therefore they are always in sync with the
executable you are actually running. Three of them are actually part of the executable.
You don’t have to worry about the version of the book or program. If you rely on external
help (a PDF in your personal print or digital archive or HTML from the official webpage)
you have to check to see if their versions fit with your installed program.

If you only need to remember the short or long names of the options, --usage is advised.
If it is what the options do, then --help is a great tool. Man pages are also provided for
those who are use to this older system of documentation. This full book is also available
to you on the command-line in Info format. If none of these seems to resolve the problems,
there is a mailing list which enables you to get in touch with experienced Gnuastro users.
In the subsections below each of these methods are reviewed.

4.7.1 --usage

If you give this option, the program will not run. It will only print a very concise message
showing the options and arguments. Everything within square brackets ([]) is optional.
For example here are the first and last two lines of Crop’s --usage is shown:

$ astcrop --usage

Usage: astcrop [-Do?IPqSVW] [-d INT] [-h INT] [-r INT] [-w INT]

[-x INT] [-y INT] [-c INT] [-p STR] [-N INT] [--deccol=INT]

....

[--setusrconf] [--usage] [--version] [--wcsmode]

[ASCIIcatalog] FITSimage(s).fits

There are no explanations on the options, just their short and long names shown sep-
arately. After the program name, the short format of all the options that don’t require a
value (on/off options) is displayed. Those that do require a value then follow in separate
brackets, each displaying the format of the input they want, see Section 4.1.1.2 [Options],
page 67. Since all options are optional, they are shown in square brackets, but arguments
can also be optional. For example in this example, a catalog name is optional and is only
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required in some modes. This is a standard method of displaying optional arguments for
all GNU software.

4.7.2 --help

If the command-line includes this option, the program will not be run. It will print a
complete list of all available options along with a short explanation. The options are also
grouped by their context. Within each context, the options are sorted alphabetically. Since
the options are shown in detail afterwards, the first line of the --help output shows the
arguments and if they are optional or not, similar to Section 4.7.1 [--usage], page 92.

In the --help output of all programs in Gnuastro, the options for each program are
classified based on context. The first two contexts are always options to do with the input
and output respectively. For example input image extensions or supplementary input files
for the inputs. The last class of options is also fixed in all of Gnuastro, it shows operating
mode options. Most of these options are already explained in Section 4.1.2.3 [Operating
mode options], page 73.

The help message will sometimes be longer than the vertical size of your terminal. If
you are using a graphical user interface terminal emulator, you can scroll the terminal with
your mouse, but we promised no mice distractions! So here are some suggestions:

• Shift + PageUP to scroll up and Shift + PageDown to scroll down. For most help
output this should be enough. The problem is that it is limited by the number of lines
that your terminal keeps in memory and that you can’t scroll by lines, only by whole
screens.

• Pipe to less. A pipe is a form of shell re-direction. The less tool in Unix-like systems
was made exactly for such outputs of any length. You can pipe (|) the output of any
program that is longer than the screen to it and then you can scroll through (up and
down) with its many tools. For example:

$ astnoisechisel --help | less

Once you have gone through the text, you can quit less by pressing the q key.

• Redirect to a file. This is a less convenient way, because you will then have to open
the file in a text editor! You can do this with the shell redirection tool (>):

$ astnoisechisel --help > filename.txt

In case you have a special keyword you are looking for in the help, you don’t have to
go through the full list. GNU Grep is made for this job. For example if you only want
the list of options whose --help output contains the word “axis” in Crop, you can run the
following command:

$ astcrop --help | grep axis

If the output of this option does not fit nicely within the confines of your terminal, GNU
does enable you to customize its output through the environment variable ARGP_HELP_FMT,
you can set various parameters which specify the formatting of the help messages. For
example if your terminals are wider than 70 spaces (say 100) and you feel there is too much
empty space between the long options and the short explanation, you can change these
formats by giving values to this environment variable before running the program with the
--help output. You can define this environment variable in this manner:

$ export ARGP_HELP_FMT=rmargin=100,opt-doc-col=20
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This will affect all GNU programs using GNU C library’s argp.h facilities as long as the
environment variable is in memory. You can see the full list of these formatting parameters
in the “Argp User Customization” part of the GNU C library manual. If you are more
comfortable to read the --help outputs of all GNU software in your customized format,
you can add your customizations (similar to the line above, without the $ sign) to your
~/.bashrc file. This is a standard option for all GNU software.

4.7.3 Man pages

Man pages were the Unix method of providing command-line documentation to a program.
With GNU Info, see Section 4.7.4 [Info], page 94, the usage of this method of documentation
is highly discouraged. This is because Info provides a much more easier to navigate and
read environment.

However, some operating systems require a man page for packages that are installed
and some people are still used to this method of command line help. So the programs
in Gnuastro also have Man pages which are automatically generated from the outputs of
--version and --help using the GNU help2man program. So if you run

$ man programname

You will be provided with a man page listing the options in the standard manner.

4.7.4 Info

Info is the standard documentation format for all GNU software. It is a very useful
command-line document viewing format, fully equipped with links between the various
pages and menus and search capabilities. As explained before, the best thing about it is
that it is available for you the moment you need to refresh your memory on any command-
line tool in the middle of your work without having to take your hands off the keyboard.
This complete book is available in Info format and can be accessed from anywhere on the
command-line.

To open the Info format of any installed programs or library on your system which has
an Info format book, you can simply run the command below (change executablename to
the executable name of the program or library):

$ info executablename

In case you are not already familiar with it, run $ info info. It does a fantastic job in
explaining all its capabilities its self. It is very short and you will become sufficiently fluent
in about half an hour. Since all GNU software documentation is also provided in Info, your
whole GNU/Linux life will significantly improve.

Once you’ve become an efficient navigator in Info, you can go to any part of this book or
any other GNU software or library manual, no matter how long it is, in a matter of seconds.
It also blends nicely with GNU Emacs (a text editor) and you can search manuals while
you are writing your document or programs without taking your hands off the keyboard,
this is most useful for libraries like the GNU C library. To be able to access all the Info
manuals installed in your GNU/Linux within Emacs, type Ctrl-H + i.

To see this whole book from the beginning in Info, you can run

$ info gnuastro
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If you run Info with the particular program executable name, for example astcrop or
astnoisechisel:

$ info astprogramname

you will be taken to the section titled “Invoking ProgramName” which explains the inputs
and outputs along with the command-line options for that program. Finally, if you run Info
with the official program name, for example Crop or NoiseChisel:

$ info ProgramName

you will be taken to the top section which introduces the program. Note that in all cases,
Info is not case sensitive.

4.7.5 help-gnuastro mailing list

Gnuastro maintains the help-gnuastro mailing list for users to ask any questions related to
Gnuastro. The experienced Gnuastro users and some of its developers are subscribed to this
mailing list and your email will be sent to them immediately. However, when contacting
this mailing list please have in mind that they are possibly very busy and might not be able
to answer immediately.

To ask a question from this mailing list, send a mail to help-gnuastro@gnu.org.
Anyone can view the mailing list archives at http://lists.gnu.org/archive/html/

help-gnuastro/. It is best that before sending a mail, you search the archives to see if
anyone has asked a question similar to yours. If you want to make a suggestion or report a
bug, please don’t send a mail to this mailing list. We have other mailing lists and tools for
those purposes, see Section 1.7 [Report a bug], page 9, or Section 1.8 [Suggest new feature],
page 11.

4.8 Automatic output

All the programs in Gnuastro are designed such that specifying an output file or directory
(based on the program context) is optional. The outputs of most programs are automatically
found based on the input and what the program does. For example when you are converting
a FITS image named FITSimage.fits to a JPEG image, the JPEG image will be saved in
FITSimage.jpg.

Another very important part of the automatic output generation is that all the directory
information of the input file name is stripped off of it. This feature can be disabled with
the --keepinputdir option, see Section 4.1.2 [Common options], page 69. It is the default
because astronomical data are usually very large and organized specially with special file
names. In some cases, the user might not have write permissions in those directories. In
fact, even if the data is stored on your own computer, it is advised to only grant write
permissions to the super user or root. This way, you won’t accidentally delete or modify
your valuable data!

Let’s assume that we are working on a report and want to process the FITS images from
two projects (ABC and DEF), which are stored in the sub-directories named ABCproject/

and DEFproject/ of our top data directory (/mnt/data). The following shell commands
show how one image from the former is first converted to a JPEG image through Convert-
Type and then the objects from an image in the latter project are detected using NoiseChisel.
The text after the # sign are comments (not typed!).

$ pwd # Current location

http://lists.gnu.org/archive/html/help-gnuastro/
http://lists.gnu.org/archive/html/help-gnuastro/
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/home/usrname/research/report

$ ls # List directory contents

ABC01.jpg

$ ls /mnt/data/ABCproject # Archive 1

ABC01.fits ABC02.fits ABC03.fits

$ ls /mnt/data/DEFproject # Archive 2

DEF01.fits DEF02.fits DEF03.fits

$ astconvertt /mnt/data/ABCproject/ABC02.fits --output=jpg # Prog 1

$ ls

ABC01.jpg ABC02.jpg

$ astnoisechisel /mnt/data/DEFproject/DEF01.fits # Prog 2

$ ls

ABC01.jpg ABC02.jpg DEF01_labeled.fits

4.9 Output headers

The output FITS files created by Gnuastro’s programs have some or all of the following stan-
dard keywords to keep the basic date and version information of Gnuastro, its dependencies
and the pipeline that is using Gnuastro.

DATE The creation time of the FITS file. This date is written directly by CFITSIO
and is in UT format.

COMMIT Git’s commit description from the running directory of Gnuastro’s programs.
If the running directory is not version controlled or libgit2 isn’t installed (see
Section 3.1.2 [Optional dependencies], page 45) then this keyword will not be
present. The printed value is equivalent to the output of the following command:

git describe --dirty --always

If the running directory contains non-committed work, then the stored value
will have a ‘-dirty’ suffix. This can be very helpful to let you know that the
data is not ready to be shared with collaborators or submitted to a journal. You
should only share results that are produced after all your work is committed
(safely stored in the version controlled history and thus reproducible).

At first sight, version control appears to be mainly a tool for software devel-
opers. However progress in a scientific research is almost identical to progress
in software development: first you have a rough idea that starts with handful
of easy steps. But as the first results appear to be promising, you will have
to extend, or generalize, it to make it more robust and work in all the situ-
ations your research covers, not just your first test samples. Slowly you will
find wrong assumptions or bad implementations that need to be fixed (‘bugs’
in software development parlance). Finally, when you submit the research to
your collaborators or a journal, many comments and suggestions will come in,
and you have to address them.

Software developers have created version control systems precisely for this kind
of activity. Each significant moment in the project’s history is called a “com-
mit”, see Section 3.2.2 [Version controlled source], page 50. A snapshot of the
project in each “commit” is safely stored away, so you can revert back to it at
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a later time, or check changes/progress. This way, you can be sure that your
work is reproducible and track the progress and history. With version control,
experimentation in the project’s analysis is greatly facilitated, since you can
easily revert back if a brainstorm test procedure fails.

One important feature of version control is that the research result (FITS im-
age, table, report or paper) can be stamped with the unique commit informa-
tion that produced it. This information will enable you to exactly reproduce
that same result later, even if you have made changes/progress. For one ex-
ample of a research paper’s reproduction pipeline, please see the reproduction
pipeline (https://gitlab.com/makhlaghi/NoiseChisel-paper) of the paper
(https://arxiv.org/abs/1505.01664) describing Section 7.2 [NoiseChisel],
page 181.

CFITSIO The version of CFITSIO used (see Section 3.1.1.2 [CFITSIO], page 43).

WCSLIB The version of WCSLIB used (see Section 3.1.1.3 [WCSLIB], page 45). Note
that older versions of WCSLIB do not report the version internally. So this is
only available if you are using more recent WCSLIB versions.

GSL The version of GNU Scientific Library that was used, see Section 3.1.1.1 [GNU
Scientific library], page 43.

GNUASTRO The version of Gnuastro used (see Section 1.5 [Version numbering], page 6).

Here is one example of the last few lines of an example output.

/ Versions and date

DATE = ’...’ / file creation date

COMMIT = ’v0-8-g547f6eb’ / Commit description in running dir.

CFITSIO = ’3.41 ’ / CFITSIO version.

WCSLIB = ’5.16 ’ / WCSLIB version.

GSL = ’2.3 ’ / GNU Scientific Library version.

GNUASTRO= ’0.3’ / GNU Astronomy Utilities version.

END

https://gitlab.com/makhlaghi/NoiseChisel-paper
https://gitlab.com/makhlaghi/NoiseChisel-paper
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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5 Data containers

The most low-level and basic property of a dataset is how it is stored. To process, archive and
transmit the data, you need a container to store it first. From the start of the computer age,
different formats have been defined to store data, optimized for particular applications. One
format/container can never be useful for all applications: the storage defines the application
and vice-versa. In astronomy, the Flexible Image Transport System (FITS) standard has
become the most common format of data storage and transmission. It has many useful
features, for example multiple sub-containers (also known as extensions or header data
units, HDUs) within one file, or support for tables as well as images. Each HDU can store
an independent dataset and its corresponding meta-data. Therefore, Gnuastro has one
program (see Section 5.1 [Fits], page 98) specifically designed to manipulate FITS HDUs
and the meta-data (header keywords) in each HDU.

Your astronomical research does not just involve data analysis (where the FITS format is
very useful). For example you want to demonstrate your raw and processed FITS images or
spectra as figures within slides, reports, or papers. The FITS format is not defined for such
applications. Thus, Gnuastro also comes with the ConvertType program (see Section 5.2
[ConvertType], page 105) which can be used to convert a FITS image to and from (where
possible) other formats like plain text and JPEG (which allow two way conversion), along
with EPS and PDF (which can only be created from FITS, not the other way round).

Finally, the FITS format is not just for images, it can also store tables. Binary tables in
particular can be very efficient in storing catalogs that have more than a few tens of columns
and rows. However, unlike images (where all elements/pixels have one data type), tables
contain multiple columns and each column can have different properties: independent data
types (see Section 4.4 [Numeric data types], page 82) and meta-data. In practice, each
column can be viewed as a separate container that is grouped with others in the table. The
only shared property of the columns in a table is thus the number of elements they contain.
To allow easy inspection/manipulation of table columns, Gnuastro has the Table program
(see Section 5.3 [Table], page 112). It can be used to select certain table columns in a FITS
table and see them as a human readable output on the command-line, or to save them into
another plain text or FITS table.

5.1 Fits

The “Flexible Image Transport System”, or FITS, is by far the most common data container
format in astronomy. Although the full name of the standard invokes the idea that it is
only for images, it also contains very complete and robust features for tables. It started
off in the 1970s and was formally published as a standard in 1981, it was adopted by the
International Astronomical Union (IAU) in 1982 and an IAU working group to maintain
its future was defined in 1988. The FITS 2.0 and 3.0 standards were approved in 2000 and
2008 respectively, and the 4.0 draft has also been released recently, please see the FITS
standard document webpage (https://fits.gsfc.nasa.gov/fits_standard.html) for
the full text of all versions. Also see the FITS 3.0 standard paper (https://doi.org/
10.1051/0004-6361/201015362) for a nice introduction and history along with the full
standard.

Other formats, for example a JPEG image, only have one image/dataset per file, however
one great advantage of the FITS standard is that it allows you to keep multiple datasets

https://fits.gsfc.nasa.gov/fits_standard.html
https://fits.gsfc.nasa.gov/fits_standard.html
https://doi.org/10.1051/0004-6361/201015362
https://doi.org/10.1051/0004-6361/201015362
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(images or tables along with their meta-data) in one file. Each data + metadata is known
as an extension, or more formally a header data unit or HDU, in the FITS standard.
In theory the HDUs can be completely independent: you can have multiple images of
different dimensions/sizes or tables as separate extensions in one file. However, while the
standard doesn’t impose any constraints on the relation between the datasets, it is strongly
encouraged to group data that are contextually related with each other in one file. For
example an image and the table/catalog of objects and their measured properties in that
image. Another example can be multiple images of one patch of sky in different colors
(filters).

As discussed above, the extensions in a FITS file can be completely independent. To
keep some information (meta-data) about the group of extensions in the FITS file, the
community has adopted the following convention: put no data in the first extension, so
it is just meta-data. This extension can thus be used to store Meta-data regarding the
whole file (grouping of extensions). Subsequent extensions may contain data along with
their own separate meta-data. All of Gnuastro’s programs also follow this convention: the
main dataset (image or table) is in the second extension. See the example list of extension
properties in Section 5.1.1 [Invoking Fits], page 100.

The meta-data contain information about the data, for example which region of the sky
an image corresponds to, the units of the data, what telescope, camera, and filter the data
were taken with, the software that produced it, or it observation or processing date. Hence
without the meta-data, the raw dataset is practically just a collection of numbers and really
hard to understand, or connect with the real world (other datasets). It is thus strongly
encouraged to supplement your data (at any level of processing) with as much meta-data
about your processing/science as possible.

The meta-data of a FITS file is in ASCII format, which can be easily viewed or edited
with a text editor or on the command-line. Each meta-data element (known as a keyword
generally) is composed of a name, value, units and comments (the last two are optional).
For example below you can see three FITS meta-data keywords for specifying the world
coordinate system (WCS, or its location in the sky) of a dataset:

LATPOLE = -27.805089 / [deg] Native latitude of celestial pole

RADESYS = ’FK5’ / Equatorial coordinate system

EQUINOX = 2000.0 / [yr] Equinox of equatorial coordinates

However, there are some limitations which discourage viewing/editing the keywords with
text editors. For example there is a fixed length of 80 characters for each keyword (its name,
value, units and comments) and there are no new-line characters, so on a text editor all
the keywords are seen in one line. Also, the meta-data keywords are immediately followed
by the data which are commonly in binary format and will show up as strange looking
characters on a text editor, and significantly slowing down the processor.

Gnuastro’s Fits program was designed to allow easy manipulation of FITS extensions and
meta-data keywords on the command-line while conforming fully with the FITS standard.
For example you can copy or cut (copy and remove) HDUs/extensions from one FITS file
to another, or completely delete them. It also has features to delete, add, or edit meta-data
keywords within one HDU.
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5.1.1 Invoking Fits

Fits can print or manipulate the FITS file HDUs (extensions), meta-data keywords in a
given HDU. The executable name is astfits with the following general template

$ astfits [OPTION...] ASTRdata

One line examples:

## View general information about every extension:

$ astfits image.fits

## Print the header keywords in the second HDU (counting from 0):

$ astfits image.fits -h1

## Only print header keywords that contain ‘NAXIS’:

$ astfits image.fits -h1 | grep NAXIS

## Only print the WCS standard PC matrix elements

$ astfits image.fits -h1 | grep ’PC._.’

## Copy a HDU from input.fits to out.fits:

$ astfits input.fits --copy=hdu-name --output=out.fits

## Update the OLDKEY keyword value to 153.034:

$ astfits --update=OLDKEY,153.034,"Old keyword comment"

## Delete one COMMENT keyword and add a new one:

$ astfits --delete=COMMENT --comment="Anything you like ;-)."

## Write two new keywords with different values and comments:

$ astfits --write=MYKEY1,20.00,"An example keyword" --write=MYKEY2,fd

When no action is requested (and only a file name is given), Fits will print a list of
information about the extension(s) in the file. This information includes the HDU number,
HDU name (EXTNAME keyword), type of data (see Section 4.4 [Numeric data types], page 82,
and the number of data elements it contains (size along each dimension for images and table
rows and columns). You can use this to get a general idea of the contents of the FITS file
and what HDU to use for further processing, either with the Fits program or any other
Gnuastro program.

Here is one example of information about a FITS file with four extensions: the first
extension has no data, it is a purely meta-data HDU (commonly used to keep meta-data
about the whole file, or grouping of extensions, see Section 5.1 [Fits], page 98). The second
extension is an image with name IMAGE and single precision floating point type (float32,
see Section 4.4 [Numeric data types], page 82), it has 4287 pixels along its first (horizontal)
axis and 4286 pixels along its second (vertical) axis. The third extension is also an image
with name MASK. It is in 2-byte integer format (int16) which is commonly used to keep
information about pixels (for example to identify which ones were saturated, or which ones
had cosmic rays and so on), note how it has the same size as the IMAGE extension. The
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third extension is a binary table called CATALOG which has 12371 rows and 5 columns (it
probably contains information about the sources in the image).

GNU Astronomy Utilities X.X

Run on Day Month DD HH:MM:SS YYYY

-----

HDU (extension) information: ‘image.fits’.

Column 1: Index (counting from 0).

Column 2: Name (‘EXTNAME’ in FITS standard).

Column 3: Image data type or ‘table’ format (ASCII or binary).

Column 4: Size of data in HDU.

-----

0 n/a uint8 0

1 IMAGE float32 4287x4286

2 MASK int16 4287x4286

3 CATALOG table_binary 12371x5

If a specific HDU is identified on the command-line with the --hdu (or -h option) and
no operation requested, then the full list of header keywords in that HDU will be printed
(as if the --printallkeys was called, see below). It is important to remember that this
only occurs when --hdu is given on the command-line. The --hdu value given in a config-
uration file will only be used when a specific operation on keywords requested. Therefore
as described in the paragraphs above, when no explicit call to the --hdu option is made
on the command-line and no operation is requested (on the command-line or configuration
files), the basic information of each HDU/extension is printed.

The operating mode and input/output options to Fits are similar to the other programs
and fully described in Section 4.1.2 [Common options], page 69. The options particular to
Fits can be divided into two groups: 1) those related to modifying HDUs or extensions (see
Section 5.1.1.1 [HDU manipulation], page 101), and 2) those related to viewing/modifying
meta-data keywords (see Section 5.1.1.2 [Keyword manipulation], page 102). These two
classes of options cannot be called together in one run: you can either work on the extensions
or meta-data keywords in any instance of Fits.

5.1.1.1 HDU manipulation

Each header data unit, or HDU (also known as an extension), in a FITS file is an independent
dataset (data + meta-data). Multiple HDUs can be stored in one FITS file, see Section 5.1
[Fits], page 98. The HDU modifying options to the Fits program are listed below.

These options may be called multiple times in one run. If so, the extensions will be copied
from the input FITS file to the output FITS file in the given order (on the command-line
and also in configuration files, see Section 4.2.2 [Configuration file precedence], page 78). If
the separate classes are called together in one run of Fits, then first --copy is run (on all
specified HDUs), followed by --cut (again on all specified HDUs), and then --remove (on
all specified HDUs).

The --copy and --cut options need an output FITS file (specified with the --output

option). If the output file exists, then the specified HDU will be copied following the last
extension of the output file (the existing HDUs in it will be untouched). Thus, after Fits
finishes, the copied HDU will be the last HDU of the output file. If no output file name
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is given, then automatic output will be used to store the HDUs given to this option (see
Section 4.8 [Automatic output], page 95).

-C STR

--copy=STR

Copy the specified extension into the output file, see explanations above.

-k STR

--cut=STR

Cut (copy to output, remove from input) the specified extension into the output
file, see explanations above.

-R STR

--remove=STR

Remove the specified HDU from the input file. From CFITSIO: “In the case of
deleting the primary array (the first HDU in the file) then [it] will be replaced
by a null primary array containing the minimum set of required keywords and
no data.”. So in practice, any existing data (array) and meta-data in the first
extension will be removed, but the number of extensions in the file won’t change.
This is because of the unique position the first FITS extension has in the FITS
standard (for example it cannot be used to store tables).

5.1.1.2 Keyword manipulation

The meta-data in each header data unit, or HDU (also known as extension, see Section 5.1
[Fits], page 98) is stored as “keyword”s. Each keyword consists of a name, value, unit, and
comments. The Fits program (see Section 5.1 [Fits], page 98) options related to viewing
and manipulating keywords in a FITS HDU are described below.

To see the full list of keywords in a FITS HDU, you can use the --printallkeys option.
If any of the keywords are to be modified, the headers of the input file will be changed. If
you want to keep the original FITS file or HDU, it is easiest to create a copy first and then
run Fits on that. In the FITS standard, keywords are always uppercase. So case does not
matter in the input or output keyword names you specify.

Most of the options can accept multiple instances in one command. For example you
can add multiple keywords to delete by calling --delete multiple times, since repeated
keywords are allowed, you can even delete the same keyword multiple times. The action of
such options will start from the top most keyword.

The precedence of operations are described below. Note that while the order within each
class of actions is preserved, the order of individual actions is not. So irrespective of what
order you called --delete and --update. First, all the delete operations are going to take
effect then the update operations.

1. --delete

2. --rename

3. --update

4. --write

5. --asis

6. --history
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7. --comment

8. --date

9. --printallkeys

All possible syntax errors will be reported before the keywords are actually written. FITS
errors during any of these actions will be reported, but Fits won’t stop until all the opera-
tions are complete. If --quitonerror is called, then Fits will immediately stop upon the
first error.

If you want to inspect only a certain set of header keywords, it is easiest to pipe the
output of the Fits program to GNU Grep. Grep is a very powerful and advanced tool to
search strings which is precisely made for such situations. For example if you only want to
check the size of an image FITS HDU, you can run:

$ astfits input.fits | grep NAXIS� �
FITS STANDARD KEYWORDS: Some header keywords are necessary for later operations
on a FITS file, for example BITPIX or NAXIS, see the FITS standard for their full list. If
you modify (for example remove or rename) such keywords, the FITS file extension might
not be usable any more. Also be careful for the world coordinate system keywords, if
you modify or change their values, any future world coordinate system (like RA and Dec)
measurements on the image will also change.
 	
The keyword related options to the Fits program are fully described below.

-a STR

--asis=STR

Write STR exactly into the FITS file header with no modifications. If it does
not conform to the FITS standards, then it might cause trouble, so please be
very careful with this option. If you want to define the keyword from scratch, it
is best to use the --write option (see below) and let CFITSIO worry about the
standards. The best way to use this option is when you want to add a keyword
from one FITS file to another unchanged and untouched. Below is an example
of such a case that can be very useful sometimes (on the command-line or in
scripts):

$ key=$(astfits firstimage.fits | grep KEYWORD)

$ astfits --asis="$key" secondimage.fits

In particular note the double quotation signs (") around the reference to the key
shell variable ($key), since FITS keywords usually have lots of space characters,
if this variable is not quoted, the shell will only give the first word in the full
keyword to this option, which will definitely be a non-standard FITS keyword
and will make it hard to work on the file afterwords. See the “Quoting” section
of the GNU Bash manual for more information if your keyword has the special
characters $, ‘, or \.

-d STR

--delete=STR

Delete one instance of the STR keyword from the FITS header. Multiple in-
stances of --delete can be given (possibly even for the same keyword, when
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its repeated in the meta-data). All keywords given will be removed from the
headers in the same given order. If the keyword doesn’t exist, Fits will give a
warning and return with a non-zero value, but will not stop. To stop as soon
as an error occurs, run with --quitonerror.

-r STR

--rename=STR

Rename a keyword to a new value. STR contains both the existing and new
names, which should be separated by either a comma (,) or a space character.
Note that if you use a space character, you have to put the value to this option
within double quotation marks (") so the space character is not interpreted
as an option separator. Multiple instances of --rename can be given in one
command. The keywords will be renamed in the specified order. If the keyword
doesn’t exist, Fits will give a warning and return with a non-zero value, but
will not stop. To stop as soon as an error occurs, run with --quitonerror.

-u STR

--update=STR

Update a keyword, its value, its comments and its units in the format described
below. If there are multiple instances of the keyword in the header, they will
be changed from top to bottom (with multiple --update options).

The format of the values to this option can best be specified with an example:

--update=KEYWORD,value,"comments for this keyword",unit

If there is a writing error, Fits will give a warning and return with a non-
zero value, but will not stop. To stop as soon as an error occurs, run with
--quitonerror.

The value can be any numerical or string value1. Other than the KEYWORD, all
the other values are optional. To leave a given token empty, follow the preceding
comma (,) immediately with the next. If any space character is present around
the commas, it will be considered part of the respective token. So if more than
one token has space characters within it, the safest method to specify a value
to this option is to put double quotation marks around each individual token
that needs it. Note that without double quotation marks, space characters will
be seen as option separators and can lead to undefined behavior.

-w STR

--write=STR

Write a keyword to the header. For the possible value input formats, comments
and units for the keyword, see the --update option above.

1 Some tricky situations arise with values like ‘87095e5’, if this was intended to be a number it will be kept
in the header as 8709500000 and there is no problem. But this can also be a shortened Git commit hash.
In the latter case, it should be treated as a string and stored as it is written. Commit hashes are very
important in keeping the history of a file during your research and such values might arise without you
noticing them in your reproduction pipeline. One solution is to use git describe instead of the short
hash alone. A less recommended solution is to add a space after the commit hash and Fits will write
the value as ‘87095e5 ’ in the header. If you later compare the strings on the shell, the space character
will be ignored by the shell in the latter solution and there will be no problem.
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-H STR

--history STR

Add a HISTORY keyword to the header. The string given to this keyword will be
separated into multiple keyword cards if it is longer than 70 characters. With
each run only one value for the --history option will be read. If there are
multiple, it is the last one. If there is an error, Fits will give a warning and
return with a non-zero value, but will not stop. To stop as soon as an error
occurs, run with --quitonerror.

-c STR

--comment STR

Add a COMMENT keyword to the header. Similar to the explanation for
--history above. If there is a writing error, Fits will give a warning and
return with a non-zero value, but will not stop. To stop as soon as an error
occurs, run with --quitonerror.

-t

--date Put the current date and time in the header. If the DATE keyword already exists
in the header, it will be updated. If there is a writing error, Fits will give a
warning and return with a non-zero value, but will not stop. To stop as soon
as an error occurs, run with --quitonerror.

-p

--printall

Print all the keywords in the specified FITS extension (HDU) on the command-
line.

-Q

--quitonerror

Quit if any of the operations above are not successful. By default if an error
occurs, Fits will warn the user of the faulty keyword and continue with the rest
of actions.

5.2 ConvertType

The formats of astronomical data were defined mainly for archiving and processing. In
other situations, the data might be useful in other formats. For example, when you are
writing a paper or report or if you are making slides for a talk, you can’t use a FITS image.
Other image formats should be used. In other cases you might want your pixel values in
a table format as plain text for input to other programs that don’t recognize FITS, or to
include as a table in your report. ConvertType is created for such situations. The various
types will increase with future updates and based on need.

The conversion is not only one way (from FITS to other formats), but two ways (except
the EPS and PDF formats). So you can convert a JPEG image or text file into a FITS
image. Basically, other than EPS, you can use any of the recognized formats as different
color channel inputs to get any of the recognized outputs. So before explaining the options
and arguments, first a short description of the recognized files types will be given followed
a short introduction to digital color.
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5.2.1 Recognized file formats

The various standards and the file name extensions recognized by ConvertType are listed
below.

FITS or IMH
Astronomical data are commonly stored in the FITS format (and in older data
sets in IRAF .imh format), a list of file name suffixes which indicate that the
file is in this format is given in Section 4.1.1.1 [Arguments], page 66.

Each extension of a FITS image only has one value per pixel, so when used as
input, each input FITS image contributes as one color channel. If you want
multiple extensions in one FITS file for different color channels, you have to
repeat the file name multiple times and use the --hdu, --hdu2, --hdu3 or
--hdu4 options to specify the different extensions.

JPEG The JPEG standard was created by the Joint photographic experts group. It is
currently one of the most commonly used image formats. Its major advantage
is the compression algorithm that is defined by the standard. Like the FITS
standard, this is a raster graphics format, which means that it is pixelated.

A JPEG file can have 1 (for gray-scale), 3 (for RGB) and 4 (for CMYK) color
channels. If you only want to convert one JPEG image into other formats, there
is no problem, however, if you want to use it in combination with other input
files, make sure that the final number of color channels does not exceed four. If
it does, then ConvertType will abort and notify you.

The file name endings that are recognized as a JPEG file for input are: .jpg,
.JPG, .jpeg, .JPEG, .jpe, .jif, .jfif and .jfi.

EPS The Encapsulated PostScript (EPS) format is essentially a one page PostScript
file which has a specified size. PostScript also includes non-image data, for ex-
ample lines and texts. It is a fully functional programming language to describe
a document. Therefore in ConvertType, EPS is only an output format and can-
not be used as input. Contrary to the FITS or JPEG formats, PostScript is
not a raster format, but is categorized as vector graphics.

The Portable Document Format (PDF) is currently the most common format
for documents. Some believe that PDF has replaced PostScript and that Post-
Script is now obsolete. This view is wrong, a PostScript file is an actual plain
text file that can be edited like any program source with any text editor. To
be able to display its programmed content or print, it needs to pass through a
processor or compiler. A PDF file can be thought of as the processed output
of the compiler on an input PostScript file. PostScript, EPS and PDF were
created and are registered by Adobe Systems.

With these features in mind, you can see that when you are compiling a doc-
ument with TEX or LATEX, using an EPS file is much more low level than a
JPEG and thus you have much greater control and therefore quality. Since it
also includes vector graphic lines we also use such lines to make a thin border
around the image to make its appearance in the document much better. No
matter the resolution of the display or printer, these lines will always be clear
and not pixelated. In the future, addition of text might be included (for exam-
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ple labels or object IDs) on the EPS output. However, this can be done better
with tools within TEX or LATEX such as PGF/Tikz2.

If the final input image (possibly after all operations on the flux explained be-
low) is a binary image or only has two colors of black and white (in segmentation
maps for example), then PostScript has another great advantage compared to
other formats. It allows for 1 bit pixels (pixels with a value of 0 or 1), this
can decrease the output file size by 8 times. So if a gray-scale image is bi-
nary, ConvertType will exploit this property in the EPS and PDF (see below)
outputs.

The standard formats for an EPS file are .eps, .EPS, .epsf and .epsi. The
EPS outputs of ConvertType have the .eps suffix.

PDF As explained above, a PDF document is a static document description format,
viewing its result is therefore much faster and more efficient than PostScript.
To create a PDF output, ConvertType will make a PostScript page description
and convert that to PDF using GPL Ghostscript. The suffixes recognized for a
PDF file are: .pdf, .PDF. If GPL Ghostscript cannot be run on the PostScript
file, it will remain and a warning will be printed.

blank This is not actually a file type! But can be used to fill one color channel with a
blank value. If this argument is given for any color channel, that channel will
not be used in the output.

Plain text Plain text files have the advantage that they can be viewed with any text editor
or on the command-line. Most programs also support input as plain text files.
As input, each plain text file is considered to contain one color channel.

In ConvertType, the recognized extensions for plain text files are .txt and
.dat. As described in Section 5.2.3 [Invoking ConvertType], page 109, if you
just give these extensions, (and not a full filename) as output, then automatic
output will be preformed to determine the final output name (see Section 4.8
[Automatic output], page 95). Besides these, when the format of a file cannot
be recognized from its name, ConvertType will fall back to plain text mode.
So you can use any name (even without an extension) for a plain text input or
output. Just note that when the suffix is not recognized, automatic output will
not be preformed.

The basic input/output on plain text images is very similar to how tables are
read/written as described in Section 4.5.2 [Gnuastro text table format], page 87.
Simply put, the restrictions are very loose, and there is a convention to define
a name, units, data type (see Section 4.4 [Numeric data types], page 82), and
comments for the data in a commented line. The only difference is that as a
table, a text file can contain many datasets (columns), but as a 2D image, it
can only contain one dataset. As a result, only one information comment line
is necessary for a 2D image, and instead of the starting ‘# Column N’ (N is the
column number), the information line for a 2D image must start with ‘# Image

1’. When ConvertType is asked to output to plain text file, this information
comment line is written before the image pixel values.

2 http://sourceforge.net/projects/pgf/

http://sourceforge.net/projects/pgf/
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When converting an image to plain text, consider the fact that if the image
is large, the number of columns in each line will become very large, possibly
making it very hard to open in some text editors.

Standard output (command-line)
This is very similar to the plain text output, but instead of creating a file to
keep the printed values, they are printed on the command line. This can be
very useful when you want to redirect the results directly to another program
in one command with no intermediate file. The only difference is that only the
pixel values are printed (with no information comment line). To print to the
standard output, set the output name to ‘stdout’.

5.2.2 Color

An image is a two dimensional array of 2 dimensional elements called pixels. If each pixel
only has one value, the image is known as a gray-scale image and no color is defined. The
range of values in the image can be interpreted as shades of any color, it is customary to
use shades of black or gray-scale. However, to produce the color spectrum in the digital
world, several primary colors must be mixed. Therefore in a color image, each pixel has
several values depending on how many primary colors were chosen. For example on the
digital monitor or color digital cameras, all colors are built by mixing the three colors of
Red-Green-Blue (RGB) with various proportions. However, for printing on paper, standard
printers use the Cyan-Magenta-Yellow-Key (CMYK, Key=black) color space. Therefore
when printing an RGB image, usually a transformation of color spaces will be necessary.

In a colored digital camera, a color image is produced by dividing the pixel’s area between
three colors (filters). However in astronomy due to the intrinsic faintness of most of the
targets, the collecting area of the pixel is very important for us. Hence the full area of the
pixel is used and one value is stored for that pixel in the end. One color filter is used for
the whole image. Thus a FITS image is inherently a gray-scale image and no color can be
defined for it.

One way to represent a gray-scale image in different color spaces is to use the same
proportions of the primary colors in each pixel. This is the common way most FITS image
converters work: they fill all the channels with the same values. The downside is two fold:

• Three (for RGB) or four (for CMYK) values have to be stored for every pixel, this
makes the output file very heavy (in terms of bytes).

• If printing, the printing errors of each color channel can make the printed image slightly
more blurred than it actually is.

To solve both these problems, the best way is to save the FITS image into the black
channel of the CMYK color space. In the RGB color space all three channels have to be
used. The JPEG standard is the only common standard that accepts CMYK color space,
that is why currently only the JPEG standard is included and not the PNG standard for
example.

The JPEG and EPS standards set two sizes for the number of bits in each channel: 8-bit
and 12-bit. The former is by far the most common and is what is used in ConvertType.
Therefore, each channel should have values between 0 to 28 − 1 = 255. From this we see
how each pixel in a gray-scale image is one byte (8 bits) long, in an RGB image, it is 3bytes
long and in CMYK it is 4bytes long. But thanks to the JPEG compression algorithms,
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when all the pixels of one channel have the same value, that channel is compressed to one
pixel. Therefore a Grayscale image and a CMYK image that has only the K-channel filled
are approximately the same file size.

5.2.3 Invoking ConvertType

ConvertType will convert any recognized input file type to any specified output type. The
executable name is astconvertt with the following general template

$ astconvertt [OPTION...] InputFile [InputFile2] ... [InputFile4]

One line examples:

## Convert an image in FITS to PDF:

$ astconvertt image.fits --output=pdf

## Convert an image in JPEG to FITS:

$ astconvertt image.jpg -ogalaxy.fits

## Use three plain text 2D arrays to create an RGB JPEG output:

$ astconvertt f1.txt f2.txt f3.fits -o.jpg

## Use two images and one blank for an RGB EPS output:

$ astconvertt M31_r.fits M31_g.fits blank -oeps

The file type of the output will be specified with the (possibly complete) file name given
to the --output option, which can either be given on the command-line or in any of the
configuration files (see Section 4.2 [Configuration files], page 77). Note that if the output
suffix is not recognized, it will default to plain text format, see Section 5.2.1 [Recognized
file formats], page 106.

The order of multiple input files is important. After reading the input file(s) the number
of color channels in all the inputs will be used to define which color space is being used for
the outputs and how each color channel is interpreted. Note that one file might have more
than one color channel (for example in the JPEG format). If there is one color channel the
output is gray-scale, if three input color channels are given they are respectively considered
to be the red, green and blue color channels and if there are four color channels they are
respectively considered to be cyan, magenta, yellow and black.

The value to --output (or -o) can be either a full file name or just the suffix of the desired
output format. In the former case, that same name will be used for the output. In the latter
case, the name of the output file will be set based on the automatic output guidelines, see
Section 4.8 [Automatic output], page 95. Note that the suffix name can optionally start a .

(dot), so for example --output=.jpg and --output=jpg are equivalent. See Section 5.2.1
[Recognized file formats], page 106,

Besides the common set of options explained in Section 4.1.2 [Common options], page 69,
the options to ConvertType can be classified into input, output and flux related options.
The majority of the options are to do with the flux range. Astronomical data usually have a
very large dynamic range (difference between maximum and minimum value) and different
subjects might be better demonstrated with a limited flux range.

Input:
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-h STR/INT

--hdu=STR/INT

In ConvertType, it is possible to call the HDU option multiple times for the
different input FITS files (corresponding to different color channels) in the
same order that they are called on the command-line. Except for the fact that
multiple calls are possible, this option is identical to the common --hdu in
Section 4.1.2.1 [Input/Output options], page 69. The number of calls to this
option cannot be less than the number of input FITS files, but if there are
more, the extra HDUs will be ignored, note that they will be read in the order
described in Section 4.2.2 [Configuration file precedence], page 78.

Output:

-w FLT

--widthincm=FLT

The width of the output in centimeters. This is only relevant for those formats
that accept such a width (not plain text for example). For most digital purposes,
the number of pixels is far more important than the value to this parameter
because you can adjust the absolute width (in inches or centimeters) in your
document preparation program.

-b INT

--borderwidth=INT

The width of the border to be put around the EPS and PDF outputs in units
of PostScript points. There are 72 or 28.35 PostScript points in an inch or
centimeter respectively. In other words, there are roughly 3 PostScript points
in every millimeter. If you are planning on adding a border, its significance is
highly correlated with the value you give to the --widthincm parameter.

Unfortunately in the document structuring convention of the PostScript lan-
guage, the “bounding box” has to be in units of PostScript points with no
fractions allowed. So the border values only have to be specified in integers.
To have a final border that is thinner than one PostScript point in your docu-
ment, you can ask for a larger width in ConvertType and then scale down the
output EPS or PDF file in your document preparation program. For example
by setting width in your includegraphics command in TEX or LATEX. Since
it is vector graphics, the changes of size have no effect on the quality of your
output quality (pixels don’t get different values).

-x

--hex Use Hexadecimal encoding in creating EPS output. By default the ASCII85
encoding is used which provides a much better compression ratio. When con-
verted to PDF (or included in TEX or LATEX which is finally saved as a PDF
file), an efficient binary encoding is used which is far more efficient than both
of them. The choice of EPS encoding will thus have no effect on the final PDF.

So if you want to transfer your EPS files (for example if you want to submit your
paper to arXiv or journals in PostScript), their storage might become important
if you have large images or lots of small ones. By default ASCII85 encoding is
used which offers a much better compression ratio (nearly 40 percent) compared
to Hexadecimal encoding.
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-u INT

--quality=INT

The quality (compression) of the output JPEG file with values from 0 to 100
(inclusive). For other formats the value to this option is ignored. Note that
only in gray-scale (when one input color channel is given) will this actually be
the exact quality (each pixel will correspond to one input value). If it is in color
mode, some degradation will occur. While the JPEG standard does support
loss-less graphics, it is not commonly supported.

Flux range:

-c STR

--chang=STR

(=STR) Change pixel values with the following format "from1:to1,

from2:to2,...". This option is very useful in displaying labeled pixels (not
actual data images which have noise) like segmentation maps. In labeled
images, usually a group of pixels have a fixed integer value. With this option,
you can manipulate the labels before the image is displayed to get a better
output for print or to emphasize on a particular set of labels and ignore the
rest. The labels in the images will be changed in the same order given. By
default first the pixel values will be converted then the pixel values will be
truncated (see --fluxlow and --fluxhigh).

You can use any number for the values irrespective of your final output, your
given values are stored and used in the double precision floating point format.
So for example if your input image has labels from 1 to 20000 and you only
want to display those with labels 957 and 11342 then you can run ConvertType
with these options:

$ astconvertt --change=957:50000,11342:50001 --fluxlow=5e4 \

--fluxhigh=1e5 segmentationmap.fits --output=jpg

While the output JPEG format is only 8 bit, this operation is done in an
intermediate step which is stored in double precision floating point. The pixel
values are converted to 8-bit after all operations on the input fluxes have been
complete. By placing the value in double quotes you can use as many spaces
as you like for better readability.

-C

--changeaftertrunc

Change pixel values (with --change) after truncation of the flux values, by
default it is the opposite.

-L FLT

--fluxlow=FLT

The minimum flux (pixel value) to display in the output image, any pixel value
below this value will be set to this value in the output. If the value to this option
is the same as --fluxmax, then no flux truncation will be applied. Note that
when multiple channels are given, this value is used for all the color channels.

-H FLT

--fluxhigh=FLT

The maximum flux (pixel value) to display in the output image, see --fluxlow.
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-m INT

--maxbyte=INT

This is only used for the JPEG and EPS output formats which have an 8-bit
space for each channel of each pixel. The maximum value in each pixel can
therefore be 28 − 1 = 255. With this option you can change (decrease) the
maximum value. By doing so you will decrease the dynamic range. It can be
useful if you plan to use those values for other purposes.

-A INT

--flminbyte=INT

If the lowest pixel value in the input channels is larger than the value to
--fluxlow, then that input value will be redundant. In some situations it
might be necessary to set the minimum byte value (0) to correspond to that
flux even if the data do not reach that value. With this option you can do
this. Note that if the minimum pixel value is smaller than --fluxlow, then
this option is redundant.

-B INT

--fhmaxbyte=INT

See --flminbyte.

-i

--invert For 8-bit output types (JPEG, EPS, and PDF for example) the final value that
is stored is inverted so white becomes black and vice versa. The reason for this
is that astronomical images usually have a very large area of blank sky in them.
The result will be that a large are of the image will be black. Note that this
behavior is ideal for gray-scale images, if you want a color image, the colors are
going to be mixed up.

5.3 Table

Tables are the products of processing astronomical images and spectra. For example in
Gnuastro, MakeCatalog will process the defined pixels over an object and produce a catalog
(see Section 7.3 [MakeCatalog], page 197). For each identified object, MakeCatalog can print
its position on the image or sky, its total brightness and many other information that is
deducible from the given image. Each one of these properties is a column in its output
catalog (or table) and for each input object, we have a row.

When there are only a small number of objects (rows) and not too many properties
(columns), then a simple plain text file is mainly enough to store, transfer, or even use the
produced data. However, to be more efficient in all these aspects, astronomers have defined
the FITS binary table standard to store data in a binary (0 and 1) format, not plain text.
This can offer major advantages in all those aspects: the file size will be greatly reduced and
the reading and writing will be faster (because the RAM and CPU also work in binary).

The FITS standard also defines a standard for ASCII tables, where the data are stored
in the human readable ASCII format, but within the FITS file structure. These are mainly
useful for keeping ASCII data along with images and possibly binary data as multiple
(conceptually related) extensions within a FITS file. The acceptable table formats are fully
described in Section 4.5 [Tables], page 84.
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Binary tables are not easily readable by human eyes. There is no fixed/unified standard
on how the zero and ones should be interpreted. The Unix-like operating systems have
flourished because of a simple fact: communication between the various tools is based on
human readable characters3. So while the FITS table standards are very beneficial for the
tools that recognize them, they are hard to use in the vast majority of available software.
This creates limitations for their generic use.

‘Table’ is Gnuastro’s solution to this problem. With Table, FITS tables (ASCII or
binary) are directly accessible to the Unix-like operating systems power-users (those working
the command-line or shell, see Section 1.6.1 [Command-line interface], page 8). With Table,
a FITS table (in binary or ASCII formats) is only one command away from AWK (or any
other tool you want to use). Just like a plain text file that you read with the cat command.
You can pipe the output of Table into any other tool for higher-level processing, see the
examples in Section 5.3.1 [Invoking Table], page 113, for some simple examples.

5.3.1 Invoking Table

Table will read/write, select, convert, or show the information of the columns in FITS ASCII
table, FITS binary table and plain text table files, see Section 4.5 [Tables], page 84. Output
columns can also be determined by number or regular expression matching of column names,
units, or comments. The executable name is asttable with the following general template

$ asttable [OPTION...] InputFile

One line examples:

## Get the table column information (name, data type, or units):

$ asttable bintab.fits --information

## Only print those columns which have a name starting with "MAG_":

$ asttable bintab.fits --column=/^MAG_/

## Only print the 2nd column, and the third column multiplied by 5:

$ asttable bintab.fits | awk ’{print $2, 5*$3}’

## Only print rows with a value in the 10th column above 100000:

$ asttable bintab.fits | awk ’$10>10e5 {print}’

## Sort the output columns by the third column, save output:

$ asttable bintab.fits | ’sort -k3 > output.txt

## Convert a plain text table to a binary FITS table:

$ asttable plaintext.txt --output=table.fits --tabletype=fits-binary

In the absence of selected columns, all the input file’s columns will be output. If the
specified output is a FITS file, the type of FITS table (binary or ASCII) will be determined
from the --tabletype option. If the output is not a FITS file, it will be printed as a plain

3 In “The art of Unix programming”, Eric Raymond makes this suggestion to programmers: “When you
feel the urge to design a complex binary file format, or a complex binary application protocol, it is
generally wise to lie down until the feeling passes.”. This is a great book and strongly recommended,
give it a look if you want to truly enjoy your work/life in this environment.
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text table (with space characters between the columns). When the columns are accompanied
by meta-data (like column name, units, or comments), this information will also printed
in the plain text file before the table, as described in Section 4.5.2 [Gnuastro text table
format], page 87.

For the full list of options common to all Gnuastro programs please see Section 4.1.2
[Common options], page 69. Options can also be stored in directory, user or system-wide
configuration files to avoid repeating on the command-line, see Section 4.2 [Configuration
files], page 77. Table does not follow Automatic output that is common in most Gnuastro
programs, see Section 4.8 [Automatic output], page 95. Thus, in the absence of an output
file, the selected columns will be printed on the command-line with no column information,
ready for redirecting to other tools like AWK or sort, similar to the examples above.

-i

--information

Only print the column information in the specified table on the command-line
and exit. Each column’s information (number, name, units, data type, and
comments) will be printed as a row on the command-line. Note that the FITS
standard only requires the data type (see Section 4.4 [Numeric data types],
page 82), and in plain text tables, no meta-data/information is mandatory.
Gnuastro has its own convention in the comments of a plain text table to store
and transfer this information as described in Section 4.5.2 [Gnuastro text table
format], page 87.

This option will take precedence over the --column option, so when it is called
along with requested columns, the latter will be ignored. This can be useful
if you forget the identifier of a column after you have already typed some on
the command-line. You can simply add a -i and run Table to see the whole
list and remember. Then you can use the shell history (with the up arrow key
on the keyboard), and retrieve the last command with all the previously typed
columns present, delete -i and add the identifier you had forgot.

-c STR/INT

--column=STR/INT

Specify the columns to output, see Section 4.5.3 [Selecting table columns],
page 89, for a thorough explanation on how the value to this option is in-
terpreted. To select several output columns, this option can also be called any
number times in one call to Table. The order of the output columns will be the
same call order on the command-line.

This option is not mandatory, if no specific columns are requested, all the input
table columns are output. When this option is called multiple times, it is
possible to output one column more than once.
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6 Data manipulation

Images are one of the major formats of data that is used in astronomy. The functions in this
chapter explain the GNU Astronomy Utilities which are provided for their manipulation.
For example cropping out a part of a larger image or convolving the image with a given
kernel or applying a transformation to it.

6.1 Crop

Astronomical images are often very large, filled with thousands of galaxies. It often happens
that you only want a section of the image, or you have a catalog of sources and you want
to visually analyze them in small postage stamps. Crop is made to do all these things.
When more than one crop is required, Crop will divide the crops between multiple threads
to significantly reduce the run time.

Astronomical surveys are usually extremely large. So large in fact, that the whole survey
will not fit into a reasonably sized file. Because of this, surveys usually cut the final image
into separate tiles and store each tile in a file. For example the COSMOS survey’s Hubble
space telescope, ACS F814W image consists of 81 separate FITS images, with each one
having a volume of 1.7 Giga bytes.

Even though the tile sizes are chosen to be large enough that too many galaxies/targets
don’t fall on the edges of the tiles, inevitably some do. So when you simply crop the image
of such targets from one tile, you will miss a large area of the surrounding sky (which is
essential in estimating the noise). Therefore in its WCS mode, Crop will stitch parts of the
tiles that are relevant for a target (with the given width) from all the input images that
cover that region into the output. Of course, the tiles have to be present in the list of input
files.

Besides cropping postage stamps around certain coordinates, Crop can also crop arbi-
trary polygons from an image (or a set of tiles by stitching the relevant parts of different
tiles within the polygon), see --polygon in Section 6.1.4 [Invoking Crop], page 119. Alter-
natively, it can crop out rectangular regions through the --section option from one image,
see Section 6.1.2 [Crop section syntax], page 118.

6.1.1 Crop modes

In order to be comprehensive, intuitive, and easy to use, there are two ways to define the
crop:

1. From its center and side length. For example if you already know the coordinates of an
object and want to inspect it in an image or to generate postage stamps of a catalog
containing many such coordinates.

2. The vertices of the crop region, this can be useful for larger crops over many targets,
for example to crop out a uniformly deep, or contiguous, region of a large survey.

Irrespective of how the crop region is defined, the coordinates to define the crop can
be in Image (pixel) or World Coordinate System (WCS) standards. All coordinates are
read as floating point numbers (not integers, except for the --section option, see below).
By setting the mode in Crop, you define the standard that the given coordinates must be
interpretted. Here, the different ways to specify the crop region are discussed within each
standard. For the full list options, please see Section 6.1.4 [Invoking Crop], page 119.
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When the crop is defined by its center, the respective (integer) central pixel position will
be found internally according to the FITS standard. To have this pixel positioned in the
center of the cropped region, the final cropped region will have an add number of pixels
(even if you give an even number to --width in image mode).

Furthermore, when the crop is defined as by its center, Crop allows you to only keep
crops what don’t have any blank pixels in the vicinity of their center (your primary target).
This can be very convenient when your input catalog/coordinates originated from another
survey/filter which is not fully covered by your input image, to learn more about this feature,
please see the description of the --checkcenter option in Section 6.1.4 [Invoking Crop],
page 119.

Image coordinates
In image mode (--mode=img), Crop interprets the pixel coordinates and widths
in units of the input data-elements (for example pixels in an image, not world
coordinates). In image mode, only one image may be input. The output crop(s)
can be defined in multiple ways as listed below.

Center of multiple crops (in a catalog)
The center of (possibly multiple) crops are read from a text file.
In this mode, the columns identified with the --coordcol option
are interpreted as the center of a crop with a width of --width
pixels along each dimension. The columns can contain any float-
ing point value. The value to --output option is seen as a direc-
tory which will host (the possibly multiple) separate crop files, see
Section 6.1.4.2 [Crop output], page 124, for more. For a tutorial
using this feature, please see Section 2.1 [Hubble visually checks
and classifies his catalog], page 14.

Center of a single crop (on the command-line)
The center of the crop is given on the command-line with the
--center option. The crop width is specified by the --width op-
tion along each dimension. The given coordinates and width can
be any floating point number.

Vertices of a single crop
In Image mode there are two options to define the vertices of a
region to crop: --section and --polygon. The former is lower-
level (doesn’t accept floating point vertices, and only a rectangular
region can be defined), it is also only available in Image mode.
Please see Section 6.1.2 [Crop section syntax], page 118, for a full
description of this method.

The latter option (--polygon) is a higher-level method to
define any convex polygon (with any number of vertices) with
floating point values. Please see the description of this option in
Section 6.1.4 [Invoking Crop], page 119, for its syntax.

WCS coordinates
In WCS mode (--mode=wcs), the coordinates and widths are interpretted us-
ing the World Coordinate System (WCS, that must accompany the dataset),
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not pixel coordinates. In WCS mode, Crop accepts multiple datasets as input.
When the cropped region (defined by its center or vertices) overlaps with mul-
tiple of the input images/tiles, the overlapping regions will be taken from the
respective input (they will be stitched when necessary for each output crop).

In this mode, the input images do not necessarily have to be the same size,
they just need to have the same orientation and pixel resolution. Currently
only orientation along the celestial coordinates is accepted, if your input has
a different orientation you can use Warp’s --align option to align the image
before cropping it (see Section 6.4 [Warp], page 156).

Each individual input image/tile can even be smaller than the final crop. In
any case, any part of any of the input images which overlaps with the desired
region will be used in the crop. Note that if there is an overlap in the input
images/tiles, the pixels from the last input image read are going to be used for
the overlap. Crop will not change pixel values, so it assumes your overlapping
tiles were cutout from the same original image. There are multiple ways to
define your cropped region as listed below.

Center of multiple crops (in a catalog)
Similar to catalog inputs in Image mode (above), except that the
values along each dimension are assumed to have the same units as
the dataset’s WCS information. For example, the central RA and
Dec value for each crop will be read from the first and second calls
to the --coordcol option. The width of the cropped box (in units
of the WCS, or degrees in RA and Dec mode) must be specified
with the --width option.

Center of a single crop (on the command-line)
You can specify the center of only one crop box with the --center
option. If it exists in the input images, it will be cropped similar
to the catalog mode, see above also for --width.

Vertices of a single crop
The --polygon option is a high-level method to define any convex
polygon (with any number of vertices). Please see the description
of this option in Section 6.1.4 [Invoking Crop], page 119, for its
syntax.� �

CAUTION: In WCS mode, the image has to be aligned with the celestial co-
ordinates, such that the first FITS axis is parallel (opposite direction) to the
Right Ascension (RA) and the second FITS axis is parallel to the declination.
If these conditions aren’t met for an image, Crop will warn you and abort. You
can use Warp’s --align option to align the input image with these coordinates,
see Section 6.4 [Warp], page 156.
 	

As a summary, if you don’t specify a catalog, you have to define the cropped region
manually on the command-line. In any case the mode is mandatory for Crop to be able to
interpret the values given as coordinates or widths.
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6.1.2 Crop section syntax

When in image mode, one of the methods to crop only one rectangular section from the
input image is to use the --section option. Crop has a powerful syntax to read the box
parameters from a string of characters. If you leave certain parts of the string to be empty,
Crop can fill them for you based on the input image sizes.

To define a box, you need the coordinates of two points: the first (X1, Y1) and the
last pixel (X2, Y2) pixel positions in the image, or four integer numbers in total. The four
coordinates can be specified with one string in this format: ‘X1:X2,Y1:Y2’. This string is
given to the --section option. Therefore, the pixels along the first axis that are ≥X1 and
≤X2 will be included in the cropped image. The same goes for the second axis. Note that
each different term will be read as an integer, not a float. This is a low-level option, for a
higher-level way to specify region (any polygon, not just a box), please see the --polygon

option in Section 6.1.4.1 [Crop options], page 120. Also note that in the FITS standard,
pixel indexes along each axis start from unity(1) not zero(0).

You can omit any of the values and they will be filled automatically. The left hand side
of the colon (:) will be filled with 1, and the right side with the image size. So, 2:,: will
include the full range of pixels along the second axis and only those with a first axis index
larger than 2 in the first axis. If the colon is omitted for a dimension, then the full range
is automatically used. So the same string is also equal to 2:, or 2: or even 2. If you want
such a case for the second axis, you should set it to: ,2.

If you specify a negative value, it will be seen as before the indexes of the image which
are outside the image along the bottom or left sides when viewed in SAO ds9. In case you
want to count from the top or right sides of the image, you can use an asterisk (*). When
confronted with a *, Crop will replace it with the maximum length of the image in that
dimension. So *-10:*+10,*-20:*+20 will mean that the crop box will be 20× 40 pixels in
size and only include the top corner of the input image with 3/4 of the image being covered
by blank pixels, see Section 6.1.3 [Blank pixels], page 118.

If you feel more comfortable with space characters between the values, you can use as
many space characters as you wish, just be careful to put your value in double quotes, for
example --section="5:200, 123:854". If you forget the quotes, anything after the first
space will not be seen by --section and you will most probably get an error because the
rest of your string will be read as a filename (which most probably doesn’t exist). See
Section 4.1 [Command-line], page 65, for a description of how the command-line works.

6.1.3 Blank pixels

The cropped box can potentially include pixels that are beyond the image range. For
example when a target in the input catalog was very near the edge of the input image. The
parts of the cropped image that were not in the input image will be filled with the following
two values depending on the data type of the image. In both cases, SAO ds9 will not color
code those pixels.

• If the data type of the image is a floating point type (float or double), IEEE NaN (Not
a number) will be used.

• For integer types, pixels out of the image will be filled with the value of the BLANK

keyword in the cropped image header. The value assigned to it is the lowest value
possible for that type, so you will probably never need it any way. Only for the
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unsigned character type (BITPIX=8 in the FITS header), the maximum value is used
because it is unsigned, the smallest value is zero which is often meaningful.

You can ask for such blank regions to not be included in the output crop image using the
--noblank option. In such cases, there is no guarantee that the image size of your outputs
are what you asked for.

In some survey images, unfortunately they do not use the BLANK FITS keyword. Instead
they just give all pixels outside of the survey area a value of zero. So by default, when
dealing with float or double image types, any values that are 0.0 are also regarded as blank
regions. This can be turned off with the --zeroisnotblank option.

6.1.4 Invoking Crop

Crop will crop a region from an image. If in WCS mode, it will also stitch parts from
separate images in the input files. The executable name is astcrop with the following
general template

$ astcrop [OPTION...] [ASCIIcatalog] ASTRdata ...

One line examples:

## Crop all objects in cat.txt from image.fits:

$ astcrop --catalog=cat.txt image.fits

## Crop all options in catalog (with RA,DEC) from all the files

## ending in ‘_drz.fits’ in ‘/mnt/data/COSMOS/’:

$ astcrop --mode=wcs --catalog=cat.txt /mnt/data/COSMOS/*_drz.fits

## Crop the outer 10 border pixels of the input image:

$ astcrop --section=10:*-10,10:*-10 --hdu=2 image.fits

## Crop region around RA and Dec of (189.16704, 62.218203):

$ astcrop --mode=wcs --center=189.16704,62.218203 goodsnorth.fits

## Crop region around pixel coordinate (568.342, 2091.719):

$ astcrop --mode=img --center=568.342,2091.719 --width=201 image.fits

Crop has one mandatory argument which is the input image name(s), shown above with
ASTRdata .... You can use shell expansions, for example * for this if you have lots of
images in WCS mode. If the crop box centers are in a catalog, you can use the --catalog
option. In other cases, you have to provide the single cropped output parameters must be
given with command-line options. See Section 6.1.4.2 [Crop output], page 124, for how the
output file name(s) can be specified. For the full list of general options to all Gnuastro
programs (including Crop), please see Section 4.1.2 [Common options], page 69.

Floating point numbers can be used to specify the crop region (except the --section

option, see Section 6.1.2 [Crop section syntax], page 118). In such cases, the floating point
values will be used to find the desired integer pixel indices based on the FITS standard.
Hence, Crop ultimately doesn’t do any sub-pixel cropping (in other words, it doesn’t change
pixel values). If you need such crops, you can use Section 6.4 [Warp], page 156, to first
warp the image to the a new pixel grid, then crop from that. For example, let’s assume
you want a crop from pixels 12.982 to 80.982 along the first dimension. You should first
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translate the image by −0.482 (note that the edge of a pixel is at integer multiples of 0.5).
So you should run Warp with --translate=-0.482,0 and then crop the warped image
with --section=13:81.

There are two ways to define the cropped region: with its center or its vertices. See
Section 6.1.1 [Crop modes], page 115, for a full description. In the former case, Crop can
check if the central region of the cropped image is indeed filled with data or is blank (see
Section 6.1.3 [Blank pixels], page 118), and not produce any output when the center is
blank, see the description under --checkcenter for more.

When in catalog mode, Crop will run in parallel unless you set --numthreads=1, see
Section 4.3 [Multi-threaded operations], page 80. Note that when multiple outputs are
created with threads, the outputs will not be created in the same order. This is because the
threads are asynchronous and thus not started in order. This has no effect on each output,
see Section 2.1 [Hubble visually checks and classifies his catalog], page 14, for a tutorial on
effectively using this feature.

6.1.4.1 Crop options

The options can be classified into the following contexts: Input, Output and operating
mode options. Options that are common to all Gnuastro program are listed in Section 4.1.2
[Common options], page 69, and will not be repeated here.

When you are specifying the crop vertices your self (through --section, or --polygon)
on relatively small regions (depending on the resolution of your images) the outputs from
image and WCS mode can be approximately equivalent. However, as the crop sizes get
large, the curved nature of the WCS coordinates have to be considered. For example, when
using --section, the right ascension of the bottom left and top left corners will not be
equal. If you only want regions within a given right ascension, use --polygon in WCS
mode.

Input image parameters:

--hstartwcs=INT

Specify the first keyword card (line number) to start finding the input image
world coordinate system information. Distortions were only recently included in
WCSLIB (from version 5). Therefore until now, different telescope would apply
their own specific set of WCS keywords and put them into the image header
along with those that WCSLIB does recognize. So now that WCSLIB recognizes
most of the standard distortion parameters, they will get confused with the old
ones and give completely wrong results. For example in the CANDELS-GOODS
South images1.

The two --hstartwcs and --hendwcs are thus provided so when using older
datasets, you can specify what region in the FITS headers you want to use to
read the WCS keywords. Note that this is only relevant for reading the WCS
information, basic data information like the image size are read separately.
These two options will only be considered when the value to --hendwcs is
larger than that of --hstartwcs. So if they are equal or --hstartwcs is larger
than --hendwcs, then all the input keywords will be parsed to get the WCS
information of the image.

1 https://archive.stsci.edu/pub/hlsp/candels/goods-s/gs-tot/v1.0/

https://archive.stsci.edu/pub/hlsp/candels/goods-s/gs-tot/v1.0/
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--hendwcs=INT

Specify the last keyword card to read for specifying the image world coordinate
system on the input images. See --hstartwcs

Crop box parameters:

-c FLT[,FLT[,...]]

--center=FLT[,FLT[,...]]

The central position of the crop in the input image. The positions along each
dimension must be separated by a comma (,) and fractions are also acceptable.
The number of values given to this option must be the same as the dimensions
of the input dataset. The width of the crop should be set with --width. The
units of the coordinates are read based on the value to the --mode option, see
below.

-w FLT[,FLT[,...]]

--width=FLT[,FLT[,...]]

Width of the cropped region about its center. --width may take either a single
value (to be used for all dimensions) or multiple values (a specific value for each
dimension). If in WCS mode, value(s) given to this option will be read in the
same units as the dataset’s WCS information along this dimension. The final
output will have an odd number of pixels to allow easy identification of the
pixel which keeps your requested coordinate (from --center or --catalog).

The --width option also accepts fractions. For example if you want the width
of your crop to be 3 by 5 arcseconds along RA and Dec respectively, you can
call it with: --width=3/3600,5/3600.

If you want an even sided crop, you can run Crop afterwards with
--section=":*-1,:*-1" or --section=2:,2: (depending on which side you
don’t need), see Section 6.1.2 [Crop section syntax], page 118.

-l STR

--polygon=STR

String of crop polygon vertices. Note that currently only convex polygons
should be used. In the future we will make it work for all kinds of polygons.
Convex polygons are polygons that do not have an internal angle more than
180 degrees. This option can be used both in the image and WCS modes, see
Section 6.1.1 [Crop modes], page 115. The cropped image will be the size of
the rectangular region that completely encompasses the polygon. By default
all the pixels that are outside of the polygon will be set as blank values (see
Section 6.1.3 [Blank pixels], page 118). However, if --outpolygon is called all
pixels internal to the vertices will be set to blank.

The syntax for the polygon vertices is similar to, and simpler than, that for
--section. In short, the dimensions of each coordinate are separated by a
comma (,) and each vertex is separated by a colon (:). You can define as
many vertices as you like. If you would like to use space characters between the
dimensions and vertices to make them more human-readable, then you have to
put the value to this option in double quotation marks.

For example, let’s assume you want to work on the deepest part of the WFC3/IR
images of Hubble Space Telescope eXtreme Deep Field (HST-XDF). According

https://archive.stsci.edu/prepds/xdf/
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to the webpage (https://archive.stsci.edu/prepds/xdf/)2 the deepest
part is contained within the coordinates:

[ (53.187414,-27.779152), (53.159507,-27.759633),

(53.134517,-27.787144), (53.161906,-27.807208) ]

They have provided mask images with only these pixels in the WFC3/IR images,
but what if you also need to work on the same region in the full resolution ACS
images? Also what if you want to use the CANDELS data for the shallow
region? Running Crop with --polygon will easily pull out this region of the
image for you irrespective of the resolution. If you have set the operating mode
to WCS mode in your nearest configuration file (see Section 4.2 [Configuration
files], page 77), there is no need to call --mode=wcs on the command line. You
may also provide many FITS images/tiles and Crop will stitch them to produce
this cropped region:

$ astcrop --mode=wcs desired-filter-image(s).fits \

--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \

53.134517,-27.787144 : 53.161906,-27.807208"

In other cases, you have an image and want to define the polygon yourself (it
isn’t already published like the example above). As the number of vertices
increases, checking the vertex coordinates on a FITS viewer (for example SAO
ds9) and typing them in one by one can be very tedious and prone to typo
errors.

You can take the following steps to avoid the frustration and possible typos:
Open the image with ds9 and activate its “region” mode with Edit→Region.
Then define the region as a polygon with Region→Shape→Polygon. Click on
the approximate center of the region you want and a small square will appear.
By clicking on the vertices of the square you can shrink or expand it, clicking
and dragging anywhere on the edges will enable you to define a new vertex.
After the region has been nicely defined, save it as a file with Region→Save
Regions. You can then select the name and address of the output file, keep the
format as REG and press “OK”. In the next window, keep format as “ds9” and
“Coordinate System” as “fk5”. A plain text file (let’s call it ds9.reg) is now
created.

You can now convert this plain text file to Crop’s polygon format with this
command (when typing on the command-line, ignore the “\” at the end of
the first and second lines along with the extra spaces, these are only for nice
printing):

$ v=$(awk ’NR==4’ ds9.reg | sed -e’s/polygon(//’ \

-e’s/\([^,]*,[^,]*\),/\1:/g’ -e’s/)//’ )

$ astcrop --mode=wcs image.fits --polygon=$v

--outpolygon

Keep all the regions outside the polygon and mask the inner ones with blank
pixels (see Section 6.1.3 [Blank pixels], page 118). This is practically the inverse
of the default mode of treating polygons. Note that this option only works

2 https://archive.stsci.edu/prepds/xdf/

https://archive.stsci.edu/prepds/xdf/
https://archive.stsci.edu/prepds/xdf/
https://archive.stsci.edu/prepds/xdf/
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when you have only provided one input image. If multiple images are given (in
WCS mode), then the full area covered by all the images has to be shown and
the polygon excluded. This can lead to a very large area if large surveys like
COSMOS are used. So Crop will abort and notify you. In such cases, it is best
to crop out the larger region you want, then mask the smaller region with this
option.

-s STR

--section=STR

Section of the input image which you want to be cropped. See Section 6.1.2
[Crop section syntax], page 118, for a complete explanation on the syntax re-
quired for this input.

-x STR/INT

--coordcol=STR/INT

The column in a catalog to read as a coordinate. The value can be either the
column number (starting from 1), or a match/search in the table meta-data,
see Section 4.5.3 [Selecting table columns], page 89. This option must be called
multiple times, depending on the number of dimensions in the input dataset.
If it is called more than necessary, the extra columns (later calls to this option
on the command-line or configuration files) will be ignored, see Section 4.2.2
[Configuration file precedence], page 78.

-n STR/INT

--namecol=STR/INT

Column selection of crop file name. The value can be either the column number
(starting from 1), or a match/search in the table meta-data, see Section 4.5.3
[Selecting table columns], page 89. This option can be used both in Image and
WCS modes, and not a mandatory. When a column is given to this option, the
final crop base file name will be taken from the contents of this column. The
directory will be determined by the --output option (current directory if not
given) and the value to --suffix will be appended. When this column isn’t
given, the row number will be used instead.

Output options:

-c INT

--checkcenter=INT

Box width (odd number of pixels) of region in the center of the image to check
for blank values. If the value to this option is zero, no checking is done. This
option is only relevant when the cropped region(s) are defined by their center
(not by the vertices, see Section 6.1.1 [Crop modes], page 115). If any of the
pixels in this central region of a crop (defined by its center) are blank, then it
will not be created.

Because survey regions don’t often have a clean square or rectangle shape, some
of the pixels on the sides of the survey FITS image don’t commonly have any
data and are blank (see Section 6.1.3 [Blank pixels], page 118). So when the
catalog was not generated from the input image, it often happens that the
image does not have data over some of the points.
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When the given center of a crop falls in such regions and this option has a non-
zero, odd value, no crop will be created. Therefore with this option, you can
specify a width of a small box (3 pixels is often good enough) around the central
pixel of the cropped image. You can check which crops were created and which
weren’t from the command-line (if --quiet was not called, see Section 4.1.2.3
[Operating mode options], page 73), or in Crop’s log file (see Section 6.1.4.2
[Crop output], page 124).

-p STR

--suffix=STR

The suffix (or post-fix) of the output files for when you want all the cropped
images to have a special ending. One case where this might be helpful is when
besides the science images, you want the weight images (or exposure maps,
which are also distributed with survey images) of the cropped regions too. So
in one run, you can set the input images to the science images and --suffix=_

s.fits. In the next run you can set the weight images as input and --suffix=_

w.fits.

-b

--noblank

Pixels outside of the input image that are in the crop box will not be used. By
default they are filled with blank values (depending on type), see Section 6.1.3
[Blank pixels], page 118. This option only applies only in Image mode, see
Section 6.1.1 [Crop modes], page 115.

-z

--zeroisnotblank

In float or double images, it is common to give the value of zero to blank
pixels. If the input image type is one of these two types, such pixels will also
be considered as blank. You can disable this behavior with this option, see
Section 6.1.3 [Blank pixels], page 118.

Operating mode options:

-O STR

--mode=STR

Operate in Image mode or WCS mode when the input coordinates can be both
image or WCS. The value must either be img or wcs, see Section 6.1.1 [Crop
modes], page 115, for a full description.

6.1.4.2 Crop output

The string given to --output option will be interpretted depending on how many crops
were requested, see Section 6.1.1 [Crop modes], page 115:

• When a catalog is given, the value of the --output (see Section 4.1.2 [Common options],
page 69) will be read as the directory to store the output cropped images. Hence if
it doesn’t already exist, Crop will abort with an error of a “No such file or directory”
error.

The crop file names will consist of two parts: a variable part (the row number of each
target starting from 1) along with a fixed string which you can set with the --suffix
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option. Optionally, you may also use the --namecol option to define a column in the
input catalog to use as the file name instead of numbers.

• When only one crop is desired, the value to --output will be read as a file name. If no
output is specified or if it is a directory, the output file name will follow the automatic
output names of Gnuastro, see Section 4.8 [Automatic output], page 95: The string
given to --suffix will be replaced with the .fits suffix of the input.

The header of each output cropped image will contain the names of the input image(s)
it was cut from. If a name is longer than the 70 character space that the FITS standard
allows for header keyword values, the name will be cut into several keywords from the
nearest slash (/). The keywords have the following format: ICFn_m (for Crop File). Where
n is the number of the image used in this crop and m is the part of the name (it can be
broken into multiple keywords). Following the name is another keyword named ICFnPIX

which shows the pixel range from that input image in the same syntax as Section 6.1.2
[Crop section syntax], page 118. So this string can be directly given to the --section

option later.

Once done, a log file can be created in the current directory with the --log option.
This file will have three columns and the same number of rows as the number of cropped
images. There are also comments on the top of the log file explaining basic information
about the run and descriptions for the columns. A short description of the columns is also
given below:

1. The cropped image file name for that row.

2. The number of input images that were used to create that image.

3. A 0 if the central few pixels (value to the --checkcenter option) are blank and 1 if they
aren’t. When the crop was not defined by its center (see Section 6.1.1 [Crop modes],
page 115), or --checkcenter was given a value of 0 (see Section 6.1.4 [Invoking Crop],
page 119), the center will not be checked and this column will be given a value of -1.

6.2 Arithmetic

It is commonly necessary to do operations on some or all of the elements of a dataset
independently (pixels in an image). For example, in the reduction of raw data it is necessary
to subtract the Sky value (Section 7.1.3 [Sky value], page 168) from each image image. Later
(once the images as warped into a single grid using Warp for example, see Section 6.4 [Warp],
page 156), the images are co-added (the output pixel grid is the average of the pixels of the
individual input images). Arithmetic is Gnuastro’s program for such operations on your
datasets directly from the command-line. It currently uses the reverse polish or post-fix
notation, see Section 6.2.1 [Reverse polish notation], page 125, and will work on the native
data types of the input images/data to reduce CPU and RAM resources, see Section 4.4
[Numeric data types], page 82. For more information on how to run Arithmetic, please see
Section 6.2.3 [Invoking Arithmetic], page 132.

6.2.1 Reverse polish notation

The most common notation for arithmetic operations is the infix notation (https://
en.wikipedia.org/wiki/Infix_notation) where the operator goes between the two
operands, for example 4 + 5. While the infix notation is the preferred way in most pro-
gramming languages, currently Arithmetic does not use it since it will require parenthesis

https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Infix_notation
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which can complicate the implementation of the code. In the near future we do plan to
adopt this notation3, but for the time being (due to time constraints on the developers),
Arithmetic uses the post-fix or reverse polish notation (https://en.wikipedia.org/wiki/
Reverse_Polish_notation). The Wikipedia article provides some excellent explanation on
this notation but here we will give a short summary here for self-sufficiency.

In the post-fix notation, the operator is placed after the operands, as we will see below
this removes the need to define parenthesis for most ordinary operators. For example,
instead of writing 5+6, we write 5 6 +. To easily understand how this notation works, you
can think of each operand as a node in a first-in-first-out stack. Every time an operator is
confronted, it pops the number of operands it needs from the top of the stack (so they don’t
exist in the stack any more), does its operation and pushes the result back on top of the
stack. So if you want the average of 5 and 6, you would write: 5 6 + 2 /. The operations
that are done are:

1. 5 is an operand, so it is pushed to the top of the stack.

2. 6 is an operand, so it is pushed to the top of the stack.

3. + is a binary operator, so pull the top two elements of the stack and perform addition
on them (the order is 5 + 6 in the example above). The result is 11, push it on top of
the stack.

4. 2 is an operand so push it onto the top of the stack.

5. / is a binary operator, so pull out the top two elements of the stack (top-most is 2,
then 11) and divide the second one by the first.

In the Arithmetic program, the operands can be FITS images or numbers. As you
can see, very complicated procedures can be created without the need for parenthesis or
worrying about precedence. Even functions which take an arbitrary number of arguments
can be defined in this notation. This is a very powerful notation and is used in languages
like Postscript4 (the programming language in Postscript and compiled into PDF files) uses
this notation.

6.2.2 Arithmetic operators

The recognized operators in Arithmetic are listed below. See Section 6.2.1 [Reverse polish
notation], page 125, for more on how the operators and operands should be ordered on the
command-line. The operands to all operators can be a data array (for example a FITS
image) or a number, the output will be an array or number according to the inputs. For
example a number multiplied by an array will produce an array. The conditional operators
will return pixel, or numerical values of 0 (false) or 1 (true) and stored in an unsigned char

data type (see Section 4.4 [Numeric data types], page 82).

+ Addition, so “4 5 +” is equivalent to 4 + 5.

- Subtraction, so “4 5 -” is equivalent to 4− 5.

x Multiplication, so “4 5 x” is equivalent to 4× 5.

/ Division, so “4 5 /” is equivalent to 4/5.

3 https://savannah.gnu.org/task/index.php?13867
4 See the EPS and PDF part of Section 5.2.1 [Recognized file formats], page 106, for a little more on the

Postscript language.

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://savannah.gnu.org/task/index.php?13867
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% Modulo (remainder), so “3 2 %” is equivalent to 1. Note that the modulo oper-
ator only works on integer types.

abs Absolute value of first operand, so “4 abs” is equivalent to |4|.
pow First operand to the power of the second, so “4.3 5f pow” is equivalent to

4.35. Currently pow will only work on single or double precision floating point
numbers or images. To be sure that a number is read as a floating point (even
if it doesn’t have any non-zero decimals) put an f after it.

sqrt The square root of the first operand, so “5 sqrt” is equivalent to
√
5. The

output type is determined from the input, so the output of this example will
be 2 (since 5 doesn’t have any non-zero decimal digits). If you want 2.23607,
run 5f sqrt instead, the f will ensure that a number will be read as a floating
point number, even if it doesn’t have decimal digits. If the input image has
an integer type, you should explicitly convert the image to floating point, for
example a.fits float sqrt, see the type conversion operators below.

log Natural logarithm of first operand, so “4 log” is equivalent to ln(4). The output
type is determined from the input, see the explanation under sqrt for more.

log10 Base-10 logarithm of first operand, so “4 log10” is equivalent to log(4). The
output type is determined from the input, see the explanation under sqrt for
more.

minvalue Minimum (non-blank) value in the top operand on the stack, so “a.fits
minvalue” will push the the minimum pixel value in this image onto the stack.
Therefore this operator is mainly intended for data (for example images), if the
top operand is a number, this operator just returns it without any change. So
note that when this operator acts on a single image, the output will no longer
be an image, but a number. The output of this operand is in the same type as
the input.

maxvalue Maximum (non-blank) value of first operand in the same type, similar to
minvalue.

numvalue Number of non-blank elements in first operand in the uint64 type, similar to
minvalue.

sumvalue Sum of non-blank elements in first operand in the float32 type, similar to
minvalue.

meanvalue

Mean value of non-blank elements in first operand in the float32 type, similar
to minvalue.

stdvalue Standard deviation of non-blank elements in first operand in the float32 type,
similar to minvalue.

medianvalue

Median of non-blank elements in first operand with the same type, similar to
minvalue.

min The first popped operand to this operator must be a positive integer number
which specifies how many further operands should be popped from the stack.
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The given number of operands must have the same type and size. Each pixel
of the output of this operator will be set to the minimum value of the given
number of operands (images) in that pixel.

For example the following command will produce an image with the same size
and type as the inputs but each output pixel is set to the minimum respective
pixel value of the three input images.

$ astarithmetic a.fits b.fits c.fits 3 min

Important notes:

• NaN/blank pixels will be ignored, see Section 6.1.3 [Blank pixels], page 118.

• The output will have the same type as the inputs. This is natural for the
min and max operators, but for other similar operators (for example sum, or
average) the per-pixel operations will be done in double precision floating
point and then stored back in the input type. Therefore, if the input was
an integer, C’s internal type conversion will be used.

max Similar to min, but the pixels of the output will contain the maximum of the
respective pixels in all operands in the stack.

num Similar to min, but the pixels of the output will contain the number of the
respective non-blank pixels in all input operands.

sum Similar to min, but the pixels of the output will contain the sum of the respective
pixels in all input operands.

mean Similar to min, but the pixels of the output will contain the mean (average) of
the respective pixels in all operands in the stack.

std Similar to min, but the pixels of the output will contain the standard deviation
of the respective pixels in all operands in the stack.

median Similar to min, but the pixels of the output will contain the median of the
respective pixels in all operands in the stack.

filter-mean

Apply mean filtering (or moving average (https://en.wikipedia.org/wiki/
Moving_average)) on the input dataset. During mean filtering, each pixel (data
element) is replaced by the mean value of all its surrounding pixels (excluding
blank values). The number of surrounding pixels in each dimension (to calculate
the mean) is determined through the earlier operands that have been pushed
onto the stack prior to the input dataset. The number of necessary operands
is determined by the dimensions of the input dataset (first popped operand).
The order of the dimensions on the command-line is the order in FITS format.
Here is one example:

$ astarithmetic 5 4 image.fits filter-mean

In this example, each pixel is replaced by the mean of a 5 by 4 box around it.
The box is 5 pixels along the first FITS dimension (horizontal when viewed in
ds9) and 4 pixels along the second FITS dimension (vertical).

Each pixel will be placed in the center of the box that the mean is calculated on.
If the given width along a dimension is even, then the center is assumed to be

https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Moving_average
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between the pixels (not in the center of a pixel). When the pixel is close to the
center, the pixels of the box that fall outside the image are ignored. Therefore,
on the edge, less points will be used in calculating the mean.

The final effect of mean filtering is to smooth the input image, it is essentially
a convolution with a kernel that has identical values for all its pixels (is flat),
see Section 6.3.1.1 [Convolution process], page 136.

filter-median

Apply median filtering (https://en.wikipedia.org/wiki/Median_filter)
on the input dataset. This is very similar to filter-mean, except that instead
of the mean value of the box pixels, the median value is used to replace a pixel
value. For more on how to use this operator, please see filter-mean.

The median is less susceptible to outliers compared to the mean. As a result,
after median filtering, the pixel values will be more discontinuous than mean
filtering.

lt Less than: If the second popped (or left operand in infix notation, see
Section 6.2.1 [Reverse polish notation], page 125) value is smaller than the
first popped operand, then this function will return a value of 1, otherwise it
will return a value of 0. If both operands are images, then all the pixels will
be compared with their counterparts in the other image. If only one operand
is an image, then all the pixels will be compared with the the single value
(number) of the other operand. Finally if both are numbers, then the output
is also just one number (0 or 1). When the output is not a single number, it
will be stored as an unsigned char type.

le Less or equal: similar to lt (‘less than’ operator), but returning 1 when the
second popped operand is smaller or equal to the first.

gt Greater than: similar to lt (‘less than’ operator), but returning 1 when the
second popped operand is greater than the first.

ge Greater or equal: similar to lt (‘less than’ operator), but returning 1 when the
second popped operand is larger or equal to the first.

eq Equality: similar to lt (‘less than’ operator), but returning 1 when the two
popped operands are equal (to double precision floating point accuracy).

ne Non-Equality: similar to lt (‘less than’ operator), but returning 1 when the two
popped operands are not equal (to double precision floating point accuracy).

and Logical AND: returns 1 if both operands have a non-zero value and 0 if both
are zero. Both operands have to be the same kind: either both images or both
numbers.

or Logical OR: returns 1 if either one of the operands is non-zero and 0 only when
both operators are zero. Both operands have to be the same kind: either both
images or both numbers.

not Logical NOT: returns 1 when the operand is zero and 0 when the operand is
non-zero. The operand can be an image or number, for an image, it is applied
to each pixel separately.

https://en.wikipedia.org/wiki/Median_filter
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isblank Test for a blank value (see Section 6.1.3 [Blank pixels], page 118). In essence,
this is very similar to the conditional operators: the output is either 1 or 0
(see the ‘less than’ operator above). The difference is that it only needs one
operand. Because of the definition of a blank pixel, a blank value is not even
equal to itself, so you cannot use the equal operator above to select blank pixels.
See the “Blank pixels” box below for more on Blank pixels in Arithmetic.

where Change the input (pixel) value where/if a certain condition holds. The con-
ditional operators above can be used to define the condition. Three operands
are required for where. The input format is demonstrated in this simplified
example:

$ astarithmetic modify.fits binary.fits if-true.fits where

The value of any pixel in modify.fits that corresponds to a non-zero pixel of
binary.fits will be changed to the value of the same pixel in if-true.fits

(this may also be a number). The 3rd and 2nd popped operands (modify.fits
and binary.fits respectively, see Section 6.2.1 [Reverse polish notation],
page 125) have to have the same dimensions/size. if-true.fits can be either
a number, or have the same dimension/size as the other two.

The 2nd popped operand (binary.fits) has to have uint8 (or unsigned char

in standard C) type (see Section 4.4 [Numeric data types], page 82). It is
treated as a binary dataset (with only two values: zero and non-zero, hence the
name binary.fits in this example). However, commonly you won’t be dealing
with an actual FITS file of a condition/binary image. You will probably define
the condition in the same run based on some other reference image and use
the conditional and logical operators above to make a true/false (or one/zero)
image for you internally. For example the case below:

$ astarithmetic in.fits reference.fits 100 gt new.fits where

In the example above, any of the in.fits pixels that has a value in
reference.fits greater than 100, will be replaced with the corresponding
pixel in new.fits. Effectively the reference.fits 100 gt part created
the condition/binary image which was added to the stack (in memory) and
later used by where. The command above is thus equivalent to these two
commands:

$ astarithmetic reference.fits 100 gt --output=binary.fits

$ astarithmetic in.fits binary.fits new.fits where

Finally, the input operands are read and used independently, so you can use
the same file more than once as any of the operands.

When the 1st popped operand to where (if-true.fits) is a single number, it
may be a NaN value (or any blank value, depending on its type) like the example
below (see Section 6.1.3 [Blank pixels], page 118). When the number is blank,
it will be converted to the blank value of the type of the 3rd popped operand
(in.fits). Hence, in the example below, all the pixels in reference.fits that
have a value greater than 100, will become blank in the natural data type of
in.fits (even though NaN values are only defined for floating point types).

$ astarithmetic in.fits reference.fits 100 gt nan where
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bitand Bitwise AND operator: only bits with values of 1 in both popped operands will
get the value of 1, the rest will be set to 0. For example (assuming numbers can
be written as bit strings on the command-line): 00101000 00100010 bitand

will give 00100000. Note that the bitwise operators only work on integer type
datasets.

bitor Bitwise inclusive OR operator: The bits where at least one of the two popped
operands has a 1 value get a value of 1, the others 0. For example (assum-
ing numbers can be written as bit strings on the command-line): 00101000

00100010 bitand will give 00101010. Note that the bitwise operators only
work on integer type datasets.

bitxor Bitwise exclusive OR operator: A bit will be 1 if it differs between the two
popped operands. For example (assuming numbers can be written as bit strings
on the command-line): 00101000 00100010 bitand will give 00001010. Note
that the bitwise operators only work on integer type datasets.

lshift Bitwise left shift operator: shift all the bits of the first operand to the left by a
number of times given by the second operand. For example (assuming numbers
can be written as bit strings on the command-line): 00101000 2 lshift will
give 10100000. This is equivalent to multiplication by 4. Note that the bitwise
operators only work on integer type datasets.

rshift Bitwise right shift operator: shift all the bits of the first operand to the right by a
number of times given by the second operand. For example (assuming numbers
can be written as bit strings on the command-line): 00101000 2 rshift will
give 00001010. Note that the bitwise operators only work on integer type
datasets.

bitnot Bitwise not (more formally known as one’s complement) operator: flip all the
bits of the popped operand (note that this is the only unary, or single operand,
bitwise operator). In other words, any bit with a value of 0 is changed to 1 and
vice-versa. For example (assuming numbers can be written as bit strings on the
command-line): 00101000 bitnot will give 11010111. Note that the bitwise
operators only work on integer type datasets/numbers.

uint8 Convert the type of the popped operand to 8-bit un-signed integer type (see
Section 4.4 [Numeric data types], page 82). The internal conversion of C will
be used.

int8 Convert the type of the popped operand to 8-bit signed integer type (see
Section 4.4 [Numeric data types], page 82). The internal conversion of C will
be used.

uint16 Convert the type of the popped operand to 16-bit un-signed integer type (see
Section 4.4 [Numeric data types], page 82). The internal conversion of C will
be used.

int16 Convert the type of the popped operand to 16-bit signed integer (see Section 4.4
[Numeric data types], page 82). The internal conversion of C will be used.
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uint32 Convert the type of the popped operand to 32-bit un-signed integer type (see
Section 4.4 [Numeric data types], page 82). The internal conversion of C will
be used.

int32 Convert the type of the popped operand to 32-bit signed integer type (see
Section 4.4 [Numeric data types], page 82). The internal conversion of C will
be used.

uint64 Convert the type of the popped operand to 64-bit un-signed integer (see
Section 4.4 [Numeric data types], page 82). The internal conversion of C will
be used.

float32 Convert the type of the popped operand to 32-bit (single precision) floating
point (see Section 4.4 [Numeric data types], page 82). The internal conversion
of C will be used.

float64 Convert the type of the popped operand to 64-bit (double precision) floating
point (see Section 4.4 [Numeric data types], page 82). The internal conversion
of C will be used.� �

Blank pixels in Arithmetic: Blank pixels in the image (see Section 6.1.3 [Blank pixels],
page 118) will be stored based on the data type. When the input is floating point type,
blank values are NaN. One aspect of NaN values is that by definition they will fail on any
comparison. Hence both equal and not-equal operators will fail when both their operands
are NaN! Therefore, the only way to guarantee selection of blank pixels is through the
isblank operator explained above.

One way you can exploit this property of the NaN value to your advantage is when you
want a fully zero-valued image (even over the blank pixels) based on an already existing
image (with same size and world coordinate system settings). The following command will
produce this for you:

$ astarithmetic input.fits nan eq --output=all-zeros.fits

Note that on the command-line you can write NaN in any case (for example NaN, or NAN are
also acceptable). Reading NaN as a floating point number in Gnuastro isn’t case-sensitive.
 	
6.2.3 Invoking Arithmetic

Arithmetic will do pixel to pixel arithmetic operations on the individual pixels of input data
and/or numbers. For the full list of operators with explanations, please see Section 6.2.2
[Arithmetic operators], page 126. Any operand that only has a single element (number, or
single pixel FITS image) will be read as a number, the rest of the inputs must have the
same dimensions. The general template is:

$ astarithmetic [OPTION...] ASTRdata1 [ASTRdata2] OPERATOR ...

One line examples:

## Calculate (10.32-3.84)^2.7 quietly (will just print 155.329):

$ astarithmetic -q 10.32 3.84 - 2.7 pow

## Inverse the input image (1/pixel):

$ astarithmetic 1 image.fits / --out=inverse.fits
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## Multiply each pixel in image by -1:

$ astarithmetic image.fits -1 x --out=negative.fits

## Subtract extension 4 from extension 1 (counting from zero):

$ astarithmetic image.fits image.fits - --out=skysub.fits \

--hdu=1 --hdu=4

## Add two images, then divide them by 2 (2 is read as floating point):

$ astarithmetic image1.fits image2.fits + 2f / --out=average.fits

## Use Arithmetic’s average operator:

$ astarithmetic image1.fits image2.fits average --out=average.fits

## Calculate the median of three images in three separate extensions:

$ astarithmetic img1.fits img2.fits img3.fits median \

-h0 -h1 -h2 --out=median.fits

If the output is an image, and the --output option is not given, automatic output will
use the name of the first FITS image encountered to generate an output file name, see
Section 4.8 [Automatic output], page 95. Also, output WCS information will be taken from
the first input image encountered. When the output is a single number, that number will
be printed in the standard output and no output file will be created. Arithmetic’s notation
for giving operands to operators is described in Section 6.2.1 [Reverse polish notation],
page 125. To ignore certain pixels, set them as blank, see Section 6.1.3 [Blank pixels],
page 118, for example with the where operator (see Section 6.2.2 [Arithmetic operators],
page 126). See Section 4.1.2 [Common options], page 69, for a review of the options in all
Gnuastro programs. Arithmetic just redefines the --hdu option as explained below:

-h INT/STR

--hdu INT/STR

The header data unit of the input FITS images, see Section 4.1.2.1
[Input/Output options], page 69. Unlike most options in Gnuastro (which will
ultimately only have one value for this option), Arithmetic allows --hdu to be
called multiple times and the value of each invocation will be stored separately
(for the unlimited number of input images you would like to use). Recall that
for other programs this (common) option only takes a single value. So in other
programs, if you specify it multiple times on the command-line, only the last
value will be used and in the configuration files, it will be ignored if it already
has a value.

The order of the values to --hdu has to be in the same order as input FITS
images. Options are first read from the command-line (from left to right),
then top-down in each configuration file, see Section 4.2.2 [Configuration file
precedence], page 78.

If the number of HDUs is less than the number of input images, Arithmetic
will abort and notify you. However, if there are more HDUs than FITS images,
there is no problem: they will be used in the given order (every time a FITS
image comes up on the stack) and the extra HDUs will be ignored in the end.
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So there is no problem with having extra HDUs in the configuration files and by
default several HDUs with a value of 0 are kept in the system-wide configuration
file when you install Gnuastro.

-g INT/STR

--globalhdu INT/STR

Use the value to this option as the HDU of all input FITS files. This option is
very convenient when you have many input files and the dataset of interest is
in the same HDU of all the files. When this option is called, any values given
to the --hdu option (explained above) are ignored and will not be used.

Arithmetic accepts two kinds of input: images and numbers. Images are considered to
be any of the inputs that is a file name of a recognized type (see Section 4.1.1.1 [Arguments],
page 66) and has more than one element/pixel. Numbers on the command-line will be read
into the smallest type (see Section 4.4 [Numeric data types], page 82) that can store them,
so -2 will be read as a char type (which is signed on most systems and can thus keep
negative values), 2500 will be read as an unsigned short (all positive numbers will be read
as unsigned), while 3.1415926535897 will be read as a double and 3.14 will be read as a
float. To force a number to be read as float, add a f after it, so 5f will be added to the
stack as float (see Section 6.2.1 [Reverse polish notation], page 125).

Unless otherwise stated (in Section 6.2.2 [Arithmetic operators], page 126), the operators
can deal with numeric multiple data types (see Section 4.4 [Numeric data types], page 82).
For example in “a.fits b.fits +”, the image types can be long and float. In such cases,
C’s internal type conversion will be used. The output type will be set to the higher-ranking
type of the two inputs. Unsigned integer types have smaller ranking than their signed
counterparts and floating point types have higher ranking than the integer types. So the
internal C type conversions done in the example above are equivalent to this piece of C:

size_t i;

long a[100];

float b[100], out[100];

for(i=0;i<100;++i) out[i]=a[i]+b[i];

Relying on the default C type conversion significantly speeds up the processing and also
requires less RAM (when using very large images).

Some operators can only work on integer types (of any length, for example bitwise
operators) while others only work on floating point types, (currently only the pow operator).
In such cases, if the operand type(s) are different, an error will be printed. Arithmetic also
comes with internal type conversion operators which you can use to convert the data into
the appropriate type, see Section 6.2.2 [Arithmetic operators], page 126.

The hyphen (-) can be used both to specify options (see Section 4.1.1.2 [Options],
page 67) and also to specify a negative number which might be necessary in your arithmetic.
In order to enable you to do this, Arithmetic will first parse all the input strings and if the
first character after a hyphen is a digit, then that hyphen is temporarily replaced by the
vertical tab character which is not commonly used. The arguments are then parsed and
these strings will not be specified as an option. Then the given arguments are parsed and
any vertical tabs are replaced back with a hyphen so they can be read as negative numbers.
Therefore, as long as the names of the files you want to work on, don’t start with a vertical
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tab followed by a digit, there is no problem. An important consequence of this implemen-
tation is that you should not write negative fractions like this: -.3, instead write them as
-0.3.

Without any images, Arithmetic will act like a simple calculator and print the resulting
output number on the standard output like the first example above. If you really want
such calculator operations on the command-line, AWK (GNU AWK is the most common
implementation) is much faster, easier and much more powerful. For example, the numerical
one-line example above can be done with the following command. In general AWK is a
fantastic tool and GNU AWK has a wonderful manual (https://www.gnu.org/software/
gawk/manual/). So if you often confront situations like this, or have to work with large
text tables/catalogs, be sure to checkout AWK and simplify your life.

$ echo "" | awk ’{print (10.32-3.84)^2.7}’

155.329

6.3 Convolve

On an image, convolution can be thought of as a process to blur or remove the contrast
in an image. If you are already familiar with the concept and just want to run Convolve,
you can jump to Section 6.3.4 [Convolution kernel], page 153, and Section 6.3.5 [Invoking
Convolve], page 154, and skip the lengthy introduction on the basic definitions and concepts
of convolution.

There are generally two methods to convolve an image. The first and more intuitive
one is in the “spatial domain” or using the actual image pixel values, see Section 6.3.1
[Spatial domain convolution], page 136. The second method is when we manipulate the
“frequency domain”, or work on the magnitudes of the different frequencies that constitute
the image, see Section 6.3.2 [Frequency domain and Fourier operations], page 138. Un-
derstanding convolution in the spatial domain is more intuitive and thus recommended if
you are just starting to learn about convolution. However, getting a good grasp of the
frequency domain is a little more involved and needs some concentration and some math-
ematical proofs. However, its reward is a faster operation and more importantly a very
fundamental understanding of this very important operation.

Convolution of an image will generally result in blurring the image because it mixes pixel
values. In other words, if the image has sharp differences in neighboring pixel values5, those
sharp differences will become smoother. This has very good consequences in detection of
signal in noise for example. In an actual observed image, the variation in neighboring pixel
values due to noise can be very high. But after convolution, those variations will decrease
and we have a better hope in detecting the possible underlying signal. Another case where
convolution is extensively used is in mock images and modeling in general, convolution can
be used to simulate the effect of the atmosphere or the optical system on the mock profiles
that we create, see Section 8.1.1.2 [Point Spread Function], page 222. Convolution is a
very interesting and important topic in any form of signal analysis (including astronomical

5 In astronomy, the only major time we confront such sharp borders in signal are cosmic rays. All other
sources of signal in an image are already blurred by the atmosphere or the optics of the instrument.

https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/
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observations). So we have thoroughly6 explained the concepts behind it in the following
sub-sections.

6.3.1 Spatial domain convolution

The pixels in an input image represent different “spatial” positions, therefore when convo-
lution is done only using the actual input pixel values, we name the process as being done
in the “Spatial domain”. In particular this is in contrast to the “frequency domain” that we
will discuss later in Section 6.3.2 [Frequency domain and Fourier operations], page 138. In
the spatial domain (and in realistic situations where the image and the convolution kernel
don’t extend to infinity), convolution is the process of changing the value of one pixel to
the weighted average of all the pixels in its neighborhood.

The ‘neighborhood’ of each pixel (how many pixels in which direction) and the ‘weight’
function (how much each neighboring pixel should contribute depending on its position) are
given through a second image which is known as a “kernel”7.

6.3.1.1 Convolution process

In convolution, the kernel specifies the weight and positions of the neighbors of each pixel.
To find the convolved value of a pixel, the central pixel of the kernel is placed on that
pixel. The values of each overlapping pixel in the kernel and image are multiplied by each
other and summed for all the kernel pixels. To have one pixel in the center, the sides of
the convolution kernel have to be an odd number. This process effectively mixes the pixel
values of each pixel with its neighbors, resulting in a blurred image compared to the sharper
input image.

Formally, convolution is one kind of linear ‘spatial filtering’ in image processing texts.
If we assume that the kernel has 2a+ 1 and 2b+ 1 pixels on each side, the convolved value
of a pixel placed at x and y (Cx,y) can be calculated from the neighboring pixel values in
the input image (I) and the kernel (K) from

Cx,y =
a∑

s=−a

b∑
t=−b

Ks,t × Ix+s,y+t.

Any pixel coordinate that is outside of the image in the equation above will be considered
to be zero. When the kernel is symmetric about its center the blurred image has the same
orientation as the original image. However, if the kernel is not symmetric, the image will
be affected in the opposite manner, this is a natural consequence of the definition of spatial
filtering. In order to avoid this we can rotate the kernel about its center by 180 degrees so
the convolved output can have the same original orientation. Technically speaking, only if
the kernel is flipped the process is known Convolution. If it isn’t it is known as Correlation.

To be a weighted average, the sum of the weights (the pixels in the kernel) have to
be unity. This will have the consequence that the convolved image of an object and un-
convolved object will have the same brightness (see Section 8.1.3 [Flux Brightness and

6 A mathematician will certainly consider this explanation is incomplete and inaccurate. However this
text is written for an understanding on the operations that are done on a real (not complex, discrete
and noisy) astronomical image, not any general form of abstract function

7 Also known as filter, here we will use ‘kernel’.
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magnitude], page 227), which is natural, because convolution should not eat up the object
photons, it only disperses them.

6.3.1.2 Edges in the spatial domain

In purely ‘linear’ spatial filtering (convolution), there are problems on the edges of the input
image. Here we will explain the problem in the spatial domain. For a discussion of this
problem from the frequency domain perspective, see Section 6.3.2.10 [Edges in the frequency
domain], page 152. The problem originates from the fact that on the edges, in practice8,
the sum of the weights we use on the actual image pixels is not unity. For example, as
discussed above, a profile in the center of an image will have the same brightness before
and after convolution. However, for partially imaged profile on the edge of the image, the
brightness (sum of its pixel fluxes within the image, see Section 8.1.3 [Flux Brightness and
magnitude], page 227) will not be equal, some of the flux is going to be ‘eaten’ by the edges.

If you ran $ make check on the source files of Gnuastro, you can see the this effect by
comparing the convolve_frequency.fits with convolve_spatial.fits in the ./tests/
directory. In the spatial domain, by default, no assumption will be made about pixels
outside of the image or any blank pixels in the image. The problem explained above will
also occur on the sides of blank regions (see Section 6.1.3 [Blank pixels], page 118). The
solution to this edge effect problem is only possible in the spatial domain. For pixels near the
edge, we have to abandon the assumption that the sum of the kernel pixels is unity during
the convolution process9. So taking W as the sum of the kernel pixels that overlapped
with non-blank and in-image pixels, the equation in Section 6.3.1.1 [Convolution process],
page 136, will become:

Cx,y =

∑a
s=−a

∑b
t=−bKs,t × Ix+s,y+t

W
.

In this manner, objects which are near the edges of the image or blank pixels will also have
the same brightness (within the image) before and after convolution. This correction is
applied by default in Convolve when convolving in the spatial domain. To disable it, you
can use the --noedgecorrection option. In the frequency domain, there is no way to avoid
this loss of flux near the edges of the image, see Section 6.3.2.10 [Edges in the frequency
domain], page 152, for an interpretation from the frequency domain perspective.

Note that the edge effect discussed here is different from the one in Section 8.1.2 [If
convolving afterwards], page 226. In making mock images we want to simulate a real
observation. In a real observation the images of the galaxies on the sides of the CCD are
first blurred by the atmosphere and instrument, then imaged. So light from the parts of a
galaxy which are immediately outside the CCD will affect the parts of the galaxy which are
covered by the CCD. Therefore in modeling the observation, we have to convolve an image
that is larger than the input image by exactly half of the convolution kernel. We can hence
conclude that this correction for the edges is only useful when working on actual observed
images (where we don’t have any more data on the edges) and not in modeling.

8 Because we assumed the overlapping pixels outside the input image have a value of zero.
9 ofcourse the sum of the kernel pixels still have to be unity in general.



Chapter 6: Data manipulation 138

6.3.2 Frequency domain and Fourier operations

Getting a good grip on the frequency domain is usually not an easy job! So we have
decided to give the issue a complete review here. Convolution in the frequency domain (see
Section 6.3.2.6 [Convolution theorem], page 145) heavily relies on the concepts of Fourier
transform (Section 6.3.2.4 [Fourier transform], page 143) and Fourier series (Section 6.3.2.3
[Fourier series], page 141) so we will be investigating these important operations first. It has
become something of a cliché for people to say that the Fourier series “is a way to represent
a (wave-like) function as the sum of simple sine waves” (from Wikipedia). However, sines
themselves are abstract functions, so this statement really adds no extra layer of physical
insight.

Before jumping head-first into the equations and proofs, we will begin with a historical
background to see how the importance of frequencies actually roots in our ancient desire
to see everything in terms of circles. A short review of how the complex plane should be
interpreted is then given. Having paved the way with these two basics, we define the Fourier
series and subsequently the Fourier transform. The final aim is to explain discrete Fourier
transform, however some very important concepts need to be solidified first: The Dirac
comb, convolution theorem and sampling theorem. So each of these topics are explained
in their own separate sub-sub-section before going on to the discrete Fourier transform.
Finally we revisit (after Section 6.3.1.2 [Edges in the spatial domain], page 137) the problem
of convolution on the edges, but this time in the frequency domain. Understanding the
sampling theorem and the discrete Fourier transform is very important in order to be able
to pull out valuable science from the discrete image pixels. Therefore we have included
the mathematical proofs and figures so you can have a clear understanding of these very
important concepts.

6.3.2.1 Fourier series historical background

Ever since the ancient times, the circle has been (and still is) the simplest shape for abstract
comprehension. All you need is a center point and a radius and you are done. All the
points on a circle are at a fixed distance from the center. However, the moment you try
to connect this elegantly simple and beautiful abstract construct (the circle) with the real
world (for example compute its area or its circumference), things become really hard (ideally,
impossible) because the irrational number π gets involved.

The key to understanding the Fourier series (thus the Fourier transform and finally the
Discrete Fourier Transform) is our ancient desire to express everything in terms of circles or
the most exceptionally simple and elegant abstract human construct. Most people prefer to
say the same thing in a more ahistorical manner: to break a function into sines and cosines.
As the term “ancient” in the previous sentence implies, Jean-Baptiste Joseph Fourier (1768
– 1830 A.D.) was not the first person to do this. The main reason we know this process
by his name today is that he came up with an ingenious method to find the necessary
coefficients (radius of) and frequencies (“speed” of rotation on) the circles for any generic
(integrable) function.
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Figure 6.1: Epicycles and the Fourier series. Left: A demonstration of Mer-
cury’s epicycles relative to the “center of the world” by Qutb al-Din al-Shirazi
(1236 – 1311 A.D.) retrieved from Wikipedia (https: / / commons . wikimedia .

org / wiki / File:Ghotb2 . jpg). Middle (https: / / commons . wikimedia .

org / wiki / File:Fourier_series_square_wave_circles_animation . gif) and
Right: How adding more epicycles (or terms in the Fourier series) will ap-
proximate functions. The right (https: / / commons . wikimedia . org / wiki /

File:Fourier_series_sawtooth_wave_circles_animation . gif) animation is also
available.

Like most aspects of mathematics, this process of interpreting everything in terms of
circles, began for astronomical purposes. When astronomers noticed that the orbit of Mars
and other outer planets, did not appear to be a simple circle (as everything should have
been in the heavens). At some point during their orbit, the revolution of these planets
would become slower, stop, go back a little (in what is known as the retrograde motion)
and then continue going forward again.

The correction proposed by Ptolemy (90 – 168 A.D.) was the most agreed upon. He
put the planets on Epicycles or circles whose center itself rotates on a circle whose center
is the earth. Eventually, as observations became more and more precise, it was necessary
to add more and more epicycles in order to explain the complex motions of the planets10.
Figure 6.1(Left) shows an example depiction of the epicycles of Mercury in the late 13th
century.

Of course we now know that if they had abdicated the Earth from its throne in the center
of the heavens and allowed the Sun to take its place, everything would become much simpler
and true. But there wasn’t enough observational evidence for changing the “professional
consensus” of the time to this radical view suggested by a small minority11. So the pre-

10 See the Wikipedia page on “Deferent and epicycle” for a more complete historical review.
11 Aristarchus of Samos (310 – 230 B.C.) appears to be one of the first people to suggest the Sun being in

the center of the universe. This approach to science (that the standard model is defined by consensus)
and the fact that this consensus might be completely wrong still applies equally well to our models of
particle physics and cosmology today.

https://commons.wikimedia.org/wiki/File:Ghotb2.jpg
https://commons.wikimedia.org/wiki/File:Ghotb2.jpg
https://commons.wikimedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif
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Galilean astronomers chose to keep Earth in the center and find a correction to the models
(while keeping the heavens a purely “circular” order).

The main reason we are giving this historical background which might appear off topic is
to give historical evidence that while such “approximations” do work and are very useful for
pragmatic reasons (like measuring the calendar from the movement of astronomical bodies).
They offer no physical insight. The astronomers who were involved with the Ptolemaic world
view had to add a huge number of epicycles during the centuries after Ptolemy in order to
explain more accurate observations. Finally the death knell of this world-view was Galileo’s
observations with his new instrument (the telescope). So the physical insight, which is what
Astronomers and Physicists are interested in (as opposed to Mathematicians and Engineers
who just like proving and optimizing or calculating!) comes from being creative and not
limiting our selves to such approximations. Even when they work.

6.3.2.2 Circles and the complex plane

Before going onto the derivation, it is also useful to review how the complex numbers and
their plane relate to the circles we talked about above. The two schematics in the middle
and right of Figure 6.1 show how a 1D function of time can be made using the 2D real and
imaginary surface. Seeing the animation in Wikipedia will really help in understanding this
important concept. At each point in time, we take the vertical coordinate of the point and
use it to find the value of the function at that point in time. Figure 6.2 shows this relation
with the axes marked.

Leonhard Euler12 (1707 – 1783 A.D.) showed that the complex exponential (eiv where v
is real) is periodic and can be written as: eiv = cos v+ isinv. Therefore eiv+2π = eiv. Later,
Caspar Wessel (mathematician and cartographer 1745 – 1818 A.D.) showed how complex
numbers can be displayed as vectors on a plane. Euler’s identity might seem counter
intuitive at first, so we will try to explain it geometrically (for deeper physical insight). On
the real-imaginary 2D plane (like the left hand plot in each box of Figure 6.2), multiplying a
number by i can be interpreted as rotating the point by 90 degrees (for example the value 3
on the real axis becomes 3i on the imaginary axis). On the other hand, e ≡ limn→∞(1+

1
n
)n,

therefore, defining m ≡ nu, we get:

eu = lim
n→∞

(
1 +

1

n

)nu
= lim

n→∞

(
1 +

u

nu

)nu
= lim

m→∞

(
1 +

u

m

)m

Taking u ≡ iv the result can be written as a generic complex number (a function of v):

eiv = lim
m→∞

(
1 + i

v

m

)m
= a(v) + ib(v)

For v = π, a nice geometric animation of going to the limit can be seen on Wikipedia
(https://commons.wikimedia.org/wiki/File:ExpIPi.gif). We see that limm→∞ a(π) =
−1, while limm→∞ b(π) = 0, which gives the famous eiπ = −1 equation. The final value is

12 Other forms of this equation were known before Euler. For example in 1707 A.D. (the year of Euler’s
birth) Abraham de Moivre (1667 – 1754 A.D.) showed that (cosx + i sinx)n = cos(nx) + i sin(nx). In
1714 A.D., Roger Cotes (1682 – 1716 A.D. a colleague of Newton who proofread the second edition of
Principia) showed that: ix = ln(cosx+ i sinx).

https://commons.wikimedia.org/wiki/File:ExpIPi.gif
https://commons.wikimedia.org/wiki/File:ExpIPi.gif
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the real number −1, however the distance of the polygon points traversed as m→∞ is half
the circumference of a circle or π, showing how v in the equation above can be interpreted
as an angle in units of radians and therefore how a(v) = cos(v) and b(v) = sin(v).

Since eiv is periodic (let’s assume with a period of T ), it is more clear to write it as
v ≡ 2πn

T
t (where n is an integer), so eiv = ei

2πn
T t. The advantage of this notation is that the

period (T ) is clearly visible and the frequency ( 2πn
T

, in units of 1/cycle) is defined through
the integer n. In this notation, t is in units of “cycle”s.

As we see from the examples in Figure 6.1 and Figure 6.2, for each constituting fre-
quency, we need a respective ‘magnitude’ or the radius of the circle in order to accurately
approximate the desired 1D function. The concepts of “period” and “frequency” are rela-
tively easy to grasp when using temporal units like time because this is how we define them
in every-day life. However, in an image (astronomical data), we are dealing with spatial
units like distance. Therefore, by one “period” we mean the distance at which the signal is
identical and frequency is defined as the inverse of that spatial “period”. The complex circle
of Figure 6.2 can be thought of the Moon rotating about Earth which is rotating around the
Sun; so the “Real (signal)” axis shows the Moon’s position as seen by a distant observer on
the Sun as time goes by. Because of the scalar (not having any direction or vector) nature
of time, Figure 6.2 is easier to understand in units of time. When thinking about spatial
units, mentally replace the “Time (sec)” axis with “Distance (meters)”. Because length has
direction and is a vector, visualizing the rotation of the imaginary circle and the advance
along the “Distance (meters)” axis is not as simple as temporal units like time.

Time: 1sec

i

Real(signal)

Time (sec)

Real(signal)

1 2 3

Time: 2sec

i

Real(signal)

Time (sec)

Real(signal)

1 2 3

Figure 6.2: Relation between the real (signal), imaginary (i ≡
√
−1) and time axes at

two snapshots of time.

6.3.2.3 Fourier series

In astronomical images, our variable (brightness, or number of photo-electrons, or signal to
be more generic) is recorded over the 2D spatial surface of a camera pixel. However to make
things easier to understand, here we will assume that the signal is recorded in 1D (assume
one row of the 2D image pixels). Also for this section and the next (Section 6.3.2.4 [Fourier
transform], page 143) we will be talking about the signal before it is digitized or pixelated.
Let’s assume that we have the continuous function f(l) which is integrable in the interval
[l0, l0 + L] (always true in practical cases like images). Take l0 as the position of the first
pixel in the assumed row of the image and L as the width of the image along that row. The
units of l0 and L can be in any spatial units (for example meters) or an angular unit (like
radians) multiplied by a fixed distance which is more common.
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To approximate f(l) over this interval, we need to find a set of frequencies and their
corresponding ‘magnitude’s (see Section 6.3.2.2 [Circles and the complex plane], page 140).
Therefore our aim is to show f(l) as the following sum of periodic functions:

f(l) =
∞∑

n=−∞
cne

i 2πnL l

Note that the different frequencies (2πn/L, in units of cycles per meters for example) are
not arbitrary. They are all integer multiples of the fundamental frequency of ω0 = 2π/L.
Recall that L was the length of the signal we want to model. Therefore, we see that the
smallest possible frequency (or the frequency resolution) in the end, depends on the length
we observed the signal or L. In the case of each dimension on an image, this is the size of the
image in the respective dimension. The frequencies have been defined in this “harmonic”
fashion to insure that the final sum is periodic outside of the [l0, l0 + L] interval too. At
this point, you might be thinking that the sky is not periodic with the same period as my
camera’s view angle. You are absolutely right! The important thing is that since your
camera’s observed region is the only region we are “observing” and will be using, the rest of
the sky is irrelevant; so we can safely assume the sky is periodic outside of it. However, this
working assumption will haunt us later in Section 6.3.2.10 [Edges in the frequency domain],
page 152.

The frequencies are thus determined by definition. So all we need to do is to find the
coefficients (cn), or magnitudes, or radii of the circles for each frequency which is identified
with the integer n. Fourier’s approach was to multiply both sides with a fixed term:

f(l)e−i
2πm
L l =

∞∑
n=−∞

cne
i
2π(n−m)

L l

where m > 013. We can then integrate both sides over the observation period:

∫ l0+L

l0

f(l)e−i
2πm
L ldl =

∫ l0+L

l0

∞∑
n=−∞

cne
i
2π(n−m)

L ldl =
∞∑

n=−∞
cn

∫ l0+L

l0

ei
2π(n−m)

L ldl

Both n and m are positive integers. Also, we know that a complex exponential is periodic
so after one period (L) it comes back to its starting point. Therefore

∫ l0+L

l0
e2πk/Ldl = 0 for

any k > 0. However, when k = 0, this integral becomes:
∫ l0+T

l0
e0dt =

∫ l0+T

l0
dt = T . Hence

since the integral will be zero for all n 6=m, we get:

∞∑
n=−∞

cn

∫ l0+T

l0

ei
2π(n−m)

L ldl = Lcm

The origin of the axis is fundamentally an arbitrary position. So let’s set it to the start of
the image such that l0 = 0. So we can find the “magnitude” of the frequency 2πm/L within
f(l) through the relation:

13 We could have assumed m < 0 and set the exponential to positive, but this is more clear.
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cm =
1

L

∫ L

0

f(l)e−i
2πm
L ldl

6.3.2.4 Fourier transform

In Section 6.3.2.3 [Fourier series], page 141, we had to assume that the function is periodic
outside of the desired interval with a period of L. Therefore, assuming that L → ∞ will
allow us to work with any function. However, with this approximation, the fundamental
frequency (ω0) or the frequency resolution that we discussed in Section 6.3.2.3 [Fourier
series], page 141, will tend to zero: ω0 → 0. In the equation to find cm, every m represented
a frequency (multiple of ω0) and the integration on l removes the dependence of the right
side of the equation on l, making it only a function of m or frequency. Let’s define the
following two variables:

ω≡mω0 =
2πm

L

F (ω)≡Lcm

The equation to find the coefficients of each frequency in Section 6.3.2.3 [Fourier series],
page 141, thus becomes:

F (ω) =

∫ ∞
−∞

f(l)e−iωldl.

The function F (ω) is thus the Fourier transform of f(l) in the frequency domain. So through
this transformation, we can find (analyze) the magnitudes of the constituting frequencies or
the value in the frequency space14 of our spatial input function. The great thing is that we
can also do the reverse and later synthesize the input function from its Fourier transform.
Let’s do it: with the approximations above, multiply the right side of the definition of the
Fourier Series (Section 6.3.2.3 [Fourier series], page 141) with 1 = L/L = (ω0L)/(2π):

f(l) =
1

2π

∞∑
n=−∞

Lcne
2πin
L lω0 =

1

2π

∞∑
n=−∞

F (ω)eiωlΔω

To find the right most side of this equation, we renamed ω0 as Δω because it was our
resolution, 2πn/L was written as ω and finally, Lcn was written as F (ω) as we defined
above. Now, as L→∞, Δω → 0 so we can write:

f(l) =
1

2π

∫ ∞
−∞

F (ω)eiωldω

14 As we discussed before, this ‘magnitude’ can be interpreted as the radius of the circle rotating at this
frequency in the epicyclic interpretation of the Fourier series, see Figure 6.1 and Figure 6.2.
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Together, these two equations provide us with a very powerful set of tools that we can use
to process (analyze) and recreate (synthesize) the input signal. Through the first equation,
we can break up our input function into its constituent frequencies and analyze it, hence it
is also known as analysis. Using the second equation, we can synthesize or make the input
function from the known frequencies and their magnitudes. Thus it is known as synthesis.
Here, we symbolize the Fourier transform (analysis) and its inverse (synthesis) of a function
f(l) and its Fourier Transform F (ω) as F [f ] and F−1[F ].

6.3.2.5 Dirac delta and comb

The Dirac δ (delta) function (also known as an impulse) is the way that we convert a
continuous function into a discrete one. It is defined to satisfy the following integral:∫ ∞

−∞
δ(l)dl = 1

When integrated with another function, it gives that function’s value at l = 0:∫ ∞
−∞

f(l)δ(l)dt = f(0)

An impulse positioned at another point (say l0) is written as δ(l − l0):∫ ∞
−∞

f(l)δ(l − l0)dt = f(l0)

The Dirac δ function also operates similarly if we use summations instead of integrals. The
Fourier transform of the delta function is:

F [δ(l)] =
∫ ∞
−∞

δ(l)e−iωldl = e−iω0 = 1

F [δ(l − l0)] =
∫ ∞
−∞

δ(l − l0)e−iωldl = e−iωl0

From the definition of the Dirac δ we can also define a Dirac comb (IIIP ) or an impulse
train with infinite impulses separated by P :

IIIP (l) ≡
∞∑

k=−∞
δ(l − kP )

P is chosen to represent “pixel width” later in Section 6.3.2.7 [Sampling theorem], page 147.
Therefore the Dirac comb is periodic with a period of P . We have intentionally used a
different name for the period of the Dirac comb compared to the input signal’s length
of observation that we showed with L in Section 6.3.2.3 [Fourier series], page 141. This



Chapter 6: Data manipulation 145

difference is highlighted here to avoid confusion later when these two periods are needed
together in Section 6.3.2.8 [Discrete Fourier transform], page 149. The Fourier transform of
the Dirac comb will be necessary in Section 6.3.2.7 [Sampling theorem], page 147, so let’s
derive it. By its definition, it is periodic, with a period of P , so the Fourier coefficients of
its Fourier Series (Section 6.3.2.3 [Fourier series], page 141) can be calculated within one
period:

IIIP =
∞∑

n=−∞
cne

i 2πnP l

We can now find the cn from Section 6.3.2.3 [Fourier series], page 141:

cn =
1

P

∫ P/2

−P/2
δ(l)e−i

2πn
P l =

1

P
→ IIIP =

1

P

∞∑
n=−∞

ei
2πn
P l

So we can write the Fourier transform of the Dirac comb as:

F [IIIP ] =
∫ ∞
−∞

IIIP e
−iωldl =

1

P

∞∑
n=−∞

∫ ∞
−∞

e−i(ω−
2πn
P )ldl =

1

P

∞∑
n=−∞

δ

(
ω − 2πn

P

)

In the last step, we used the fact that the complex exponential is a periodic function, that
n is an integer and that as we defined in Section 6.3.2.4 [Fourier transform], page 143,
ω≡mω0, where m was an integer. The integral will be zero for any ω that is not equal
to 2πn/P , a more complete explanation can be seen in Section 6.3.2.3 [Fourier series],
page 141. Therefore, while in the spatial domain the impulses had spacing of P (meters
for example), in the frequency space, the spacing between the different impulses are 2π/P
cycles per meters.

6.3.2.6 Convolution theorem

The convolution (shown with the ∗ operator) of the two functions f(l) and h(l) is defined
as:

c(l) ≡ [f∗h](l) =
∫ ∞
−∞

f(τ)h(l − τ)dτ

See Section 6.3.1.1 [Convolution process], page 136, for a more detailed physical (pixel
based) interpretation of this definition. The Fourier transform of convolution (C(ω)) can
be written as:

C(ω) =

∫ ∞
−∞

[f∗h](l)e−iωldl =
∫ ∞
−∞

f(τ)

[∫ ∞
−∞

h(l − τ)e−iωldl
]
dτ

To solve the inner integral, let’s define s≡l− τ , so that ds = dl and l = s+ τ then the inner
integral becomes:
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∫ ∞
−∞

h(l − τ)e−iωldl =
∫ ∞
−∞

h(s)e−iω(s+τ)ds = e−iωτ
∫ ∞
−∞

h(s)e−iωsds = H(ω)e−iωτ

where H(ω) is the Fourier transform of h(l). Substituting this result for the inner integral
above, we get:

C(ω) = H(ω)

∫ ∞
−∞

f(τ)e−iωτdτ = H(ω)F (ω) = F (ω)H(ω)

where F (ω) is the Fourier transform of f(l). So multiplying the Fourier transform of two
functions individually, we get the Fourier transform of their convolution. The convolution
theorem also proves a relation between the convolutions in the frequency space. Let’s define:

D(ω)≡F (ω)∗H(ω)

Applying the inverse Fourier Transform or synthesis equation (Section 6.3.2.4 [Fourier trans-
form], page 143) to both sides and following the same steps above, we get:

d(l) = f(l)h(l)

Where d(l) is the inverse Fourier transform of D(ω). We can therefore re-write the two
equations above formally as the convolution theorem:

F [f∗h] = F [f ]F [h]

F [fh] = F [f ] ∗ F [h]

Besides its usefulness in blurring an image by convolving it with a given kernel, the
convolution theorem also enables us to do another very useful operation in data analysis:
to match the blur (or PSF) between two images taken with different telescopes/cameras or
under different atmospheric conditions. This process is also known as de-convolution. Let’s
take f(l) as the image with a narrower PSF (less blurry) and c(l) as the image with a wider
PSF which appears more blurred. Also let’s take h(l) to represent the kernel that should
be convolved with the sharper image to create the more blurry image. Above, we proved
the relation between these three images through the convolution theorem. But there, we
assumed that f(l) and h(l) are known (given) and the convolved image is desired.

In de-convolution, we have f(l) –the sharper image– and f ∗h(l) –the more blurry image–
and we want to find the kernel h(l). The solution is a direct result of the convolution
theorem:
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F [h] = F [f∗h]
F [f ]

or h(l) = F−1

[F [f∗h]
F [f ]

]

While this works really nice, it has two problems:

• If F [f ] has any zero values, then the inverse Fourier transform will not be a number!

• If there is significant noise in the image, then the high frequencies of the noise are going
to significantly reduce the quality of the final result.

A standard solution to both these problems is the Weiner de-convolution algorithm15.

6.3.2.7 Sampling theorem

Our mathematical functions are continuous, however, our data collecting and measuring
tools are discrete. Here we want to give a mathematical formulation for digitizing the
continuous mathematical functions so that later, we can retrieve the continuous function
from the digitized recorded input. Assuming that we have a continuous function f(l), then
we can define fs(l) as the ‘sampled’ f(l) through the Dirac comb (see Section 6.3.2.5 [Dirac
delta and comb], page 144):

fs(l) = f(l)IIIP =
∞∑

n=−∞
f(l)δ(l − nP )

The discrete data-element fk (for example, a pixel in an image), where k is an integer, can
thus be represented as:

fk =

∫ ∞
−∞

fs(l)dl =

∫ ∞
−∞

f(l)δ(l − kP )dt = f(kP )

Note that in practice, our discrete data points are not found in this fashion. Each
detector pixel (in an image for example) has an area and averages the signal it receives
over that area, not a mathematical point as the Dirac δ function defines. However, as
long as the variation in the signal over one detector pixel is not significant, this can be a
good approximation. Having put this issue to the side, we can now try to find the relation
between the Fourier transforms of the un-sampled f(l) and the sampled fs(l). For a more
clear notation, let’s define:

Fs(ω) ≡ F [fs]

D(ω) ≡ F [IIIP ]

Then using the Convolution theorem (see Section 6.3.2.6 [Convolution theorem], page 145),
Fs(ω) can be written as:

15 https://en.wikipedia.org/wiki/Wiener_deconvolution

https://en.wikipedia.org/wiki/Wiener_deconvolution
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Fs(ω) = F [f(l)IIIP ] = F (ω)∗D(ω)

Finally, from the definition of convolution and the Fourier transform of the Dirac comb (see
Section 6.3.2.5 [Dirac delta and comb], page 144), we get:

Fs(ω) =

∫ ∞
−∞

F (ω)D(ω − µ)dµ

=
1

P

∞∑
n=−∞

∫ ∞
−∞

F (ω)δ

(
ω − µ− 2πn

P

)
dµ

=
1

P

∞∑
n=−∞

F

(
ω − 2πn

P

)
.

F (ω) was only a simple function, see Figure 6.3(left). However, from the sampled Fourier
transform function we see that Fs(ω) is the superposition of infinite copies of F (ω) that
have been shifted, see Figure 6.3(right). From the equation, it is clear that the shift in each
copy is 2π/P .

F (ω): FT of unsampled f(l)

Frequency (ω)−ωm +ωm0

Fs(ω): FT of sampled fs(l) = f(l)IIIP

−ωm +ωm0

2π
P

2π/P 4π/P−2π/P−4π/P

Figure 6.3: Sampling causes infinite repetition in the frequency domain. FT is an abbre-
viation for ‘Fourier transform’. ωm represents the maximum frequency present in the input.
F (ω) is only symmetric on both sides of 0 when the input is real (not complex). In general
F (ω) is complex and thus cannot be simply plotted like this. Here we have assumed a real
Gaussian f(t) which has produced a Gaussian F (ω).

The input f(l) can have any distribution of frequencies in it. In the example of
Figure 6.3(left), the input consisted of a range of frequencies equal to Δω = 2ωm.
Fortunately as Figure 6.3(right) shows, the assumed pixel size (P ) we used to sample this
hypothetical function was such that 2π/P > Δω. The consequence is that each copy
of F (ω) has become completely separate from the surrounding copies. Such a digitized
(sampled) data set is thus called over-sampled. When 2π/P = Δω, P is just small enough
to finely separate even the largest frequencies in the input signal and thus it is known
as critically-sampled. Finally if 2π/P < Δω we are dealing with an under-sampled data
set. In an under-sampled data set, the separate copies of F (ω) are going to overlap and
this will deprive us of recovering high constituent frequencies of f(l). The effects of
under-sampling in an image with high rates of change (for example a brick wall imaged
from a distance) can clearly be visually seen and is known as aliasing.
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When the input f(l) is composed of a finite range of frequencies, f(l) is known as a
band-limited function. The example in Figure 6.3(left) was a nice demonstration of such a
case: for all ω < −ωm or ω > ωm, we have F (ω) = 0. Therefore, when the input function
is band-limited and our detector’s pixels are placed such that we have critically (or over-)
sampled it, then we can exactly reproduce the continuous f(l) from the discrete or digitized
samples. To do that, we just have to isolate one copy of F (ω) from the infinite copies and
take its inverse Fourier transform.

This ability to exactly reproduce the continuous input from the sampled or digitized data
leads us to the sampling theorem which connects the inherent property of the continuous
signal (its maximum frequency) to that of the detector (the spacing between its pixels).
The sampling theorem states that the full (continuous) signal can be recovered when the
pixel size (P ) and the maximum constituent frequency in the signal (ωm) have the following
relation16:

2π

P
> 2ωm

This relation was first formulated by Harry Nyquist (1889 – 1976 A.D.) in 1928 and for-
mally proved in 1949 by Claude E. Shannon (1916 – 2001 A.D.) in what is now known as
the Nyquist-Shannon sampling theorem. In signal processing, the signal is produced (syn-
thesized) by a transmitter and is received and de-coded (analyzed) by a receiver. Therefore
producing a band-limited signal is necessary.

In astronomy, we do not produce the shapes of our targets, we are only observers.
Galaxies can have any shape and size, therefore ideally, our signal is not band-limited.
However, since we are always confined to observing through an aperture, the aperture will
cause a point source (for which ωm = ∞) to be spread over several pixels. This spread is
quantitatively known as the point spread function or PSF. This spread does blur the image
which is undesirable; however, for this analysis it produces the positive outcome that there
will be a finite ωm. Though we should caution that any detector will have noise which will
add lots of very high frequency (ideally infinite) changes between the pixels. However, the
coefficients of those noise frequencies are usually exceedingly small.

6.3.2.8 Discrete Fourier transform

As we have stated several times so far, the input image is a digitized, pixelated or discrete
array of values (fs(l), see Section 6.3.2.7 [Sampling theorem], page 147). The input is not a
continuous function. Also, all our numerical calculations can only be done on a sampled, or
discrete Fourier transform. Note that Fs(ω) is not discrete, it is continuous. One way would
be to find the analytic Fs(ω), then sample it at any desired “freq-pixel”17 spacing. However,
this process would involve two steps of operations and computers in particular are not too
good at analytic operations for the first step. So here, we will derive a method to directly
find the ‘freq-pixel’ated Fs(ω) from the pixelated fs(l). Let’s start with the definition of
the Fourier transform (see Section 6.3.2.4 [Fourier transform], page 143):

16 This equation is also shown in some places without the 2π. Whether 2π is included or not depends on
how you define the frequency

17 We are using the made-up word “freq-pixel” so they are not confused with spatial domain “pixels”.
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Fs(ω) =

∫ ∞
−∞

fs(l)e
−iωldl

From the definition of fs(ω) (using x instead of n) we get:

Fs(ω) =
∞∑

x=−∞

∫ ∞
−∞

f(l)δ(l − xP )e−iωldl

=
∞∑

x=−∞
fxe
−iωxP

Where fx is the value of f(l) on the point x or the value of the xth pixel. As shown
in Section 6.3.2.7 [Sampling theorem], page 147, this function is infinitely periodic with
a period of 2π/P . So all we need is the values within one period: 0 < ω < 2π/P , see
Figure 6.3. We want X samples within this interval, so the frequency difference between
each frequency sample or freq-pixel is 1/XP . Hence we will evaluate the equation above on
the points at:

ω =
u

XP
u = 0, 1, 2, ..., X − 1

Therefore the value of the freq-pixel u in the frequency domain is:

Fu =
X−1∑
x=0

fxe
−iuxX

Therefore, we see that for each freq-pixel in the frequency domain, we are going to need all
the pixels in the spatial domain18. If the input (spatial) pixel row is also X pixels wide,
then we can exactly recover the xth pixel with the following summation:

fx =
1

X

X−1∑
u=0

Fue
iuxX

When the input pixel row (we are still only working on 1D data) has X pixels, then it is
L = XP spatial units wide. L, or the length of the input data was defined in Section 6.3.2.3
[Fourier series], page 141, and P or the space between the pixels in the input was defined
in Section 6.3.2.5 [Dirac delta and comb], page 144. As we saw in Section 6.3.2.7 [Sampling
theorem], page 147, the input (spatial) pixel spacing (P ) specifies the range of frequencies
that can be studied and in Section 6.3.2.3 [Fourier series], page 141, we saw that the length of
the (spatial) input, (L) determines the resolution (or size of the freq-pixels) in our discrete
Fourier transformed image. Both result from the fact that the frequency domain is the
inverse of the spatial domain.

18 So even if one pixel is a blank pixel (see Section 6.1.3 [Blank pixels], page 118), all the pixels in the
frequency domain will also be blank.
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6.3.2.9 Fourier operations in two dimensions

Once all the relations in the previous sections have been clearly understood in one dimension,
it is very easy to generalize them to two or even more dimensions since each dimension is
by definition independent. Previously we defined l as the continuous variable in 1D and the
inverse of the period in its direction to be ω. Let’s show the second spatial direction with
m the the inverse of the period in the second dimension with ν. The Fourier transform in
2D (see Section 6.3.2.4 [Fourier transform], page 143) can be written as:

F (ω, ν) =

∫ ∞
−∞

∫ ∞
−∞

f(l,m)e−i(ωl+νm)dl

f(l,m) =

∫ ∞
−∞

∫ ∞
−∞

F (ω, ν)ei(ωl+νm)dl

The 2D Dirac δ(l,m) is non-zero only when l = m = 0. The 2D Dirac comb (or Dirac
brush! See Section 6.3.2.5 [Dirac delta and comb], page 144) can be written in units of the
2D Dirac δ. For most image detectors, the sides of a pixel are equal in both dimensions.
So P remains unchanged, if a specific device is used which has non-square pixels, then for
each dimension a different value should be used.

IIIP (l,m) ≡
∞∑

j=−∞

∞∑
k=−∞

δ(l − jP,m− kP )

The Two dimensional Sampling theorem (see Section 6.3.2.7 [Sampling theorem],
page 147) is thus very easily derived as before since the frequencies in each dimension
are independent. Let’s take νm as the maximum frequency along the second dimension.
Therefore the two dimensional sampling theorem says that a 2D band-limited function can
be recovered when the following conditions hold19:

2π

P
> 2ωm and

2π

P
> 2νm

Finally, let’s represent the pixel counter on the second dimension in the spatial and
frequency domains with y and v respectively. Also let’s assume that the input image has Y
pixels on the second dimension. Then the two dimensional discrete Fourier transform and
its inverse (see Section 6.3.2.8 [Discrete Fourier transform], page 149) can be written as:

Fu,v =
X−1∑
x=0

Y−1∑
y=0

fx,ye
−i(uxX + vy

Y )

fx,y =
1

XY

X−1∑
u=0

Y−1∑
v=0

Fu,ve
i(uxX + vy

Y )

19 If the pixels are not a square, then each dimension has to use the respective pixel size, but since most
detectors have square pixels, we assume so here too
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6.3.2.10 Edges in the frequency domain

With a good grasp of the frequency domain, we can revisit the problem of convolution on the
image edges, see Section 6.3.1.2 [Edges in the spatial domain], page 137. When we apply the
convolution theorem (see Section 6.3.2.6 [Convolution theorem], page 145) to convolve an
image, we first take the discrete Fourier transforms (DFT, Section 6.3.2.8 [Discrete Fourier
transform], page 149) of both the input image and the kernel, then we multiply them with
each other and then take the inverse DFT to construct the convolved image. Of course, in
order to multiply them with each other in the frequency domain, the two images have to be
the same size, so let’s assume that we pad the kernel (it is usually smaller than the input
image) with zero valued pixels in both dimensions so it becomes the same size as the input
image before the DFT.

Having multiplied the two DFTs, we now apply the inverse DFT which is where the
problem is usually created. If the DFT of the kernel only had values of 1 (unrealistic
condition!) then there would be no problem and the inverse DFT of the multiplication would
be identical with the input. However in real situations, the kernel’s DFT has a maximum
of 1 (because the sum of the kernel has to be one, see Section 6.3.1.1 [Convolution process],
page 136) and decreases something like the hypothetical profile of Figure 6.3. So when
multiplied with the input image’s DFT, the coefficients or magnitudes (see Section 6.3.2.2
[Circles and the complex plane], page 140) of the smallest frequency (or the sum of the
input image pixels) remains unchanged, while the magnitudes of the higher frequencies are
significantly reduced.

As we saw in Section 6.3.2.7 [Sampling theorem], page 147, the Fourier transform of a
discrete input will be infinitely repeated. In the final inverse DFT step, the input is in the
frequency domain (the multiplied DFT of the input image and the kernel DFT). So the
result (our output convolved image) will be infinitely repeated in the spatial domain. In
order to accurately reconstruct the input image, we need all the frequencies with the correct
magnitudes. However, when the magnitudes of higher frequencies are decreased, longer
periods (shorter frequencies) will dominate in the reconstructed pixel values. Therefore,
when constructing a pixel on the edge of the image, the newly empowered longer periods
will look beyond the input image edges and will find the repeated input image there. So if
you convolve an image in this fashion using the convolution theorem, when a bright object
exists on one edge of the image, its blurred wings will be present on the other side of the
convolved image. This is often termed as circular convolution or cyclic convolution.

So, as long as we are dealing with convolution in the frequency domain, there is nothing
we can do about the image edges. The least we can do is to eliminate the ghosts of the other
side of the image. So, we add zero valued pixels to both the input image and the kernel in
both dimensions so the image that will be convolved has a size equal to the sum of both
images in each dimension. Of course, the effect of this zero-padding is that the sides of the
output convolved image will become dark. To put it another way, the edges are going to
drain the flux from nearby objects. But at least it is consistent across all the edges of the
image and is predictable. In Convolve, you can see the padded images when inspecting the
frequency domain convolution steps with the --viewfreqsteps option.

6.3.3 Spatial vs. Frequency domain

With the discussions above it might not be clear when to choose the spatial domain and
when to choose the frequency domain. Here we will try to list the benefits of each.
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The spatial domain,

• Can correct for the edge effects of convolution, see Section 6.3.1.2 [Edges in the spatial
domain], page 137.

• Can operate on blank pixels.

• Can be faster than frequency domain when the kernel is small (in terms of the number
of pixels on the sides).

The frequency domain,

• Will be much faster when the image and kernel are both large.

As a general rule of thumb, when working on an image of modeled profiles use the frequency
domain and when working on an image of real (observed) objects use the spatial domain
(corrected for the edges). The reason is that if you apply a frequency domain convolution to
a real image, you are going to loose information on the edges and generally you don’t want
large kernels. But when you have made the profiles in the image yourself, you can just make
a larger input image and crop the central parts to completely remove the edge effect, see
Section 8.1.2 [If convolving afterwards], page 226. Also due to oversampling, both the kernels
and the images can become very large and the speed boost of frequency domain convolution
will significantly improve the processing time, see Section 8.1.1.6 [Oversampling], page 226.

6.3.4 Convolution kernel

All the programs that need convolution will need to be given a convolution kernel file and
extension. In most cases (other than Convolve, see Section 6.3 [Convolve], page 135) the
kernel file name is optional. However, the extension is necessary and must be specified either
on the command-line or at least one of the configuration files (see Section 4.2 [Configuration
files], page 77). Within Gnuastro, there are two ways to create a kernel image:

• MakeProfiles: You can use MakeProfiles to create a parametric (based on a radial
function) kernel, see Section 8.1 [MakeProfiles], page 221. By default MakeProfiles will
make the Gaussian and Moffat profiles in a separate file so you can feed it into any of
the programs.

• ConvertType: You can write your own desired kernel into a text file table and convert
it to a FITS file with ConvertType, see Section 5.2 [ConvertType], page 105. Just be
careful that the kernel has to have an odd number of pixels along its two axes, see
Section 6.3.1.1 [Convolution process], page 136. All the programs that do convolution
will normalize the kernel internally, so if you choose this option, you don’t have to
worry about normalizing the kernel. Only within Convolve, there is an option to
disable normalization, see Section 6.3.5 [Invoking Convolve], page 154.

The two options to specify a kernel file name and its extension are shown below. These are
common between all the programs that will do convolution.

-k STR

--kernel=STR

The convolution kernel file name. The BITPIX (data type) value of this file can
be any standard type and it does not necessarily have to be normalized. Several
operations will be done on the kernel image prior to the program’s processing:

• It will be converted to floating point type.
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• All blank pixels (see Section 6.1.3 [Blank pixels], page 118) will be set to
zero.

• It will be normalized so the sum of its pixels equal unity.

• It will be flipped so the convolved image has the same orientation. This is
only relevant if the kernel is not circular. See Section 6.3.1.1 [Convolution
process], page 136.

-U STR

--khdu=STR

The convolution kernel HDU. Although the kernel file name is optional, before
running any of the programs, they need to have a value for --khdu even if the
default kernel is to be used. So be sure to keep its value in at least one of the
configuration files (see Section 4.2 [Configuration files], page 77). By default,
the system configuration file has a value.

6.3.5 Invoking Convolve

Convolve an input image with a known kernel or make the kernel necessary to match two
PSFs. The general template for Convolve is:

$ astconvolve [OPTION...] ASTRdata

One line examples:

## Convolve mockimg.fits with psf.fits:

$ astconvolve --kernel=psf.fits mockimg.fits

## Convolve in the spatial domain:

$ astconvolve observedimg.fits --kernel=psf.fits --domain=spatial

## Find the kernel to match sharper and blurry PSF images:

$ astconvolve --kernel=sharperimage.fits --makekernel=10 \

blurryimage.fits

The only argument accepted by Convolve is an input image file. Some of the options
are the same between Convolve and some other Gnuastro programs. Therefore, to avoid
repetition, they will not be repeated here. For the full list of options shared by all Gnuastro
programs, please see Section 4.1.2 [Common options], page 69. In particular, in the spatial
domain convolve uses Gnuastro’s tessellation, see Section 4.6 [Tessellation], page 90, and
the common options related to that in Section 4.1.2.2 [Processing options], page 71.

Here we will only explain the options particular to Convolve. Run Convolve with --help

in order to see the full list of options Convolve accepts, irrespective of where they are
explained in this book.

--nokernelflip

Do not flip the kernel after reading it the spatial domain convolution. This can
be useful if the flipping has already been applied to the kernel.

--nokernelnorm

Do not normalize the kernel after reading it, such that the sum of its pixels is
unity.
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-d STR

--domain=STR

The domain to use for the convolution. The acceptable values are ‘spatial’
and ‘frequency’, corresponding to the respective domain.

For large images, the frequency domain process will be more efficient than
convolving in the spatial domain. However, the edges of the image will loose
some flux (see Section 6.3.1.2 [Edges in the spatial domain], page 137) and
the image must not contain any blank pixels, see Section 6.3.3 [Spatial vs.
Frequency domain], page 152.

--checkfreqsteps

With this option a file with the initial name of the output file will be created
that is suffixed with _freqsteps.fits, all the steps done to arrive at the final
convolved image are saved as extensions in this file. The extensions in order
are:

1. The padded input image. In frequency domain convolution the two images
(input and convolved) have to be the same size and both should be padded
by zeros.

2. The padded kernel, similar to the above.

3. The Fourier spectrum of the forward Fourier transform of the input image.
Note that the Fourier transform is a complex operation (and not view able
in one image!) So we either have to show the ‘Fourier spectrum’ or the
‘Phase angle’. For the complex number a + ib, the Fourier spectrum is
defined as

√
a2 + b2 while the phase angle is defined as arctan(b/a).

4. The Fourier spectrum of the forward Fourier transform of the kernel image.

5. The Fourier spectrum of the multiplied (through complex arithmetic)
transformed images.

6. The inverse Fourier transform of the multiplied image. If you open it, you
will see that the convolved image is now in the center, not on one side of
the image as it started with (in the padded image of the first extension). If
you are working on a mock image which originally had pixels of precisely
0.0, you will notice that in those parts that your convolved profile(s) did
not convert, the values are now ∼ 10−18, this is due to floating-point round
off errors. Therefore in the final step (when cropping the central parts of
the image), we also remove any pixel with a value less than 10−17.

--noedgecorrection

Do not correct the edge effect in spatial domain convolution. For a full discus-
sion, please see Section 6.3.1.2 [Edges in the spatial domain], page 137.

-m INT

--makekernel=INT

(=INT) If this option is called, Convolve will do de-convolution (see
Section 6.3.2.6 [Convolution theorem], page 145). The image specified by the
--kernel option is assumed to be the sharper (less blurry) image and the
input image is assumed to be the more blurry image. The value given to this
option will be used as the maximum radius of the kernel. Any pixel in the
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final kernel that is larger than this distance from the center will be set to zero.
The two images must have the same size.

Noise has large frequencies which can make the result less reliable for the higher
frequencies of the final result. So all the frequencies which have a spectrum
smaller than the value given to the minsharpspec option in the sharper input
image are set to zero and not divided. This will cause the wings of the final
kernel to be flatter than they would ideally be which will make the convolved
image result unreliable if it is too high. Some notes to take into account for a
good result:

• Choose a bright (unsaturated) star and use a region box (with Crop for
example, see Section 6.1 [Crop], page 115) that is sufficiently above the
noise.

• Use Warp (see Section 6.4 [Warp], page 156) to warp the pixel grid so the
star’s center is exactly on the center of the central pixel in the cropped im-
age. This will certainly slightly degrade the result, however, it is necessary.
If there are multiple good stars, you can shift all of them, then normalize
them (so the sum of each star’s pixels is one) and then take their average
to decrease this effect.

• The shifting might move the center of the star by one pixel in any direction,
so crop the central pixel of the warped image to have a clean image for the
de-convolution.

-c

--minsharpspec

(=FLT) The minimum frequency spectrum (or coefficient, or pixel value in the
frequency domain image) to use in deconvolution, see the explanations under
the --makekernel option for more information.

6.4 Warp

Image warping is the process of mapping the pixels of one image onto a new pixel grid.
This process is sometimes known as transformation, however following the discussion of
Heckbert 198920 we will not be using that term because it can be confused with only pixel
value or flux transformations. Here we specifically mean the pixel grid transformation which
is better conveyed with ‘warp’.

Image wrapping is a very important step in astronomy, both in observational data anal-
ysis and in simulating modeled images. In modeling, warping an image is necessary when
we want to apply grid transformations to the initial models, for example in simulating grav-
itational lensing (Radial warpings are not yet included in Warp). Observational reasons for
warping an image are listed below:

• Noise: Most scientifically interesting targets are inherently faint (have a very low Signal
to noise ratio). Therefore one short exposure is not enough to detect such objects that
are drowned deeply in the noise. We need multiple exposures so we can add them
together and increase the objects’ signal to noise ratio. Keeping the telescope fixed on

20 Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at
University of California, Berkeley.
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one field of the sky is practically impossible. Therefore very deep observations have to
put into the same grid before adding them.

• Resolution: If we have multiple images of one patch of the sky (hopefully at multiple
orientations) we can warp them to the same grid. The multiple orientations will allow us
to ‘guess’ the values of pixels on an output pixel grid that has smaller pixel sizes and thus
increase the resolution of the output. This process of merging multiple observations is
known as Mosaicing.

• Cosmic rays: Cosmic rays can randomly fall on any part of an image. If they collide
vertically with the camera, they are going to create a very sharp and bright spot that in
most cases can be separated easily21. However, depending on the depth of the camera
pixels, and the angle that a cosmic rays collides with it, it can cover a line-like larger
area on the CCD which makes the detection using their sharp edges very hard and
error prone. One of the best methods to remove cosmic rays is to compare multiple
images of the same field. To do that, we need all the images to be on the same pixel
grid.

• Optical distortion: (Not yet included in Warp) In wide field images, the optical distor-
tion that occurs on the outer parts of the focal plane will make accurate comparison of
the objects at various locations impossible. It is therefore necessary to warp the image
and correct for those distortions prior to the analysis.

• Detector not on focal plane: In some cases (like the Hubble Space Telescope ACS and
WFC3 cameras), the CCD might be tilted compared to the focal plane, therefore the
recorded CCD pixels have to be projected onto the focal plane before further analysis.

6.4.1 Warping basics

Let’s take [u v ] as the coordinates of a point in the input image and [x y ] as the
coordinates of that same point in the output image22. The simplest form of coordinate
transformation (or warping) is the scaling of the coordinates, let’s assume we want to scale
the first axis by M and the second by N , the output coordinates of that point can be
calculated by

[
x
y

]
=

[
Mu
Nv

]
=

[
M 0
0 N

] [
u
v

]

Note that these are matrix multiplications. We thus see that we can represent any such
grid warping as a matrix. Another thing we can do with this 2× 2 matrix is to rotate the
output coordinate around the common center of both coordinates. If the output is rotated
anticlockwise by θ degrees from the positive (to the right) horizontal axis, then the warping
matrix should become:

[
x
y

]
=

[
ucosθ − vsinθ
usinθ + vcosθ

]
=

[
cosθ −sinθ
sinθ cosθ

] [
u
v

]

21 All astronomical targets are blurred with the PSF, see Section 8.1.1.2 [Point Spread Function], page 222,
however a cosmic ray is not and so it is very sharp (it suddenly stops at one pixel).

22 These can be any real number, we are not necessarily talking about integer pixels here.
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We can also flip the coordinates around the first axis, the second axis and the coordinate
center with the following three matrices respectively:[

1 0
0 −1

] [
−1 0
0 1

] [
−1 0
0 −1

]

The final thing we can do with this definition of a 2×2 warping matrix is shear. If we want
the output to be sheared along the first axis with A and along the second with B, then we
can use the matrix: [

1 A
B 1

]

To have one matrix representing any combination of these steps, you use matrix multiplica-
tion, see Section 6.4.2 [Merging multiple warpings], page 159. So any combinations of these
transformations can be displayed with one 2× 2 matrix:[

a b
c d

]

The transformations above can cover a lot of the needs of most coordinate transforma-
tions. However they are limited to mapping the point [ 0 0 ] to [ 0 0 ]. Therefore they
are useless if you want one coordinate to be shifted compared to the other one. They are
also space invariant, meaning that all the coordinates in the image will receive the same
transformation. In other words, all the pixels in the output image will have the same area
if placed over the input image. So transformations which require varying output pixel sizes
like projections cannot be applied through this 2 × 2 matrix either (for example for the
tilted ACS and WFC3 camera detectors on board the Hubble space telescope).

To add these further capabilities, namely translation and projection, we use the homo-
geneous coordinates. They were defined about 200 years ago by August Ferdinand Möbius
(1790 – 1868). For simplicity, we will only discuss points on a 2D plane and avoid the com-
plexities of higher dimensions. We cannot provide a deep mathematical introduction here,
interested readers can get a more detailed explanation from Wikipedia23 and the references
therein.

By adding an extra coordinate to a point we can add the flexibility we need. The
point [x y ] can be represented as [xZ yZ Z ] in homogeneous coordinates. Therefore
multiplying all the coordinates of a point in the homogeneous coordinates with a constant
will give the same point. Put another way, the point [x y Z ] corresponds to the point
[x/Z y/Z ] on the constant Z plane. Setting Z = 1, we get the input image plane, so
[u v 1 ] corresponds to [u v ]. With this definition, the transformations above can be
generally written as: xy

1

 =

 a b 0
c d 0
0 0 1

uv
1


23 http://en.wikipedia.org/wiki/Homogeneous_coordinates

http://en.wikipedia.org/wiki/Homogeneous_coordinates
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We thus acquired 4 extra degrees of freedom. By giving non-zero values to the zero valued
elements of the last column we can have translation (try the matrix multiplication!). In
general, any coordinate transformation that is represented by the matrix below is known as
an affine transformation24:  a b c

d e f
0 0 1


We can now consider translation, but the affine transform is still spatially invariant.

Giving non-zero values to the other two elements in the matrix above gives us the projective
transformation or Homography25 which is the most general type of transformation with the
3× 3 matrix: x′y′

w

 =

 a b c
d e f
g h 1

uv
1


So the output coordinates can be calculated from:

x =
x′

w
=
au+ bv + c

gu+ hv + 1
y =

y′

w
=
du+ ev + f

gu+ hv + 1

Thus with Homography we can change the sizes of the output pixels on the input plane,
giving a ‘perspective’-like visual impression. This can be quantitatively seen in the two
equations above. When g = h = 0, the denominator is independent of u or v and thus we
have spatial invariance. Homography preserves lines at all orientations. A very useful fact
about Homography is that its inverse is also a Homography. These two properties play a very
important role in the implementation of this transformation. A short but instructive and
illustrated review of affine, projective and also bi-linear mappings is provided in Heckbert
198926.

6.4.2 Merging multiple warpings

In Section 6.4.1 [Warping basics], page 157, we saw how a basic warp/transformation can
be represented with a matrix. To make more complex warpings (for example to define a
translation, rotation and scale as one warp) the individual matrices have to be multiplied
through matrix multiplication. However matrix multiplication is not commutative, so the
order of the set of matrices you use for the multiplication is going to be very important.

The first warping should be placed as the left-most matrix. The second warping to
the right of that and so on. The second transformation is going to occur on the warped

24 http://en.wikipedia.org/wiki/Affine_transformation
25 http://en.wikipedia.org/wiki/Homography
26 Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at

University of California, Berkeley. Note that since points are defined as row vectors there, the matrix is
the transpose of the one discussed here.

http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Homography


Chapter 6: Data manipulation 160

coordinates of the first. As an example for merging a few transforms into one matrix, the
multiplication below represents the rotation of an image about a point [U V ] anticlockwise
from the horizontal axis by an angle of θ. To do this, first we take the origin to [U V ]
through translation. Then we rotate the image, then we translate it back to where it was
initially. These three operations can be merged in one operation by calculating the matrix
multiplication below:

 1 0 U
0 1 V
0 0 1

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 1 0 −U
0 1 −V
0 0 1



6.4.3 Resampling

A digital image is composed of discrete ‘picture elements’ or ‘pixels’. When a real image is
created from a camera or detector, each pixel’s area is used to store the number of photo-
electrons that were created when incident photons collided with that pixel’s surface area.
This process is called the ‘sampling’ of a continuous or analog data into digital data. When
we change the pixel grid of an image or warp it as we defined in Section 6.4.1 [Warping
basics], page 157, we have to ‘guess’ the flux value of each pixel on the new grid based on
the old grid, or re-sample it. Because of the ‘guessing’, any form of warping on the data
is going to degrade the image and mix the original pixel values with each other. So if an
analysis can be done on an un-warped data image, it is best to leave the image untouched
and pursue the analysis. However as discussed in Section 6.4 [Warp], page 156, this is not
possible most of the times, so we have to accept the problem and re-sample the image.

In most applications of image processing, it is sufficient to consider each pixel to be a
point and not an area. This assumption can significantly speed up the processing of an
image and also the simplicity of the code. It is a fine assumption when the signal to noise
ratio of the objects are very large. The question will then be one of interpolation because
you have multiple points distributed over the output image and you want to find the values
at the pixel centers. To increase the accuracy, you might also sample more than one point
from within a pixel giving you more points for a more accurate interpolation in the output
grid.

However, interpolation has several problems. The first one is that it will depend on the
type of function you want to assume for the interpolation. For example you can choose a
bi-linear or bi-cubic (the ‘bi’s are for the 2 dimensional nature of the data) interpolation
method. For the latter there are various ways to set the constants27. Such functional
interpolation functions can fail seriously on the edges of an image. They will also need
normalization so that the flux of the objects before and after the warpings are comparable.
The most basic problem with such techniques is that they are based on a point while
a detector pixel is an area. They add a level of subjectivity to the data (make more
assumptions through the functions than the data can handle). For most applications this is
fine, but in scientific applications where detection of the faintest possible galaxies or fainter
parts of bright galaxies is our aim, we cannot afford this loss. Because of these reasons
Warp will not use such interpolation techniques.

27 see http://entropymine.com/imageworsener/bicubic/ for a nice introduction.

http://entropymine.com/imageworsener/bicubic/
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Warp will do interpolation based on “pixel mixing”28 or “area resampling”. This is
also what the Hubble Space Telescope pipeline calls “Drizzling”29. This technique requires
no functions, it is thus non-parametric. It is also the closest we can get (make least as-
sumptions) to what actually happens on the detector pixels. The basic idea is that you
reverse-transform each output pixel to find which pixels of the input image it covers and
what fraction of the area of the input pixels are covered. To find the output pixel value,
you simply sum the value of each input pixel weighted by the overlap fraction (between 0
to 1) of the output pixel and that input pixel. Through this process, pixels are treated as
an area not as a point (which is how detectors create the image), also the brightness (see
Section 8.1.3 [Flux Brightness and magnitude], page 227) of an object will be left completely
unchanged.

If there are very high spatial-frequency signals in the image (for example fringes) which
vary on a scale smaller than your output image pixel size, pixel mixing can cause ailiasing30.
So if the input image has fringes, they have to be calculated and removed separately (which
would naturally be done in any astronomical application). Because of the PSF no astronom-
ical target has a sharp change in the signal so this issue is less important for astronomical
applications, see Section 8.1.1.2 [Point Spread Function], page 222.

6.4.4 Invoking Warp

Warp an input dataset into a new grid. Any homographic warp (for example scaling,
rotation, translation, projection) is acceptable, see Section 6.4.1 [Warping basics], page 157,
for the definitions. The general template for invoking Warp is:

$ astwarp [OPTIONS...] InputImage

One line examples:

## Rotate and then scale input image:

$ astwarp --rotate=37.92 --scale=0.8 image.fits

## Scale, then translate the input image:

$ astwarp --scale 8/3 --translate 2.1 image.fits

## Align raw image with celestial coordinates:

$ astwarp --align rawimage.fits --output=aligned.fits

## Directly input a custom warping matrix (using fraction):

$ astwarp --matrix=1/5,0,4/10,0,1/5,4/10,0,0,1 image.fits

## Directly input a custom warping matrix, with final numbers:

$ astwarp --matrix="0.7071,-0.7071, 0.7071,0.7071" image.fits

If any processing is to be done, Warp can accept one file as input. As in all Gnuastro
programs, when an output is not explicitly set with the --output option, the output file-
name will be set automatically based on the operation, see Section 4.8 [Automatic output],

28 For a graphic demonstration see http://entropymine.com/imageworsener/pixelmixing/.
29 http://en.wikipedia.org/wiki/Drizzle_(image_processing)
30 http://en.wikipedia.org/wiki/Aliasing

http://entropymine.com/imageworsener/pixelmixing/
http://en.wikipedia.org/wiki/Drizzle_(image_processing)
http://en.wikipedia.org/wiki/Aliasing
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page 95. For the full list of general options to all Gnuastro programs (including Warp),
please see Section 4.1.2 [Common options], page 69.

To be the most accurate, the input image will be read as a 64-bit double precision floating
point dataset and all internal processing is done in this format (including the raw output
type). You can use the common --type option to write the output in any type you want,
see Section 4.4 [Numeric data types], page 82.

Warps must be specified as command-line options, either as (possibly multiple) modular
warpings (for example --rotate, or --scale), or directly as a single raw matrix (with
--matrix). If specified together, the latter (direct matrix) will take precedence and all the
modular warpings will be ignored. Any number of modular warpings can be specified on the
command-line and configuration files. If more than one modular warping is given, all will
be merged to create one warping matrix. As described in Section 6.4.2 [Merging multiple
warpings], page 159, matrix multiplication is not commutative, so the order of specifying the
modular warpings on the command-line, and/or configuration files makes a difference (see
Section 4.2.2 [Configuration file precedence], page 78). The full list of modular warpings
and the other options particular to Warp are described below.

The values to the warping options (modular warpings as well as --matrix), are a se-
quence of at least one number. Each number in this sequence is separated from the next by
a comma (,). Each number can also be written as a single fraction (with a forward-slash /

between the numerator and denominator). Space and Tab characters are permitted between
any two numbers, just don’t forget to quote the whole value. Otherwise, the value will not
be fully passed onto the option. See the examples above as a demonstration.

Based on the FITS standard, integer values are assigned to the center of a pixel and the
coordinate [1.0, 1.0] is the center of the first pixel (bottom left of the image when viewed
in SAO ds9). So the coordinate center [0.0, 0.0] is half a pixel away (in each axis) from the
bottom left vertex of the first pixel. The resampling that is done in Warp (see Section 6.4.3
[Resampling], page 160) is done on the coordinate axes and thus directly depends on the
coordinate center. In some situations this if fine, for example when rotating/aligning a real
image, all the edge pixels will be similarly affected. But in other situations (for example
when scaling an over-sampled mock image to its intended resolution, this is not desired:
you want the center of the coordinates to be on the corner of the pixel. In such cases, you
can use the --centeroncorner option which will shift the center by 0.5 before the main
warp, then shift it back by −0.5 after the main warp, see below.

-a

--align Align the image and celestial (WCS) axes given in the input. After it, the ver-
tical image direction (when viewed in SAO ds9) corresponds to the declination
and the horizontal axis is the inverse of the Right Ascension (RA). The inverse
of the RA is chosen so the image can correspond to what you would actually
see on the sky and is common in most survey images.

Align is internally treated just like a rotation (--rotation), but uses the input
image’s WCS to find the rotation angle. Thus, if you have rotated the image
before calling --align, you might get unexpected results (because the rotation
is defined on the original WCS).
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-r FLT

--rotate=FLT

Rotate the input image by the given angle in degrees: θ in Section 6.4.1 [Warp-
ing basics], page 157. Note that commonly, the WCS structure of the image
is set such that the RA is the inverse of the image horizontal axis which in-
creases towards the right in the FITS standard and as viewed by SAO ds9.
So the default center for rotation is on the right of the image. If you want to
rotate about other points, you have to translate the warping center first (with
--translate) then apply your rotation and then return the center back to the
original position (with another call to --translate, see Section 6.4.2 [Merging
multiple warpings], page 159.

-s FLT[,FLT]

--scale=FLT[,FLT]

Scale the input image by the given factor(s): M andN in Section 6.4.1 [Warping
basics], page 157. If only one value is given, then both image axes will be scaled
with the given value. When two values are given (separated by a comma), the
first will be used to scale the first axis and the second will be used for the
second axis. If you only need to scale one axis, use 1 for the axis you don’t
need to scale. The value(s) can also be written (on the command-line or in
configuration files) as a fraction.

-f FLT[,FLT]

--flip=FLT[,FLT]

Flip the input image around the given axis(s). If only one value is given,
then both image axes are flipped. When two values are given (separated by a
comma), you can choose which axis to flip over. --flip only takes values 0

(for no flip), or 1 (for a flip). Hence, if you want to flip by the second axis only,
use --flip=0,1.

-e FLT[,FLT]

--shear=FLT[,FLT]

Shear the input image by the given value(s): A and B in Section 6.4.1 [Warping
basics], page 157. If only one value is given, then both image axes will be sheared
with the given value. When two values are given (separated by a comma), the
first will be used to shear the first axis and the second will be used for the
second axis. If you only need to shear along one axis, use 0 for the axis that
must be untouched. The value(s) can also be written (on the command-line or
in configuration files) as a fraction.

-t FLT[,FLT]

--translate=FLT[,FLT]

Translate (move the center of coordinates) the input image by the given value(s):
c and f in Section 6.4.1 [Warping basics], page 157. If only one value is given,
then both image axes will be translated by the given value. When two values are
given (separated by a comma), the first will be used to translate the first axis
and the second will be used for the second axis. If you only need to translate
along one axis, use 0 for the axis that must be untouched. The value(s) can
also be written (on the command-line or in configuration files) as a fraction.
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-p FLT[,FLT]

--project=FLT[,FLT]

Apply a projection to the input image by the given values(s): g and h in
Section 6.4.1 [Warping basics], page 157. If only one value is given, then pro-
jection will apply to both axes with the given value. When two values are given
(separated by a comma), the first will be used to project the first axis and
the second will be used for the second axis. If you only need to project along
one axis, use 0 for the axis that must be untouched. The value(s) can also be
written (on the command-line or in configuration files) as a fraction.

-m STR

--matrix=STR

The warp/transformation matrix. All the elements in this matrix must be
separated by comas(,) characters and as described above, you can also use
fractions (a forward-slash between two numbers). The transformation matrix
can be either a 2 by 2 (4 numbers), or a 3 by 3 (9 numbers) array. In the
former case (if a 2 by 2 matrix is given), then it is put into a 3 by 3 matrix (see
Section 6.4.1 [Warping basics], page 157).

The determinant of the matrix has to be non-zero and it must not contain
any non-number values (for example infinities or NaNs). The elements of
the matrix have to be written row by row. So for the general Homography
matrix of Section 6.4.1 [Warping basics], page 157, it should be called with
--matrix=a,b,c,d,e,f,g,h,1.

The raw matrix takes precedence over all the modular warping options listed
above, so if it is called with any number of modular warps, the latter are ignored.

-c

--centeroncorer

Put the center of coordinates on the corner of the first (bottom-left when viewed
in SAO ds9) pixel. This option is applied after the final warping matrix has
been finalized: either through modular warpings or the raw matrix. See the
explanation above for coordinates in the FITS standard to better understand
this option and when it should be used.

--hstartwcs=INT

Specify the first header keyword number (line) that should be used to read
the WCS information, see the full explanation in Section 6.1.4 [Invoking Crop],
page 119.

--hendwcs=INT

Specify the last header keyword number (line) that should be used to read the
WCS information, see the full explanation in Section 6.1.4 [Invoking Crop],
page 119.

-k

--keepwcs

Do not correct the WCS information of the input image and save it untouched to
the output image. By default the WCS (World Coordinate System) information
of the input image is going to be corrected in the output image so the objects
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in the image are at the same WCS coordinates. But in some cases it might be
useful to keep it unchanged (for example to correct alignments).

-C FLT

--coveredfrac=FLT

Depending on the warp, the output pixels that cover pixels on the edge of the
input image, or blank pixels in the input image, are not going to be fully covered
by input data. With this option, you can specify the acceptable covered fraction
of such pixels (any value between 0 and 1). If you only want output pixels that
are fully covered by the input image area (and are not blank), then you can set
--coveredfrac=1. Alternatively, a value of 0 will keep output pixels that are
even infinitesimally covered by the input(so the sum of the pixels in the input
and output images will be the same).
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7 Data analysis

Astronomical datasets (images or tables) contain very valuable information, the tools in this
section can help in analyzing, extracting, and quantifying that information. For example
getting general or specific statistics of the dataset (with Section 7.1 [Statistics], page 166),
detecting signal within a noisy dataset (with Section 7.2 [NoiseChisel], page 181), or creating
a catalog from an input dataset (with Section 7.3 [MakeCatalog], page 197).

7.1 Statistics

The distribution of values in a dataset can provide valuable information about it. For
example, in an image, if it is a positively skewed distribution, we can see that there is
significant data in the image. If the distribution is roughly symmetric, we can tell that
there is no significant data in the image. In a table, when we need to select a sample of
objects, it is important to first get a general view of the whole sample.

On the other hand, you might need to know certain statistical parameters of the dataset.
For example, if we have run a detection algorithm on an image, and we want to see how
accurate it was, one method is to calculate the average of the undetected pixels and see
how reasonable it is (if detection is done correctly, the average of undetected pixels should
be approximately equal to the background value, see Section 7.1.3 [Sky value], page 168).
In a table, you might have calculated the magnitudes of a certain class of objects and want
to get some general characteristics of the distribution immediately on the command-line
(very fast!), to possibly change some parameters. The Statistics program is designed for
such situations.

7.1.1 Histogram and Cumulative Frequency Plot

Histograms and the cumulative frequency plots are both used to visually study the distribu-
tion of a dataset. A histogram shows the number of data points which lie within pre-defined
intervals (bins). So on the horizontal axis we have the bin centers and on the vertical, the
number of points that are in that bin. You can use it to get a general view of the distri-
bution: which values have been repeated the most? how close/far are the most significant
bins? Are there more values in the larger part of the range of the dataset, or in the lower
part? Similarly, many very important properties about the dataset can be deduced from a
visual inspection of the histogram. In the Statistics program, the histogram can be either
output to a table to plot with your favorite plotting program1, or it can be shown with
ASCII characters on the command-line, which is very crude, but good enough for a fast and
on-the-go analysis, see the example in Section 7.1.4 [Invoking Statistics], page 172.

The width of the bins is only necessary parameter for a histogram. In the limiting case
that the bin-widths tend to zero (while assuming the number of points in the dataset tend
to infinity), then the histogram will tend to the probability density function (https://
en.wikipedia.org/wiki/Probability_density_function) of the distribution. When
the absolute number of points in each bin is not relevant to the study (only the shape of
the histogram is important), you can normalize a histogram so like the probability density
function, the sum of all its bins will be one.

1 We recommend PGFPlots (http://pgfplots.sourceforge.net/) which generates your plots directly
within TEX (the same tool that generates your document).

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
http://pgfplots.sourceforge.net/
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In the cumulative frequency plot of a distribution, the horizontal axis is the sorted data
values and the y axis is the index of each data in the sorted distribution. Unlike a histogram,
a cumulative frequency plot does not involve intervals or bins. This makes it less prone to
any sort of bias or error that a given bin-width would have on the analysis. When a larger
number of the data points have roughly the same value, then the cumulative frequency plot
will become steep in that vicinity. This occurs because on the horizontal axis, there is little
change while on the vertical axis, the indexes constantly increase. Normalizing a cumulative
frequency plot means to divide each index (y axis) by the total number of data points (or
the last value).

Unlike the histogram which has a limited number of bins, ideally the cumulative fre-
quency plot should have one point for every data element. Even in small datasets (for
example a 200 × 200 image) this will result in an unreasonably large number of points to
plot (40000)! As a result, for practical reasons, it is common to only store its value on a
certain number of points (intervals) in the input range rather than the whole dataset, so you
should determine the number of bins you want when asking for a cumulative frequency plot.
In Gnuastro (and thus the Statistics program), the number reported for each bin is the total
number of data points until the larger interval value for that bin. You can see an example
histogram and cumulative frequency plot of a single dataset under the --asciihist and
--asciicfp options of Section 7.1.4 [Invoking Statistics], page 172.

So as a summary, both the histogram and cumulative frequency plot in Statistics will
work with bins. Within each bin/interval, the lower value is considered to be within then
bin (it is inclusive), but its larger value is not (it is exclusive). Formally, an interval/bin
between a and b is represented by [a, b). When the over-all range of the dataset is specified
(with the --greaterequal, --lessthan, or --qrange options), the acceptable values of the
dataset are also defined with a similar inclusive-exclusive manner. But when the range is
determined from the actual dataset (none of these options is called), the last element in the
dataset is included in the last bin’s count.

7.1.2 Sigma clipping

Let’s assume that you have pure noise (centered on zero) with a clear Gaussian distribution
(https://en.wikipedia.org/wiki/Normal_distribution), or see Section 8.2.1.1 [Photon
counting noise], page 238. Now let’s assume you add very bright objects (signal) on the
image which have a very sharp boundary. By a sharp boundary, we mean that there is
a clear cutoff (from the noise) at the pixels the objects finish. In other words, at their
boundaries, the objects do not fade away into the noise. In such a case, when you plot
the histogram (see Section 7.1.1 [Histogram and Cumulative Frequency Plot], page 166)
of the distribution, the pixels relating to those objects will be clearly separate from pixels
that belong to parts of the image that did not have any signal (were just noise). In the
cumulative frequency plot, after a steady rise (due to the noise), you would observe a long
flat region were for a certain range of data (horizontal axis), there is no increase in the index
(vertical axis).

Outliers like the example above can significantly bias the measurement of noise statis-
tics. σ-clipping is defined as a way to avoid the effect of such outliers. In astronomical
applications, cosmic rays (when they collide at a near normal incidence angle) are a very
good example of such outliers. The tracks they leave behind in the image are perfectly
immune to the blurring caused by the atmosphere and the aperture. They are also very

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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energetic and so their borders are usually clearly separated from the surrounding noise. So
σ-clipping is very useful in removing their effect on the data. See Figure 15 in Akhlaghi
and Ichikawa, 2015 (https://arxiv.org/abs/1505.01664).

σ-clipping is defined as the very simple iteration below. In each iteration, the range of
input data might decrease and so when the outliers have the conditions above, the outliers
will be removed through this iteration. The exit criteria will be discussed below.

1. Calculate the standard deviation (σ) and median (m) of a distribution.

2. Remove all points that are smaller or larger than m± ασ.
3. Go back to step 1, unless the selected exit criteria is reached.

The reason the median is used as a reference and not the mean is that the mean is too
significantly affected by the presence of outliers, while the median is less affected, see
Section 7.1.3.3 [Quantifying signal in a tile], page 171. As you can tell from this algorithm,
besides the condition above (that the signal have clear high signal to noise boundaries)
σ-clipping is only useful when the signal does not cover more than half of the full data set.
If they do, then the median will lie over the outliers and σ-clipping might remove the pixels
with no signal.

There are commonly two exit criteria to stop the σ-clipping iteration:

• When a certain number of iterations has taken place (second value to the --sigclip

option is larger than 1).

• When the new measured standard deviation is within a certain tolerance level of the
old one (second value to the --sigclip option is less than 1). The tolerance level is
defined by:

σold − σnew
σnew

The standard deviation is used because it is heavily influenced by the presence of
outliers. Therefore the fact that it stops changing between two iterations is a sign that
we have successfully removed outliers. Note that in each clipping, the dispersion in the
distribution is either less or equal. So σold ≥ σnew.� �

When working on astronomical images, objects like galaxies and stars are blurred by the
atmosphere and the telescope aperture, therefore their signal sinks into the noise very
gradually. Galaxies in particular do not appear to have a clear high signal to noise cutoff
at all. Therefore σ-clipping will not be useful in removing their effect on the data.

To gauge if σ-clipping will be useful for your dataset, look at the histogram (see
Section 7.1.1 [Histogram and Cumulative Frequency Plot], page 166). The ASCII
histogram that is printed on the command-line with --asciihist is good enough in most
cases.
 	
7.1.3 Sky value

One of the most important aspects of a dataset is its reference value: the value of the
dataset where there is no signal. Without knowing, and thus removing the effect of, this
value it is impossible to compare the derived results of many high-level analyses over the

https://arxiv.org/abs/1505.01664
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dataset with other datasets (in the attempt to associate our results with the “real” world).
In astronomy, this reference value is known as the “Sky” value: the value where there is
no signal from objects (for example galaxies, stars, planets or comets). Depending on the
dataset, the Sky value maybe a fixed value over the whole dataset, or it may vary based on
location. For an example of the latter case, see Figure 11 in Akhlaghi and Ichikawa (2015)
(https://arxiv.org/abs/1505.01664).

Because of the significance of the Sky value in astronomical data analysis, we have de-
voted this subsection to it for a thorough review. We start with a thorough discussion on its
definition (Section 7.1.3.1 [Sky value definition], page 169). In the astronomical literature,
researchers use a variety of methods to estimate the Sky value, so in Section 7.1.3.2 [Sky
value misconceptions], page 170) we review those and discuss their biases. From the defini-
tion of the Sky value, the most accurate way to estimate the Sky value is to run a detection
algorithm (for example Section 7.2 [NoiseChisel], page 181) over the dataset and use the
un-detected pixels. However, there is also a more crude method that maybe useful when
good direct detection is not initially possible (for example due to too many cosmic rays in
a shallow image). A more crude (but simpler method) that is usable in such situations is
discussed in Section 7.1.3.3 [Quantifying signal in a tile], page 171.

7.1.3.1 Sky value definition

This analysis is taken from Akhlaghi and Ichikawa (2015) (https://arxiv.org/abs/
1505.01664). Let’s assume that all instrument defects – bias, dark and flat – have been
corrected and the brightness (see Section 8.1.3 [Flux Brightness and magnitude], page 227)
of a detected object, O, is desired. The sources of flux on pixel i2 of the image can be
written as follows:

• Contribution from the target object, (Oi).

• Contribution from other detected objects, (Di).

• Undetected objects or the fainter undetected regions of bright objects, (Ui).

• A cosmic ray, (Ci).

• The background flux, which is defined to be the count if none of the others exists on
that pixel, (Bi).

The total flux in this pixel (Ti) can thus be written as:

Ti = Bi +Di + Ui + Ci +Oi.

By definition, Di is detected and it can be assumed that it is correctly estimated (deblended)
and subtracted, thus Di = 0. There are also methods to detect and remove cosmic rays, for
example the method described in van Dokkum (2001)3, or by comparing multiple exposures.
This allows us to set Ci = 0. Note that in practice, Di and Ui are correlated, because they
both directly depend on the detection algorithm and its input parameters. Also note that

2 For this analysis the dimension of the data (image) is irrelevant. So if the data is an image (2D) with
width of w pixels, then a pixel located on column x and row y (where all counting starts from zero and
(0, 0) is located on the bottom left corner of the image), would have an index: i = x+ y × w.

3 van Dokkum, P. G. (2001). Publications of the Astronomical Society of the Pacific. 113, 1420.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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no detection or cosmic ray removal algorithm is perfect. With these limitations in mind,
the observed Sky value for this pixel (Si) can be defined as

Si = Bi + Ui.

Therefore, as the detection process (algorithm and input parameters) becomes more accu-
rate, or Ui → 0, the sky value will tend to the background value or Si → Bi. Therefore,
while Bi is an inherent property of the data (pixel in an image), Si depends on the detection
process. Over a group of pixels, for example in an image or part of an image, this equation
translates to the average of undetected pixels. With this definition of sky, the object flux
in the data can be calculated with

Ti = Si +Oi → Oi = Ti − Si.

Hence, the more accurately Si is measured, the more accurately the brightness (sum of pixel
values) of the target object can be measured (photometry). Any under-(over-)estimation
in the sky will directly translate to an over-(under-)estimation of the measured object’s
brightness. In the fainter outskirts of an object a very small fraction of the photo-electrons
in the pixels actually belong to objects (see Figure 1b in Akhlaghi and Ichikawa (2015)
(https://arxiv.org/abs/1505.01664)). Therefore even a small over estimation of the
sky value will result in the loss of a very large portion of most galaxies. Besides the lost
area/brightness, this will also cause an over-estimation of the Sky value and thus even more
under-estimation of the object’s brightness. It is thus very important to detect the diffuse
flux of a target, even if they are not your primary target.� �
The Sky value is only correctly found when all the detected objects (Di and Ci) have been
removed from the data.
 	
7.1.3.2 Sky value misconceptions

As defined in Section 7.1.3 [Sky value], page 168, the sky value is only accurately defined
when the detection algorithm is not significantly reliant on the sky value. In particular its
detection threshold. However, most signal-based detection tools4 use the sky value as a
reference to define the detection threshold. So these old techniques had to rely on approx-
imations based on other assumptions about the data. A review of those other techniques
can be seen in Appendix A of Akhlaghi and Ichikawa (2015)5. Since they were extensively
used in astronomical data analysis for several decades, such approximations have given rise
to a lot of misconceptions, ambiguities and disagreements about the sky value and how to
measure it. As a summary, the major methods used until now were an approximation of
the mode of the image pixel distribution and σ-clipping.

• To find the mode of a distribution those methods would either have to assume (or find)
a certain probability density function (PDF) or use the histogram. But astronomical

4 According to Akhlaghi and Ichikawa (2015), signal-based detection is a detection process that relies
heavily on assumptions about the to-be-detected objects. This method was the most heavily used
technique prior to the introduction of NoiseChisel in that paper.

5 Akhlaghi M., Ichikawa. T. (2015). Astrophysical Journal Supplement Series.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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datasets can have any distribution, making it almost impossible to define a generic
function. Also, histogram-based results are very inaccurate (there is a large dispersion)
and it depends on the histogram bin-widths.

• Another approach was to iteratively clip the brightest pixels in the image (which is
known as σ-clipping, since the reference was found from the image mean and its stan-
dard deviation or σ). See Section 7.1.2 [Sigma clipping], page 167, for a complete
explanation. The problem with σ-clipping was that real astronomical objects have
diffuse and faint wings that penetrate deeply into the noise. So only removing their
brightest parts is completely useless in removing the systematic bias an object’s fainter
parts cause in the sky value.

As discussed in Section 7.1.3 [Sky value], page 168, the sky value can only be correctly
defined as the average of undetected pixels. Therefore all such approaches that try to
approximate the sky value prior to detection are ultimately poor approximations.

7.1.3.3 Quantifying signal in a tile

Put simply, noise can characterized with a certain spread about a characteristic value. In
the Gaussian distribution (most commonly used to model noise) the spread is defined by
the standard deviation about the characteristic mean. Before continuing let’s clarify some
definitions first: Data is defined as the combination of signal and noise (so a noisy image
is one data-set). Signal is defined as the mean of the noise on each element (after sky
subtraction, see Section 7.1.3.1 [Sky value definition], page 169).

Let’s assume that the background (see Section 7.1.3.1 [Sky value definition], page 169)
is subtracted and is zero. When a data set doesn’t have any signal (only noise), the mean,
median and mode of the distribution are equal within statistical errors and approximately
equal to the background value. Signal always has a positive value and will never become
negative, see Figure 1 in Akhlaghi and Ichikawa (2015) (https://arxiv.org/abs/1505.
01664). Therefore, as more signal is added to the raw noise, the mean, median and mode
of the dataset (which has both signal and noise) shift to the positive. The mean’s shift is
the largest. The median shifts less, since it is defined based on an ordered distribution and
so is not affected by a small number of outliers. The distribution’s mode shifts the least to
the positive.

Inverting the argument above gives us a robust method to quantify the significance of
signal in a dataset. Namely, when the mode and median of a distribution are approximately
equal, we can argue that there is no significant signal. To allow for gradients (which are
commonly present in ground-based images), we can consider the image to be made of a grid
of tiles (see Section 4.6 [Tessellation], page 906). Hence, from the difference of the mode
and median on each tile, we can ‘detect’ the significance of signal in it. The median of a
distribution is defined to be the value of the distribution’s middle point after sorting (or 0.5
quantile). Thus, to estimate the presence of signal, we’ll compare with the quantile of the
mode with 0.5, if the difference is larger than the value given to the --modmedqdiff option,
this tile will be ignored. You can read this option as “mode-median-quantile-diff”.

This method to use the input’s skewness is possible because of a new algorithm to find
the mode of a distribution that was defined in Appendix C of Akhlaghi and Ichikawa (2015).
However, the raw dataset’s distribution is noisy (noise also affects the sorting), so using the

6 The options to customize the tessellation are discussed in Section 4.1.2.2 [Processing options], page 71.

https://arxiv.org/abs/1505.01664
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argument above on the raw input will give a noisy result. To decrease the noise/error in
estimating the mode, we will use convolution (see Section 6.3.1.1 [Convolution process],
page 136). Convolution decreases the range of the dataset and enhances its skewness, See
Section 3.1.1 and Figure 4 in Akhlaghi and Ichikawa (2015). This enhanced skewness can
be interpreted as an increase in the Signal to noise ratio of the objects buried in the noise.
Therefore, to obtain an even better measure of the presence of signal in a mesh, the image
can be convolved with a given kernel first.

Note that through the difference of the mode and median we have actually ‘detected’ data
in the distribution. However this “detection” was only based on the total distribution of the
data in each tile (a much lower resolution). This is the main limitation of this technique.
The best approach is thus to do detection over the dataset, mask all the detected pixels
and use the undetected regions to estimate the sky and its standard deviation.

The mean value of the tiles that have an approximately equal mode and median will
be the Sky value. However there is one final hurdle: astronomical datasets are commonly
plagued with Cosmic rays. Images of Cosmic rays aren’t smoothed by the atmosphere
or telescope aperture, so they have sharp boundaries. Also, since they don’t occupy too
many pixels, they don’t affect the mode and median calculation. But their very high values
can greatly bias the calculation of the mean (recall how the mean shifts the fastest in the
presence of outliers), see Figure 15 in Akhlaghi and Ichikawa (2015) for one example.

The effect of outliers like cosmic rays on the mean and standard deviation can be removed
through σ-clipping, see Section 7.1.2 [Sigma clipping], page 167, for a complete explanation.
Therefore, after asserting that the mode and median are approximately equal in a tile (see
Section 4.6 [Tessellation], page 90), the final Sky value and its standard deviation are
determined after σ-clipping with the --sigmaclip option.

7.1.4 Invoking Statistics

Statistics will print statistical measures of an input dataset (table column or image). The
executable name is aststatistics with the following general template

$ aststatistics [OPTION ...] InputImage.fits

One line examples:

## Print some general statistics of input image:

$ aststatistics image.fits

## Print some general statistics of column named MAG_F160W:

$ aststatistics catalog.fits -h1 --column=MAG_F160W

## Make the histogram of the column named MAG_F160W:

$ aststatistics table.fits -cMAG_F160W --histogram

## Find the Sky value on image with a given kernel:

$ aststatistics image.fits --sky --kernel=kernel.fits

## Print Sigma-clipped results of records with a MAG_F160W

## column value between 26 and 27:

$ aststatistics cat.fits -cMAG_F160W -g26 -l27 --sigmaclip=3,0.2
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## Print the median value of all records in column MAG_F160W that

## have a value larger than 3 in column PHOTO_Z:

$ aststatistics tab.txt -rPHOTO_Z -g3 -cMAG_F160W --median

An input image or table is necessary when processing is to be done. If any output file is to
be created, the value to the --output option, is used as the base name for the generated
files. Without --output, the input name will be used to generate an output name, see
Section 4.8 [Automatic output], page 95. The options described below are particular to
Statistics, but for general operations, it shares a large collection of options with the other
Gnuastro programs, see Section 4.1.2 [Common options], page 69, for the full list. Options
can also be given in configuration files, for more, please see Section 4.2 [Configuration files],
page 77.

The input dataset may have blank values (see Section 6.1.3 [Blank pixels], page 118), in
this case, all blank pixels are ignored during the calculation. Initially, the full dataset will
be read, but it is possible to select a specific range of data elements to use in the analysis
of each run. You can either directly specify a minimum and maximum value for the range
of data elements to use (with --greaterequal or --lessthan), or specify the range using
quantiles (with --qrange). If a range is specified, all pixels outside of it are ignored before
any processing.

The following set of options are for specifying the input/outputs of Statistics. There
are many other input/output options that are common to all Gnuastro programs including
Statistics, see Section 4.1.2.1 [Input/Output options], page 69, for those.

-c STR/INT

--column=STR/INT

The input column selector when the input file is a table. See Section 4.5.3
[Selecting table columns], page 89, for a full description of how to use this
option. For more on how tables are read in Gnuastro, please see Section 4.5
[Tables], page 84.

-r STR/INT

--refcol=STR/INT

The reference column selector when the input file is a table. When a reference
column is given, the range options below will be applied to this column and only
elements in the input column that have a reference value in the correct range
will be used. In practice this option allows you to select a subset of the input
column based on values in another (the reference) column. All the statistical
calculations will be done on the selected input column, not the reference column.

-g FLT

--greaterequal=FLT

Limit the range of inputs into those with values greater and equal to what is
given to this option. None of the values below this value will be used in any of
the processing steps below.
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-l FLT

--lessthan=FLT

Limit the range of inputs into those with values less-than what is given to this
option. None of the values greater or equal to this value will be used in any of
the processing steps below.

-Q FLT[,FLT]

--qrange=FLT[,FLT]

Specify the range of usable inputs using the quantile. This option can take one
or two quantiles to specify the range. When only one number is input (let’s call
it Q), the range will be those values in the quantile range Q to 1−Q. So when
only one value is given, it must be less than 0.5. When two values are given,
the first is used as the lower quantile range and the second is used as the larger
quantile range.

The quantile of a given element in a dataset is defined by the fraction of its
index to the total number of values in the sorted input array. So the smallest
and largest values in the dataset have a quantile of 0.0 and 1.0. The quantile is
a very useful non-parametric (making no assumptions about the input) relative
measure to specify a range. It can best be understood in terms of the cumulative
frequency plot, see Section 7.1.1 [Histogram and Cumulative Frequency Plot],
page 166. The quantile of each horizontal axis value in the cumulative frequency
plot is the vertical axis value associate with it.

When no operation is requested, Statistics will print some general basic properties of
the input dataset on the command-line like the example below (ran on one of the output
images of make check7). This default behavior is designed to help give you a general feeling
of how the data are distributed and help in narrowing down your analysis.

$ aststatistics convolve_spatial_scaled_noised.fits \

--greaterequal=9500 --lessthan=11000

Statistics (GNU Astronomy Utilities) X.X

-------

Input: convolve_spatial_scaled_noised.fits (hdu: 0)

Range: from (inclusive) 9500, upto (exclusive) 11000.

Unit: Brightness

-------

Number of elements: 9074

Minimum: 9622.35

Maximum: 10999.7

Mode: 10055.45996

Mode quantile: 0.4001983908

Median: 10093.7

Mean: 10143.98257

Standard deviation: 221.80834

-------

Histogram:

7 You can try it by running the command in the tests directory, open the image with a FITS viewer and
have a look at it to get a sense of how these statistics relate to the input image/dataset.
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| **

| ******

| *******

| *********

| *************

| **************

| ******************

| ********************

| *************************** *

| ***************************************** ***

|* **************************************************************

|-----------------------------------------------------------------

Gnuastro’s Statistics is a very general purpose program, so to be able to easily understand
this diversity in its operations (and how to possibly run them together), we’ll divided the
operations into two types: those that don’t respect the position of the elements and those
that do (by tessellating the input on a tile grid, see Section 4.6 [Tessellation], page 90). The
former treat the whole dataset as one and can re-arrange all the elements (for example sort
them), but the former do their processing on each tile independently. First, we’ll review
the operations that work on the whole dataset.

The group of options below can used to get a single value measurement of the whole
dataset. They will print only the requested value as one field in a line/row, like the --mean,
--median options. These options can be called any number of times and in any order. The
outputs of all such options will be printed on one line following each other (with a space
character between them). This feature makes these options very useful in scripts, or to
redirect into programs like GNU AWK for higher-level processing. These are some of the
most basic measures, Gnuastro is still under heavy development and this list will grow. If
you want another statistical parameter, please contact us and we will do out best to add it
to this list, see Section 1.8 [Suggest new feature], page 11.

-n

--number Print the number of all used (non-blank and in range) elements.

--minimum

Print the minimum value of all used elements.

--maximum

Print the maximum value of all used elements.

--sum Print the sum of all used elements.

-m

--mean Print the mean (average) of all used elements.

-t

--std Print the standard deviation of all used elements.

-E

--median Print the median of all used elements.
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-u FLT[,FLT[,...]]

--quantile=FLT[,FLT[,...]]

Print the values at the given quantiles of the input dataset. Any number of
quantiles may be given and one number will be printed for each. Values can
either be written as a single number or as fractions, but must be between zero
and one (inclusive). Hence, in effect --quantile=0.25 --quantile=0.75 is
equivalent to --quantile=0.25,3/4, or -u1/4,3/4.

The returned value is one of the elements from the dataset. Taking q to be your
desired quantile, and N to be the total number of used (non-blank and within
the given range) elements, the returned value is at the following position in the
sorted array: round(q ×N).

--quantfunc=FLT[,FLT[,...]]

Print the quantiles of the given values in the dataset. This option is the inverse
of the --quantile and operates similarly except that the acceptable values are
within the range of the dataset, not between 0 and 1. Formally it is known as
the “Quantile function”.

Since the dataset is not continuous this function will find the nearest element
of the dataset and use its position to estimate the quantile function.

-O

--mode Print the mode of all used elements. The mode is found through the mirror
distribution which is fully described in Appendix C of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664). See that section for a full
description.

This mode calculation algorithm is non-parametric, so when the dataset is not
large enough (larger than about 1000 elements usually), or doesn’t have a clear
mode it can fail. In such cases, this option will return a value of nan (for the
floating point NaN value).

As described in that paper, the easiest way to assess the quality of this mode
calculation method is to use it’s symmetricity (see --modesym below). A bet-
ter way would be to use the --mirror option to generate the histogram and
cumulative frequency tables for any given mirror value (the mode in this case)
as a table. If you generate plots like those shown in Figure 21 of that paper,
then your mode is accurate.

--modequant

Print the quantile of the mode. You can get the actual mode value from the
--mode described above. In many cases, the absolute value of the mode is
irrelevant, but its position within the distribution is important. In such cases,
this option will become handy.

--modesym

Print the symmetricity of the calculated mode. See the description of --mode
for more. This mode algorithm finds the mode based on how symmetric it is,
so if the symmetricity returned by this option is too low, the mode is not too
accurate. See Appendix C of Akhlaghi and Ichikawa 2015 (https://arxiv.
org/abs/1505.01664) for a full description. In practice, symmetricity values
larger than 0.2 are mostly good.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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--modesymvalue

Print the value in the distribution where the mirror and input distributions are
no longer symmetric, see --mode and Appendix C of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664) for more.

The list of options below are for those statistical operations that output more than one
value. So while they can be called together in one run, their outputs will be distinct (each
one’s output will usually be printed in more than one line).

-A

--asciihist

Print an ASCII histogram of the usable values within the input dataset along
with some basic information like the example below (from the UVUDF cata-
log8). The width and height of the histogram (in units of character widths and
heights on your command-line terminal) can be set with the --numasciibins

(for the width) and --asciiheight options.

For a full description of the histogram, please see Section 7.1.1 [Histogram and
Cumulative Frequency Plot], page 166. An ASCII plot is certainly very crude
and cannot be used in any publication, but it is very useful for getting a general
feeling of the input dataset very fast and easily on the command-line without
having to take your hands off the keyboard (which is a major distraction!). If
you want to try it out, you can write it all in one line and ignore the \ and
extra spaces.

$ aststatistics uvudf_rafelski_2015.fits.gz --hdu=1 \

--column=MAG_F160W --lessthan=40 \

--asciihist --numasciibins=55

ASCII Histogram:

Number: 8593

Y: (linear: 0 to 660)

X: (linear: 17.7735 -- 31.4679, in 55 bins)

| ****

| *****

| ******

| ********

| *********

| ***********

| **************

| *****************

| ***********************

| ********************************

|*** ***************************************************

|-------------------------------------------------------

--asciicfp

Print the cumulative frequency plot of the usable elements in the input dataset.
Please see descriptions under --asciihist for more, the example below is from

8 https://asd.gsfc.nasa.gov/UVUDF/uvudf_rafelski_2015.fits.gz

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://asd.gsfc.nasa.gov/UVUDF/uvudf_rafelski_2015.fits.gz
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the same input table as that example. To better understand the cumulative
frequency plot, please see Section 7.1.1 [Histogram and Cumulative Frequency
Plot], page 166.

$ aststatistics uvudf_rafelski_2015.fits.gz --hdu=1 \

--column=MAG_F160W --lessthan=40 \

--asciicfp --numasciibins=55

ASCII Cumulative frequency plot:

Y: (linear: 0 to 8593)

X: (linear: 17.7735 -- 31.4679, in 55 bins)

| *******

| **********

| ***********

| *************

| **************

| ***************

| *****************

| *******************

| ***********************

| ******************************

|*******************************************************

|-------------------------------------------------------

-H

--histogram

Save the histogram of the usable values in the input dataset into a table. The
first column is the value at the center of the bin and the second is the number
of points in that bin. If the --cumulative option is also called with this option
in a run, then the table will have three columns (the third is the cumulative
frequency plot). Through the --numbins and --lowerbin you can modify the
first column values and with --normalize and --maxbinone you can modify
the second columns. See below for the description of each.

By default (when no --output is specified) a plain text table will be created,
see Section 4.5.2 [Gnuastro text table format], page 87. If a FITS name is
specified, you can use the common option --tableformat to have it as a FITS
ASCII or FITS binary format, see Section 4.1.2 [Common options], page 69.
This table can then be fed into your favorite plotting tool and get a much more
clean and nice histogram than what the raw command-line can offer you (with
the --asciihist option).

-C

--cumulative

Save the cumulative frequency plot of the usable values in the input dataset
into a table, similar to --histogram.

-s

--sigmaclip

Do σ-clipping on the usable pixels of the input dataset. See Section 7.1.2
[Sigma clipping], page 167, for a full description on σ-clipping and also to
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better understand this option. The σ-clipping parameters can be set through
the --sclipparams option (see below).

--mirror=FLT

Make a histogram and cumulative frequency plot of the mirror distribution for
the given dataset when the mirror is located at the value to this option. The
mirror distribution is fully described in Appendix C of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664) and currently it is only used to
calculate the mode (see --mode).

Just note that the mirror distribution is a discrete distribution like the input,
so while you may give any number as the value to this option, the actual mirror
value is the closest number in the input dataset to this value. If the two numbers
are different, Statistics will warn you of the actual mirror value used.

This option will make a table as output. Depending on your selected name
for the output, it will be either a FITS table or a plain text table (which is
the default). It contains three columns: the first is the center of the bins,
the second is the histogram (with the largest value set to 1) and the third is
the normalized cumulative frequency plot of the mirror distribution. The bins
will be positioned such that the mode is on the starting interval of one of the
bins to make it symmetric around the mirror. With this output file and the
input histogram (that you can generate in another run of Statistics, using the
--onebinvalue), it is possible to make plots like Figure 21 of Akhlaghi and
Ichikawa 2015 (https://arxiv.org/abs/1505.01664).

The list of options below allow customization of the histogram and cumulative frequency
plots (for the --histogram, --cumulative, --asciihist, and --asciicfp options).

--numbins

The number of bins (rows) to use in the histogram and the cumulative frequency
plot tables (outputs of --histogram and --cumulative).

--numasciibins

The number of bins (characters) to use in the ASCII plots when printing the
histogram and the cumulative frequency plot (outputs of --asciihist and
--asciicfp).

--asciiheight

The number of lines to use when printing the ASCII histogram and cumulative
frequency plot on the command-line (outputs of --asciihist and --asciicfp).

-n

--normalize

Normalize the histogram or cumulative frequency plot tables (outputs of
--histogram and --cumulative). For a histogram, the sum of all bins will
become one and for a cumulative frequency plot the last bin value will be one.

--maxbinone

Divide all the histogram values by the maximum bin value so it becomes one
and the rest are similarly scaled. In some situations (for example if you want
to plot the histogram and cumulative frequency plot in one plot) this can be
very useful.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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--onebinstart=FLT

Make sure that one bin starts with the value to this option. In practice, this
will shift the bins used to find the histogram and cumulative frequency plot
such that one bin’s lower interval becomes this value. For example when the
histogram range includes negative and positive values and zero has a special
significance in your analysis, then zero will be somewhere in one bin and will
mix counts of positive and negative. By setting --onebinstart=0, you can
make sure that the viewers of the histogram will not be confused without doing
the math of setting a range and number of bins.

Note that by default, the first row of the histogram and cumulative frequency
plot show the central values of each bin. So in the example above you will not
see the 0.000 in the first column, you will see two symmetric values. If the value
is not within the usable input range, this option will be ignored.

All the options described until now were from the first class of operations discussed
above: those that treat the whole dataset as one. However. It often happens that the
relative position of the dataset elements over the dataset is significant. For example you
don’t want one median value for the whole input image, you want to know how the median
changes over the image. For such operations, the input has to be tessellated (see Section 4.6
[Tessellation], page 90). Thus this class of options can’t currently be called along with the
options above in one run of Statistics.

-t

--ontile Do the respective single-valued calculation over one tile of the input dataset, not
the whole dataset. This option must be called with at least one of the single val-
ued options discussed above (for example --mean or --quantile). The output
will be a file in the same format as the input. If the --oneelempertile option
is called, then one element/pixel will be used for each tile (see Section 4.1.2.2
[Processing options], page 71). Otherwise, the output will have the same size
as the input, but each element will have the value corresponding to that tile’s
value. If multiple single valued operations are called, then for each operation
there will be one extension in the output FITS file.

-y

--sky Estimate the Sky value on each tile as fully described in Section 7.1.3.3 [Quan-
tifying signal in a tile], page 171. As described in that section, several options
are necessary to configure the Sky estimation which are listed below. The
output file will have two extensions: the first is the Sky value and the sec-
ond is the Sky standard deviation on each tile. Similar to --ontile, if the
--oneelempertile option is called, then one element/pixel will be used for
each tile (see Section 4.1.2.2 [Processing options], page 71).

The parameters for estimating the sky value can be set with the following options, except
for the --sclipparams option (which is also used by the --sigmaclip), the rest are only
used for the Sky value estimation.

-k=STR

--kernel=STR

File name of kernel to help in estimating the significance of signal in a tile, see
Section 7.1.3.3 [Quantifying signal in a tile], page 171.
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--khdu=STR

Kernel HDU to help in estimating the significance of signal in a tile, see
Section 7.1.3.3 [Quantifying signal in a tile], page 171.

--mirrordist=FLT

Maximum distance (as a multiple of error) to estimate the difference between
the input and mirror distributions in finding the mode, see Appendix C of
Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664), also see
Section 7.1.3.3 [Quantifying signal in a tile], page 171.

--modmedqdiff=FLT

The maximum acceptable distance between the mode and median, see
Section 7.1.3.3 [Quantifying signal in a tile], page 171.

--sclipparams=FLT,FLT

The σ-clipping parameters, see Section 7.1.2 [Sigma clipping], page 167. This
option takes two values which are separated by a comma (,). Each value can
either be written as a single number or as a fraction of two numbers (for example
3,1/10). The first value to this option is the multiple of σ that will be clipped
(α in that section). The second value is the exit criteria. If it is less than 1,
then it is interpreted as tolerance and if it is larger than one it is a specific
number. Hence, in the latter case the value must be an integer.

--smoothwidth=INT

Width of a flat kernel to convolve the interpolated tile values. Tile interpolation
is done using the median of the --interpnumngb neighbors of each tile (see
Section 4.1.2.2 [Processing options], page 71). If this option is given a value of
zero or one, no smoothing will be done. Without smoothing, strong boundaries
will probably be created between the values estimated for each tile. It is thus
good to smooth the interpolated image so strong discontinuities do not show
up in the final Sky values. The smoothing is done through convolution (see
Section 6.3.1.1 [Convolution process], page 136) with a flat kernel, so the value
to this option must be an odd number.

--checksky

Create a multi-extension FITS file showing the steps that were used to estimate
the Sky value over the input, see Section 7.1.3.3 [Quantifying signal in a tile],
page 171. The file will have two extensions for each step (one for the Sky and
one for the Sky standard deviation).

7.2 NoiseChisel

Once instrumental signatures are removed from the raw data in the initial reduction process
(see Chapter 6 [Data manipulation], page 115). We are ready to derive scientific results
out of them. But we can’t do anything special with a raw dataset, for example an image
is just an array of values. Every pixel just has one value and its position within the
image. Therefore, the first step of your high-level analysis will be to classify/label the
dataset elements/pixels into two classes: signal and noise. This process is formally known
as detection. Afterwards, you want to separate the detections into multiple components (for
example when two detected regions aren’t touching, they should be treated independently

https://arxiv.org/abs/1505.01664
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as two distant galaxies for example). This higher level classification of the detections is
known as segmentation. NoiseChisel is Gnuastro’s program for detection and segmentation.

NoiseChisel works based on a new noise-based approach to signal detection and was
introduced to the astronomical community in Akhlaghi and Ichikawa [2015] (https://
arxiv.org/abs/1505.01664). NoiseChisel’s primary output is an array (image) with the
same size as the input but containing labels: those pixels with a label of 0 are noise/sky
while those pixels with labels larger than 0 are detections (separate segments will be given
positive integers, starting from 1). For more on NoiseChisel’s particular output format and
its benefits (especially in conjunction with Section 7.3 [MakeCatalog], page 197), please see
Akhlaghi [2016] (https://arxiv.org/abs/1611.06387). The published paper cannot
under go any updates, but the NoiseChisel software has evolved, you can see the major
changes in Section 7.2.1 [NoiseChisel changes after publication], page 182.

Data is inherently mixed with noise: only mock/simulated datasets are free of noise. So
this process of separating signal from noise is not trivial. In particular, most scientifically
interesting astronomical targets are faint, can have a large variety of morphologies along
with a large distribution in brightness and size which are all drowned in a ocean of noise. So
detection is a uniquely vital aspect of any scientific work and even more so for astronomical
research. This is such a fundamental step that designing of NoiseChisel was the primary
motivation behind creating Gnuastro: the first generation of Gnuastro’s programs were
all first part of what later became NoiseChisel, afterwards they spinned-off into separate
programs.

The name of NoiseChisel is derived from the first thing it does after thresholding the
dataset: to erode it. In mathematical morphology, erosion on pixels can be pictured as
carving off boundary pixels. Hence, what NoiseChisel does is similar to what a wood chisel
or stone chisel do. It is just not a hardware, but a software. In fact looking at it as a
chisel and your dataset as a solid cube of rock will greatly help in best using it: with
NoiseChisel you literally carve the galaxies/stars/comets out of the noise. Try running it
with the --checkdetection option to see each step of the carving process on your input
dataset. You can then change a specific option to carve out your signal out of the noise
more successfully.

7.2.1 NoiseChisel changes after publication

Before using NoiseChisel it is strongly recommended to read Akhlaghi and Ichikawa [2015]
(https://arxiv.org/abs/1505.01664) to gain a good understanding of what it does and
how each parameter influences the output. Thanks to that paper, there is no need to go
into the details of the major processing steps. Hence we can just dive into the details of
running NoiseChisel in Section 7.2.2 [Invoking NoiseChisel], page 184.

However, the paper cannot undergo any further updates, but NoiseChisel will evolve:
better algorithms or steps will be found, thus options will be added or removed. So this
book is the final and definitive guide. For a more detailed list of changes in each release,
please follow the NEWS file. The NEWS file is in the released Gnuastro tarball (see Section 3.2.1
[Release tarball], page 49). You can also view the most recent NEWS file online (http://
git.savannah.gnu.org/cgit/gnuastro.git/plain/NEWS)9.

9 The online version of the NEWS file here may contain features that have been implemented, but not yet
officially released as a tarball (see Section 3.2 [Downloading the source], page 49). Therefore, please be

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1611.06387
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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Chapter 7: Data analysis 183

To make the transition form the paper to this book easier (and encourage reading the
paper), below you can see the major changes since the paper was published. First, the
options that have been removed are discussed, followed by those that have been added.

Removed options:

• --dilate: In the paper, true detections were dilated for a final dig into the noise.
However, simple 8-connected dilation can produce boxy results which are not realistic
and could miss diffuse flux. The final dig into the noise is now done by “grow”ing
the true detections, similar to how true clumps were grown, see the description of
--detgrowquant below and in Section 7.2.2.2 [Detection options], page 189, for more
on the new alternative.

Added options:

• --widekernel: NoiseChisel uses the difference between the mode and median to iden-
tify if a tile should be used for estimating the quantile thresholds (see Section 7.1.3.3
[Quantifying signal in a tile], page 171). Until now, NoiseChisel would convolve an
image once and estimate the proper tiles for quantile estimations on the convolved im-
age. The same convolved image would later be used for quantile estimation. A larger
kernel does increase the skewness (and thus difference between the mode and median),
however, it disfigures the shapes/morphology of the objects.

This new --widekernel option (and a corresponding --wkhdu option to specify its
HDU) option are added to solve such cases. When its given, the input will be convolved
with both the sharp (given through the --kernel option) and wide kernels. The mode
and median are calculated on the dataset that is convolved with the wider kernel, then
the quantiles are estimated on the image convolved with the sharper kernel.

• --noerodequant: to specify a quantile threshold where erosion will not apply. This is
useful to detect sharper point-like sources that will be missed due to too much erosion.
To completely ignore this features give this option a value of 1 (only the largest valued
pixel in the input will not be eroded).

• --qthreshtilequant: to manually remove the measured qthresh from some tiles. This
feature helps in detecting large and extended diffuse (almost flat) signal when necessary,
see Section 7.2.2.2 [Detection options], page 189.

• --detgrowquant: is used to grow the final true detections until a given quantile in the
same way that clumps are grown during segmentation (compare columns 2 and 3 in
Figure 10 of the paper). It replaces the old --dilate option in the paper and older
versions of Gnuastro. Dilation is a blind growth method which causes objects to be
boxy or diamond shaped when too many layers are added. However, with the growth
method that is defined now, we can follow the signal into the noise with any shape.
The appropriate quantile depends on your dataset’s correlated noise properties and
how cleanly it was Sky subtracted. The new --detgrowmaxholesize can also be used
to specify the maximum hole size to fill as part of this growth, see the description in
Section 7.2.2.2 [Detection options], page 189, for more details.

sure to look at the dates and versions above each group of changed features and make sure it corre-
sponds to your installed version. It is hence recommended to always stay up to date, see Section 1.9
[Announcements], page 12).
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This new growth process can be much more successful in detecting diffuse flux around
true detections compared to dilation and give more realistic results, but it can also
increase the NoiseChisel run time (depending on the given value and input size).

• --cleangrowndet: A process to further clean/remove the possibility of false detections,
see the descriptions under this option in Section 7.2.2.2 [Detection options], page 189.

7.2.2 Invoking NoiseChisel

NoiseChisel will detect and segment signal in noise producing a multi-extension labeled
image, ready for input into Section 7.3 [MakeCatalog], page 197, to generate a catalog
or other processing. The executable name is astnoisechisel with the following general
template

$ astnoisechisel [OPTION ...] InputImage.fits

One line examples:

## Detect signal in input.fits:

$ astnoisechisel input.fits

## Detect signal assuming input has 4 channels along first dimension

## and 1 along the second. Also set the regular tile size to 100 along

## both dimensions:

$ astnoisechisel --numchannels=4,1 --tilesize=100,100 input.fits

If NoiseChisel is to do processing (for example you don’t want to get help, or see the
values to each input parameter), an input image should be provided with the recognized
extensions (see Section 4.1.1.1 [Arguments], page 66). NoiseChisel shares a large set of
common operations with other Gnuastro programs, mainly regarding input/output, general
processing steps, and general operating modes. To help in a unified experience between
all of Gnuastro’s programs, these operations have the same command-line options, see
Section 4.1.2 [Common options], page 69, for a full list. Since the common options are
thoroughly discussed there, they are no longer reviewed here. You can see all the options
with a short description on the command-line with the --help option, see Section 4.7
[Getting help], page 92.

NoiseChisel’s input image may contain blank elements (see Section 6.1.3 [Blank pixels],
page 118). Blank elements will be ignored in all steps of NoiseChisel. Hence if your dataset
has bad pixels which should be masked with a mask image, please use Gnuastro’s Section 6.2
[Arithmetic], page 125, program (in particular its where operator) to convert those pixels
to blank pixels before running NoiseChisel. Gnuastro’s Arithmetic program has bitwise
operators helping you select specific kinds of bad-pixels when necessary.

A convolution kernel can also be optionally given. If a value (file name) is given to
--kernel on the command-line or in a configuration file (see Section 4.2 [Configuration
files], page 77), then that file will be used to convolve the image prior to thresholding.
Otherwise a default kernel will be used. The default kernel is a 2D Gaussian with a FWHM
of 2 pixels truncated at 5 times the FWHM. This choice of the default kernel is discussed
in Section 3.1.1 of Akhlaghi and Ichikawa [2015] (https://arxiv.org/abs/1505.01664).
See Section 6.3.4 [Convolution kernel], page 153, for kernel related options.

NoiseChisel defines two tessellations over the input (see Section 4.6 [Tessellation],
page 90). This enables it to deal with possible gradients in the input dataset and also

https://arxiv.org/abs/1505.01664
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significantly improve speed by processing each tile on different threads. The tessellation
related options are discussed in Section 4.1.2.2 [Processing options], page 71. In particular,
NoiseChisel uses two tessellations (with everything between them identical except the
tile sizes): a fine-grained one with smaller tiles (mainly used in detection) and a more
larger tiled one which is used for multi-threaded processing. The common Tessellation
options described in Section 4.1.2.2 [Processing options], page 71, define all parameters
of both tessellations, only the large tile size for the latter tessellation is set through
the --largetilesize option. To inspect the tessellations on your input dataset, run
NoiseChisel with --checktiles.� �
Usage TIP: Frequently use the options starting with --check. Depending on what you want
to detect in the data, you can often play with the parameters/options for a better result than
the default parameters. You can start with --checkdetection and --checksegmentation

for the main steps. For their full list please run:

$ astnoisechisel --help | grep check
 	
In the sections below, NoiseChisel’s options are classified into three general classes to

help in easy navigation. Section 7.2.2.1 [General NoiseChisel options], page 185, mainly
discusses the options relating to input and those that are shared in both detection and
segmentation. Options to configure the detection are described in Section 7.2.2.2 [Detection
options], page 189, and Section 7.2.2.3 [Segmentation options], page 194, we discuss how
you can fine-tune the segmentation of the detections. Finally in Section 7.2.2.4 [NoiseChisel
output], page 196, the format of NoiseChisel’s output is discussed. The order of options
here follow the same logical order that the respective action takes place within NoiseChisel
(note that the output of --help is sorted alphabetically).

7.2.2.1 General NoiseChisel options

The options discussed in this section are mainly regarding the input(s), output, and some
general processing options that are shared between both detection and segmentation. Recall
that you can always see the full list of Gnuastro’s options with the --help option.

-k STR

--kernel=STR

File name of kernel to smooth the image before applying the threshold, see
Section 6.3.4 [Convolution kernel], page 153. The first step of NoiseChisel is
to convolve/smooth the image and use the convolved image in multiple steps
during the processing. It will be used to define (and later apply) the quan-
tile threshold (see --qthresh). The convolved image is also used to define
the clumps (see Section 3.2.1 and Figure 8 of Akhlaghi and Ichikawa [2015]
(https://arxiv.org/abs/1505.01664)).

The --kernel option is not mandatory. If no kernel is provided, a 2D Gaussian
profile with a FWHM of 2 pixels truncated at 5 times the FWHM is used. This
choice of the default kernel is discussed in Section 3.1.1 of Akhlaghi and Ichikawa
[2015].

--khdu=STR

HDU containing the kernel in the file given to the --kernel option.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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--convolved=STR

Use this file as the convolved image and don’t do convolution and ignore
--kernel. NoiseChisel will just check the size of the given dataset is the same
as the input’s size. If a wrong image (with the same size) is given to this option,
the results (errors, bugs, and etc) are un-predictable. So please use this option
with care and in a highly controlled environment. On such scenario is discussed
below.

In almost all situations, as the input gets larger, the single most CPU and time
consuming step in NoiseChisel is convolution (the first step in its processing).
The process of testing NoiseChisel for the best parameters in a given analysis
will involve running NoiseChisel multiple times: to see the effect of each new
option value. Therefore, once the kernel is finalized, re-convolving the input
will greatly hinder fast testing of higher-level parameters. With this option,
you can convolve the input image with your chosen kernel once before running
NoiseChisel, then feed it to NoiseChisel on each test run and thus save valuable
time for better/more tests.

To build your desired convolution kernel, you can use Section 8.1 [MakeProfiles],
page 221. To convolve the image with a given kernel you can use Section 6.3
[Convolve], page 135. Spatial domain convolution is mandatory. In the fre-
quency domain, blank pixels (if present) will cover the whole image and gradi-
ents will appear on the edges, see Section 6.3.3 [Spatial vs. Frequency domain],
page 152.

Below you can see an example of such a scenario: you want to see how variation
of the growth level (through the --detgrowquant option) will affect the final
result. Recall that you can ignore all the extra spaces, new lines, and ‘\’ if you
are typing in the terminal (in a shell script, remove the $ signs at the start of
the lines).

## Make the kernel to convolve with.

$ astmkprof --oversample=1 --kernel=gaussian,2,5

## Convolve the input with the given kernel.

$ astconvolve input.fits --kernel=kernel.fits \

--domain=spatial --output=convolved.fits

## Run NoiseChisel with seven growth quantile values.

$ for g in 60 65 70 75 80 85 90; do \

astnoisechisel input.fits --convolved=convolved.fits \

--detgrowquant=0.$g --output=$g.fits; \

done

--convolvedhdu=STR

The HDU/extension containing the convolved image in the file given to
--convolved.
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-w STR

--widekernel=STR

File name of a wider kernel to use in estimating the difference of the mode
and median in a tile (this difference is used to identify the significance of signal
in that tile, see Section 7.1.3.3 [Quantifying signal in a tile], page 171). This
convolved image is only used for this purpose. Once the mode is found to be
sufficiently close to the median, the input convolved with the sharper kernel
(--kernel) is used to identify the quantile threshold (see --qthresh).

Since this convolution will significantly slow down the processing, it is optional.
If no image is given, the mode and median will be found on the image that is
convolved with the dataset in --kernel.

--wkhdu=STR

HDU containing the kernel file given to the --widekernel option.

-E

--skysubtracted

If this option is called, it is assumed that the image has already been sky
subtracted once. Knowing if the sky has already been subtracted once or not
is very important in estimating the Signal to noise ratio of the detections and
clumps. In short an extra σ2

sky must be added in the error (noise or denominator
in the Signal to noise ratio) for every flux value that is present in the calculation.
This can be interpreted as the error in measuring that sky value when it was
subtracted by any other program. See Section 3.3 in Akhlaghi and Ichikawa
[2015] (https://arxiv.org/abs/1505.01664)) for a complete explanation.

-B FLT

--minskyfrac=FLT

Minimum fraction (value between 0 and 1) of sky (undetected) areas in a tile
for it to be considered in measuring the following detection and segmentation
properties.

• Measuring the Signal to noise ratio of false detections during the false
detection removal on small tiles.

• Measuring the sky value (average of undetected pixels) on small tiles. Both
before the removal of false detections and after it.

• Clump Signal to noise ratio in the sky regions of large files.

Because of the PSF and their intrinsic amorphous properties, astronomical
objects (except cosmic rays) never have a clear cutoff and commonly sink into
the noise very slowly. Even below the very low thresholds used by NoiseChisel.
So when a large fraction of the area of one mesh is covered by detections, it is
very plausible that their faint wings are present in the undetected regions (hence
causing a bias in any measurement). To get an accurate measurement of the
above parameters over the tessellation, tiles that harbor too many detected
regions should be excluded. The used tiles are visible in the respective --check
option of the given step.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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--minnumfalse=INT

The minimum number of ‘pseudo-detections’ (to identify false initial detections)
or clumps (to identifying false clumps) found over the un-detected regions to
identify a Signal-to-Noise ratio threshold.

The Signal to noise ratio (S/N) of false pseudo-detections and clumps in each
tile is found using the quantile of the S/N distribution of the psudo-detections
and clumps over the undetected pixels in each mesh. If the number of S/N
measurements is not large enough, the quantile will not be accurate (can have
large scatter). For example if you set --detquant=0.99 (or the top 1 percent),
then it is best to have at least 100 S/N measurements.

-L INT[,INT]

--largetilesize=INT[,INT]

The size of each tile for the tessellation with the larger tile sizes. Except for
the tile size, all the other parameters for this tessellation are taken from the
common options described in Section 4.1.2.2 [Processing options], page 71. The
format is identical to that of the --tilesize option that is discussed in that
section.

--onlydetection

If this option is called, no segmentation will be done and the output will only
have four extensions (no clumps extension, see Section 7.2.2.4 [NoiseChisel out-
put], page 196). The second extension of the output is not going to be objects
but raw detections (a large region will be given one label): labeling is only done
based on connectivity. The last two extensions of the output will be the Sky
and its Standard deviation.

This option can result in faster processing when only the noise properties of
the image are desired for a catalog using another image’s labels for example. A
common case is when you want to measure colors or SEDs in several images.
Let’s say you have images in two colors: A and B. For simplicity also assume
that they are exactly on the same position in the sky with the same pixel scale.

You choose to set A as a reference, so you run the NoiseChisel fully on A. Then
you run NoiseChisel on B with --onlydetection since you only need the noise
properties of B (for the signal to noise column in its catalog). You can then run
MakeCatalog on A normally, see Section 7.3 [MakeCatalog], page 197. To run
MakeCatalog on B, you simply set the object and clump labels images to those
that NoiseChisel produced for A, see Section 7.3.5 [Invoking MakeCatalog],
page 207.

--continueaftercheck

Continue NoiseChisel after any of the options starting with --check.
NoiseChisel involves many steps and as a result, there are many checks,
allowing to inspect the status of the processing. The results of each step affect
the next steps of processing, so, when you are want to check the status of
the processing at one step, the time spent to complete NoiseChisel is just
wasted/distracting time.

To encourage easier experimentation with the option values, when you
use any of the NoiseChisel options that start with --check, NoiseChisel
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will abort once all the desired check file(s) is (are) completed. If you call
the --continueaftercheck option, you can disable this behavior and ask
NoiseChisel to continue with the rest of the processing after completing the
check file(s).

7.2.2.2 Detection options

Detection is the process of separating the pixels in the image into two groups: 1) Signal
and 2) Noise. Through the parameters below, you can customize the detection process in
NoiseChisel. Recall that you can always see the full list of Gnuastro’s options with the
--help option.

-r FLT

--mirrordist=FLT

Maximum distance (as a multiple of error) to estimate the difference between
the input and mirror distributions in finding the mode, see Appendix C of
Akhlaghi and Ichikawa 2015 (https://arxiv.org/abs/1505.01664), also see
Section 7.1.3.3 [Quantifying signal in a tile], page 171.

-Q FLT

--modmedqdiff=FLT

The maximum acceptable distance between the mode and median, see
Section 7.1.3.3 [Quantifying signal in a tile], page 171. The quantile threshold
will be found on tiles that satisfy this mode and median difference.

-t FLT

--qthresh=FLT

The quantile threshold to apply to the convolved image. The detection process
begins with applying a quantile threshold to each of the tiles in the small tessel-
lation. The quantile is only calculated for tiles that don’t have any significant
signal within them, see Section 7.1.3.3 [Quantifying signal in a tile], page 171.
Interpolation is then used to give a value to the un-successful tiles and it is
finally smoothed.

The quantile value is a floating point value between 0 and 1. Assume that we
have sorted the N data elements of a distribution (the pixels in each mesh on
the convolved image). The quantile (q) of this distribution is the value of the
element with an index of (the nearest integer to) q ×N in the sorted data set.
After thresholding is complete, we will have a binary (two valued) image. The
pixels above the threshold are known as foreground pixels (have a value of 1)
while those which lie below the threshold are known as background (have a
value of 0).

--qthreshtilequant=FLT

Only keep tiles which have a q-thresh value above the given quantile of the all
successful tiles. Hence, when given a value of 1, this option will be ignored.
When there is more than one channel (and --workoverch is not called), quantile
calculation and application will be done on each channel independently.

This option is useful when a large and diffuse (almost flat within each tile)
signal exists with very small regions of Sky. The flatness of the profile will
cause it to successfully pass the tests of Section 7.1.3.3 [Quantifying signal in a

https://arxiv.org/abs/1505.01664
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tile], page 171. As a result, without this option the flat and diffuse signal will
be interpretted as sky. In such cases, you can see the status of the tiles with the
--checkqthresh option (first image extension is enough) and select a quantile
through this option to ignore the measured values in the higher-valued tiles.

This option can also be useful when there are large bright objects in the image
with large flat wings which can also pass the tests and give outlier values. When
there is a sky gradient over the image (mainly due to post-processing issues like
bad flat fielding), this option must be set to 1 so it is completely ignored and
the sky gradient is accurately measured and subtracted.

To get an estimate of the measured qthresh distribution, you can run the
following commands. The first will create the qthresh check image with one
value/pixel per tile (see Section 4.1.2.2 [Processing options], page 71). Open
the image in a FITS viewer and inspect it. The second command below will
print the basic information about the distribution of values and the third will
print the value at the 0.4 quantile. Recall that Gnuastro’s Statistics program
ignores blank values (in this case: tiles with significant signal), see Section 7.1
[Statistics], page 166.

$ astnoisechisel image.fits --checkqthresh --oneelempertile

$ aststatistics image_qthresh.fits

$ aststatistics image_qthresh.fits --quantile=0.4

--smoothwidth=INT

Width of flat kernel used to smooth the interpolated quantile thresholds, see
--qthresh for more.

--checkqthresh

Check the quantile threshold values on the mesh grid. A file suffixed with _

qthresh.fits will be created showing each step. With this option, NoiseChisel
will abort as soon as quantile estimation has been completed, allowing you to
inspect the steps leading to the final quantile threshold, this can be disabled
with --continueaftercheck. By default the output will have the same pixel
size as the input, but with the --oneelempertile option, only one pixel will
be used for each tile (see Section 4.1.2.2 [Processing options], page 71).

-e INT

--erode=INT

The number of erosions to apply to the binary thresholded image. Erosion is
simply the process of flipping (from 1 to 0) any of the foreground pixels that
neighbor a background pixel. In a 2D image, there are two kinds of neighbors, 4-
connected and 8-connected neighbors. You can specify which type of neighbors
should be used for erosion with the --erodengb option, see below.

Erosion has the effect of shrinking the foreground pixels. To put it another way,
it expands the holes. This is a founding principle in NoiseChisel: it exploits the
fact that with very low thresholds, the holes in the very low surface brightness
regions of an image will be smaller than regions that have no signal. Therefore
by expanding those holes, we are able to separate the regions harboring signal.
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--erodengb=INT

The type of neighborhood (structuring element) used in erosion, see --erode

for an explanation on erosion. Only two integer values are acceptable: 4 or 8. In
4-connectivity, the neighbors of a pixel are defined as the four pixels on the top,
bottom, right and left of a pixel that share an edge with it. The 8-connected
neighbors on the other hand include the 4-connected neighbors along with the
other 4 pixels that share a corner with this pixel. See Figure 6 (a) and (b) in
Akhlaghi and Ichikawa (2015) for a demonstration.

--noerodequant

Pure erosion is going to carve off sharp and small objects completely out of
the detected regions. This option can be used to avoid missing such sharp and
small objects (which have significant pixels, but not over a large area). All
pixels with a value larger than the significance level specified by this option will
not be eroded during the erosion step above. However, they will undergo the
erosion and dilation of the opening step below.

Like the --qthresh option, the significance level is determined using the quan-
tile (a value between 0 and 1). Just as a reminder, in the normal distribution,
1σ, 1.5σ, and 2σ are approximately on the 0.84, 0.93, and 0.98 quantiles.

-p INT

--opening=INT

Depth of opening to be applied to the eroded binary image. Opening is a com-
posite operation. When opening a binary image with a depth of n, n erosions
(explained in --erode) are followed by n dilations. Simply put, dilation is the
inverse of erosion. When dilating an image any background pixel is flipped
(from 0 to 1) to become a foreground pixel. Dilation has the effect of fattening
the foreground. Note that in NoiseChisel, the erosion which is part of opening
is independent of the initial erosion that is done on the thresholded image (ex-
plained in --erode). The structuring element for the opening can be specified
with the --openingngb option. Opening has the effect of removing the thin
foreground connections (mostly noise) between separate foreground ‘islands’
(detections) thereby completely isolating them. Once opening is complete, we
have initial detections.

--openingngb=INT

The structuring element used for opening, see --erodengb for more information
about a structuring element.

-s FLT,FLT

--sigmaclip=FLT,FLT

The σ-clipping parameters, see Section 7.1.2 [Sigma clipping], page 167. This
option takes two values which are separated by a comma (,). Each value can
either be written as a single number or as a fraction of two numbers (for example
3,1/10). The first value to this option is the multiple of σ that will be clipped
(α in that section). The second value is the exit criteria. If it is less than 1,
then it is interpreted as tolerance and if it is larger than one it is assumed to
be the fixed number of iterations. Hence, in the latter case the value must be
an integer.
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--checkdetsky

Check the initial approximation of the sky value and its standard deviation
in a FITS file ending with _detsky.fits. With this option, NoiseChisel will
abort as soon as the sky value used for defining pseudo-detections is complete.
This allows you to inspect the steps leading to the final quantile threshold, this
behavior can be disabled with --continueaftercheck. By default the output
will have the same pixel size as the input, but with the --oneelempertile

option, only one pixel will be used for each tile (see Section 4.1.2.2 [Processing
options], page 71).

-R FLT

--dthresh=FLT

The detection threshold: a multiple of the initial sky standard deviation
added with the initial sky approximation (which you can inspect with
--checkdetsky). This flux threshold is applied to the initially undetected
regions on the un-convolved image. The background pixels that are completely
engulfed in a 4-connected foreground region are converted to background
(holes are filled) and one opening (depth of 1) is applied over both the initially
detected and undetected regions. The Signal to noise ratio of the resulting
‘psudo-detections’ are used to identify true vs. false detections. See Section
3.1.5 and Figure 7 in Akhlaghi and Ichikawa (2015) for a very complete
explanation.

-i INT

--detsnminarea=INT

The minimum area to calculate the Signal to noise ratio on the psudo-detections
of both the initially detected and undetected regions. When the area in a
psudo-detection is too small, the Signal to noise ratio measurements will not
be accurate and their distribution will be heavily skewed to the positive. So
it is best to ignore any psudo-detection that is smaller than this area. Use
--detsnhistnbins to check if this value is reasonable or not.

--checkdetsn

Save the S/N values of the pseudo-detections and dilated detections
into three files ending with _detsn_sky.XXX, _detsn_det.XXX, and
_detsn_dilated.XXX. The .XXX is determined from the --tableformat

option (see Section 4.1.2.1 [Input/Output options], page 69, for example
.txt or .fits). You can use these to inspect the S/N values and their
distribution (in combination with the --checkdetection option to see where
the pseudo-detections are). You can use Gnuastro’s Section 7.1 [Statistics],
page 166, to make a histogram of the distribution or any other analysis you
would like for better understanding of the distribution (for example through a
histogram).

With this option, NoiseChisel will abort as soon as the tables are created. This
allows you to inspect the steps leading to the final quantile threshold, this
behavior (to abort NoiseChisel) can be disabled with --continueaftercheck.
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-c FLT

--detquant=FLT

The quantile of the Signal to noise ratio distribution of the psudo-detections in
each mesh to use for filling the large mesh grid. Note that this is only calcu-
lated for the large mesh grids that satisfy the minimum fraction of undetected
pixels (value of --minbfrac) and minimum number of psudo-detections (value
of --minnumfalse).

-d FLT

--detgrowquant=FLT

Quantile limit to “grow” the final detections. As discussed in the previous
options, after applying the initial quantile threshold, layers of pixels are carved
off the objects to identify true signal. With this step you can return those low
surface brightness layers that were carved off back to the detections. To disable
growth, set the value of this option to 1.

The process is as follows: after the true detections are found, all the non-
detected pixels above this quantile will be put in a list and used to “grow” the
true detections (seeds of the growth). Like all quantile thresholds, this thresh-
old is defined and applied to the convolved dataset. Afterwards, the dataset
is dilated once (with minimum connectivity) to connect very thin regions on
the boundary: imagine building a dam at the point rivers spill into an open
sea/ocean. Finally, all holes are filled. In the geography metaphor, holes can be
seen as the closed (by the dams) rivers and lakes, so this process is like turning
the water in all such rivers and lakes into soil. See --detgrowmaxholesize for
configuring the hole filling.

--detgrowmaxholesize=INT

The maximum hole size to fill during the final expansion of the true detections
as described in --detgrowquant. This is necessary when the input contains
many smaller objects and can be used to avoid marking blank sky regions as
detections. For example multiple galaxies can be positioned such that they
surround an empty region of sky. If all the holes are filled, the Sky region in
between them will be taken as a detection which is not desired. To avoid such
cases, the integer given to this option must be smaller than the hole between
the objects.

On the other hand, if you have a very large (and extended) galaxy, the diffuse
wings of the galaxy may create very large holes. In such cases, a larger value
to this option will cause the whole region to be detected as part of the large
galaxy and thus detect it to extremely low surface brightness limits.

--cleangrowndet

After dilation, if the signal-to-noise ratio of a detection is less than the derived
pseudo-detection S/N limit, that detection will be discarded. In an ideal/clean
noise, a true detection’s S/N should be larger than its constituent pseudo-
detections because its area is larger and it also covers more signal. However, on
a false detections (especially at lower --detquant values), the increase in size
can cause a decrease in S/N below that threshold.
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This will improve purity and not change completeness (a true detection will not
be discarded). Because a true detection has flux in its vicinity and dilation will
catch more of that flux and increase the S/N. So on a true detection, the final
S/N cannot be less than pseudo-detections.

However, in many real images bad processing creates artifacts that cannot be
accurately removed by the Sky subtraction. In such cases, this option will
decrease the completeness (will artificially discard true detections). So this
feature is not default and should to be explicitly called when you know the
noise is clean.

--checkdetection

Every step of the detection process will be added as an extension to a file with
the suffix _det.fits. Going through each would just be a repeat of the expla-
nations above and also of those in Akhlaghi and Ichikawa (2015). The extension
label should be sufficient to recognize which step you are observing. Viewing
all the steps can be the best guide in choosing the best set of parameters. With
this option, NoiseChisel will abort as soon as a snapshot of all the detection
process is saved. This behavior can be disabled with --continueaftercheck.

--checksky

Check the derivation of the final sky and its standard deviation values on the
mesh grid. With this option, NoiseChisel will abort as soon as the sky value
is estimated over the image (on each tile). This behavior can be disabled with
--continueaftercheck. By default the output will have the same pixel size as
the input, but with the --oneelempertile option, only one pixel will be used
for each tile (see Section 4.1.2.2 [Processing options], page 71).

7.2.2.3 Segmentation options

Segmentation is the process of (possibly) breaking up a detection into multiple segments
(technically called objects and clumps in NoiseChisel). In deep surveys segmentation be-
comes particularly important because we will be detecting more diffuse flux so galaxy images
are going to overlap more. It is thus very important to be able separate the pixels within
a detection.

In NoiseChisel, segmentation is done by first finding the ‘true’ clumps over a detection
and then expanding those clumps to a certain flux limit. True clumps are found in a
process very similar to the true detections explained in Section 7.2.2.2 [Detection options],
page 189, see Akhlaghi and Ichikawa [2015] (https://arxiv.org/abs/1505.01664) for
more information. If the connections between the grown clumps are weaker than a given
threshold, the grown clumps are considered to be separate objects.

-m INT

--segsnminarea=INT

The minimum area which a clump in the undetected regions should have in
order to be considered in the clump Signal to noise ratio measurement. If this
size is set to a small value, the Signal to noise ratio of false clumps will not
be accurately found. It is recommended that this value be larger than the
value to --detsnminarea. Because the clumps are found on the convolved
(smoothed) image while the psudo-detections are found on the input image.

https://arxiv.org/abs/1505.01664
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You can use --checkclumpsn and --checksegmentation to see if your chosen
value is reasonable or not.

--checkclumpsn

Save the S/N values of the clumps into two files ending with _clumpsn_sky.XXX

and _clumpsn_det.XXX. The .XXX is determined from the --tableformat

option (see Section 4.1.2.1 [Input/Output options], page 69, for example .txt

or .fits). You can use these to inspect the S/N values and their distribution (in
combination with the --checksegmentation option to see where the clumps
are). You can use Gnuastro’s Section 7.1 [Statistics], page 166, to make a
histogram of the distribution (ready for plotting in a text file, or a crude ASCII-
art demonstration on the command-line).

With this option, NoiseChisel will abort as soon as the two tables are created.
This allows you to inspect the steps leading to the final S/N quantile threshold,
this behavior can be disabled with --continueaftercheck.

-g FLT

--segquant=FLT

The quantile of the noise clump Signal to noise ratio distribution. This value
is used to identify true clumps over the detected regions. You can get the full
distribution of clumps S/Ns over the undetected areas with the --checkclumpsn
option and see them with --checksegmentation.

-v

--keepmaxnearriver

Keep a clump whose maximum flux is 8-connected to a river pixel. By default
such clumps over detections are considered to be noise and are removed irre-
spective of their brightness (see Section 8.1.3 [Flux Brightness and magnitude],
page 227). Over large profiles, that sink into the noise very slowly, noise can
cause part of the profile (which was flat without noise) to become a very large
and with a very high Signal to noise ratio. In such cases, the pixel with the
maximum flux in the clump will be immediately touching a river pixel.

-G FLT

--gthresh=FLT

Threshold (multiple of the sky standard deviation added with the sky) to stop
growing true clumps. Once true clumps are found, they are set as the basis to
segment the detected region. They are grown until the threshold specified by
this option.

-y INT

--minriverlength=INT

The minimum length of a river between two grown clumps for it to be con-
sidered in Signal to noise ratio estimations. Similar to --segsnminarea and
--detsnminarea, if the length of the river is too short, the Signal to noise ratio
can be noisy and unreliable. Any existing rivers shorter than this length will
be considered as non-existent, independent of their Signal to noise ratio. Since
the clumps are grown on the input image, this value should best be similar
to the value of --detsnminarea. Recall that the clumps were defined on the
convolved image so --segsnminarea was larger than --detsnminarea.
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-O FLT

--objbordersn=FLT

The maximum Signal to noise ratio of the rivers between two grown clumps
in order to consider them as separate ‘objects’. If the Signal to noise ratio of
the river between two grown clumps is larger than this value, they are defined
to be part of one ‘object’. Note that the physical reality of these ‘objects’ can
never be established with one image, or even multiple images from one broad-
band filter. Any method we devise to define ‘object’s over a detected region is
ultimately subjective.

Two very distant galaxies or satellites in one halo might lie in the same line
of sight and be detected as clumps on one detection. On the other hand, the
connection (through a spiral arm or tidal tail for example) between two parts
of one galaxy might have such a low surface brightness that they are broken
up into multiple detections or objects. In fact if you have noticed, exactly
for this purpose, this is the only Signal to noise ratio that the user gives into
NoiseChisel. The ‘true’ detections and clumps can be objectively identified
from the noise characteristics of the image, so you don’t have to give any hand
input Signal to noise ratio.

--grownclumps

In the output (see Section 7.2.2.4 [NoiseChisel output], page 196) store the
grown clumps (or full detected region if only one clump was present in that
detection). By default the original clumps are stored as the third extension of
the output, if this option is called, it is replaced with the grown clump labels.

--checksegmentation

A file with the suffix _seg.fits will be created. This file keeps all the relevant
steps in finding true clumps and segmenting the detections into multiple objects
in various extensions. Having read the paper or the steps above. Examining
this file can be an excellent guide in choosing the best set of parameters. Note
that calling this function will significantly slow NoiseChisel. In verbose mode
(without the --quiet option, see Section 4.1.2.3 [Operating mode options],
page 73) the important steps (along with their extension names) will also be
reported.

With this option, NoiseChisel will abort as soon as the two tables are created.
This behavior can be disabled with --continueaftercheck.

7.2.2.4 NoiseChisel output

The default name and directory of the outputs are explained in Section 4.8 [Automatic
output], page 95. NoiseChisel’s default output (when none of the options starting with
--check or the --output option are called) is one file ending with _labeled.fits. This
file has the extensions listed below:

1. A copy of the input image, a copy is placed here for the following reasons:

• By flipping through the extensions, a user can check how accurate the detection
and segmentation process was.

• All the inputs to MakeCatalog (see Section 7.3 [MakeCatalog], page 197) are in-
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cluded in this one file which makes the running of MakeCatalog after NoiseChisel
very easy.

2. The object/detection labels. Each pixel in the input image is given a label in this
extension, the labels start from one. If the --onlydetection option is given, each
large connected part of the image has one label. Without that option, this extension
is going to show the labels of the objects that are found after segmentation. The total
number of labels is stored as the value to the NOBJS/NDETS keyword in the header of
this extension. This number is also printed in verbose mode.

3. The clump labels when --onlydetection is not called. All the pixels in the input
image that belong to a true clump are given a positive label in this extension. The
detected regions that were not a clump are given a negative value to clearly identify
the sky noise from the diffuse detections. The total number of clumps in this image is
stored in the NCLUMPS keyword of this extension and printed in verbose output.

If the --grownclumps option is called, or a value of 1 is given to it in any of the
configuration files, then instead of the original clump regions, the grown clumps will
be stored in this extension. Note that if there is only one clump (or no clumps) over a
detected region, then the whole detected region is given a label of 1.

4. The final sky value on each pixel. See Section 7.1.3 [Sky value], page 168, for a complete
explanation.

5. Similar to the previous mesh but for the standard deviation on each pixel.

To inspect NoiseChisel’s output, you can configure SAO DS9 in your Graphic User
Interface (GUI) to open NoiseChisel’s output as a multi-extension data cube. This will allow
you to flip through the different extensions and visually inspect the results. This process
has been described for the GNOME GUI (most common GUI in GNU/Linux operating
systems) in Section B.1.1 [Viewing multiextension FITS images], page 378.

7.3 MakeCatalog

At the lowest level, a dataset (for example an image) is just a collection of values, placed
after each other in any number of dimensions (for example an image is a 2D dataset).
Each data-element (pixel) just has two properties: its position (relative to the rest) and its
value. The entire input dataset (a large image for example) is rarely treated as a singu-
lar entity for higher-level analysis10. You want to know the properties of the scientifically
interesting targets that are embedded in it. For example the magnitudes, positions and
elliptical properties of the galaxies that are in the image. MakeCatalog is Gnuastro’s pro-
gram to derive higher-level information for pre-defined regions of a dataset. The role of
MakeCatalog in a scientific analysis and the benefits of this model of data-analysis (were
detection/identification is separated from measurement) is discussed in Akhlaghi [2016]
(https://arxiv.org/abs/1611.06387v1). We strongly recommend reading this short pa-
per for a better understanding of this methodology and use MakeCatalog most effectively.
However, that paper cannot undergo any more change, so this manual is the definitive guide.

As discussed above, you have to define the regions of a dataset that you are interested
in before running MakeCatalog. MakeProfiles currently uses labeled dataset(s) for this job.

10 In low-level reduction/preparation of a dataset, you do in fact treat a whole image as a single entity.
You can derive the over-all properties of all the pixels in a dataset with Gnuastro’s Statistics program
(see Section 7.1 [Statistics], page 166)

https://arxiv.org/abs/1611.06387v1
https://arxiv.org/abs/1611.06387v1
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A labeled dataset for a given input dataset has the size/dimensions as the input, but its
pixels have an integer type (see Section 4.4 [Numeric data types], page 82)11: all pixels
with the same label (integers larger and equal to one) are used to generate the requested
output columns of MakeCatalog for the row of their labeled value. For example, the flux
weighted average position of all the pixels with a label of 42 will be considered as the central
position12 of the 42nd row of the output catalog. Pixels with labels equal to or smaller than
zero will be ignored by MakeCatalog. In other words, the number of rows of the output
catalog will be determined from the labeled image.

The labeled image maybe created with any tool13. Within Gnuastro you can use these
two solutions depending on a-priori/parametric knowledge of the targets you want to study:

• When you already know the positions and parametric (for example circular or elliptical)
properties of the targets, you can use Section 8.1 [MakeProfiles], page 221, to generate
a labeled image from another catalog. This is also known as aperture photometry (the
apertures are defined a-priori).

• When the shape of your targets cannot be parameterized accurately (for example galax-
ies), or if you don’t know the number/shape of the targets in the image, you can use
Gnuastro’s NoiseChisel program to detect and segment (make labeled images of) the
objects and clumps in the input image, see Section 7.2 [NoiseChisel], page 181.

7.3.1 Detection and catalog production

As discussed above (Section 7.3 [MakeCatalog], page 197), NoiseChisel (Gnuastro’s signal
detection tool, see Section 7.2 [NoiseChisel], page 181) does not produce any catalog of
the detected objects. However, most other common tools in astronomical data-analysis
(for example SExtractor14) merge the two processes into one. Gnuastro’s modularized
methodology is therefore new to many experienced astronomers and deserves a short review
here. Further discussion on the benefits of this methodology can be seen in Akhlaghi [2016]
(https://arxiv.org/abs/1611.06387v1).

To simplify catalog production from a raw input image in Gnuastro, NoiseChisel’s output
(see Section 7.2.2.4 [NoiseChisel output], page 196) can be directly fed into MakeCatalog.
This is good when no further customization is necessary and you want a fast/simple. But
the modular approach taken by Gnuastro has many benefits that will become more apparent
as you get more experienced in astronomical data analysis and want to be more creative in
using your valuable data for the exciting scientific project you are working on. In short the
reasons for this modularity can be classified as below:

• Complexity of a monolith: Adding in a catalog functionality to the detector program
will add several more steps (and many more options) to its processing that can equally

11 If the program you used to generate the labeled image only outputs floating point types, but you know
it only has integer valued pixels that are stored in a floating point container, you can use Gnuastro’s
Arithmetic program (see Section 6.2 [Arithmetic], page 125) to change the numerical data type of the
image (flabel.fits) to an integer type image (label.fits) with a command like below:
$ astarithmetic flabel.fits int32 --output=label.fits

12 See Section 7.3.3 [Measuring elliptical parameters], page 203, for a discussion on this and the derivation
of positional parameters.

13 For example, you can even use a graphic user interface image editing tool like the GNU Image Manipu-
lation Program (or GIMP) and use Gnuastro’s ConvertType to convert it to a FITS file.

14 https://www.astromatic.net/software/sextractor

https://arxiv.org/abs/1611.06387v1
https://arxiv.org/abs/1611.06387v1
https://www.astromatic.net/software/sextractor
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well be done outside of it. This makes following what the program does harder for the
users and developers, it can also potentially add many bugs.

As an example, if the parameter you want to measure over one profile is not provided
by the developers of MakeCatalog. You can simply open this tiny little program and
add your desired calculation easily. This process is discussed in Section 7.3.4 [Adding
new columns to MakeCatalog], page 206. However, if making a catalog was part of
NoiseChisel, it would require a lot of energy to understand all the steps and internal
structures of that large program (the most complex in Gnuastro) in order to add desired
parameter in a catalog.

• Simplicity/robustness of independent, modular tools: making a catalog is a logically
separate process from labeling (detection and segmentation). A user might want to do
certain operations on the labeled regions before creating a catalog for them. Another
user might want the properties of the same pixels/objects in another image (another
filter for example) to measure the colors or SED fittings.

Here is an example of doing both: suppose you have images in various broad band
filters at various resolutions and orientations. The image of one color will thus not lie
exactly on another or even be in the same scale. However, it is imperative that the
same pixels be used in measuring the colors of galaxies.

To solve the problem, NoiseChisel can be run on the reference image to generate the
labeled image. After wards, the labeled image can be warped into the grid of the other
color (using Section 6.4 [Warp], page 156). MakeCatalog will then generate the same
catalog for both colors (with the different labeled images). It is currently customary to
warp the images to the same pixel grid, however, modification of the scientific dataset
is very harmful for the data and creates correlated noise. It is much more accurate to
do the transformations on the labeled image.

7.3.2 Quantifying measurement limits

No measurement on a real dataset can be perfect: you can only reach a certain level/limit
of accuracy. Therefore, a meaningful (scientific) analysis requires an understanding of
these limits for the dataset and your analysis tools: different datasets (images in the
case of MakeCatalog) have different noise properties and different detection methods (one
method/algorith/software that is run with a different set of parameters is considered as a
different detection method) will have different abilities to detect or measure certain kinds
of signal (astronomical objects) and their properties in an image. Hence, quantifying the
detection and measurement limitations with a particular dataset and analysis tool is the
most crucial/critical aspect of any high-level analysis.

In this section we discuss some of the most general limits that are very important in any
astronomical data analysis and how MakeCatalog makes it easy to find them. Depending
on the higher-level analysis, there are more tests that must be done, but these are usually
necessary in any case. In astronomy, it is common to use the magnitude (a unit-less scale)
and physical units, see Section 8.1.3 [Flux Brightness and magnitude], page 227. Therefore
all the measurements discussed here are defined in units of magnitudes.

Surface brightness limit (of whole dataset)
As we make more observations on one region of the sky, and add the observations
into one dataset, we are able to decrease the standard deviation of the noise
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in each pixel15. Qualitatively, this decrease manifests its self by making fainter
(per pixel) parts of the objects in the image more visible. Technically, this is
known as surface brightness. Quantitatively, it increases the Signal to noise
ratio, since the signal increases faster than noise with more data. It is very
important to have in mind that here, noise is defined per pixel (or in the units
of our data measurement), not per object.

You can think of the noise as muddy water that is completely covering a flat
ground16 with some regions higher than the others17 in it. In this analogy,
height (from the ground) is surface brightness. Let’s assume that in your first
observation the muddy water has just been stirred and you can’t see anything
through it. As you wait and make more observations, the mud settles down
and the depth of the transparent water increases, making the summits of hills
visible. As the depth of clear water increases, the parts of the hills with lower
heights (less parts with lower surface brightness) can be seen more clearly.

The outputs of NoiseChisel include the Sky standard deviation (σ) on every
group of pixels (a mesh) that were calculated from the undetected pixels in that
mesh, see Section 4.6 [Tessellation], page 90, and Section 7.2.2.4 [NoiseChisel
output], page 196. Let’s take σm as the median σ over the successful meshes in
the image (prior to interpolation or smoothing).

On different instruments pixels have different physical sizes (for example in
micro-meters, or spatial angle over the sky), nevertheless, a pixel is our unit
of data collection. In other words, while quantifying the noise, the physical or
projected size of the pixels is irrelevant. We thus define the Surface brightness
limit or depth, in units of magnitude/pixel, of a data-set, with zeropoint mag-
nitude z, with the nth multiple of σm as (see Section 8.1.3 [Flux Brightness and
magnitude], page 227):

SBPixel = −2.5× log10 (nσm) + z

As an example, the XDF survey covers part of the sky that the Hubble space
telescope has observed the most (for 85 orbits) and is consequently very small
(∼ 4 arcmin2). On the other hand, the CANDELS survey, is one of the widest
multi-color surveys covering several fields (about 720 arcmin2) but its deepest
fields have only 9 orbits observation. The depth of the XDF and CANDELS-
deep surveys in the near infrared WFC3/F160W filter are respectively 34.40 and
32.45 magnitudes/pixel. In a single orbit image, this same field has a depth of
31.32. Recall that a larger magnitude corresponds to less brightness.

The low-level magnitude/pixel measurement above is only useful when all the
datasets you want to use belong to one instrument (telescope and camera).
However, you will often find yourself using datasets from various instruments
with different pixel scales (projected pixel sizes). If we know the pixel scale,

15 This is true for any noisy data, not just astronomical images.
16 The ground is the sky value in this analogy, see Section 7.1.3 [Sky value], page 168. Note that this

analogy only holds for a flat sky value across the surface of the image or ground.
17 The peaks are the brightest parts of astronomical objects in this analogy.
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we can obtain a more easily comparable surface brightness limit in units of:
magnitude/arcsec2. Let’s assume that the dataset has a zeropoint value of z,
and every pixel is p arcsec2 (so A/p is the number of pixels that cover an area
of A arcsec2). If the nth multiple of σm is desired, then the surface brightness
(in units of magnitudes per A arcsec2) is18:

SBProjected = −2.5× log10

(
nσm

√
A

p

)
+ z

Note that this is an extrapolation of the actually measured value of σm (which
was per pixel). So it should be used with extreme care (for example the dataset
must have an approximately flat depth). For each detection over the dataset,
you can estimate an upper-limit magnitude which actually uses the detection’s
area/footprint. It doesn’t extrapolate and even accounts for correlated noise
features. Therefore, the upper-limit magnitude is a much better measure of
your dataset’s surface brightness limit for each particular object.

MakeCatalog will calculate the input dataset’s SBPixel and SBProjected and
write them as comments/meta-data in the output catalog(s). Just note that
SBProjected is only calculated if the input has World Coordinate System (WCS).

Completeness limit (of each detection)
As the surface brightness of the objects decreases, the ability to detect them
will also decrease. An important statistic is thus the fraction of objects of
similar morphology and brightness that will be identified with our detection
algorithm/parameters in the given image. This fraction is known as complete-
ness. For brighter objects, completeness is 1: all bright objects that might exist
over the image will be detected. However, as we go to lower surface brightness
objects, we fail to detect some and gradually we are not able to detect anything
any more. For a given profile, the magnitude where the completeness drops
below a certain level usually above 90% is known as the completeness limit.

Another important parameter in measuring completeness is purity: the frac-
tion of true detections to all true detections. In effect purity is the measure of
contamination by false detections: the higher the purity, the lower the contam-
ination. Completeness and purity are anti-correlated: if we can allow a large
number of false detections (that we might be able to remove by other means),
we can significantly increase the completeness limit.

One traditional way to measure the completeness and purity of a given sample is
by embedding mock profiles in regions of the image with no detection. However
in such a study we must be really careful to choose model profiles as similar to
the target of interest as possible.

Magnitude measurement error (of each detection)
Any measurement has an error and this includes the derived magnitude for an
object. Note that this value is only meaningful when the object’s magnitude
is brighter than the upper-limit magnitude (see the next items in this list).

18 If we have N datasets, each with noise σ, the noise of a combined dataset will increase as
√
Nσ.
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As discussed in Section 8.1.3 [Flux Brightness and magnitude], page 227, the
magnitude (M) of an object with brightness B and Zeropoint magnitude z can
be written as:

M = −2.5 log10(B) + z

Calculating the derivative with respect to B, we get:

dM

dB
=

−2.5
B × ln(10)

From the Tailor series (ΔM = dM/dB ×ΔB), we can write:

ΔM =

∣∣∣∣ −2.5ln(10)

∣∣∣∣× ΔB

B

But, ΔB/B is just the inverse of the Signal-to-noise ratio (S/N), so we can
write the error in magnitude in terms of the signal-to-noise ratio:

ΔM =
2.5

S/N × ln(10)

MakeCatalog uses this relation to estimate the magnitude errors. The signal-to-
noise ratio is calculated in different ways for clumps and objects (see Akhlaghi
and Ichikawa [2015] (https://arxiv.org/abs/1505.01664)), but this single
equation can be used to estimate the measured magnitude error afterwards for
any type of target.

Upper limit magnitude (of each detection)
Due to the noisy nature of data, it is possible to get arbitrarily low values for
a faint object’s brightness (or arbitrarily high magnitudes). Given the scatter
caused by the noise, such small values are meaningless: another similar depth
observation will give a radically different value. This problem is most common
when you use one image/filter to generate target labels (which specify which
pixels belong to which object, see Section 7.2.2.4 [NoiseChisel output], page 196,
and Section 7.3 [MakeCatalog], page 197) and another image/filter to generate
a catalog for measuring colors.

The object might not be visible in the filter used for the latter image, or the
image depth (see above) might be much shallower. So you will get unreasonably
faint magnitudes. For example when the depth of the image is 32 magnitudes,
a measurement that gives a magnitude of 36 for a ∼ 100 pixel object is clearly
unreliable. In another similar depth image, we might measure a magnitude of
30 for it, and yet another might give 33. Furthermore, due to the noise scatter
so close to the depth of the data-set, the total brightness might actually get
measured as a negative value, so no magnitude can be defined (recall that a
magnitude is a base-10 logarithm).

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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Using such unreliable measurements will directly affect our analysis, so we must
not use them. However, all is not lost! Given our limited depth, there is
one thing we can deduce about the object’s magnitude: we can say that if
something actually exists here (possibly buried deep under the noise), it must
have a magnitude that is fainter than an upper limit magnitude. To find this
upper limit magnitude, we place the object’s footprint (segmentation map) over
random parts of the image where there are no detections, so we only have pure
(possibly correlated) noise and undetected objects. Doing this a large number
of times will give us a distribution of brightness values. The standard deviation
(σ) of that distribution can be used to quantify the upper limit magnitude.

Traditionally, faint/small object photometry was done using fixed circular aper-
tures (for example with a diameter of N arc-seconds). In this way, the upper
limit was like the depth discussed above: one value for the whole image. But
with the much more advanced hardware and software of today, we can make
customized segmentation maps for each object. The number of pixels (are of
the object) used directly affects the final distribution and thus magnitude. Also
the image correlated noise might actually create certain patters, so the shape
of the object can also affect the result. So in MakeCatalog, the upper limit
magnitude is found for each object in the image separately. Not one value for
the whole image.

7.3.3 Measuring elliptical parameters

The shape or morphology of a target is one of the most commonly desired parameters of
a target. Here, we will review the derivation of the most basic/simple morphological pa-
rameters: the elliptical parameters for a set of labeled pixels. The elliptical parameters are:
the (semi-)major axis, the (semi-)minor axis and the position angle along with the central
position of the profile. The derivations below follow the SExtractor manual derivations with
some added explanations for easier reading.

Let’s begin with one dimension for simplicity: Assume we have a set of N values Bi
(keeping the spatial distribution of brightness for example), each at position xi. The simplest
parameter we can define is the geometric center of the object (xg) (ignoring the brightness
values): xg = (

∑
i xi)/N . Moments are defined to incorporate both the value (brightness)

and position of the data. The first moment can be written as:

x =

∑
iBixi∑
iBi

This is essentially the weighted (by Bi) mean position. The geometric center (xg, defined
above) is a special case of this with all Bi = 1. The second moment is essentially the
variance of the distribution:

x2 ≡
∑
iBi(xi − x)2∑

iBi
=

∑
iBix

2
i∑

iBi
− 2x

∑
iBixi∑
iBi

+ x2 =

∑
iBix

2
i∑

iBi
− x2

The last step was done from the definition of x. Hence, the square root of x2 is the spatial
standard deviation (along the one-dimension) of this particular brightness distribution (Bi).
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Crudely (or qualitatively), you can think of its square root as the distance (from x) which
contains a specific amount of the flux (depending on the Bi distribution). Similar to the
first moment, the geometric second moment can be found by setting all Bi = 1. So while
the first moment quantified the position of the brightness distribution, the second moment
quantifies how that brightness is dispersed about the first moment. In other words, it
quantifies how “sharp” the object’s image is.

Before continuing to two dimensions and the derivation of the elliptical parameters, let’s
pause for an important implementation technicality. You can ignore this paragraph and the
next two if you don’t want to implement these concepts. The basic definition (first definition
of x2 above) can be used without any major problem. However, using this fraction requires
two runs over the data: one run to find x and another run to find x2 from x, this can be
slow. The advantage of the last fraction above, is that we can estimate both the first and
second moments in one run (since the −x2 term can easily be added later).

The logarithmic nature of floating point number digitization creates a complication how-
ever: suppose the object is located between pixels 10000 and 10020. Hence the target’s pixels
are only distributed over 20 pixels (with a standard deviation < 20), while the mean has
a value of ∼ 10000. The

∑
iB

2
i x

2
i will go to very very large values while the individual

pixel differences will be orders of magnitude smaller. This will lower the accuracy of our
calculation due to the limited accuracy of floating point operations. The variance only
depends on the distance of each point from the mean, so we can shift all position by a
constant/arbitrary K which is much closer to the mean: x−K = x − K. Hence we can
calculate the second order moment using:

x2 =

∑
iBi(xi −K)2∑

iBi
− (x−K)2

The closer K is to x, the better (the sums of squares will involve smaller numbers), as
long as K is within the object limits (in the example above: 10000 ≤ K ≤ 10020), the
floating point error induced in our calculation will be negligible. For the most simplest
implementation, MakeCatalog takes K to be the smallest position of the object in each
dimension. Since K is arbitrary and an implementation/technical detail, we will ignore it
for the remainder of this discussion.

In two dimensions, the mean and variances can be written as:

x =

∑
iBixi
Bi

, x2 =

∑
iBix

2
i∑

iBi
− x2

y =

∑
iBiyi
Bi

, y2 =

∑
iBiy

2
i∑

iBi
− y2

xy =

∑
iBixiyi∑
iBi

− x× y

If an elliptical profile’s major axis exactly lies along the x axis, then x2 will be directly
proportional with the profile’s major axis, y2 with its minor axis and xy = 0. However, in
reality we are not that lucky and (assuming galaxies can be parameterized as an ellipse)
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the major axis of galaxies can be in any direction on the image (in fact this is one of the
core principles behind weak-lensing by shear estimation). So the purpose of the remainder
of this section is to define a strategy to measure the position angle and axis ratio of some
randomly positioned ellipses in an image, using the raw second moments that we have
calculated above in our image coordinates.

Let’s assume we have rotated the galaxy by θ, the new second order moments are:

x2
θ = x2 cos2 θ + y2 sin2 θ − 2xy cos θ sin θ

y2
θ = x2 sin2 θ + y2 cos2 θ + 2xy cos θ sin θ

xyθ = x2 cos θ sin θ − y2 cos θ sin θ + xy(cos2 θ − sin2 θ)

The best θ (θ0, where major axis lies along the xθ axis) can be found by:

∂x2
θ

∂θ

∣∣∣∣∣
θ0

= 0

Taking the derivative, we get:

2 cos θ0 sin θ0(y2 − x2) + 2(cos2 θ0 − sin2 θ0)xy = 0

When x2 6= y2, we can write:

tan 2θ0 = 2
xy

x2 − y2
.

MakeCatalog uses the standard C math library’s atan2 function to estimate θ0, which we
define as the position angle of the ellipse. To recall, this is the angle of the major axis of
the ellipse with the x axis. By definition, when the elliptical profile is rotated by θ0, then
xyθ0 = 0, x2

θ0
will be the extent of the maximum variance and y2

θ0
the extent of the minimum

variance (which are perpendicular for an ellipse). Replacing θ0 in the equations above for
xθ and yθ, we can get the semi-major (A) and semi-minor (B) lengths:

A2 ≡ x2
θ0

=
x2 + y2

2
+

√√√√(x2 − y2

2

)2

+ xy2

B2 ≡ y2
θ0

=
x2 + y2

2
−

√√√√(x2 − y2

2

)2

+ xy2

As a summary, it is important to remember that the units of A and B are in pixels
(the standard deviation of a positional distribution) and that they represent the spatial
light distribution of the object in both image dimensions (rotated by θ0). When the object
cannot be represented as an ellipse, this interpretation breaks down: xyθ0 6= 0 and y2

θ0
will

not be the direction of minimum variance.
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7.3.4 Adding new columns to MakeCatalog

MakeCatalog is designed to allow easy addition of different measurements over a labeled
image (see Akhlaghi [2016] (https://arxiv.org/abs/1611.06387v1)). A check-list
style description of necessary steps to do that is described in this section. The common
development characteristics of MakeCatalog and other Gnuastro programs is explained in
Chapter 11 [Developing], page 355. We strongly encourage you to have a look at that
chapter to greatly simplify your navigation in the code. After adding and testing your
column, you are most welcome (and encouraged) to share it with us so we can add to the
next release of Gnuastro for everyone else to also benefit from your efforts.

MakeCatalog will first pass over each label’s pixels two times and do necessary
raw/internal calculations. Once the passes are done, it will use the raw information for
filling the final catalog’s columns. In the first pass it will gather mainly object information
and in the second run, it will mainly focus on the clumps, or any other measurement that
needs an output from the first pass. These two passes are designed to be raw summations:
no extra processing. This will allow parallel processing and simplicity/clarity. So if your
new calculation, needs new raw information from the pixels, then you will need to also
modify the respective mkcatalog_first_pass and mkcatalog_second_pass functions
(both in bin/mkcatalog/mkcatalog.c) and define new raw table columns in main.h

(hopefully the comments in the code are clear enough).

In all these different places, the final columns are sorted in the same order (same order
as Section 7.3.5 [Invoking MakeCatalog], page 207). This allows a particular column/option
to be easily found in all steps. Therefore in adding your new option, be sure to keep it in
the same relative place in the list in all the separate places (it doesn’t necessarily have to
be in the end), and near conceptually similar options.

main.h The objectcols and clumpcols enumerated variables (enum) define the
raw/internal calculation columns. If your new column requires new raw
calculations, add a row to the respective list. If your calculation requires any
other settings parameters, you should add a variable to the mkcatalogparams

structure.

ui.h The option_keys_enum associates a unique value for each option to MakePro-
files. The options that have a short option version, the single character short
comment is used for the value. Those that don’t have a short option version,
get a large integer automatically. You should add a variable here to identify
your desired column.

args.h This file specifies all the parameters for the GNU C library, Argp structure that
is in charge of reading the user’s options. To define your new column, just copy
an existing set of parameters and change the first, second and 5th values (the
only ones that differ between all the columns), you should use the macro you
defined in ui.h here.

ui.c If your column includes any particular settings (you added a variable to the
mkcatalogparams structure in main.h), you should do the sanity checks and
preparations for it here. Otherwise, you can ignore this file.

https://arxiv.org/abs/1611.06387v1
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columns.c

This file will contain the main definition and high-level calculation of your
new column through the columns_define_alloc and columns_fill functions.
In the first, you specify the basic information about the column: its name,
units, comments, type (see Section 4.4 [Numeric data types], page 82) and
how it should be printed if the output is a text file. You should also specify
the raw/internal columns that are necessary for this column here as the many
existing examples show. Through the types for objects and rows, you can
specify if this column is only for clumps, objects or both.

The second main function (columns_fill) writes the final value into the appro-
priate column for each object and clump. As you can see in the many existing
examples, you can define your processing on the raw/internal calculations here
and save them in the output.

mkcatalog.c

As described before, this file contains the two main MakeCatalog work-horses:
mkcatalog_first_pass and mkcatalog_second_pass, their names are descrip-
tive enough and their internals are also clear and heavily commented.

7.3.5 Invoking MakeCatalog

MakeCatalog will make a catalog from an input image and at least on labeled image. The
executable name is astmkcatalog with the following general template

$ astmkcatalog [OPTION ...] InputImage.fits

One line examples:

## Create catalog with RA, Dec, Magnitude and Magnitude error,

## ‘input.fits’ is NoiseChisel’s output:

$ astmkcatalog --ra --dec --magnitude --magnitudeerr input.fits

## Same catalog as above (using short options):

$ asmkcatalog -rdmG input.fits

## Write the catalog to a FITS table:

$ astmkcatalog -mpQ --output=cat.fits input_labeled.fits

## Read the columns to create from ‘columns.conf’:

$ astmkcatalog --config=columns.conf input_labeled.fits

## Use different images for the objects and clumps inputs:

$ astmkcatalog --objectsfile=K_labeled.fits --objectshdu=1 \

--clumpsfile=K_labeled.fits --clumpshdu=2 i_band.fits

If MakeCatalog is to do processing, an input image should be provided with the recognized
extensions as input data, see Section 4.1.1.1 [Arguments], page 66. The options described
in this section are those that are only particular to MakeProfiles. For operations that Make-
Profiles shares with other programs (mainly involving input/output or general processing
steps), see Section 4.1.2 [Common options], page 69. Also see Chapter 4 [Common program
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behavior], page 65, for some general characteristics of all Gnuastro programs including
MakeCatalog.

MakeCatalog needs 4 (or 5) images as input. These images can be separate extensions in
one file (NoiseChisel’s default output), or each can have its own file and its own extension.
See Section 7.2.2.4 [NoiseChisel output], page 196, for the list. The clump labels image is
not mandatory (when no clump catalog is required, for example in aperture photometry).
When inspecting the object labels image, MakeProfiles will look for a WCLUMPS (short for
with-clumps) header keyword. If that keyword is present and has a value of yes, 1, or y
(case insensitive) then a clump image must also be provided and a clump catalog will be
made. When WCLUMPS isn’t present or has any other value, only an object catalog will be
created and all clump related options/columns will be ignored.

For example, if you only need an object catalog from NoiseChisel’s output, you can
use Gnuastro’s Fits program (see Section 5.1 [Fits], page 98) to modify or remove the
WCLUMPS keyword in the objects HDU, then run MakeCatalog on it. Another example can
be aperture photometry: let’s assume you have made your labeled image (defining the
apertures) with MakeProfiles. Clumps are not defined in this context, so besides the input
and labeled image, you only need NoiseChisel’s Sky and Sky standard deviation images (run
NoiseChisel with the --onlydetection option). Since MakeProfile’s output doesn’t contain
the WCLUMPS keyword, you just have to specify your labeled image with the --objectsfile
option and also set its HDU. Note that labeled images have to be an integer type. Therefore,
if you are using MakeProfiles to define the apertures/labels, you can use its --type=int32
for example, see Section 4.1.2.1 [Input/Output options], page 69, and Section 4.4 [Numeric
data types], page 82.

When a clump catalog is also desired, two catalogs will be made: one for the objects
(suffixed with _o.txt or _o.fits) and another for the clumps (suffixed with _c.txt or _
c.fits). Therefore if any value is given to the --output option, MakeCatalogs will replace
these two suffixes with any existing suffix in the given value. If no output value is given,
MakeCatalog will use the input name, see Section 4.8 [Automatic output], page 95. The
format of the output table is specified with the --tableformat option, see Section 4.1.2.1
[Input/Output options], page 69.

When MakeCatalog is run on multiple threads, the clumps catalog rows will not be
sorted by object since each object is processed independently by one thread and threaded
applications are asynchronous. The clumps in each object will be sorted based on their
labels, but you will find lower-index objects come after higher-index ones (especially if they
have more clumps and thus take more time). If the order is very important for you, you can
run the following command to sort the rows by object ID (and clump ID with each object):

$ awk ’!/^#/’ out_c.txt | sort -g -k1,1 -k2,2

7.3.5.1 MakeCatalog input files

MakeCatalog needs multiple images as input: a values image, one (or two) labeled images
and Sky and Sky standard deviation images. The options described in this section allow
you to identify them. If you use the default output of NoiseChisel (see Section 7.2.2.4
[NoiseChisel output], page 196) you don’t have to worry about any of these options and
just give NoiseChisel’s output file to MakeCatalog as described in Section 7.3.5 [Invoking
MakeCatalog], page 207.
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-O STR

--objectsfile=STR

The file name of the object labels image, if the image is in another extension
of the input file, calling this option is not mandatory, just specify the exten-
sion/HDU with the --objectshdu option.

--objectshdu=STR

The HDU/extension of the object labels image. Only pixels with values above
zero will be considered. The objects label image has to be an integer data type
(see Section 4.4 [Numeric data types], page 82) and only pixels with a value
larger than zero will be used. If this extension contains the WCLUMPS keyword
with a value of yes, 1, or y (not case sensitive), then MakeCatalog will also
build a clumps catalog, see Section 7.3.5 [Invoking MakeCatalog], page 207.

-C STR

--clumpsfile=STR

Similar to --objlabs but for the labels of the clumps. This is only necessary if
the image containing clump labels is not in the input file and the objects image
has a WCLUMPS keyword, see --objectshdu.

--clumpshdu=STR

The HDU/extension of the object labels image. Only pixels with values above
zero will be considered. The objects label image has to be an integer data type
(see Section 4.4 [Numeric data types], page 82) and only pixels with a value
larger than zero will be used.

-s STR

--skyfile=STR

File name of an image keeping the Sky value for each pixel.

--skyhdu=STR

The HDU of the Sky value image.

-t STR

--stdfile=STR

File name of image keeping the Sky value standard deviation for each pixel.

--stdhdu=STR

The HDU of the Sky value standard deviation image.

7.3.5.2 MakeCatalog general settings

Some of the columns require particular settings (for example the zero point magnitude for
measuring magnitudes), the options in this section can be used for such configurations.

-z FLT

--zeropoint=FLT

The zero point magnitude for the input image, see Section 8.1.3 [Flux Brightness
and magnitude], page 227.
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-E

--skysubtracted

If the image has already been sky subtracted by another program, then you
need to notify MakeCatalog through this option. Note that this is only relevant
when the Signal to noise ratio is to be calculated.

-T FLT

--threshold=FLT

For all the columns, only consider pixels that are above a given relative thresh-
old. Symbolizing the value of this option as T , the Sky for a pixel at (i, j) with
µij and its Standard deviation with σij, that pixel will only be used if its value
(Bij) satisfies this condition: Bij > µij + Tσij. The only calculations that will
not be affected are is the average river values (--riverave), since they are used
as a reference. A commented row will be added in the header of the output
catalog that will print the given value, since this is a very important issue, it
starts with **IMPORTANT**.

NoiseChisel will detect very diffuse signal which is useful in most cases where
the aggregate properties of the detections are desired, since there is signal there
(with the desired certainty). However, in some cases, only the properties of the
peaks of the objects/clumps are desired, for example in attempting to separate
stars from galaxies, the peaks are the major target and the diffuse regions only
act to complicate the separation. With this option, MakeCatalog will simply
ignore any pixel below the relative threshold.

This option is not mandatory, so if it isn’t given (after reading the command-line
and all configuration files, see Section 4.2 [Configuration files], page 77), Make-
Catalog will still operate. However, if it has a value in any lower-level configura-
tion file and you want to ignore that value for this particular run or in a higher-
level configuration file, then set it to NaN, for example --threshold=nan.
Gnuastro uses the C library’s strtod function to read floats, which is not
case-sensitive in reading NaN values. But to be consistent, it is good practice
to only use nan.

--nsigmag=FLT

The median standard deviation (from the standard deviation image) will be
multiplied by the value to this option and its magnitude will be reported in
the comments of the output catalog. This value is a per-pixel value, not per
object/clump and is not found over an area or aperture, like the common 5σ
values that are commonly reported as a measure of depth or the upper-limit
measurements (see Section 7.3.2 [Quantifying measurement limits], page 199).

7.3.5.3 Upper-limit magnitude settings

The upper limit magnitude was discussed in Section 7.3.2 [Quantifying measurement lim-
its], page 199. Unlike other measured values/columns in MakeCatalog, the upper limit
magnitude needs several defined parameters which are discussed here. All the upper limit
magnitude specific options start with up for upper-limit, except for --envseed that is also
present in other programs and is general for any job requiring random number generation
(see Section 8.2.1.4 [Generating random numbers], page 240).
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One very important consideration in Gnuastro is reproducibility. Therefore, the values
to all of these parameters along with others (like the random number generator type and
seed) are also reported in the comments of the final catalog when the upper limit magnitude
column is desired. The random seed that is used to define the random positionings for each
object or clump is unique and set based on the given seed, the total number of objects and
clumps and also the labels of the clumps and objects. So with identical inputs, an identical
upper-limit magnitude will be found. But even if the ordering of the object/clump labels
differs (and the seed is the same) the result will not be the same.

MakeCatalog will randomly place the object/clump footprint over the image and when
the footprint doesn’t fall on any object or masked region (see --upmaskfile) it will be used
until the desired number (--upnum) of samples are found to estimate the distribution’s stan-
dard deviation (see Section 7.3.2 [Quantifying measurement limits], page 199). Otherwise
it will be ignored and another random position will be generated. But when the profile is
very large or the image is significantly covered by detections, it might not be possible to
find the desired number of samplings. MakeProfiles will continue searching until 50 times
the value given to --upnum. If --upnum good samples cannot be found until this limit, it
will set the upper-limit magnitude for that object to NaN (blank).

MakeCatalog will also print a warning if the range of positions available for the labeled
region is smaller than double the size of the region. In such cases, the limited range of
random positions can artificially decrease the standard deviation of the final distribution.

--upmaskfile=STR

File name of mask image to use for upper-limit calculation. In some cases
(especially when doing matched photometry), the object labels specified in the
main input and mask image might not be adequate. In other words they do
not necessarily have to cover all detected objects: the user might have selected
only a few of the objects in their labeled image. This option can be used
to ignore regions in the image in these situations when estimating the upper-
limit magnitude. All the non-zero pixels of the image specified by this option
(in the --upmaskhdu extension) will be ignored in the upper-limit magnitude
measurements.

For example, when you are using labels from another image, you can give
NoiseChisel’s objects image output for this image as the value to this option. In
this way, you can be sure that regions with data do not harm your distribution.
See Section 7.3.2 [Quantifying measurement limits], page 199, for more on the
upper limit magnitude.

--upmaskhdu=STR

The extension in the file specified by --upmask.

--upnum=INT

The number of random samples to take for all the objects. A larger value to
this option will give a more accurate result (asymptotically), but it will also
slow down the process. When a randomly positioned sample overlaps with a
detected/masked pixel it is not counted and another random position is found
until the object completely lies over an undetected region. So you can be sure
that for each object, this many samples over undetected objects are made. See
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the upper limit magnitude discussion in Section 7.3.2 [Quantifying measurement
limits], page 199, for more.

--uprange=INT,INT

The range/width of the region (in pixels) to do random sampling along each
dimension of the input image around each object’s position. This is not a
mandatory option and if not given (or given a value of zero in a dimension),
the full possible range of the dataset along that dimension will be used. This
is useful when the noise properties of the dataset vary gradually. In such cases,
using the full range of the input dataset is going to bias the result. However,
note that decreasing the the range of available positions too much will also
artificially decrease the standard deviation of the final distribution (and thus
bias the upper-limit measurement).

--envseed

Read the random number generator type and seed value from the environment
(see Section 8.2.1.4 [Generating random numbers], page 240). Random numbers
are used in calculating the random positions of different samples of each object.

--upsigmaclip=FLT,FLT

The raw distribution of random values will not be used to find the upper-
limit magnitude, it will first be σ-clipped (see Section 7.1.2 [Sigma clipping],
page 167) to avoid outliers in the distribution (mainly the faint undetected
wings of bright/large objects in the image). This option takes two values: the
first is the multiple of σ, and the second is the termination criteria. If the
latter is larger than 1, it is read as an integer number and will be the number
of times to clip. If it is smaller than 1, it is interpretted as the tolerance level
to stop clipping. See Section 7.1.2 [Sigma clipping], page 167, for a complete
explanation.

--upnsigma=FLT

The multiple of the final (σ-clipped) standard deviation (or σ) used to measure
the upper-limit brightness or magnitude.

7.3.5.4 MakeCatalog output columns

The final group of options particular to MakeCatalog are those that specify which columns
should be written into the final output table. For each column there is an option, if it
has been called on the command line or in any of the configuration files, it will included
as a column in the output catalog in the same order (see Section 4.2.2 [Configuration file
precedence], page 78). Some of the columns apply to both objects and clumps and some
are particular to only one of them. The latter cases are explicitly marked with [Objects] or
[Clumps] to specify the catalog they will be placed in.

--i

--ids This is a unique option which can add multiple columns to the final catalog(s).
Calling this option will put the object IDs (--objid) in the objects catalog and
host-object-ID (--hostobjid) and ID-in-host-object (--idinhostobj) into the
clumps catalog. Hence if only object catalogs are required, it has the same effect
as --objid.
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--objid [Objects] ID of this object.

-j

--hostobjid

[Clumps] The ID of the object which hosts this clump.

--idinhostobj

[Clumps] The ID of this clump in its host object.

-C

--numclumps

[Objects] The number of clumps in this object.

-a

--area The raw area (number of pixels) in any clump or object independent of what
pixel it lies over (if it is NaN/blank or unused for example).

--clumpsarea

[Objects] The total area of all the clumps in this object.

--weightarea

The area (number of pixels) used in the flux weighted position calculations.

-x

--x The flux weighted center of all objects and clumps along the first FITS axis
(horizontal when viewed in SAO ds9), see x in Section 7.3.3 [Measuring elliptical
parameters], page 203. The weight has to have a positive value (pixel value
larger than the Sky value) to be meaningful! Specially when doing matched
photometry, this might not happen: no pixel value might be above the Sky
value. For such detections, the geometric center will be reported in this column
(see --geox). You can use --weightarea to see which was used.

-y

--y The flux weighted center of all objects and clumps along the second FITS axis
(vertical when viewed in SAO ds9). See --x.

--geox The geometric center of all objects and clumps along the first FITS axis axis.
The geometric center is the average pixel positions irrespective of their pixel
values.

--geoy The geometric center of all objects and clumps along the second FITS axis axis,
see --geox.

--clumpsx

[Objects] The flux weighted center of all the clumps in this object along the
first FITS axis. See --x.

--clumpsy

[Objects] The flux weighted center of all the clumps in this object along the
second FITS axis. See --x.

--clumpsgeox

[Objects] The geometric center of all the clumps in this object along the first
FITS axis. See --geox.
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--clumpsgeoy

[Objects] The geometric center of all the clumps in this object along the second
FITS axis. See --geox.

-r

--ra Flux weighted right ascension of all objects or clumps, see --x. This is just
an alias for one of the lower-level --w1 or --w2 options. Using the FITS WCS
keywords (CTYPE), MakeCatalog will determine which axis corresponds to the
right ascension. If no CTYPE keywords start with RA, an error will be printed
when requesting this column and MakeCatalog will abort.

-d

--dec Flux weighted declination of all objects or clumps, see --x. This is just an
alias for one of the lower-level --w1 or --w2 options. Using the FITS WCS
keywords (CTYPE), MakeCatalog will determine which axis corresponds to the
declination. If no CTYPE keywords start with DEC, an error will be printed when
requesting this column and MakeCatalog will abort.

--w1 Flux weighted first WCS axis of all objects or clumps, see --x. The first WCS
axis is commonly used as right ascension in images.

--w2 Flux weighted second WCS axis of all objects or clumps, see --x. The second
WCS axis is commonly used as declination in images.

--geow1 Geometric center in first WCS axis of all objects or clumps, see --geox. The
first WCS axis is commonly used as right ascension in images.

--geow2 Geometric center in second WCS axis of all objects or clumps, see --geox. The
second WCS axis is commonly used as declination in images.

--clumpsw1

[Objects] Flux weighted center in first WCS axis of all clumps in this object,
see --x. The first WCS axis is commonly used as right ascension in images.

--clumpsw2

[Objects] Flux weighted declination of all clumps in this object, see --x. The
second WCS axis is commonly used as declination in images.

--clumpsgeow1

[Objects] Geometric center right ascension of all clumps in this object, see
--geox. The first WCS axis is commonly used as right ascension in images.

--clumpsgeow2

[Objects] Geometric center declination of all clumps in this object, see --geox.
The second WCS axis is commonly used as declination in images.

-b

--brightness

The brightness (sum of all pixel values), see Section 8.1.3 [Flux Brightness
and magnitude], page 227. For clumps, the ambient brightness (flux of river
pixels around the clump multiplied by the area of the clump) is removed, see
--riverflux. So the sum of clump brightnesses in the clump catalog will be
smaller than the total clump brightness in the --clumpbrightness column of
the objects catalog.
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If no usable pixels (blank or below the threshold) are present over the clump
or object, the stored value will be NaN (note that zero is meaningful).

--clumpbrightness

[Objects] The total brightness of the clumps within an object. This is simply
the sum of the pixels associated with clumps in the object. If no usable pixels
(blank or below the threshold) are present over the clump or object, the stored
value will be NaN, because zero (note that zero is meaningful).

--noriverbrightness

[Clumps] The Sky (not river) subtracted clump brightness. By definition, for
the clumps, the average brightness of the rivers surrounding it are subtracted
from it for a first order accounting for contamination by neighbors. In cases
where you will be calculating the flux brightness difference later (one example
below) the contamination will be (mostly) removed at that stage, which is why
this column was added.

One example might be this: you want to know the change in the clump flux as
a function of threshold (see --threshold). So you will make two catalogs (each
having this column but with different thresholds) and then subtract the lower
threshold catalog (higher brightness) from the higher threshold catalog (lower
brightness). The effect is most visible when the rivers have a high average signal-
to-noise ratio. The removed contribution from the pixels below the threshold
will be less than the river pixels. Therefore the river-subtracted brightness
(--brightness) for the thresholded catalog for such clumps will be larger than
the brightness with no threshold!

If no usable pixels (blank or below the possibly given threshold) are present over
the clump or object, the stored value will be NaN (note that zero is meaningful).

-m

--magnitude

The magnitude of clumps or objects, see --brightness.

-e

--magnitudeerr

The magnitude error of clumps or objects. The magnitude error is calculated
from the signal-to-noise ratio (see --sn and Section 7.3.2 [Quantifying measure-
ment limits], page 199). Note that until now this error assumes un-correlated
pixel values and also does not include the error in estimating the aperture (or
error in generating the labeled image).

For now these factors have to be found by other means. Task 14124 (https://
savannah.gnu.org/task/index.php?14124) has been defined for work on
adding these sources of error too.

--clumpsmagnitude

[Objects] The magnitude of all clumps in this object, see --clumpbrightness.

--upperlimit

The upper limit value (in units of the input image) for this object or clump. See
Section 7.3.2 [Quantifying measurement limits], page 199, and Section 7.3.5.3
[Upper-limit magnitude settings], page 210, for a complete explanation. This

https://savannah.gnu.org/task/index.php?14124
https://savannah.gnu.org/task/index.php?14124
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is very important for the fainter and smaller objects in the image where the
measured magnitudes are not reliable.

--upperlimitmag

The upper limit magnitude for this object or clump. See Section 7.3.2 [Quantify-
ing measurement limits], page 199, and Section 7.3.5.3 [Upper-limit magnitude
settings], page 210, for a complete explanation. This is very important for the
fainter and smaller objects in the image where the measured magnitudes are
not reliable.

--riverave

[Clumps] The average brightness of the river pixels around this clump. River
pixels were defined in Akhlaghi and Ichikawa 2015. In short they are the pixels
immediately outside of the clumps. This value is used internally to find the
brightness (or magnitude) and signal to noise ratio of the clumps. It can gen-
erally also be used as a scale to gauge the base (ambient) flux surrounding the
clump. In case there was no river pixels, then this column will have the value
of the Sky under the clump. So note that this value is not sky subtracted.

--rivernum

[Clumps] The number of river pixels around this clump, see --riverflux.

-n

--sn The Signal to noise ratio (S/N) of all clumps or objects. See Akhlaghi and
Ichikawa (2015) for the exact equations used.

--sky The sky flux (per pixel) value under this object or clump. This is actually the
mean value of all the pixels in the sky image that lie on the same position as
the object or clump.

--std The sky value standard deviation (per pixel) for this clump or object. Like
--sky, this is the average of the values in the input sky standard deviation
image pixels that lie over this object.

-A

--semimajor

The pixel-value weighted semi-major axis of the profile (assuming it is an ellipse)
in units of pixels. See Section 7.3.3 [Measuring elliptical parameters], page 203.

-B

--semiminor

The pixel-value weighted semi-minor axis of the profile (assuming it is an ellipse)
in units of pixels. See Section 7.3.3 [Measuring elliptical parameters], page 203.

-p

--positionangle

The pixel-value weighted angle of the semi-major axis with the first FITS axis
in degrees. See Section 7.3.3 [Measuring elliptical parameters], page 203.

--geosemimajor

The geometric (ignoring pixel values) semi-major axis of the profile, assuming
it is an ellipse.
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--geosemiminor

The geometric (ignoring pixel values) semi-minor axis of the profile, assuming
it is an ellipse.

--geopositionangle

The geometric (ignoring pixel values) angle of the semi-major axis with the first
FITS axis in degrees.

7.4 Match

Data can come come from different telescopes, filters, software and even different configu-
rations for a single software. As a result, one of the primary things to do after generating
catalogs from each of these sources (for example with Section 7.3 [MakeCatalog], page 197),
is to find which sources in one catalog correspond to which in the other(s). In other words,
to ‘match’ the two catalogs with each other.

Gnuastro’s Match program is in charge of such operations. The nearest objects in the
two catalogs, within the given aperture, will be found and given as output. The aperture
can be a circle or an ellipse with any orientation.

7.4.1 Invoking Match

When given two catalogs, Match finds the rows that are nearest to each other within an
input aperture. The executable name is astmatch with the following general template

$ astmatch [OPTION ...] input-1 input-2

One line examples:

## 1D wavelength match (within 5 angstroms) of the two inputs.

## The wavelengths are in the 5th and 10th columns respectively.

$ astmatch --aperture=5e-10 --ccol1=5 --ccol2=10 in1.fits in2.txt

## Match the two catalogs with a circular aperture of width 2.

## (Units same as given positional columns).

## (By default two columns are given for ‘--ccol1’ and ‘--ccol2’,

## The number of values to these determines the dimensions).

$ astmatch --aperture=2 input1.txt input2.fits

## Similar to before, but the output is created by merging various

## columns from the two inputs: columns 1, RA, DEC from the first

## input, followed by all columns starting with MAG and the 8th

## column from second input and finally the 10th from first input.

$ astmatch --aperture=2 input1.txt input2.fits \

--outcols=a1,aRA,aDEC,b/^MAG/,bBRG,a10

## Match the two catalogs within an elliptical aperture of 1 and 2

## arcseconds along RA and Dec respectively.

$ astmatch --aperture=1/3600,2/3600 in1.fits in2.txt

## Match the RA and DEC columns of the first input with the RA_D

## and DEC_D columns of the second within a 0.5 arcseconds aperture.
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$ astmatch --ccol1=RA,DEC --ccol2=RA_D,DEC_D --aperture0.5/3600 \

in1.fits in2.fits

Two inputs are necessary for Match to start processing. The inputs can be plain text
tables or FITS tables, see Section 4.5 [Tables], page 84. Match follows the same basic behav-
ior of all Gnuastro programs as fully described in Chapter 4 [Common program behavior],
page 65. If the first input is a FITS file, the common --hdu option (see Section 4.1.2.1 [In-
put/Output options], page 69) should be used to identify the extension. When the second
input is FITS, the extension must be specified with --hdu2.

When --quiet is not called, Match will print the number of matches found in standard
output (on the command-line). If no match was found, no output file will be created (table
or log file). When matches are found, by default, the output file(s) will be the re-arranged
input tables such that the rows match each other: both output tables will have the same
number of rows which are matched with each other. If --outcols is called, the output is a
single table with rows chosen from either of the two inputs in any order, see the description
of --outcols. If the --logasoutput option is called, the output will be a single table with
the contents of the log file, see below.

If no output file name is given with the --output option, then automatic output
Section 4.8 [Automatic output], page 95, will be used to determine the output name(s).
Depending on --tableformat (see Section 4.1.2.1 [Input/Output options], page 69),
the output will then be a (possibly multi-extension) FITS file or (possibly two) plain
text file(s). When the output is a FITS file, the default re-arranged inputs will be two
extensions of the output FITS file. With --outcols and --logasoutput, the FITS output
will be a single table (in one extension).

When the --log option is called (see Section 4.1.2.3 [Operating mode options],
page 73), Match will also create a file named astmatch.fits (or astmatch.txt, depending
on --tableformat, see Section 4.1.2.1 [Input/Output options], page 69) in the directory
it is run in. This log table will have three columns. The first and second columns show
the matching row/record number (counting from 1) of the first and second input catalogs
respectively. The third column is the distance between the two matched positions. The
units of the distance are the same as the given coordinates (given the possible ellipticity,
see description of --aperture below). When --logasoutput is called, no log file (with a
fixed name) will be created. In this case, the output file (possibly given by the --output

option) will have the contents of this log file.

-H STR

--hdu2=STR

The extension/HDU of the second input if it is a FITS file. When it isn’t a
FITS file, this option’s value is ignored. For the first input, the common option
--hdu must be used.

--outcols=STR

Columns from both inputs to write into a single matched table output. The
value to --outcols must be a comma-separated list of strings, for example
--outcols=a1,bRA,bDEC. The first character of each string specifies the input
catalog: a for the first and b for the second. The rest of the characters of the
string will be directly used to identify the proper column(s) in the respective
table. See Section 4.5.3 [Selecting table columns], page 89, for how columns can
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be specified in Gnuastro. In this example, the output will have three columns:
the first column of the first input and the RA and DEC columns of the second
input.

Another example is given in the one-line examples above. Compared to the
default case (where two tables with all their columns) are printed, using this
option is much faster: it will only read and re-arrange the necessary columns
and it will write a single output table. Combined with regular expressions in
large tables, this can be a very powerful and convenient way to retrieve your
desired information and do the match at the same time.

-l

--logasoutput

The output file will have the contents of the log file: indexs in the two catalogs
that match with each other along with their distance. See description above.
When this option is called, a log file called astmatch.txt will not be created.
With this option, the default output behavior (two tables containing the re-
arranged inputs) will be

--notmatched

Write the non-matching rows into the outputs, not the matched ones. Note
that with this option, the two output tables will not necessarily have the same
number of rows. Therefore, this option cannot be called with --outcols.
--outcols prints mixed columns from both inputs, so they must all have the
same number of elements and must correspond to each other.

-c INT/STR[,INT/STR]

--ccol1=INT/STR[,INT/STR]

The coordinate columns of the first input. The number of dimensions for the
match is determined by the number of comma-separated values given to this
option. The values can be the column number (counting from 1), exact col-
umn name or a regular expression. For more, see Section 4.5.3 [Selecting table
columns], page 89. See the one-line examples above for some usages of this
option.

-C INT/STR[,INT/STR]

--ccol2=INT/STR[,INT/STR]

The coordinate columns of the second input. See the example in --ccol1 for
more.

-a FLT[,FLT[,FLT]]

--aperture=FLT[,FLT[,FLT]]

Parameters of the aperture for matching. The values given to this option can
be fractions, for example when the position columns are in units of degrees,
1/3600 can be used to ask for one arcsecond. The interpretation of the values
depends on the requested dimensions (determined from --ccol1 and --ccol2)
and how many values are given to this option.

1D match The aperture/interval can only take one value: half of the interval
around each point (maximum distance from each point).
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2D match In a 2D match, the aperture can be a circle, an ellipse aligned in
the axes or an ellipse with a rotated major axis. To simply the
usage, you can determine the shape based on the number of free
parameters for each.

1 number For example --aperture=2. The aperture will be a
circle of the given radius. The value will be in the
same units as the columns in --ccol1 and --ccol2).

2 numbers For example --aperture=3,4e-10. The aperture will
be an ellipse (if the two numbers are different) with the
respective value along each dimension. The numbers
are in units of the first and second axis. In the example
above, the semi-axis value along the first axis will be 3
(in units of the first coordinate) and along the second
axis will be 4×10−10 (in units of the second coordinate).
Such values can happen if you are comparing catalogs
of a spectra for example. If more than one object exists
in the aperture, the nearest will be found along the
major axis as described in Section 8.1.1.1 [Defining an
ellipse], page 221.

3 numbers For example --aperture=2,0.6,30. The aperture will
be an ellipse (if the second value is not 1). The first
number is the semi-major axis, the second is the axis
ratio and the third is the position angle (in degrees).
If multiple matches are found within the ellipse, the
distance (to find the nearest) is calculated along the
major axis in the elliptical space, see Section 8.1.1.1
[Defining an ellipse], page 221.
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8 Modeling and fitting

In order to fully understand observations after initial analysis on the image, it is very
important to compare them with the existing models to be able to further understand both
the models and the data. The tools in this chapter create model galaxies and will provide
2D fittings to be able to understand the detections.

8.1 MakeProfiles

MakeProfiles will create mock astronomical profiles from a catalog, either individually or
together in one output image. In data analysis, making a mock image can act like a
calibration tool, through which you can test how successfully your detection technique is
able to detect a known set of objects. There are commonly two aspects to detecting: the
detection of the fainter parts of bright objects (which in the case of galaxies fade into the
noise very slowly) or the complete detection of an over-all faint object. Making mock galaxies
is the most accurate (and idealistic) way these two aspects of a detection algorithm can be
tested. You also need mock profiles in fitting known functional profiles with observations.

MakeProfiles was initially built for extra galactic studies, so currently the only astro-
nomical objects it can produce are stars and galaxies. We welcome the simulation of any
other astronomical object. The general outline of the steps that MakeProfiles takes are the
following:

1. Build the full profile out to its truncation radius in a possibly over-sampled array.

2. Multiply all the elements by a fixed constant so its total magnitude equals the desired
total magnitude.

3. If --individual is called, save the array for each profile to a FITS file.

4. If --nomerged is not called, add the overlapping pixels of all the created profiles to the
output image and abort.

Using input values, MakeProfiles adds the World Coordinate System (WCS) headers of
the FITS standard to all its outputs (except PSF images!). For a simple test on a set of
mock galaxies in one image, there is no need for the third step or the WCS information.

However in complicated simulations like weak lensing simulations, where each galaxy
undergoes various types of individual transformations based on their position, those trans-
formations can be applied to the different individual images with other programs. After
all the transformations are applied, using the WCS information in each individual profile
image, they can be merged into one output image for convolution and adding noise.

8.1.1 Modeling basics

In the subsections below, first a review of some very basic information and concepts behind
modeling a real astronomical image is given. You can skip this subsection if you are already
sufficiently familiar with these concepts.

8.1.1.1 Defining an ellipse

The PSF, see Section 8.1.1.2 [Point Spread Function], page 222, and galaxy radial profiles
are generally defined on an ellipse. Therefore, in this section we’ll start defining an ellipse
on a pixelated 2D surface. Labeling the major axis of an ellipse a, and its minor axis with
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b, the axis ratio is defined as: q ≡ b/a. The major axis of an ellipse can be aligned in any
direction, therefore the angle of the major axis with respect to the horizontal axis of the
image is defined to be the position angle of the ellipse and in this book, we show it with θ.

Our aim is to put a radial profile of any functional form f(r) over an ellipse. Hence we
need to associate a radius/distance to every point in space. Let’s define the radial distance
rel as the distance on the major axis to the center of an ellipse which is located at ic and
jc (in other words rel ≡ a). We want to find rel of a point located at (i, j) (in the image
coordinate system) from the center of the ellipse with axis ratio q and position angle θ.
First the coordinate system is rotated1 by θ to get the new rotated coordinates of that
point (ir, jr):

ir(i, j) = +(ic − i) cos θ + (jc − j) sin θ

jr(i, j) = −(ic − i) sin θ + (jc − j) cos θ

Recall that an ellipse is defined by (ir/a)
2 +(jr/b)

2 = 1 and that we defined rel ≡ a. Hence,
multiplying all elements of the the ellipse definition with r2

el we get the elliptical distance at
this point point located: rel =

√
i2r + (jr/q)2. To place the radial profiles explained below

over an ellipse, f(rel) is calculated based on the functional radial profile desired.

MakeProfiles builds the profile starting from the nearest element (pixel in an image) in
the dataset to the profile center. The profile value is calculated for that central pixel using
monte carlo integration, see Section 8.1.1.5 [Sampling from a function], page 225. The next
pixel is the next nearest neighbor to the central pixel as defined by rel. This process goes
on until the profile is fully built upto the trunctation radius. This is done fairly efficiently
using a breadth first parsing strategy2 which is implemented through an ordered linked list.

Using this approach, we build the profile by expanding the circumference. Not one more
extra pixel has to be checked (the calculation of rel from above is not cheap in CPU terms).
Another consequence of this strategy is that extending MakeProfiles to three dimensions
becomes very simple: only the neighbors of each pixel have to be changed. Everything else
after that (when the pixel index and its radial profile have entered the linked list) is the
same, no matter the number of dimensions we are dealing with.

8.1.1.2 Point Spread Function

Assume we have a ‘point’ source, or a source that is far smaller than the maximum resolution
(a pixel). When we take an image of it, it will ‘spread’ over an area. To quantify that spread,
we can define a ‘function’. This is how the point spread function or the PSF of an image is
defined. This ‘spread’ can have various causes, for example in ground based astronomy, due
to the atmosphere. In practice we can never surpass the ‘spread’ due to the diffraction of
the lens aperture. Various other effects can also be quantified through a PSF. For example,
the simple fact that we are sampling in a discrete space, namely the pixels, also produces a
very small ‘spread’ in the image.

1 Do not confuse the signs of sin with the rotation matrix defined in Section 6.4.1 [Warping basics],
page 157. In that equation, the point is rotated, here the coordinates are rotated and the point is fixed.

2 http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Breadth-first_search
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Convolution is the mathematical process by which we can apply a ‘spread’ to an image,
or in other words blur the image, see Section 6.3.1.1 [Convolution process], page 136. The
Brightness of an object should remain unchanged after convolution, see Section 8.1.3 [Flux
Brightness and magnitude], page 227. Therefore, it is important that the sum of all the
pixels of the PSF be unity. The PSF image also has to have an odd number of pixels on its
sides so one pixel can be defined as the center. In MakeProfiles, the PSF can be set by the
two methods explained below.

Parametric functions
A known mathematical function is used to make the PSF. In this case, only the
parameters to define the functions are necessary and MakeProfiles will make a
PSF based on the given parameters for each function. In both cases, the center
of the profile has to be exactly in the middle of the central pixel of the PSF
(which is automatically done by MakeProfiles). When talking about the PSF,
usually, the full width at half maximum or FWHM is used as a scale of the
width of the PSF.

Gaussian In the older papers, and to a lesser extent even today, some re-
searchers use the 2D Gaussian function to approximate the PSF of
ground based images. In its most general form, a Gaussian function
can be written as:

f(r) = a exp

(−(x− µ)2

2σ2

)
+ d

Since the center of the profile is pre-defined, µ and d are con-
strained. a can also be found because the function has to be nor-
malized. So the only important parameter for MakeProfiles is the σ.
In the Gaussian function we have this relation between the FWHM
and σ:

FWHMg = 2
√
2 ln 2σ ≈ 2.35482σ

Moffat The Gaussian profile is much sharper than the images taken from
stars on photographic plates or CCDs. Therefore in 1969, Moffat
proposed this functional form for the image of stars:

f(r) = a

[
1 +

(
r

α

)2
]−β

Again, a is constrained by the normalization, therefore two param-
eters define the shape of the Moffat function: α and β. The radial
parameter is α which is related to the FWHM by

FWHMm = 2α
√
21/β − 1
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Comparing with the PSF predicted from atmospheric turbulence
theory with a Moffat function, Trujillo et al.3 claim that β should
be 4.765. They also show how the Moffat PSF contains the Gaus-
sian PSF as a limiting case when β →∞.

An input FITS image
An input image file can also be specified to be used as a PSF. If the sum of its
pixels are not equal to 1, the pixels will be multiplied by a fraction so the sum
does become 1.

While the Gaussian is only dependent on the FWHM, the Moffat function is also de-
pendent on β. Comparing these two functions with a fixed FWHM gives the following
results:

• Within the FWHM, the functions don’t have significant differences.

• For a fixed FWHM, as β increases, the Moffat function becomes sharper.

• The Gaussian function is much sharper than the Moffat functions, even when β is large.

8.1.1.3 Stars

In MakeProfiles, stars are generally considered to be a point source. This is usually the
case for extra galactic studies, were nearby stars are also in the field. Since a star is only a
point source, we assume that it only fills one pixel prior to convolution. In fact, exactly for
this reason, in astronomical images the light profiles of stars are one of the best methods to
understand the shape of the PSF and a very large fraction of scientific research is preformed
by assuming the shapes of stars to be the PSF of the image.

8.1.1.4 Galaxies

Today, most practitioners agree that the flux of galaxies can be modeled with one or a few
generalized de Vaucouleur’s (or Sérsic) profiles.

I(r) = Ie exp

(
−bn

[(
r

re

)1/n

− 1

])

Gérard de Vaucouleurs (1918-1995) was first to show in 1948 that this function best fits
the galaxy light profiles, with the only difference that he held n fixed to a value of 4. 20
years later in 1968, J. L. Sérsic showed that n can have a variety of values and does not
necessarily need to be 4. This profile depends on the effective radius (re) which is defined as
the radius which contains half of the profile brightness (see Section 8.1.4 [Profile magnitude],
page 227). Ie is the flux at the effective radius. The Sérsic index n is used to define the
concentration of the profile within re and bn is a constant dependent on n. MacArthur et
al.4 show that for n > 0.35, bn can be accurately approximated using this equation:

3 Trujillo, I., J. A. L. Aguerri, J. Cepa, and C. M. Gutierrez (2001). “The effects of seeing on Sérsic profiles
- II. The Moffat PSF”. In: MNRAS 328, pp. 977—985.

4 MacArthur, L. A., S. Courteau, and J. A. Holtzman (2003). “Structure of Disk-dominated Galaxies. I.
Bulge/Disk Parameters, Simulations, and Secular Evolution”. In: ApJ 582, pp. 689—722.
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bn = 2n− 1
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8.1.1.5 Sampling from a function

A pixel is the ultimate level of accuracy to gather data, we can’t get any more accurate
in one image, this is known as sampling in signal processing. However, the mathematical
profiles which describe our models have infinite accuracy. Over a large fraction of the area
of astrophysically interesting profiles (for example galaxies or PSFs), the variation of the
profile over the area of one pixel is not too significant. In such cases, the elliptical radius (rel
of the center of the pixel can be assigned as the final value of the pixel, see Section 8.1.1.1
[Defining an ellipse], page 221).

As you approach their center, some galaxies become very sharp (their value significantly
changes over one pixel’s area). This sharpness increases with smaller effective radius and
larger Sérsic values. Thus rendering the central value extremely inaccurate. The first
method that comes to mind for solving this problem is integration. The functional form
of the profile can be integrated over the pixel area in a 2D integration process. However,
unfortunately numerical integration techniques also have their limitations and when such
sharp profiles are needed they can become extremely inaccurate.

The most accurate method of sampling a continuous profile on a discrete space is by
choosing a large number of random points within the boundaries of the pixel and taking
their average value (or Monte Carlo integration). This is also, generally speaking, what
happens in practice with the photons on the pixel. The number of random points can be
set with --numrandom.

Unfortunately, repeating this Monte Carlo process would be extremely time and CPU
consuming if it is to be applied to every pixel. In order to not loose too much accuracy,
in MakeProfiles, the profile is built using both methods explained below. The building of
the profile begins from its central pixel and continues (radially) outwards. Monte Carlo
integration is first applied (which yields Fr), then the central pixel value (Fc) is calculated
on the same pixel. If the fractional difference (|Fr −Fc|/Fr) is lower than a given tolerance
level (specified with --tolerance) MakeProfiles will stop using Monte Carlo integration
and only use the central pixel value.

The ordering of the pixels in this inside-out construction is based on
r =

√
(ic − i)2 + (jc − j)2, not rel, see Section 8.1.1.1 [Defining an ellipse],

page 221. When the axis ratios are large (near one) this is fine. But when they are small
and the object is highly elliptical, it might seem more reasonable to follow rel not r. The
problem is that the gradient is stronger in pixels with smaller r (and larger rel) than those
with smaller rel. In other words, the gradient is strongest along the minor axis. So if the
next pixel is chosen based on rel, the tolerance level will be reached sooner and lots of
pixels with large fractional differences will be missed.

Monte Carlo integration uses a random number of points. Thus, every time you run it,
by default, you will get a different distribution of points to sample within the pixel. In the
case of large profiles, this will result in a slight difference of the pixels which use Monte
Carlo integration each time MakeProfiles is run. To have a deterministic result, you have to
fix the random number generator properties which is used to build the random distribution.



Chapter 8: Modeling and fitting 226

This can be done by setting the GSL_RNG_TYPE and GSL_RNG_SEED environment variables
and calling MakeProfiles with the --envseed option. To learn more about the process of
generating random numbers, see Section 8.2.1.4 [Generating random numbers], page 240.

The seed values are fixed for every profile: with --envseed, all the profiles have the
same seed and without it, each will get a different seed using the system clock (which is
accurate to within one microsecond). The same seed will be used to generate a random
number for all the sub-pixel positions of all the profiles. So in the former, the sub-pixel
points checked for all the pixels undergoing Monte carlo integration in all profiles will be
identical. In other words, the sub-pixel points in the first (closest to the center) pixel of
all the profiles will be identical with each other. All the second pixels studied for all the
profiles will also receive an identical (different from the first pixel) set of sub-pixel points
and so on. As long as the number of random points used is large enough or the profiles are
not identical, this should not cause any systematic bias.

8.1.1.6 Oversampling

The steps explained in Section 8.1.1.5 [Sampling from a function], page 225, do give an
accurate representation of a profile prior to convolution. However, in an actual observation,
the image is first convolved with or blurred by the atmospheric and instrument PSF in a
continuous space and then it is sampled on the discrete pixels of the camera.

In order to more accurately simulate this process, the un-convolved image and the PSF
are created on a finer pixel grid. In other words, the output image is a certain odd-integer
multiple of the desired size, we can call this ‘oversampling’. The user can specify this
multiple as a command-line option. The reason this has to be an odd number is that the
PSF has to be centered on the center of its image. An image with an even number of pixels
on each side does not have a central pixel.

The image can then be convolved with the PSF (which should also be oversampled on
the same scale). Finally, image can be sub-sampled to get to the initial desired pixel size
of the output image. After this, mock noise can be added as explained in the next section.
This is because unlike the PSF, the noise occurs in each output pixel, not on a continuous
space like all the prior steps.

8.1.2 If convolving afterwards

In case you want to convolve the image later with a given point spread function, make sure
to use a larger image size. After convolution, the profiles become larger and a profile that
is normally completely outside of the image might fall within it.

On one axis, if you want your final (convolved) image to be m pixels and your PSF is
2n+1 pixels wide, then when calling MakeProfiles, set the axis size to m+2n, not m. You
also have to shift all the pixel positions of the profile centers on the that axis by n pixels
to the positive.

After convolution, you can crop the outer n pixels with the section crop box specifica-
tion of Crop: --section=n:*-n,n:*-n assuming your PSF is a square, see Section 6.1.2
[Crop section syntax], page 118. This will also remove all discrete Fourier transform ar-
tifacts (blurred sides) from the final image. To facilitate this shift, MakeProfiles has the
options --xshift, --yshift and --prepforconv, see Section 8.1.5 [Invoking MakeProfiles],
page 228.
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8.1.3 Flux Brightness and magnitude

Astronomical data pixels are usually in units of counts5 or electrons or either one divided
by seconds. To convert from the counts to electrons, you will need to know the instrument
gain. In any case, they can be directly converted to energy or energy/time using the
basic hardware (telescope, camera and filter) information. We will continue the discussion
assuming the pixels are in units of energy/time.

The brightness of an object is defined as its total detected energy per time. This is
simply the sum of the pixels that are associated with that detection by our detection tool
for example Section 7.2 [NoiseChisel], page 1816. The flux of an object is in units of
energy/time/area and for a detected object, it is defined as its brightness divided by the
area used to collect the light from the source or the telescope aperture (for example in cm2)7.
Knowing the flux (f) and distance to the object (r), we can calculate its luminosity : L =
4πr2f . Therefore, flux and luminosity are intrinsic properties of the object, while brightness
depends on our detecting tools (hardware and software). Here we will not be discussing
luminosity, but brightness. However, since luminosity is the astrophysically interesting
quantity, we also defined it here to avoid possible confusion between these two terms because
they both have the same units.

Images of astronomical objects span over a very large range of brightness. With the Sun
(as the brightest object) being roughly 2.560 = 1024 times brighter than the faintest galaxies
we can currently detect. Therefore discussing brightness will be very hard, and astronomers
have chosen to use a logarithmic scale to talk about the brightness of astronomical objects.
But the logarithm can only be usable with a unit-less and always positive value. Fortu-
nately brightness is always positive and to remove the units we divide the brightness of the
object (B) by a reference brightness (Br). We then define the resulting logarithmic scale
as magnitude through the following relation8

m−mr = −2.5 log10

(
B

Br

)

m is defined as the magnitude of the object and mr is the pre-defined magnitude of the
reference brightness. One particularly easy condition is when Br = 1. This will allow us
to summarize all the hardware specific parameters discussed above into one number as the
reference magnitude which is commonly known as the Zero-point9 magnitude.

8.1.4 Profile magnitude

To find the profile brightness or its magnitude, (see Section 8.1.3 [Flux Brightness and
magnitude], page 227), it is customary to use the 2D integration of the flux to infinity.

5 Counts are also known as analog to digital units (ADU).
6 If further processing is done, for example the Kron or Petrosian radii are calculated, then the detected

area is not sufficient and the total area that was within the respective radius must be used.
7 For a full object that spans over several pixels, the telescope area should be used to find the flux.

However, sometimes, only the brightness per pixel is desired. In such cases this book also loosely uses
the term flux. This is only approximately accurate however, since while all the pixels have a fixed area,
the pixel size can vary with camera on the telescope.

8 The −2.5 factor in the definition of magnitudes is a legacy of the our ancient colleagues and in particular
Hipparchus of Nicaea (190-120 BC).

9 When B = Br = 1, the right side of the magnitude definition will be zero. Hence the name, “zero-point”.
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However, in MakeProfiles we do not follow this idealistic approach and apply a more realistic
method to find the total brightness or magnitude: the sum of all the pixels belonging to
a profile within its predefined truncation radius. Note that if the truncation radius is not
large enough, this can be significantly different from the total integrated light to infinity.

An integration to infinity is not a realistic condition because no galaxy extends indef-
initely (important for high Sérsic index profiles), pixelation can also cause a significant
difference between the actual total pixel sum value of the profile and that of integration
to infinity, especially in small and high Sérsic index profiles. To be safe, you can specify a
large enough truncation radius for such compact high Sérsic index profiles.

If oversampling is used then the brightness is calculated using the over-sampled image,
see Section 8.1.1.6 [Oversampling], page 226, which is much more accurate. The profile is
first built in an array completely bounding it with a normalization constant of unity (see
Section 8.1.1.4 [Galaxies], page 224). Taking B to be the desired brightness and S to be
the sum of the pixels in the created profile, every pixel is then multiplied by B/S so the
sum is exactly B.

If the --individual option is called, this same array is written to a FITS file. If not,
only the overlapping pixels of this array and the output image are kept and added to the
output array.

8.1.5 Invoking MakeProfiles

MakeProfiles will make any number of profiles specified in a catalog either individually or
in one image. The executable name is astmkprof with the following general template

$ astmkprof [OPTION ...] [Catalog]

One line examples:

## Make an image with profiles in catalog.txt (with default size):

$ astmkprof catalog.txt

## Make the profiles in catalog.txt over image.fits:

$ astmkprof --background=image.fits catalog.txt

## Make a Moffat PSF with FWHM 3pix, beta=2.8, truncation=5

$ astmkprof --kernel=moffat,2.8,5 --oversample=1

## Make profiles in catalog, using RA and Dec in the given column:

$ astmkprof --ccol=RA_CENTER --ccol=DEC_CENTER --mode=wcs catalog.txt

## Make a 1500x1500 merged image (oversampled 500x500) image along

## with an individual image for all the profiles in catalog:

$ astmkprof --individual --oversample 3 --naxis=500,500 catalog.txt

The parameters of the mock profiles can either be given through a catalog (which stores
the parameters of many mock profiles, see Section 8.1.5.1 [MakeProfiles catalog], page 229),
or the --kernel option (see Section 8.1.5.3 [MakeProfiles output dataset], page 234). The
catalog can be in the FITS ASCII, FITS binary format, or plain text formats (see Section 4.5
[Tables], page 84). The columns related to each parameter can be determined both by
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number, or by match/search criteria using the column names, units, or comments. with the
options ending in col, see below.

Without any file given to the --background option, MakeProfiles will make a zero-valued
image and build the profiles on that (its size and main WCS parameters can also be defined
through the options described in Section 8.1.5.3 [MakeProfiles output dataset], page 234).
Besides the main/merged image containing all the profiles in the catalog, it is also possible
to build individual images for each profile (only enclosing one full profile to its truncation
radius) with the --individual option.

If an image is given to the --background option, the pixels of that image are used as
the background value for every pixel. The flux value of each profile pixel will be added to
the pixel in that background value. In this case, the values to all options relating to the
output size and WCS will be ignored if specified (for example --oversample, --naxis, and
--prepforconv) on the command-line or in the configuration files.

The sections below discuss the options specific to MakeProfiles based on context: the
input catalog settings which can have many rows for different profiles are discussed in
Section 8.1.5.1 [MakeProfiles catalog], page 229, in Section 8.1.5.2 [MakeProfiles profile set-
tings], page 231, we discuss how you can set general profile settings (that are the same for all
the profiles in the catalog). Finally Section 8.1.5.3 [MakeProfiles output dataset], page 234,
and Section 8.1.5.4 [MakeProfiles log file], page 238, discuss the outputs of MakeProfiles
and how you can configure them. Besides these, MakeProfiles also supports all the common
Gnuastro program options that are discussed in Section 4.1.2 [Common options], page 69,
so please flip through them is well for a more comfortable usage.

Please see Section 2.2 [Sufi simulates a detection], page 17, for a very complete tutorial
explaining how one could use MakeProfiles in conjunction with other Gnuastro’s programs
to make a complete simulated image of a mock galaxy.

8.1.5.1 MakeProfiles catalog

The catalog containing information about each profile can be in the FITS ASCII, FITS
binary, or plain text formats (see Section 4.5 [Tables], page 84). Its columns can be ordered
in any desired manner. You can specify which columns belong to which parameters using the
set of options discussed below. For example through the --rcol and --tcol options, you
can specify the column that contains the radial parameter for each profile and its truncation
respectively. See Section 4.5.3 [Selecting table columns], page 89, for a thorough discussion
on the values to these options.

The value for the profile center in the catalog (the --ccol option) can be a floating point
number so the profile center can be on any sub-pixel position. Note that pixel positions in
the FITS standard start from 1 and an integer is the pixel center. So a 2D image actually
starts from the position (0.5, 0.5), which is the bottom-left corner of the first pixel. When a
--background image with WCS information is provided or you specify the WCS parameters
with the respective options, you may also use RA and Dec to identify the center of each
profile (see the --mode option below).

In MakeProfiles, profile centers do not have to be in (overlap with) the final image. Even
if only one pixel of the profile within the truncation radius overlaps with the final image
size, the profile is built and included in the final image image. Profiles that are completely
out of the image will not be created (unless you explicity ask for it with the --individual
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option). You can use the output log file (created with --log to see which profiles were
within the image, see Section 4.1.2 [Common options], page 69.

If PSF profiles (Moffat or Gaussian, see Section 8.1.1.2 [Point Spread Function], page 222)
are in the catalog and the profiles are to be built in one image (when --individual is not
used), it is assumed they are the PSF(s) you want to convolve your created image with.
So by default, they will not be built in the output image but as separate files. The sum of
pixels of these separate files will also be set to unity (1) so you are ready to convolve, see
Section 6.3.1.1 [Convolution process], page 136. As a summary, the position and magnitude
of PSF profile will be ignored. This behavior can be disabled with the --psfinimg option.
If you want to create all the profiles separately (with --individual) and you want the sum
of the PSF profile pixels to be unity, you have to set their magnitudes in the catalog to the
zero-point magnitude and be sure that the central positions of the profiles don’t have any
fractional part (the PSF center has to be in the center of the pixel).

The list of options directly related to the input catalog columns is shown below.

--ccol=STR/INT

Center coordinate column for each dimension. This option must be called two
times to define the center coordinates in an image. For example --ccol=RA and
--ccol=DEC (along with --mode=wcs) will inform MakeProfiles to look into the
catalog columns named RA and DEC for the Right Ascension and Declination of
the profile centers.

--fcol=INT/STR

The functional form of the profile with one of the values below depending on the
desired profile. The column can contain either the numeric codes (for example
‘1’) or string characters (for example ‘sersic’). The numeric codes are easier
to use in scripts which generate catalogs with hundreds or thousands of profiles.

The string format can be easier when the catalog is to be written/checked
by hand/eye before running MakeProfiles. It is much more readable and pro-
vides a level of documentation. All Gnuastro’s recognized table formats (see
Section 4.5.1 [Recognized table formats], page 85) accept string type columns.
To have string columns in a plain text table/catalog, see Section 4.5.2 [Gnuastro
text table format], page 87.

• Sérsic profile with ‘sersic’ or ‘1’.

• Moffat profile with ‘moffat’ or ‘2’.

• Gaussian profile with ‘gaussian’ or ‘3’.

• Point source with ‘point’ or ‘4’.

• Flat profile with ‘flat’ or ‘5’.

• Circumference profile with ‘circum’ or ‘6’. A fixed value will be used for
all pixels between the truncation radius (rt) and rt − w (w is the value to
the --circumwidth).

• Radial distance profile with ‘distance’ or ‘7’. At the lowest level, each
pixel only has an elliptical radial distance given the profile’s shape and
orentiation (see Section 8.1.1.1 [Defining an ellipse], page 221). When this
profile is chosen, the pixel’s elliptical radial distance from the profile center
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is written as its value. For this profile, the value in the magnitude column
(--mcol) will be ignored.

You can use this for checks or as a first approximation to define your
own higher-level radial function. In the latter case, just note that the
central values are going to be incorrect (see Section 8.1.1.5 [Sampling from
a function], page 225).

--rcol=STR/INT

The radius parameter of the profiles. Effective radius (re) if Sérsic, FWHM if
Moffat or Gaussian.

--ncol=STR/INT

The Sérsic index (n) or Moffat β.

--pcol=STR/INT

The position angle (in degrees) of the profiles relative to the first FITS axis
(horizontal when viewed in SAO ds9).

--qcol=STR/INT

The axis ratio of the profiles (minor axis divided by the major axis in a 2D
ellipse).

--mcol=STR/INT

The total pixelated magnitude of the profile within the truncation radius, see
Section 8.1.4 [Profile magnitude], page 227.

--tcol=STR/INT

The truncation radius of this profile. By default it is in units of the radial
parameter of the profile (the value in the --rcol of the catalog). If --tunitinp
is given, this value is interpreted in units of pixels (prior to oversampling)
irrespective of the profile.

8.1.5.2 MakeProfiles profile settings

The profile parameters that differ between each created profile are specified through the
columns in the input catalog and described in Section 8.1.5.1 [MakeProfiles catalog],
page 229. Besides those there are general settings for some profiles that don’t differ
between one profile and another, they are a property of the general process. For example
how many random points to use in the monte-carlo integration, this value is fixed for all
the profiles. The options described in this section are for configuring such properties.

--mode=STR

Interpret the center position columns (--ccol in Section 8.1.5.1 [MakeProfiles
catalog], page 229) in image or WCS coordinates. This option thus accepts
only two values: img and wcs. It is mandatory when a catalog is being used as
input.

-r

--numrandom

The number of random points used in the central regions of the profile, see
Section 8.1.1.5 [Sampling from a function], page 225.
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-e

--envseed

Use the value to the GSL_RNG_SEED environment variable to generate the ran-
dom Monte Carlo sampling distribution, see Section 8.1.1.5 [Sampling from a
function], page 225, and Section 8.2.1.4 [Generating random numbers], page 240.

-t FLT

--tolerance=FLT

The tolerance to switch from Monte Carlo integration to the central pixel value,
see Section 8.1.1.5 [Sampling from a function], page 225.

-p

--tunitinp

The truncation column of the catalog is in units of pixels. By default, the
truncation column is considered to be in units of the radial parameters of the
profile (--rcol). Read it as ‘t-unit-in-p’ for ‘truncation unit in pixels’.

-f

--mforflatpix

When making fixed value profiles (flat and circumference, see ‘--fcol’), don’t
use the value in the column specified by ‘--mcol’ as the magnitude. Instead
use it as the exact value that all the pixels of these profiles should have. This
option is irrelevant for other types of profiles. This option is very useful for
creating masks, or labeled regions in an image. Any integer, or floating point
value can used in this column with this option, including NaN (or ‘nan’, or ‘NAN’,
case is irrelevant), and infinities (inf, -inf, or +inf).

For example, with this option if you set the value in the magnitude column
(--mcol) to NaN, you can create an elliptical or circular mask over an image
(which can be given as the argument), see Section 6.1.3 [Blank pixels], page 118.
Another useful application of this option is to create labeled elliptical or circu-
lar apertures in an image. To do this, set the value in the magnitude column
to the label you want for this profile. This labeled image can then be used
in combination with NoiseChisel’s output (see Section 7.2.2.4 [NoiseChisel out-
put], page 196) to do aperture photometry with MakeCatalog (see Section 7.3
[MakeCatalog], page 197).

Alternatively, if you want to mark regions of the image (for example with an
elliptical circumference) and you don’t want to use NaN values (as explained
above) for some technical reason, you can get the minimum or maximum value
in the image10 using Arithmetic (see Section 6.2 [Arithmetic], page 125), then
use that value in the magnitude column along with this option for all the profiles.

Please note that when using MakeProfiles on an already existing image, you
have to set ‘--oversample=1’. Otherwise all the profiles will be scaled up
based on the oversampling scale in your configuration files (see Section 4.2
[Configuration files], page 77) unless you have accounted for oversampling in
your catalog.

10 The minimum will give a better result, because the maximum can be too high compared to most pixels
in the image, making it harder to display.
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--mcolisbrightness

The value given in the “magnitude column” (specified by --mcol, see
Section 8.1.5.1 [MakeProfiles catalog], page 229) must be interpretted
as brightness, not magnitude. The zeropoint magnitude (value to the
--zeropoint option) is ignored and the given value must have the same units
as the input dataset’s pixels.

Recall that the total profile magnitude or brightness that is specified with in
the --mcol column of the input catalog is not an integration to infinity, but
the actual sum of pixels in the profile (until the desired truncation radius). See
Section 8.1.4 [Profile magnitude], page 227, for more on this point.

--magatpeak

The magnitude column in the catalog (see Section 8.1.5.1 [MakeProfiles catalog],
page 229) will be used to find the brightness only for the peak profile pixel, not
the full profile. Note that this is the flux of the profile’s peak pixel in the
final output of MakeProfiles. So beware of the oversampling, see Section 8.1.1.6
[Oversampling], page 226.

This option can be useful if you want to check a mock profile’s total magnitude
at various truncation radii. Without this option, no matter what the truncation
radius is, the total magnitude will be the same as that given in the catalog. But
with this option, the total magnitude will become brighter as you increase the
truncation radius.

In sharper profiles, sometimes the accuracy of measuring the peak profile flux
is more than the overall object brightness. In such cases, with this option, the
final profile will be built such that its peak has the given magnitude, not the
total profile.� �
CAUTION: If you want to use this option for comparing with observations,
please note that MakeProfiles does not do convolution. Unless you have de-
convolved your data, your images are convolved with the instrument and atmo-
spheric PSF, see Section 8.1.1.2 [Point Spread Function], page 222. Particularly
in sharper profiles, the flux in the peak pixel is strongly decreased after con-
volution. Also note that in such cases, besides de-convolution, you will have
to set --oversample=1 otherwise after resampling your profile with Warp (see
Section 6.4 [Warp], page 156), the peak flux will be different.
 	

-X INT,INT

--shift=INT,INT

Shift all the profiles and enlarge the image along each dimension. To better
understand this option, please see n in Section 8.1.2 [If convolving afterwards],
page 226. This is useful when you want to convolve the image afterwards. If
you are using an external PSF, be sure to oversample it to the same scale used
for creating the mock images. If a background image is specified, any possible
value to this option is ignored.
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-c

--prepforconv

Shift all the profiles and enlarge the image based on half the width of the first
Moffat or Gaussian profile in the catalog, considering any possible oversampling
see Section 8.1.2 [If convolving afterwards], page 226. --prepforconv is only
checked and possibly activated if --xshift and --yshift are both zero (after
reading the command-line and configuration files). If a background image is
specified, any possible value to this option is ignored.

-z FLT

--zeropoint=FLT

The zero-point magnitude of the image.

-w FLT

--circumwidth=FLT

The width of the circumference if the profile is to be an elliptical circumference
or annulus. See the explanations for this type of profile in --fcol.

-R

--replace

Do not add the pixels of each profile over the background (possibly crowded by
other profiles), replace them. By default, when two profiles overlap, the final
pixel value is the sum of all the profiles that overlap on that pixel. When this
option is given, the pixels are not added but replaced by the newer profile’s
pixel and any value under it is lost.

When order matters, make sure to use this function with ‘--numthreads=1’.
When multiple threads are used, the separate profiles are built asynchronously
and not in order. Since order does not matter in an addition, this causes no
problems by default but has to be considered when this option is given. Using
multiple threads is no problem if the profiles are to be used as a mask with a
blank or fixed value (see ‘--mforflatpix’) since all their pixel values are the
same.

Note that only non-zero pixels are replaced. With radial profiles (for example
Sérsic or Moffat) only values above zero will be part of the profile. However,
when using flat profiles with the ‘--mforflatpix’ option, you should be careful
not to give a 0.0 value as the flat profile’s pixel value.

8.1.5.3 MakeProfiles output dataset

MakeProfiles takes an input catalog uses basic properties that are defined there to build a
dataset, for example a 2D image containing the profiles in the catalog. In Section 8.1.5.1
[MakeProfiles catalog], page 229, and Section 8.1.5.2 [MakeProfiles profile settings],
page 231, the catalog and profile settings were discussed. The options of this section, allow
you to configure the output dataset (or the canvas that will host the built profiles).

-k STR

--background=STR

A background image FITS file to build the profiles on. The extension that
contains the image should be specified with the --backhdu option, see be-
low. When a background image is specified, it will be used to derive all the
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information about the output image. Hence, the following options will be ig-
nored: --naxis, --oversample, --crpix, --crval (generally, all other WCS
related parameters) and the output’s data type (see --type in Section 4.1.2.1
[Input/Output options], page 69).

The image will act like a canvas to build the profiles on: profile pixel values
will be summed with the background image pixel values. With the --replace
option you can disable this behavior and replace the profile pixels with the
background pixels. If you want to use all the image information above, except
for the pixel values (you want to have a blank canvas to build the profiles on,
based on an input image), you can call --clearcanvas, to set all the input
image’s pixels to zero before starting to build the profiles over it (this is done
in memory after reading the input, so nothing will happen to your input file).

-B STR/INT

--backhdu=STR/INT

The header data unit (HDU) of the file given to --background.

-C

--clearcanvas

When an input image is specified (with the --background option, set all its
pixels to 0.0 immediately after reading it into memory. Effectively, this will
allow you to use all its properties (described under the --background option),
without having to worry about the pixel values.

--clearcanvas can come in handy in many situations, for example if you
want to create a labeled image (segmentation map) for creating a catalog (see
Section 7.3 [MakeCatalog], page 197). In other cases, you might have mod-
eled the objects in an image and want to create them on the same frame, but
without the original pixel values.

-E STR/INT,FLT[,FLT,[...]]

--kernel=STR/INT,FLT[,FLT,[...]]

Only build one kernel profile with the parameters given as the values to this
option. The different values must be separated by a comma (,). The first value
identifies the radial function of the profile, either through a string or through
a number (see description of --fcol in Section 8.1.5.1 [MakeProfiles catalog],
page 229). Each radial profile needs a different total number of parameters:
Sérsic and Moffat functions need 3 parameters: radial, Sérsic index or Moffat
β, and truncation radius. The Gaussian function needs two parameters: radial
and truncation radius. The point function doesn’t need any parameters and
flat and circumference profiles just need one parameter (truncation radius).

The PSF or kernel is a unique (and highly constrained) type of profile: the sum
of its pixels must be one, its center must be the center of the central pixel (in an
image with an odd number of pixels on each side), and commonly it is circular,
so its axis ratio and position angle are one and zero respectively. Kernels are
commonly necessary for various data analysis and data manipulation steps (for
example see Section 6.3 [Convolve], page 135, and Section 7.2 [NoiseChisel],
page 181. Because of this it is inconvenient to define a catalog with one row
and many zero valued columns (for all the non-necessary parameters). Hence,
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with this option, it is possible to create a kernel with MakeProfiles without the
need to create a catalog. Here are some examples:

--kernel=moffat,3,2.8,5

A Moffat kernel with FWHM of 3 pixels, β = 2.8 which is truncated
at 5 times the FWHM.

--kernel=gaussian,2,3

A Gaussian kernel with FWHM of 2 pixels and truncated at 3 times
the FWHM.

-x INT,INT

--naxis=INT,INT

The number of pixels along each dimension axis of the output in FITS or-
der. This is before over-sampling. For example if you call MakeProfiles with
--naxis=100,150 --oversample=5 (assuming no shift due for later convolu-
tion), then the final image size along the first axis will be 500 by 750 pixels. Frac-
tions are acceptable as values for each dimension, however, they must reduce to
an integer, so --naxis=150/3,300/3 is acceptable but --naxis=150/4,300/4
is not.

When viewing a FITS image in DS9, the first FITS dimension is in the horizon-
tal direction and the second is vertical. As an example, the image created with
the example above will have 500 pixels horizontally and 750 pixels vertically.

If a background image is specified, this option is ignored.

-s INT

--oversample=INT

The scale to over-sample the profiles and final image. If not an odd number,
will be added by one, see Section 8.1.1.6 [Oversampling], page 226. Note that
this --oversample will remain active even if an input image is specified. If your
input catalog is based on the background image, be sure to set --oversample=1.

--psfinimg

Build the possibly existing PSF profiles (Moffat or Gaussian) in the catalog
into the final image. By default they are built separately so you can convolve
your images with them, thus their magnitude and positions are ignored. With
this option, they will be built in the final image like every other galaxy profile.
To have a final PSF in your image, make a point profile where you want the
PSF and after convolution it will be the PSF.

-i

--individual

If this option is called, each profile is created in a separate FITS file within
the same directory as the output and the row number of the profile (starting
from zero) in the name. The file for each row’s profile will be in the same
directory as the final combined image of all the profiles and will have the final
image’s name as a suffix. So for example if the final combined image is named
./out/fromcatalog.fits, then the first profile that will be created with this
option will be named ./out/0_fromcatalog.fits.
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Since each image only has one full profile out to the truncation radius the profile
is centered and so, only the sub-pixel position of the profile center is important
for the outputs of this option. The output will have an odd number of pixels.
If there is no oversampling, the central pixel will contain the profile center. If
the value to --oversample is larger than unity, then the profile center is on
any of the central --oversample’d pixels depending on the fractional value of
the profile center.

If the fractional value is larger than half, it is on the bottom half of the central
region. This is due to the FITS definition of a real number position: The center
of a pixel has fractional value 0.00 so each pixel contains these fractions: .5 –
.75 – .00 (pixel center) – .25 – .5.

-m

--nomerged

Don’t make a merged image. By default after making the profiles, they are
added to a final image with side lengths specified by --naxisif they overlap
with it.

The options below can be used to define the world coordinate system (WCS) properties of
the MakeProfiles outputs. The option names are delibarately chosen to be the same as the
FITS standard WCS keywords. See Section 8 of Pence et al [2010] (https://doi.org/10.
1051/0004-6361/201015362) for a short introduction to WCS in the FITS standard11.

If you look into the headers of a FITS image with WCS for example you will see all these
names but in uppercase and with numbers to represent the dimensions, for example CRPIX1
and PC2_1. You can see the FITS headers with Gnuastro’s Section 5.1 [Fits], page 98,
program using a command like this: $ astfits -p image.fits.

If the values given to any of these options does not correspond to the number of dimen-
sions in the output dataset, then no WCS information will be added.

--crpix=FLT,FLT

The pixel coordinates of the WCS reference point. Fractions are acceptable for
the values of this option.

--crval=FLT,FLT

The WCS coordinates of the Reference point. Fractions are acceptable for the
values of this option.

--cdelt=FLT,FLT

The resolution (size of one data-unit or pixel in WCS units) of the
non-oversampled dataset. Fractions are acceptable for the values of this
option.

--pc=FLT,FLT,FLT,FLT

The PC matrix of the WCS rotation, see the FITS standard (link above) to
better understand the PC matrix.

11 The world coordinate standard in FITS is a very beatiful and powerful concept to link/associate datasets
with the outside world (other datasets). The description in the FITS standard (link above) only
touches the tip of the ice-burg. To learn more please see Greisen and Calabretta [2002] (https://
doi.org/10.1051/0004-6361:20021326), Calabretta and Greisen [2002] (https://doi.org/10.1051/
0004-6361:20021327), Greisen et al. [2006] (https://doi.org/10.1051/0004-6361:20053818), and
Calabretta et al. (http://www.atnf.csiro.au/people/mcalabre/WCS/dcs_20040422.pdf)

https://doi.org/10.1051/0004-6361/201015362
https://doi.org/10.1051/0004-6361/201015362
https://doi.org/10.1051/0004-6361:20021326
https://doi.org/10.1051/0004-6361:20021326
https://doi.org/10.1051/0004-6361:20021327
https://doi.org/10.1051/0004-6361:20021327
https://doi.org/10.1051/0004-6361:20053818
http://www.atnf.csiro.au/people/mcalabre/WCS/dcs_20040422.pdf
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--cunit=STR,STR

The units of each WCS axis, for example deg. Note that these values are part
of the FITS standard (link above). MakeProfiles won’t complain if you use
non-standard values, but later usage of them might cause trouble.

--ctype=STR,STR

The type of each WCS axis, for example RA---TAN and DEC--TAN. Note that
these values are part of the FITS standard (link above). MakeProfiles won’t
complain if you use non-standard values, but later usage of them might cause
trouble.

8.1.5.4 MakeProfiles log file

Besides the final merged dataset of all the profiles, or the individual datasets (see
Section 8.1.5.3 [MakeProfiles output dataset], page 234), if the --log option is
called MakeProfiles will also create a log file in the current directory (where you run
MockProfiles). See Section 4.1.2 [Common options], page 69, for a full description of
--log and other options that are shared between all Gnuastro programs. The values for
each column are explained in the first few commented lines of the log file (starting with #

character). Here is a more complete description.

• An ID (row number of profile in input catalog).

• The total magnitude of the profile in the output dataset. When the profile does not
completely overlap with the output dataset, this will be different from your input
magnitude.

• The number of pixels (in the oversampled image) which used Monte Carlo integration
and not the central pixel value, see Section 8.1.1.5 [Sampling from a function], page 225.

• The fraction of flux in the Monte Carlo integrated pixels.

• If an individual image was created, this column will have a value of 1, otherwise it will
have a value of 0.

8.2 MakeNoise

Real data are always buried in noise, therefore to finalize a simulation of real data (for
example to test our observational algorithms) it is essential to add noise to the mock profiles
created with MakeProfiles, see Section 8.1 [MakeProfiles], page 221. Below, the general
principles and concepts to help understand how noise is quantified is discussed. MakeNoise
options and argument are then discussed in Section 8.2.2 [Invoking MakeNoise], page 242.

8.2.1 Noise basics

Deep astronomical images, like those used in extragalactic studies seriously suffer from noise
in the data. Generally speaking, the sources of noise in an astronomical image are photon
counting noise and Instrumental noise which are discussed in detail below. We finish with a
short introduction on how random numbers are generated and how you can determine the
random number generator and seed value.

8.2.1.1 Photon counting noise

Thanks to the very accurate electronics used in today’s detectors, this type of noise is the
main cause of concern for extra galactic studies. It can generally be associate with the



Chapter 8: Modeling and fitting 239

counting error that is known to have a Poisson distribution. The Poisson distribution is
about counting. But counting is a discrete operation with only positive values, for example
we can’t count 3.2 or −2 of anything. We only count 0, 1, 2, 3 and so on. Therefore the
Poisson distribution is also a discrete distribution, only applying to whole positive integers.

Let’s assume the mean value of counting something is known. In this case, we are
counting the number of electrons that are produced by photons in a detector (for example
CCD) pixel. Let’s call this mean λ. Furthermore, let’s take k to represent the result of one
particular counting attempt. The probability density function of k can be written as:

f(k) =
λk

k!
e−λ, k ∈ {0, 1, 2, 3, . . .}

Because the Poisson distribution is only applicable to positive values, naturally it is
very skewed when λ is near zero. One qualitative way to explain it is that there simply
aren’t enough integers smaller than λ, than integers that are larger than it. Therefore to
accommodate all possibilities, it has to be skewed when λ is small.

But as λ becomes larger and larger, the distribution becomes more and more symmetric.
One very useful property of the Poisson distribution is that the mean value is also its
variance. When λ is very large, say λ > 1000, then the normal (Gaussian) distribution,
see Section 8.1.1.2 [Point Spread Function], page 222, is an excellent approximation of the
Poisson distribution with mean µ = λ and standard deviation σ =

√
λ.

We see that the variance or dispersion of the distribution depends on the mean value, and
when it is large it can be approximated with a Gaussian that only has one free parameter
(µ = λ and σ =

√
λ) instead of two that it originally has.

The astronomical objects after convolution with the PSF of the instrument, lie above a
certain background flux. This background flux is defined to be the average flux of a region
in the image that has absolutely no objects. The physical origin of this background value
is the brightness of the atmosphere or possible stray light within the imaging instrument.
It is thus an ideal definition, because in practice, what lies deep in the noise far lower than
the detection limit is never known12. However, in a real image, a relatively large number
of very faint objects can been fully buried in the noise. These undetected objects will bias
the background measurement to slightly larger values. The sky value is therefore defined
to be the average of the undetected regions in the image, so in an ideal case where all the
objects have been detected, the sky value and background value are the same.

As longer wavelengths are used, the background value becomes more significant and also
varies over a wide image field. Such variations are not currently implemented in Make-
Profiles, but will be in the future. In a mock image, we have the luxury of setting the
background value.

In each pixel of the canvas of pixels, the flux is the sum of contributions from various
sources after convolution. Let’s name this flux of the convolved sum of possibly overlapping
objects, Inn. nn representing ‘no noise’. For now, let’s assume the background is constant
and represented by B. In practice the background values are larger than ∼ 1, 000 counts.
Then the flux after adding noise is a random value taken from a Gaussian distribution with
the following mean (µ) and standard deviation (σ):

12 See the section on sky in Akhlaghi M., Ichikawa. T. 2015. Astrophysical Journal Supplement Series.



Chapter 8: Modeling and fitting 240

µ = B + Inn, σ =
√
B + Inn

Since this type of noise is inherent in the objects we study, it is usually measured on
the same scale as the astronomical objects, namely the magnitude system, see Section 8.1.3
[Flux Brightness and magnitude], page 227. It is then internally converted to the flux scale
for further processing.

8.2.1.2 Instrumental noise

While taking images with a camera, a dark current is fed to the pixels, the variation of the
value of this dark current over the pixels, also adds to the final image noise. Another source
of noise is the readout noise that is produced by the electronics in the CCD that attempt
to digitize the voltage produced by the photo-electrons in the analog to digital converter.
In deep extra-galactic studies these sources of noise are not as significant as the noise of
the background sky. Let C represent the combined standard deviation of all these sources
of noise. If only this source of noise is present, the noised pixel value would be a random
value chosen from a Gaussian distribution with

µ = Inn, σ =
√
C2 + Inn

This type of noise is completely independent of the type of objects being studied, it is
completely determined by the instrument. So the flux scale (and not magnitude scale) is
most commonly used for this type of noise. In practice, this value is usually reported in
ADUs not flux or electron counts. The gain value of the device can be used to convert
between these two, see Section 8.1.3 [Flux Brightness and magnitude], page 227.

8.2.1.3 Final noised pixel value

Depending on the values you specify for B and C from the above, the final noised value for
each pixel is a random value chosen from a Gaussian distribution with

µ = B + Inn, σ =
√
C2 +B + Inn

8.2.1.4 Generating random numbers

As discussed above, to generate noise we need to make random samples of a particular dis-
tribution. So it is important to understand some general concepts regarding the generation
of random numbers. For a very complete and nice introduction we strongly advise reading
Donald Knuth’s “The art of computer programming”, volume 2, chapter 313. Quoting from
the GNU Scientific Library manual, “If you don’t own it, you should stop reading right
now, run to the nearest bookstore, and buy it”14!

13 Knuth, Donald. 1998. The art of computer programming. Addison–Wesley. ISBN 0-201-89684-2
14 For students, running to the library might be more affordable!
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Using only software, we can only produce what is called a psudo-random sequence of
numbers. A true random number generator is a hardware (let’s assume we have made
sure it has no systematic biases), for example throwing dice or flipping coins (which have
remained from the ancient times). More modern hardware methods use atmospheric noise,
thermal noise or other types of external electromagnetic or quantum phenomena. All psudo-
random number generators (software) require a seed to be the basis of the generation. The
advantage of having a seed is that if you specify the same seed for multiple runs, you will
get an identical sequence of random numbers which allows you to reproduce the same final
noised image.

The programs in GNU Astronomy Utilities (for example MakeNoise or MakeProfiles) use
the GNU Scientific Library (GSL) to generate random numbers. GSL allows the user to set
the random number generator through environment variables, see Section 3.3.1.2 [Installa-
tion directory], page 55, for an introduction to environment variables. In the chapter titled
“Random Number Generation” they have fully explained the various random number gen-
erators that are available (there are a lot of them!). Through the two environment variables
GSL_RNG_TYPE and GSL_RNG_SEED you can specify the generator and its seed respectively.

If you don’t specify a value for GSL_RNG_TYPE, GSL will use its default random number
generator type. The default type is sufficient for most general applications. If no value is
given for the GSL_RNG_SEED environment variable and you have asked Gnuastro to read the
seed from the environment (through the --envseed option), then GSL will use the default
value of each generator to give identical outputs. If you don’t explicitly tell Gnuastro
programs to read the seed value from the environment variable, then they will use the
system time (accurate to within a microsecond) to generate (apparently random) seeds.
In this manner, every time you run the program, you will get a different random number
distribution.

There are two ways you can specify values for these environment variables. You can call
them on the same command-line for example:

$ GSL_RNG_TYPE="taus" GSL_RNG_SEED=345 astmknoise input.fits

In this manner the values will only be used for this particular execution of MakeNoise.
Alternatively, you can define them for the full period of your terminal session or script
length, using the shell’s export command with the two separate commands below (for a
script remove the $ signs):

$ export GSL_RNG_TYPE="taus"

$ export GSL_RNG_SEED=345

The subsequent programs which use GSL’s random number generators will hence forth use
these values in this session of the terminal you are running or while executing this script.
In case you want to set fixed values for these parameters every time you use the GSL
random number generator, you can add these two lines to your .bashrc startup script15,
see Section 3.3.1.2 [Installation directory], page 55.

15 Don’t forget that if you are going to give your scripts (that use the GSL random number generator)
to others you have to make sure you also tell them to set these environment variable separately. So
for scripts, it is best to keep all such variable definitions within the script, even if they are within your
.bashrc.
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� �
NOTE: If the two environment variables GSL_RNG_TYPE and GSL_RNG_SEED are defined,
GSL will report them by default, even if you don’t use the --envseed option. For example
you can see the top few lines of the output of MakeProfiles:

$ export GSL_RNG_TYPE="taus"

$ export GSL_RNG_SEED=345

$ astmkprof catalog.txt --envseed

GSL_RNG_TYPE=taus

GSL_RNG_SEED=345

MakeProfiles started on AAA BBB DD EE:FF:GG HHH

- 6 profiles read from catalog.txt 0.000236 seconds

- Random number generator (RNG) type: taus

- RNG seed for all profiles: 345

The first two output lines (showing the names of the environment variables) are printed
by GSL before MakeProfiles actually starts generating random numbers. The Gnuastro
programs will report the values they use independently, you should check them for the final
values used. For example if --envseed is not given, GSL_RNG_SEED will not be used and
the last line shown above will not be printed. In the case of MakeProfiles, each profile will
get its own seed value.
 	
8.2.2 Invoking MakeNoise

MakeNoise will add noise to an existing image. The executable name is astmknoise with
the following general template

$ astmknoise [OPTION ...] InputImage.fits

One line examples:

## Add noise with a standard deviation of 100 to image:

$ astmknoise --sigma=100 image.fits

## Add noise to input image assuming a background magnitude (with

## zeropoint magnitude of 0) and a certain instrumental noise:

$ astmknoise --background=-10 -z0 --instrumental=20 mockimage.fits

If actual processing is to be done, the input image is a mandatory argument. The full list
of options common to all the programs in Gnuastro can be seen in Section 4.1.2 [Common
options], page 69. The type (see Section 4.4 [Numeric data types], page 82) of the output
can be specified with the --type option, see Section 4.1.2.1 [Input/Output options], page 69.
The header of the output FITS file keeps all the parameters that were influential in making
it. This is done for future reproducibility.

-s FLT

--sigma=FLT

The total noise sigma in the same units as the pixel values. With this option, the
--background, --zeropoint and --instrumental will be ignored. With this
option, the noise will be independent of the pixel values (which is not realistic,
see Section 8.2.1.1 [Photon counting noise], page 238). Hence it is only useful
if you are working on low surface brightness regions where the change in pixel
value (and thus real noise) is insignificant.



Chapter 8: Modeling and fitting 243

-b FLT

--background=FLT

The background pixel value for the image in units of magnitudes, see
Section 8.2.1.1 [Photon counting noise], page 238, and Section 8.1.3 [Flux
Brightness and magnitude], page 227.

-z FLT

--zeropoint=FLT

The zeropoint magnitude used to convert the value of --background (in units of
magnitude) to flux, see Section 8.1.3 [Flux Brightness and magnitude], page 227.

-i FLT

--instrumental=FLT

The instrumental noise which is in units of flux, see Section 8.2.1.2 [Instrumental
noise], page 240.

-e

--envseed

Use the GSL_RNG_SEED environment variable for the seed used in the random
number generator, see Section 8.2.1.4 [Generating random numbers], page 240.
With this option, the output image noise is always going to be identical (or
reproducible).

-d

--doubletype

Save the output in the double precision floating point format that was used
internally. This option will be most useful if the input images were of integer
types.
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9 High-level calculations

After the reduction of raw data (for example with the programs in Chapter 6 [Data ma-
nipulation], page 115) you will have reduced images/data ready for processing/analyzing
(for example with the programs in Chapter 7 [Data analysis], page 166). But the pro-
cessed/analyzed data (or catalogs) are still not enough to derive any scientific result. Even
higher-level analysis is still needed to convert the observed magnitudes, sizes or volumes
into physical quantities that we associate with each catalog entry or detected object which
is the purpose of the tools in this section.

9.1 CosmicCalculator

To derive higher-level information regarding our sources in extra-galactic astronomy, cos-
mological calculations are necessary. In Gnuastro, CosmicCalculator is in charge of such
calculations. Before discussing how CosmicCalculator is called and operates (in Section 9.1.3
[Invoking CosmicCalculator], page 249), it is important to provide a rough but mostly self
sufficient review of the basics and the equations used in the analysis. In Section 9.1.1
[Distance on a 2D curved space], page 244, the basic idea of understanding distances in a
curved and expanding 2D universe (which we can visualize) are reviewed. Having solidified
the concepts there, in Section 9.1.2 [Extending distance concepts to 3D], page 249, the
formalism is extended to the 3D universe we are trying to study in our research.

The focus here is obtaining a physical insight into these equations (mainly for the use
in real observational studies). There are many books thoroughly deriving and proving all
the equations with all possible initial conditions and assumptions for any abstract universe,
interested readers can study those books.

9.1.1 Distance on a 2D curved space

The observations to date (for example the Planck 2015 results), have not measured1 the
presence of significant curvature in the universe. However to be generic (and allow its
measurement if it does in fact exist), it is very important to create a framework that allows
non-zero uniform curvature. However, this section is not intended to be a fully thorough and
mathematically complete derivation of these concepts. There are many references available
for such reviews that go deep into the abstract mathematical proofs. The emphasis here is
on visualization of the concepts for a beginner.

As 3D beings, it is difficult for us to mentally create (visualize) a picture of the curvature
of a 3D volume. Hence, here we will assume a 2D surface/space and discuss distances
on that 2D surface when it is flat and when it is curved. Once the concepts have been
created/visualized here, we will extend them, in Section 9.1.2 [Extending distance concepts
to 3D], page 249, to a real 3D spatial slice of the Universe we live in and hope to study.

To be more understandable (actively discuss from an observer’s point of view) let’s
assume there’s an imaginary 2D creature living on the 2D space (which might be curved
in 3D). Here, we will be working with this creature in its efforts to analyze distances in its
2D universe. The start of the analysis might seem too mundane, but since it is difficult to

1 The observations are interpreted under the assumption of uniform curvature. For a relativistic alternative
to dark energy (and maybe also some part of dark matter), non-uniform curvature may be even be more
critical, but that is beyond the scope of this brief explanation.
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imagine a 3D curved space, it is important to review all the very basic concepts thoroughly
for an easy transition to a universe that is more difficult to visualize (a curved 3D space
embedded in 4D).

To start, let’s assume a static (not expanding or shrinking), flat 2D surface similar to
Figure 9.1 and that the 2D creature is observing its universe from point A. One of the
most basic ways to parametrize this space is through the Cartesian coordinates (x, y). In
Figure 9.1, the basic axes of these two coordinates are plotted. An infinitesimal change in
the direction of each axis is written as dx and dy. For each point, the infinitesimal changes
are parallel with the respective axes and are not shown for clarity. Another very useful
way of parameterizing this space is through polar coordinates. For each point, we define
a radius (r) and angle (φ) from a fixed (but arbitrary) reference axis. In Figure 9.1 the
infinitesimal changes for each polar coordinate are plotted for a random point and a dashed
circle is shown for all points with the same radius.

A
r

dr
dφ

x

y

Figure 9.1: Two dimensional Cartesian and polar coordinates on a flat plane.

Assuming an object is placed at a certain position, which can be parameterized as
(x, y), or (r, φ), a general infinitesimal change in its position will place it in the coordinates
(x+dx, y+dy) and (r+dr, φ+dφ). The distance (on the flat 2D surface) that is covered by
this infinitesimal change in the static universe (dss, the subscript signifies the static nature
of this universe) can be written as:

dss = dx2 + dy2 = dr2 + r2dφ2

The main question is this: how can the 2D creature incorporate the (possible) curvature
in its universe when it’s calculating distances? The universe that it lives in might equally
be a curved surface like Figure 9.2. The answer to this question but for a 3D being (us)
is the whole purpose to this discussion. Here, we want to give the 2D creature (and later,
ourselves) the tools to measure distances if the space (that hosts the objects) is curved.

Figure 9.2 assumes a spherical shell with radius R as the curved 2D plane for simplicity.
The 2D plane is tangent to the spherical shell and only touches it at A. This idea will be
generalized later. The first step in measuring the distance in a curved space is to imagine
a third dimension along the z axis as shown in Figure 9.2. For simplicity, the z axis is
assumed to pass through the center of the spherical shell. Our imaginary 2D creature
cannot visualize the third dimension or a curved 2D surface within it, so the remainder of
this discussion is purely abstract for it (similar to us having difficulty in visualizing a 3D
curved space in 4D). But since we are 3D creatures, we have the advantage of visualizing
the following steps. Fortunately the 2D creature is already familiar with our mathematical
constructs, so it can follow our reasoning.



Chapter 9: High-level calculations 246

With the third axis added, a generic infinitesimal change over the full 3D space corre-
sponds to the distance:

ds2
s = dx2 + dy2 + dz2 = dr2 + r2dφ2 + dz2.

R

r

z

R − z θ

x

y

z

A

O

φ

P

P ′r

l

Figure 9.2: 2D spherical shell (centered on O) and flat plane (light gray) tangent to it
at point A.

It is very important to recognize that this change of distance is for any point in the 3D
space, not just those changes that occur on the 2D spherical shell of Figure 9.2. Recall that
our 2D friend can only do measurements on the 2D surfaces, not the full 3D space. So we
have to constrain this general change to any change on the 2D spherical shell. To do that,
let’s look at the arbitrary point P on the 2D spherical shell. Its image (P ′) on the flat plain
is also displayed. From the dark gray triangle, we see that

sin θ =
r

R
, cos θ =

R− z
R

.

These relations allow the 2D creature to find the value of z (an abstract dimension for it)
as a function of r (distance on a flat 2D plane, which it can visualize) and thus eliminate z.
From sin2 θ + cos2 θ = 1, we get z2 − 2Rz + r2 = 0 and solving for z, we find:

z = R

1±
√
1− r2

R2

 .
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The ± can be understood from Figure 9.2: For each r, there are two points on the sphere,
one in the upper hemisphere and one in the lower hemisphere. An infinitesimal change in
r, will create the following infinitesimal change in z:

dz =
∓r
R

(
1√

1− r2/R2

)
dr.

Using the positive signed equation instead of dz in the ds2
s equation above, we get:

ds2
s =

dr2

1− r2/R2
+ r2dφ2.

The derivation above was done for a spherical shell of radius R as a curved 2D surface.
To generalize it to any surface, we can define K = 1/R2 as the curvature parameter. Then
the general infinitesimal change in a static universe can be written as:

ds2
s =

dr2

1−Kr2
+ r2dφ2.

Therefore, whenK > 0 (and curvature is the same everywhere), we have a finite universe,
where r cannot become larger than R as in Figure 9.2. When K = 0, we have a flat plane
(Figure 9.1) and a negative K will correspond to an imaginary R. The latter two cases may
be infinite in area (which is not a simple concept, but mathematically can be modeled with
r extending infinitely), or finite-area (like a cylinder is flat everywhere with ds2

s = dx2 + dy2,
but finite in one direction in size).

A very important issue that can be discussed now (while we are still in 2D and can
actually visualize things) is that −→r is tangent to the curved space at the observer’s position.
In other words, it is on the gray flat surface of Figure 9.2, even when the universe if curved:
−→r = P ′ − A. Therefore for the point P on a curved space, the raw coordinate r is the
distance to P ′, not P . The distance to the point P (at a specific coordinate r on the flat
plane) over the curved surface (thick line in Figure 9.2) is called the proper distance and
is displayed with l. For the specific example of Figure 9.2, the proper distance can be
calculated with: l = Rθ (θ is in radians). using the sin θ relation found above, we can find
l as a function of r:

θ = sin−1

(
r

R

)
→ l(r) = R sin−1

(
r

R

)

R is just an arbitrary constant and can be directly found fromK, so for cleaner equations,
it is common practice to set R = 1, which gives: l(r) = sin−1 r. Also note that when R = 1,
then l = θ. Generally, depending on the the curvature, in a static universe the proper
distance can be written as a function of the coordinate r as (from now on we are assuming
R = 1):

l(r) = sin−1(r) (K > 0), l(r) = r (K = 0), l(r) = sinh−1(r) (K < 0).
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With l, the infinitesimal change of distance can be written in a more simpler and abstract
form of

ds2
s = dl2 + r2dφ2.

Until now, we had assumed a static universe (not changing with time). But our obser-
vations so far appear to indicate that the universe is expanding (it isn’t static). Since there
is no reason to expect the observed expansion is unique to our particular position of the
universe, we expect the universe to be expanding at all points with the same rate at the
same time. Therefore, to add a time dependence to our distance measurements, we can
include a multiplicative scaling factor, which is a function of time: a(t). The functional
form of a(t) comes from the cosmology, the physics we assume for it: general relativity, and
the choice of whether the universe is uniform (‘homogeneous’) in density and curvature or
inhomogeneous. In this section, the functional form of a(t) is irrelevant, so we can avoid
these issues.

With this scaling factor, the proper distance will also depend on time. As the universe
expands, the distance between two given points will shift to larger values. We thus define a
distance measure, or coordinate, that is independent of time and thus doesn’t ‘move’. We
call it the comoving distance and display with χ such that: l(r, t) = χ(r)a(t). We have
therefore, shifted the r dependence of the proper distance we derived above for a static
universe to the comoving distance:

χ(r) = sin−1(r) (K > 0), χ(r) = r (K = 0), χ(r) = sinh−1(r) (K < 0).

Therefore, χ(r) is the proper distance to an object at a specific reference time: t = tr
(the r subscript signifies “reference”) when a(tr) = 1. At any arbitrary moment (t 6= tr)
before or after tr, the proper distance to the object can be scaled with a(t).

Measuring the change of distance in a time-dependent (expanding) universe only makes
sense if we can add up space and time2. But we can only add bits of space and time together
if we measure them in the same units: with a conversion constant (similar to how 1000 is
used to convert a kilometer into meters). Experimentally, we find strong support for the
hypothesis that this conversion constant is the speed of light (or gravitational waves3) in a
vacuum. This speed is postulated to be constant4 and is almost always written as c. We
can thus parametrize the change in distance on an expanding 2D surface as

ds2 = c2dt2 − a2(t)ds2
s = c2dt2 − a2(t)(dχ2 + r2dφ2).

2 In other words, making our space-time consistent with Minkowski space-time geometry. In this geometry,
different observers at a given point (event) in space-time split up space-time into ‘space’ and ‘time’ in
different ways, just like people at the same spatial position can make different choices of splitting up a
map into ‘left–right’ and ‘up–down’. This model is well supported by twentieth and twenty-first century
observations.

3 The speed of gravitational waves was recently found to be very similar to that of light in vacuum, see
arXiv:1710.05834 (https://arxiv.org/abs/1710.05834).

4 In natural units, speed is measured in units of the speed of light in vacuum.

https://arxiv.org/abs/1710.05834
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9.1.2 Extending distance concepts to 3D

The concepts of Section 9.1.1 [Distance on a 2D curved space], page 244, are here extended
to a 3D space that might be curved. We can start with the generic infinitesimal distance
in a static 3D universe, but this time in spherical coordinates instead of polar coordinates.
θ is shown in Figure 9.2, but here we are 3D beings, positioned on O (the center of the
sphere) and the point O is tangent to a 4D-sphere. In our 3D space, a generic infinitesimal
displacement will correspond to the following distance in spherical coordinates:

ds2
s = dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdφ2).

Like the 2D creature before, we now have to assume an abstract dimension which we
cannot visualize easily. Let’s call the fourth dimension w, then the general change in
coordinates in the full four dimensional space will be:

ds2
s = dr2 + r2(dθ2 + sin2 θdφ2) + dw2.

But we can only work on a 3D curved space, so following exactly the same steps and
conventions as our 2D friend, we arrive at:

ds2
s =

dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2).

In a non-static universe (with a scale factor a(t)), the distance can be written as:

ds2 = c2dt2 − a2(t)[dχ2 + r2(dθ2 + sin2 θdφ2)].

9.1.3 Invoking CosmicCalculator

CosmicCalculator will calculate cosmological variables based on the input parameters. The
executable name is astcosmiccal with the following general template

$ astcosmiccal [OPTION...] ...

One line examples:

## Print basic cosmological properties at redshift 2.5:

$ astcosmiccal -z2.5

## Only print Comoving volume over 4pi stradian to z (Mpc^3):

$ astcosmiccal --redshift=0.8 --volume

## Print luminosity distance, angular diameter distance and age

## of universe in one row at redshift 0.4

$ astcosmiccal -z0.4 -LAg

## Assume Lambda and matter density of 0.7 and 0.3 and print
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## basic cosmological parameters for redshift 2.1:

$ astcosmiccal -l0.7 -m0.3 -z2.1

The input parameters (for example current matter density and etc) can be given as
command-line options or in the configuration files, see Section 4.2 [Configuration files],
page 77. For a definition of the different parameters, please see the sections prior to this. If
no redshift is given, CosmicCalculator will just print its input parameters and abort. For
a full list of the input options, please see Section 9.1.3.1 [CosmicCalculator input options],
page 250.

When only a redshift is given, CosmicCalculator will print all calculations (one per line)
with some explanations before each. This can be good when you want a general feeling of
the conditions at a specific redshift. Alternatively, if any specific calculations are requested,
only the requested values will be calculated and printed with one character space between
them. In this case, no description will be printed. See Section 9.1.3.2 [CosmicCalculator
specific calculations], page 250, for the full list of these options along with some explanations
how when/how they can be useful.

9.1.3.1 CosmicCalculator input options

The inputs to CosmicCalculator can be specified with the following options:

-z FLT

--redshift=FLT

The redshift of interest.

-H FLT

--H0=FLT Current expansion rate (in km sec−1 Mpc−1).

-l FLT

--olambda=FLT

Cosmological constant density divided by the critical density in the current
Universe (ΩΛ,0).

-m FLT

--omatter=FLT

Matter (including massive neutrinos) density divided by the critical density in
the current Universe (Ωm,0).

-r FLT

--oradiation=FLT

Radiation density divided by the critical density in the current Universe (Ωr,0).

9.1.3.2 CosmicCalculator specific calculations

By default, when no specific calculations are requested, CosmicCalculator will print a com-
plete set of all its calculators (one line for each calculation, see Section 9.1.3 [Invoking
CosmicCalculator], page 249). The full list of calculations can be useful when you don’t
want any specific value, but just a general view. In other contexts (for example in a batch
script or during a discussion), you know exactly what you want and don’t want to be
distracted by all the extra information.

You can use any number of the options described below in any order. When any of these
options are requested, CosmicCalculator’s output will just be a single line with a single space
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between the (possibly) multiple values. In the example below, only the tangential distance
along one arcsecond (in kpc), absolute magnitude conversion, and age of the universe at
redshift 2 are printed (recall that you can merge short options together, see Section 4.1.1.2
[Options], page 67).

$ astcosmiccal -z2 -sag

8.585046 44.819248 3.289979

Here is one example of using this feature in scripts: by adding the following two lines in
a script to keep/use the comoving volume with varying redshifts:

z=3.12

vol=$(astcosmiccal --redshift=$z --volume)

In a script, this operation might be necessary for a large number of objects (several of
galaxies in a catalog for example). So the fact that all the other default calculations are
ignored will also help you get to your result faster.

If you are indeed dealing with many (for example thousands) of redshifts, using Cosmic-
Calculator is not the best/fastest solution. Because it has to go through all the configuration
files and preparations for each invocation. To get the best efficiency (least overhead), we
recommend using Gnuastro’s cosmology library (see Section 10.3.24 [Cosmology library
(cosmology.h)], page 345). CosmicCalculator also calls the library functions defined there
for its calculations, so you get the same result with no overhead. Gnuastro also has li-
braries for easily reading tables into a C program, see Section 10.3.11 [Table input output
(table.h)], page 312. Afterwards, you can easily build and run your C program for the
particular processing with Section 10.2 [BuildProgram], page 260.

If you just want to inspect the value of a variable visually, the description (which comes
with units) might be more useful. In such cases, the following command might be better.
The other calculations will also be done, but they are so fast that you will not notice on
modern computers (the time it takes your eye to focus on the result is usually longer than
the processing: a fraction of a second).

$ astcosmiccal --redshift=0.832 | grep volume

The full list of CosmicCalculator’s specific calculations is present below. In case you
have forgot the units, you can use the --help option which has the units along with a short
description.

-G

--agenow The current age of the universe (given the input parameters) in Giga-years
(Gyr).

-C

--criticaldensitynow

The current critical density (given the input parameters) in grams per
centimeter-cube (g/cm3).

-d

--properdistance

The proper distance (at current time) to object at the given redshift in Mega-
parsecs (Mpc). See Section 9.1.1 [Distance on a 2D curved space], page 244, for
a description of the proper distance.
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-A

--angulardimdist

The angular diameter distance to object at given redshift in Megaparsecs (Mpc).

-s

--arcsectandist

The tangential distance covered by 1 arcseconds at the given redshift in kilo-
parsecs (Kpc). This can be useful when trying to estimate the resolution or
pixel scale of an instrument (usually in units of arcseconds) at a given redshift.

-L

--luminositydist

The luminosity distance to object at given redshift in Megaparsecs (Mpc).

-u

--distancemodulus

The distance modulus at given redshift.

-a

--absmagconv

The conversion factor (addition) to absolute magnitude. Note that this is prac-
tically the distance modulus added with −2.5 log (1 + z) for the the desired
redshift based on the input parameters. Once the apparent magnitude and
redshift of an object is known, this value may be added with the apparent
magnitude to give the object’s absolute magnitude.

-g

--age Age of the universe at given redshift in Giga-years (Gyr).

-b

--lookbacktime

The look-back time to given redshift in Giga-years (Gyr). The look-back time
at a given redshift is defined as the current age of the universe (--agenow)
subtracted by the age of the universe at the given redshift.

-c

--criticaldensity

The critical density at given redshift in grams per centimeter-cube (g/cm3).

-v

--onlyvolume

The comoving volume in Megaparsecs cube (Mpc3) until the desired redshift
based on the input parameters.
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10 Library

Each program in Gnuastro that was discussed in the prior chapters (or any program in
general) is a collection of functions that is compiled into one executable file which can
communicate directly with the outside world. The outside world in this context is the
operating system. By communication, we mean that control is directly passed to a program
from the operating system with a (possible) set of inputs and after it is finished, the program
will pass control back to the operating system. For programs written in C and C++, the
unique main function is in charge of this communication.

Similar to a program, a library is also a collection of functions that is compiled into one
executable file. However, unlike programs, libraries don’t have a main function. Therefore
they can’t communicate directly with the outside world. This gives you the chance to write
your own main function and call library functions from within it. After compiling your
program into a binary executable, you just have to link it to the library and you are ready
to run (execute) your program. In this way, you can use Gnuastro at a much lower-level,
and in combination with other libraries on your system, you can significantly boost your
creativity.

This chapter starts with a basic introduction to libraries and how you can use them
in Section 10.1 [Review of library fundamentals], page 253. The separate functions in
the Gnuastro library are then introduced (classified by context) in Section 10.3 [Gnuastro
library], page 264. If you end up routinely using a fixed set of library functions, with a
well-defined input and output, it will be much more beneficial if you define a program for
the job. Therefore, in its Section 3.2.2 [Version controlled source], page 50, Gnuastro comes
with the Section 11.4.2 [The TEMPLATE program], page 364, to easily define your own
programs(s).

10.1 Review of library fundamentals

Gnuastro’s libraries are written in the C programming language. In Section 11.1 [Why C
programming language?], page 355, we have thoroughly discussed the reasons behind this
choice. C was actually created to write Unix, thus understanding the way C works can
greatly help in effectively using programs and libraries in all Unix-like operating systems.
Therefore, in the following subsections some important aspects of C, as it relates to libraries
(and thus programs that depend on them) on Unix are reviewed. First we will discuss
header files in Section 10.1.1 [Headers], page 254, and then go onto Section 10.1.2 [Linking],
page 257. This section finishes with Section 10.1.3 [Summary and example on libraries],
page 259. If you are already familiar with these concepts, please skip this section and go
directly to Section 10.3 [Gnuastro library], page 264.

In theory, a full operating system (or any software) can be written as one function. Such
a software would not need any headers or linking (that are discussed in the subsections
below). However, writing that single function and maintaining it (adding new features,
fixing bugs, documentation and etc) would be a programmer or scientist’s worst nightmare!
Furthermore, all the hard work that went into creating it cannot be reused in other soft-
ware: every other programmer or scientist would have to re-invent the wheel. The ultimate
purpose behind libraries (which come with headers and have to be linked) is to address
this problem and increase modularity: “the degree to which a system’s components may
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be separated and recombined” (from Wikipedia). The more modular the source code of a
program or library, the easier maintaining it will be, and all the hard work that went into
creating it can be reused for a wider range of problems.

10.1.1 Headers

C source code is read from top to bottom in the source file, therefore program components
(for example variables, data structures and functions) should all be defined or declared
closer to the top of the source file: before they are used. Defining something in C or C++
is jargon for providing its full details. Declaring it, on the other-hand, is jargon for only
providing the minimum information needed for the compiler to pass it temporarily and fill
in the detailed definition later.

For a function, the declaration only contains the inputs and their data-types along with
the output’s type1. The definition adds to the declaration by including the exact details of
what operations are done to the inputs to generate the output. As an example, take this
simple summation function:

double

sum(double a, double b)

{

return a + b;

}

What you see above is the definition of this function: it shows you (and the compiler)
exactly what it does to the two double type inputs and that the output also has a double

type. Note that a function’s internal operations are rarely so simple and short, it can be
arbitrarily long and complicated. This unreasonably short and simple function was chosen
here for ease of reading. The declaration for this function is:

double

sum(double a, double b);

You can think of a function’s declaration as a building’s address in the city, and the definition
as the building’s complete blueprints. When the compiler confronts a call to a function
during its processing, it doesn’t need to know anything about how the inputs are processed
to generate the output. Just as the postman doesn’t need to know the inner structure of
a building when delivering the mail. The declaration (address) is enough. Therefore by
declaring the functions once at the start of the source files, we don’t have to worry about
defining them after they are used.

Even for a simple real-world operation (not a simple summation like above!), you will
soon need many functions (for example, some for reading/preparing the inputs, some for
the processing, and some for preparing the output). Although it is technically possible,
managing all the necessary functions in one file is not easy and is contrary to the modularity
principle (see Section 10.1 [Review of library fundamentals], page 253), for example the
functions for preparing the input can be usable in your other projects with a different
processing. Therefore, as we will see later (in Section 10.1.2 [Linking], page 257), the
functions don’t necessarily need to be defined in the source file where they are used. As
long as their definitions are ultimately linked to the final executable, everything will be
fine. For now, it is just important to remember that the functions that are called within

1 Recall that in C, functions only have one output.
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one source file must be declared within the source file (declarations are mandatory), but
not necessarily defined there.

In the spirit of modularity, it is common to define contextually similar functions in one
source file. For example, in Gnuastro, functions that calculate the median, mean and other
statistical functions are defined in lib/statistics.c, while functions that deal directly
with FITS files are defined in lib/fits.c.

Keeping the definition of similar functions in a separate file greatly helps their manage-
ment and modularity, but this fact alone doesn’t make things much easier for the caller’s
source code: recall that while definitions are optional, declarations are mandatory. So if
this was all, the caller would have to manually copy and paste (include) all the declarations
from the various source files into the file they are working on now. To address this prob-
lem, programmers have adopted the header file convention: the header file of a source code
contains all the declarations that a caller would need to be able to use any of its functions.
For example, in Gnuastro, lib/statistics.c (file containing function definitions) comes
with lib/gnuastro/statistics.h (only containing function declarations).

The discussion above was mainly focused on functions, however, there are many more
programming constructs such as pre-processor macros and data structures. Like functions,
they also need to be known to the compiler when it confronts a call to them. So the header
file also contains their definitions or declarations when they are necessary for the functions.

Pre-processor macros (or macros for short) are replaced with their defined value by the
pre-processor before compilation. Conventionally they are written only in capital letters
to be easily recognized. It is just important to understand that the compiler doesn’t see
the macros, it sees their fixed values. So when a header specifies macros you can do your
programming without worrying about the actual values. The standard C types (for example
int, or float) are very low-level and basic. We can collect multiple C types into a structure
for a higher-level way to keep and pass-along data. See Section 10.3.5.1 [Generic data
container (gal_data_t)], page 276, for some examples of macros and data structures.

The contents in the header need to be included into the caller’s source code with a
special pre-processor command: #include <path/to/header.h>. As the name suggests,
the pre-processor goes through the source code prior to the processor (or compiler). One of
its jobs is to include, or merge, the contents of files that are mentioned with this directive in
the source code. Therefore the compiler sees a single entity containing the contents of the
main file and all the included files. This allows you to include many (sometimes thousands
of) declarations into your code with only one line. Since the headers are also installed with
the library into your system, you don’t even need to keep a copy of them for each separate
program, making things even more convenient.

Try opening some of the .c files in Gnuastro’s lib/ directory with a text editor
to check out the include directives at the start of the file (after the copyright notice).
Let’s take lib/fits.c as an example. You will notice that Gnuastro’s header files (like
gnuastro/fits.h) are indeed within this directory (the fits.h file is in the gnuastro/

directory). You will notice that files like stdio.h, or string.h are not in this directory
(or anywhere within Gnuastro).
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On most systems the basic C header files (like stdio.h and string.h mentioned above)
are located in /usr/include/2. Your compiler is configured to automatically search that
directory (and possibly others), so you don’t have to explicitly mention these directories.
Go ahead, look into the /usr/include directory and find stdio.h for example. When the
necessary header files are not in those specific libraries, the pre-processor can also search
in places other than the current directory. You can specify those directories with this
pre-processor option3:

-I DIR “Add the directory DIR to the list of directories to be searched for header
files. Directories named by ’-I’ are searched before the standard system include
directories. If the directory DIR is a standard system include directory, the
option is ignored to ensure that the default search order for system directories
and the special treatment of system headers are not defeated...” (quoted from
the GNU Compiler Collection manual). Note that the space between I and the
directory is optional and commonly not used.

If the pre-processor can’t find the included files, it will abort with an error. In fact a
common error when building programs that depend on a library is that the compiler doesn’t
not know where a library’s header is (see Section 3.3.4 [Known issues], page 63). So you have
to manually tell the compiler where to look for the library’s headers with the -I option. For
a small software with one or two source files, this can be done manually (see Section 10.1.3
[Summary and example on libraries], page 259). However, to enhance modularity, Gnuastro
(and most other bin/libraries) contain many source files, so the compiler is invoked many
times4. This makes manual addition or modification of this option practically impossible.

To solve this problem, in the GNU build system, there are conventional environment
variables for the various kinds of compiler options (or flags). These environment variables
are used in every call to the compiler (they can be empty). The environment variable used
for the C Pre-Processor (or CPP) is CPPFLAGS. By giving CPPFLAGS a value once, you can
be sure that each call to the compiler will be affected. See Section 3.3.4 [Known issues],
page 63, for an example of how to set this variable at configure time.

As described in Section 3.3.1.2 [Installation directory], page 55, you can select the top
installation directory of a software using the GNU build system, when you ./configure

it. All the separate components will be put in their separate sub-directory under that,
for example the programs, compiled libraries and library headers will go into $prefix/bin

(replace $prefix with a directory), $prefix/lib, and $prefix/include respectively. For
enhanced modularity, libraries that contain diverse collections of functions (like GSL, WC-
SLIB, and Gnuastro), put their header files in a sub-directory unique to themselves. For
example all Gnuastro’s header files are installed in $prefix/include/gnuastro. In your
source code, you need to keep the library’s sub-directory when including the headers from
such libraries, for example #include <gnuastro/fits.h>5. Not all libraries need to follow
this convention, for example CFITSIO only has one header (fitsio.h) which is directly
installed in $prefix/include.

2 The include/ directory name is taken from the pre-processor’s #include directive, which is also the
motivation behind the ‘I’ in the -I option to the pre-processor.

3 Try running Gnuastro’s make and find the directories given to the compiler with the -I option.
4 Nearly every command you see being executed after running make is one call to the compiler.
5 the top $prefix/include directory is usually known to the compiler
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10.1.2 Linking

To enhance modularity, similar functions are defined in one source file (with a .c suffix, see
Section 10.1.1 [Headers], page 254, for more). After running make, each human-readable,
.c file is translated (or compiled) into a computer-readable “object” file (ending with .o).
Note that object files are also created when building programs, they aren’t particular to
libraries. Try opening Gnuastro’s lib/ and bin/progname/ directories after running make

to see these object files6. Afterwards, the object files are linked together to create an
executable program or a library.

The object files contain the full definition of the functions in the respective .c file along
with a list of any other function (or generally “symbol”) that is referenced there. To get
a list of those functions you can use the nm program which is part of GNU Binutils. For
example from the top Gnuastro directory, run:

$ nm bin/arithmetic/arithmetic.o

This will print a list of all the functions (more generally, ‘symbols’) that were called within
bin/arithmetic/arithmetic.c along with some further information (for example a T in
the second column shows that this function is actually defined here, U says that it is un-
defined here). Try opening the .c file to check some of these functions for your self. Run
info nm for more information.

To recap, the compiler created the separate object files mentioned above for each .c file.
The linker will then combine all the symbols of the various object files (and libraries) into
one program or library. In the case of Arithmetic (a program) the contents of the object files
in bin/arithmetic/ are copied (and re-ordered) into one final executable file which we can
run from the operating system. When the symbols (computer-readable function definitions
in most cases) are copied into the output like this, we call the process static linking. Let’s
have a closer look at static linking: we’ll assume you have installed Gnuastro into the default
/usr/local/ directory (see Section 3.3.1.2 [Installation directory], page 55). If you tried
the nm command on one of Arithmetic’s object files above, then with the command below
you can confirm that all the functions that were defined in the object files (had a T in the
second column) are also defined in the astarithmetic executable:

$ nm /usr/local/bin/astarithmetic

But you will notice that there are still many undefined symbols (have a U in the second
column). One class of such functions are Gnuastro’s own library functions that start with
‘gal_’:

$ nm /usr/local/bin/astarithmetic | grep gal_

These undefined symbols (functions) will be linked to the executable every time you run
arithmetic. Therefore they are known as dynamically linked libraries7. When the functions
of a library need to be dynamically linked, the library is known as a shared library. As
we saw above, static linking is done when the executable is being built. However, when
a library is linked dynamically, its symbols are only checked with the available libraries
at build time: they are not actually copied into the executable. Every time you run the

6 Gnuastro uses GNU Libtool for portable library creation. Libtool will also make a .lo file for each .c

file when building libraries (.lo files are human-readable).
7 Do not confuse dynamically linked libraries with dynamically loaded libraries. The former (that is

discussed here) are only loaded once at the program startup. However, the latter can be loaded anytime
during the program’s execution, they are also known as plugins.
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program, the linker will be activated and will try to link the program to the installed library
before it starts. If you want all the libraries to be statically linked to the executables, you
have to tell Libtool (which Gnuastro uses for the linking) to disable shared libraries at
configure time8:

$ configure --disable-shared

Try configuring, statically building and installing Gnuastro with the command above. Then
check the gal_ symbols in the installed Arithmetic executable like before. You will see that
they are actually copied this time (have a T in the second column). If the second column
doesn’t convince you, look at the executable file size with the following command:

$ ls -lh /usr/local/bin/astarithmetic

It should be around 4.2 Megabytes with this static linking. If you configure and build
Gnuastro again with shared libraries enabled (which is the default), you will notice that it
is roughly 100 Kilobytes! This huge difference would have been very significant in the old
days, but with the roughly Terabyte storage drives commonly in use today, it is negligible.
Fortunately, output file size is not the only benefit of dynamic linking: since it links to
the libraries at run-time (rather than build-time), you don’t have to re-build a higher-level
program or library when an update comes for one of the lower-level libraries it depends on.
You just install the new low-level library and it will automatically be used next time in
your higher-level tools. To be fair, this also creates a few complications9:

• Reproducibility: Even though your high-level tool has the same version as before, with
the updated library, you might not get the same results.

• Broken links: if some functions have been changed or removed in the updated library,
then the linker will abort with an error at run-time. Therefore you need to re-build
your higher-level program or library.

To see a list of all the shared libraries that are needed for a program or a shared library
to run, you can use the GNU C library’s ldd10 program, for example:

$ ldd /usr/local/bin/astarithmetic

Library file names start with a lib and end with suffix depending on their type as de-
scribed below. In between these two is the name of the library, for example libgnuastro.a
(Gnuastro’s static library) and libgsl.so.0.0.0 (GSL’s shared library).

• A static library is known as an archive file and has a .a suffix. A static library is not
an executable file.

• A shared library ends with a .so.X.Y.Z suffix and is executable. The three numbers
in the prefix are the version of the shared library. Shared library versions are defined
to allow multiple versions of a shared library simultaneously on a system and to help
detect possible updates in the library and programs that depend on it by the linker. It is
very important to mention that this version number is different from from the software

8 Libtool is very common and is commonly used. Therefore, you can use this option to configure on most
programs using the GNU build system if you want static linking.

9 Both of these can be avoided by joining the mailing lists of the lower-level libraries and checking the
changes in newer versions before installing them. Updates that result in such behaviors are generally
heavily emphasized in the release notes.

10 If your operating system is not using the GNU C library, you might need another tool.
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version number (see Section 1.5 [Version numbering], page 6), so do not confuse the
two. See the “Library interface versions” chapter of GNU Libtool for more.

For each shared library, we also have two symbolic links ending with .so.X and .so.
They are automatically set by the installer, but you can change them (point them to
another version of the library) when you have multiple versions on your system.

For those libraries that use GNU Libtool (including Gnuastro and its dependencies),
both static and dynamic libraries are built and installed in the prefix/lib/ directory (see
Section 3.3.1.2 [Installation directory], page 55). In this way other programs can make
which ever kind of link that they want.

To link with a library, the linker needs to know where to find the library. You do
that with two separate options to the linker (see Section 10.1.3 [Summary and example on
libraries], page 259, for an example):

-L DIR Will tell the linker to look into DIR for the libraries. For example
-L/usr/local/lib, or -L/home/yourname/.local/lib. You can make
multiple calls to this option, so the linker looks into several directories. Note
that the space between L and the directory is optional and commonly not used.

-lLIBRARY

Specify the unique name of a library to be linked. As discussed above, library
file names have fixed parts which must not be given to this option. So -lgsl

will guide the linker to either look for libgsl.a or libgsl.so (depending on
the type of linking it is suppose to do). You can link many libraries by repeated
calls to this option.

Very important: The place of this option on the command line matters. This
is often a source of confusion for beginners, so let’s assume you have asked the
linker to link with library A using this option. As soon as the linker confronts
this option, it looks into the list of the undefined symbols it has found until that
point and does a search in library A for any of those symbols. If any pending
undefined symbol is found in library A, it is used. After the search in undefined
symbols is complete, the contents of library A are completely discarded from
the linker’s memory. Therefore, if a later object file or library uses an unlinked
symbol in library A, the linker will abort after it has finished its search in all
the input libraries or object files.

As an example, Gnuastro’s gal_array_dlog10_array function depends on the
log10 function of the C Math library (specified with -lm). So the proper way
to link something that uses this function is -lgnuastro -lm. If instead, you
give: -lm -lgnuastro the linker will complain and abort.

10.1.3 Summary and example on libraries

After the mostly abstract discussions of Section 10.1.1 [Headers], page 254, and
Section 10.1.2 [Linking], page 257, we’ll give a small tutorial here. But before that, let’s
recall the general steps of how your source code is prepared, compiled and linked to the
libraries it depends on so you can run it:

1. The pre-processor includes the header (.h) files into the function definition (.c) files,
expands pre-processor macros and generally prepares the human-readable source for
compilation (reviewed in Section 10.1.1 [Headers], page 254).
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2. The compiler will translate (compile) the human-readable contents of each source
(merged .c and the .h files, or generally the output of the pre-processor) into the
computer-readable code of .o files.

3. The linker will link the called function definitions from various compiled files to create
one unified object. When the unified product has a main function, this function is the
product’s only entry point, enabling the operating system or user to directly interact
with it, so the product is a program. When the product doesn’t have a main function,
the linker’s product is a library and its exported functions can be linked to other
executables (it has many entry points).

The GNU Compiler Collection (or GCC for short) will do all three steps. So as a first
example, from Gnuastro’s source, go to tests/lib/. This directory contains the library
tests, you can use these as some simple tutorials. For this demonstration, we will compile
and run the arraymanip.c. This small program will call Gnuastro library for some simple
operations on an array (open it and have a look). To compile this program, run this
command inside the directory containing it.

$ gcc arraymanip.c -lgnuastro -lm -o arraymanip

The two -lgnuastro and -lm options (in this order) tell GCC to first link with the Gnuastro
library and then with C’s math library. The -o option is used to specify the name of the
output executable, without it the output file name will be a.out (on most OSs), independent
of your input file name(s).

If your top Gnuastro installation directory (let’s call it $prefix, see Section 3.3.1.2
[Installation directory], page 55) is not recognized by GCC, you will get pre-processor errors
for unknown header files. Once you fix it, you will get linker errors for undefined functions.
To fix both, you should run GCC as follows: additionally telling it which directories it can
find Gnuastro’s headers and compiled library (see Section 10.1.1 [Headers], page 254, and
Section 10.1.2 [Linking], page 257):

$ gcc -I$prefix/include -L$prefix/lib arraymanip.c -lgnuastro -lm \

-o arraymanip

This single command has done all the pre-processor, compilation and linker operations.
Therefore no intermediate files (object files in particular) were created, only a single output
executable was created. You are now ready to run the program with:

$ ./arraymanip

The Gnuastro functions called by this program only needed to be linked with the C math
library. But if your program needs WCS coordinate transformations, needs to read a FITS
file, needs special math operations (which include its linear algebra operations), or you want
it to run on multiple CPU threads, you also need to add these libraries in the call to GCC:
-lgnuastro -lwcs -lcfitsio -lgsl -lgslcblas -pthread -lm. In Section 10.3 [Gnuas-
tro library], page 264, where each function is documented, it is mentioned which libraries
(if any) must also be linked when you call a function. If you feel all these linkings can be
confusing, please consider Gnuastro’s Section 10.2 [BuildProgram], page 260, program.

10.2 BuildProgram

The number and order of libraries that are necessary for linking a program with Gnuastro
library might be too confusing when you need to compile a small program for one particular
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job (with one source file). BuildProgram will use the information gathered during config-
uring Gnuastro and link with all the appropriate libraries on your system. This will allow
you to easily compile, link and run programs that use Gnuastro’s library with one simple
command and not worry about which libraries to link to, or the linking order.

BuildProgram uses GNU Libtool to find the necessary libraries to link against (GNU
Libtool is the same program that builds all of Gnuastro’s libraries and programs when you
run make). So in the future, if Gnuastro’s prerequisite libraries change or other libraries are
added, you don’t have to worry, you can just run BuildProgram and internal linking will
be done correctly.� �
BuildProgram requires GNU Libtool: BuildProgram depends on GNU Libtool, other imple-
mentations don’t have some necessary features. If GNU Libtool isn’t available at Gnuastro’s
configure time, you will get a notice at the end of the configuration step and BuildProgram
will not be built or installed. Please see Section 3.1.2 [Optional dependencies], page 45, for
more information.
 	
10.2.1 Invoking BuildProgram

BuildProgram will compile and link a C source program with Gnuastro’s library and all
its dependencies, greatly facilitating the compilation and running of small programs that
use Gnuastro’s library. The executable name is astbuildprog with the following general
template:

$ astbuildprog [OPTION...] C_SOURCE_FILE

One line examples:

## Compile, link and run ‘myprogram.c’:

$ astbuildprog myprogram.c

## Similar to previous, but with optimization and compiler warnings:

$ astbuildprog -Wall -O2 myprogram.c

## Compile and link ‘myprogram.c’, then run it with ‘image.fits’

## as its argument:

$ astbuildprog myprogram.c image.fits

## Also look in other directories for headers and linking:

$ astbuildprog -Lother -Iother/dir myprogram.c

## Just build (compile and link) ‘myprogram.c’, don’t run it:

$ astbuildprog --onlybuild myprogram.c

If BuildProgram is to run, it needs a C programming language source file as input.
By default it will compile and link the program to build the a final executable file and
run it. The built executable name can be set with the optional --output option. When
no output name is set, BuildProgram will use Gnuastro’s Section 4.8 [Automatic output],
page 95, and remove the suffix of the input and use that as the output name. For the full
list of options that BuildProgram shares with other Gnuastro programs, see Section 4.1.2
[Common options], page 69. You may also use Gnuastro’s Section 4.2 [Configuration files],
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page 77, to specify other libraries/headers to use for special directories and not have to type
them in every time.

The first argument is considered to be the C source file that must be compiled and
linked. Any other arguments (non-option tokens on the command-line) will be passed onto
the program when BuildProgram wants to run it. Recall that by default BuildProgram will
run the program after building it. This behavior can be disabled with the --onlybuild

option.

When the --quiet option (see Section 4.1.2.3 [Operating mode options], page 73) is
not called, BuildPrograms will print the compilation and running commands. Once your
program grows and you break it up into multiple files (which are much more easily managed
with Make), you can use the linking flags of the non-quiet output in your Makefile.

-I STR

--includedir=STR

Directory to search for files that you #include in your C program. Note that
headers relating to Gnuastro and its dependencies don’t need this option. This
is only necessary if you want to use other headers. It may be called multiple
times and order matters. This directory will be searched before those of Gnuas-
tro’s build and also the system search directories. See Section 10.1.1 [Headers],
page 254, for a thorough introduction.

From the GNU C Pre-Processor manual: “Add the directory STR to the list of
directories to be searched for header files. Directories named by -I are searched
before the standard system include directories. If the directory STR is a standard
system include directory, the option is ignored to ensure that the default search
order for system directories and the special treatment of system headers are not
defeated”.

-L STR

--linkdir=STR

Directory to search for compiled libraries to link the program with. Note that
all the directories that Gnuastro was built with will already be used by Build-
Program (GNU Libtool). This option is only necessary if your libraries are in
other directories. Multiple calls to this option are possible and order matters.
This directory will be searched before those of Gnuastro’s build and also the
system search directories. See Section 10.1.2 [Linking], page 257, for a thorough
introduction.

-l STR

--linklib=STR

Library to link with your program. Note that all the libraries that Gnuastro
was built with will already be linked by BuildProgram (GNU Libtool). This
option is only necessary if you want to link with other directories. Multiple calls
to this option are possible and order matters. This library will be linked before
Gnuastro’s library or its dependencies. See Section 10.1.2 [Linking], page 257,
for a thorough introduction.
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-O INT/STR

--optimize=INT/STR

Compiler optimization level: 0 (for no optimization, good debugging), 1, 2, 3
(for the highest level of optimizations). From the GNU Compiler Collection
(GCC) manual: “Without any optimization option, the compiler’s goal is to
reduce the cost of compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program with a break point
between statements, you can then assign a new value to any variable or change
the program counter to any other statement in the function and get exactly
the results you expect from the source code. Turning on optimization flags
makes the compiler attempt to improve the performance and/or code size at
the expense of compilation time and possibly the ability to debug the program.”
Please see your compiler’s manual for the full list of acceptable values to this
option.

-g

--debug Emit extra information in the compiled binary for use by a debugger. When
calling this option, it is best to explicitly disable optimization with -O0. To
combine both options you can run -gO0 (see Section 4.1.1.2 [Options], page 67,
for how short options can be merged into one).

-W STR

--warning=STR

Print compiler warnings on command-line during compilation. “Warnings are
diagnostic messages that report constructions that are not inherently erroneous
but that are risky or suggest there may have been an error.” (from the GCC
manual). It is always recommended to compile your programs with warnings
enabled.

All compiler warning options that start with W are usable by this option in
BuildProgram also, see your compiler’s manual for the full list. Some of the most
common values to this option are: pedantic (Warnings related to standard C)
and all (all issues the compiler confronts).

--tag=STR

The language configuration information. Libtool can build objects and libraries
in many languages. In many cases, it can identify the language automatically,
but when it doesn’t you can use this option to explicitly notify Libtool of the
language. The acceptable values are: CC for C, CXX for C++, GCJ for Java, F77
for Fortran 77, FC for Fortran, GO for Go and RC for Windows Resource. Note
that the Gnuastro library is not yet fully compatible with all these languages.

-b

--onlybuild

Only build the program, don’t run it. By default, the built program is imme-
diately run afterwards.

--deletecompiled

Delete the compiled binary file after running it. This option is only relevant
when the compiled program is run after being built. In other words, it is only
relevant when --onlybuild is not called. It can be useful when you are busy
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testing a program or just want a fast result and the actual binary/compiled file
is not of later use.

-a STR

--la=STR Use the given .la file (Libtool control file) instead of the one that was pro-
duced from Gnuastro’s configuration results. The Libtool control file keeps all
the necessary information for building and linking a program with a library
built by Libtool. The default prefix/lib/libgnuastro.la keeps all the in-
formation necessary to build a program using the Gnuastro library gathered
during configure time (see Section 3.3.1.2 [Installation directory], page 55, for
prefix). This option is useful when you prefer to use another Libtool control
file.

10.3 Gnuastro library

Gnuastro library’s programming constructs (function declarations, macros, data structures,
or global variables) are classified by context into multiple header files (see Section 10.1.1
[Headers], page 254)11. In this section, the functions in each header will be discussed
under a separate sub-section, which includes the name of the header. Assuming a function
declaration is in headername.h, you can include its declaration in your source code with:

# include <gnuastro/headername.h>

The names of all constructs in headername.h are prefixed with gal_headername_ (or GAL_
HEADERNAME_ for macros). The gal_ prefix stands for GNU Astronomy Library.

Gnuastro library functions are compiled into a single file which can be linked on the
command-line with the -lgnuastro option, (see Section 10.1.2 [Linking], page 257, and
Section 10.1.3 [Summary and example on libraries], page 259, for an introduction on linking
and example). Gnuastro library is a high-level library which depends on lower level libraries
for some operations (see Section 3.1 [Dependencies], page 42). Therefore if at least one of
Gnuastro’s functions in your program use functions from the dependencies, you will also
need to link those dependencies after linking with Gnuastro. The outside libraries that need
to be linked for such functions are mentioned following the function name. See Section 10.2
[BuildProgram], page 260, for a small Gnuastro program that will take care of the libraries
to link against and lets you focus on your exciting science.� �
Libraries are still under heavy development: Gnuastro was initially created to be a collec-
tion of command-line programs. However, as the programs and their the shared functions
grew, internal (not installed) libraries were added. Since the 0.2 release, the libraries are
install-able. Hence the libraries are currently under heavy development and will signifi-
cantly evolve between releases and will become more mature and stable in due time. It will
stabilize with the removal of this notice. Check the NEWS file for interface changes. If you
use the Info version of this manual (see Section 4.7.4 [Info], page 94), you don’t have to
worry: the documentation will correspond to your installed version.
 	
11 Within Gnuastro’s source, all installed .h files in lib/gnuastro/ are accompanied by a .c file in /lib/.
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10.3.1 Configuration information (config.h)

The gnuastro/config.h header contains information about the full Gnuastro installation
on your system. Gnuastro developers should note that this is the only header that is not
available within Gnuastro, it is only available to a Gnuastro library user after installation.
Within Gnuastro, config.h (which is included in every Gnuastro .c file, see Section 11.3
[Coding conventions], page 358) has more than enough information about the overall Gnu-
astro installation.

[Macro]GAL_CONFIG_VERSION
This macro can be used as a string literal12 containing the version of Gnuastro that
is being used. See Section 1.5 [Version numbering], page 6, for the version formats.
For example:

printf("Gnuastro version: %s\n", GAL_CONFIG_VERSION);

or

char *gnuastro_version=GAL_CONFIG_VERSION;

[Macro]GAL_CONFIG_HAVE_LIBGIT2
Libgit2 is an optional dependency of Gnuastro (see Section 3.1.2 [Optional dependen-
cies], page 45). When it is installed and detected at configure time, this macro will
have a value of 1 (one). Otherwise, it will have a value of 0 (zero). Gnuastro also
comes with some wrappers to make it easier to use libgit2 (see Section 10.3.23 [Git
wrappers (git.h)], page 345).

[Macro]GAL_CONFIG_HAVE_WCSLIB_VERSION
WCSLIB is the reference library for world coordinate system transformation (see
Section 3.1.1.3 [WCSLIB], page 45, and Section 10.3.9 [World Coordinate System
(wcs.h)], page 308). However, only more recent versions of WCSLIB also provide its
version number. If the WCSLIB that is installed on the system provides its version
(through the possibly existing wcslib_version function), this macro will have a value
of one, otherwise it will have a value of zero.

[Macro]GAL_CONFIG_HAVE_PTHREAD_BARRIER
The POSIX threads standard define barriers as an optional requirement. Therefore,
some operating systems choose to not include it. As one of the ./configure step
checks, Gnuastro we check if your system has this POSIX thread barriers. If so, this
macro will have a value of 1, otherwise it will have a value of 0. see Section 10.3.2.1
[Implementation of pthread_barrier], page 266, for more.

[Macro]GAL_CONFIG_SIZEOF_LONG
[Macro]GAL_CONFIG_SIZEOF_SIZE_T

The size of (number of bytes in) the system’s long and size_t types. Their values are
commonly either 4 or 8 for 32-bit and 64-bit systems. You can also get this value with
the expression ‘sizeof size_t’ for example without having to include this header.

12 https://en.wikipedia.org/wiki/String_literal

https://en.wikipedia.org/wiki/String_literal
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10.3.2 Multithreaded programming (threads.h)

In recent years, newer CPUs don’t have significantly higher frequencies any more. However,
CPUs are being manufactured with more cores, enabling more than one operation (thread)
at each instant. This can be very useful to speed up many aspects of processing and in
particular image processing.

Most of the programs in Gnuastro utilize multi-threaded programming for the CPU
intensive processing steps. This can potentially lead to a significant decrease in the running
time of a program, see Section 4.3.1 [A note on threads], page 80. In terms of reading
the code, you don’t need to know anything about multi-threaded programming. You can
simply follow the case where only one thread is to be used. In these cases, threads are not
used and can be completely ignored.

When the C language was defined (the K&R’s book was written), using threads was
not common, so C’s threading capabilities aren’t introduced there. Gnuastro uses POSIX
threads for multi-threaded programming, defined in the pthread.h system wide header.
There are various resources for learning to use POSIX threads. An excellent tutorial
(https://computing.llnl.gov/tutorials/pthreads/) is provided by the Lawrence
Livermore National Laboratory, with abundant figures to better understand the concepts,
it is a very good start. The book ‘Advanced programming in the Unix environment’13,
by Richard Stevens and Stephen Rago, Addison-Wesley, 2013 (Third edition) also has two
chapters explaining the POSIX thread constructs which can be very helpful.

An alternative to POSIX threads was OpenMP, but POSIX threads are low level, al-
lowing much more control, while being easier to understand, see Section 11.1 [Why C
programming language?], page 355. All the situations where threads are used in Gnuastro
currently are completely independent with no need of coordination between the threads.
Such problems are known as “embarrassingly parallel” problems. They are some of the
simplest problems to solve with threads and are also the ones that benefit most from them,
see the LLNL introduction14.

One very useful POSIX thread concept is pthread_barrier. Unfortunately, it is only
an optional feature in the POSIX standard, so some operating systems don’t include it.
Therefore in Section 10.3.2.1 [Implementation of pthread_barrier], page 266, we introduce
our own implementation. This is a rather technical section only necessary for more technical
readers and you can safely ignore it. Following that, we describe the helper functions in
this header that can greatly simplify writing a multi-threaded program, see Section 10.3.2.2
[Gnuastro’s thread related functions], page 267, for more.

10.3.2.1 Implementation of pthread_barrier

One optional feature of the POSIX Threads standard is the pthread_barrier concept. It
is a very useful high-level construct that allows for independent threads to “wait” behind a
“barrier” for the rest after they finish. Barriers can thus greatly simplify the code in a multi-
threaded program, so they are heavily used in Gnuastro. However, since its an optional
feature in the POSIX standard, some operating systems don’t include it. So to make

13 Don’t let the title scare you! The two chapters on Multi-threaded programming are very self-sufficient
and don’t need any more knowledge than K&R.

14 https://computing.llnl.gov/tutorials/parallel_comp/

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/parallel_comp/


Chapter 10: Library 267

Gnuastro portable, we have written our own implementation of those pthread_barrier

functions.

At ./configure time, Gnuastro will check if pthread_barrier constructs are available
on your system or not. If pthread_barrier is not available, our internal implementation
will be compiled into the Gnuastro library and the definitions and declarations below will
be usable in your code with #include <gnuastro/threads.h>.

[Type]pthread_barrierattr_t
Type to specify the attributes of a POSIX threads barrier.

[Type]pthread_barrier_t
Structure defining the POSIX threads barrier.

[Function]int
pthread_barrier_init (pthread barrier t *b, pthread barrierattr t *attr,

unsigned int limit)
Initialize the barrier b, with the attributes attr and total limit (a number of) threads
that must wait behind it. This function must be called before spinning off threads.

[Function]int
pthread_barrier_wait (pthread barrier t *b)

This function is called within each thread, just before it is ready to return. Once a
thread’s function hits this, it will “wait” until all the other functions are also finished.

[Function]int
pthread_barrier_destroy (pthread barrier t *b)

Destroy all the information in the barrier structure. This should be called by the
function that spinned-off the threads after all the threads have finished.� �
Destroy a barrier before re-using it: It is very important to destroy the barrier before
(possibly) reusing it. This destroy function not only destroys the internal structures,
it also waits (in 1 microsecond intervals, so you will not notice!) until all the threads
don’t need the barrier structure any more. If you immediately start spinning off new
threads with a not-destroyed barrier, then the internal structure of the remaining
threads will get mixed with the new ones and you will get very strange and apparently
random errors that are extremely hard to debug.
 	

10.3.2.2 Gnuastro’s thread related functions

The POSIX Threads functions offered in the C library are very low-level and offer a great
range of control over the properties of the threads. So if you are interested in customiz-
ing your tools for complicated thread applications, it is strongly encouraged to get a nice
familiarity with them. Some resources were introduced in Section 10.3.2 [Multithreaded
programming (threads.h)], page 266.

However, in many cases used in astronomical data analysis, you don’t need communi-
cation between threads and each target operation can be done independently. Since such
operations are very common, Gnuastro provides the tools below to facilitate the creation
and management of jobs without any particular knowledge of POSIX Threads for such



Chapter 10: Library 268

operations. The most interesting high-level functions of this section are the gal_threads_
number and gal_threads_spin_off that identify the number of threads on the system and
spin-off threads. You can see a demonstration of using these functions in Section 10.4.3
[Library demo - multi-threaded operation], page 349.

[C struct]gal_threads_params
Structure keeping the parameters of each thread. When each thread is created, a
pointer to this structure is passed to it. The params element can be the pointer to a
structure defined by the user which contains all the necessary parameters to pass onto
the worker function. The rest of the elements within this structure are set internally
by gal_threads_spin_off and are relevant to the worker function.

struct gal_threads_params

{

size_t id; /* Id of this thread. */

void *params; /* User-identified pointer. */

size_t *indexs; /* Target indexs given to this thread. */

pthread_barrier_t *b; /* Barrier for all threads. */

};

[Function]size_t
gal_threads_number ()

Return the number of threads that the operating system has available for your pro-
gram. This number is usually fixed for a single machine and doesn’t change. So this
function is useful when you want to run your program on different machines (with
different CPUs).

[Function]void
gal_threads_spin_off (void *(*worker)(void *), void *caller_params, size t

numactions, size t numthreads)
Distribute numactions jobs between numthreads threads and spin-off each thread
by calling the worker function. The caller_params pointer will also be passed to
worker as part of the gal_threads_params structure. For a fully working example
of this function, please see Section 10.4.3 [Library demo - multi-threaded operation],
page 349.

[Function]void
gal_threads_attr_barrier_init (pthread attr t *attr, pthread barrier t *b,

size t limit)
This is a low-level function in case you don’t want to use gal_threads_spin_off. It
will initialize the general thread attribute attr and the barrier b with limit threads
to wait behind the barrier. For maximum efficiency, the threads initialized with this
function will be detached. Therefore no communication is possible between these
threads and in particular pthread_join won’t work on these threads. You have to
use the barrier constructs to wait for all threads to finish.
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[Function]void
gal_threads_dist_in_threads (size t numactions, size t numthreads, size t

**outthrds, size t *outthrdcols)
This is a low-level function in case you don’t want to use gal_threads_spin_off.
Identify the “index”es (starting from 0) of the actions to be done on each thread in
the outthrds array. outthrds is treated as a 2D array with numthreads rows and
outthrdcols columns. The indexs in each row, identify the actions that should be
done by one thread. Please see the explanation below to understand the purpose of
this operation.

Let’s assume you have A actions (where there is only one function and the input values
differ for each action) and T threads available to the system with A > T (common
values for these two would be A > 1000 and T < 10). Spinning off a thread is not
a cheap job and requires a significant number of CPU cycles. Therefore, creating A
threads is not the best way to address such a problem. The most efficient way to
manage the actions is such that only T threads are created, and each thread works
on a list of actions identified for it in series (one after the other). This way your CPU
will get all the actions done with minimal overhead.

The purpose of this function is to do what we explained above: each row in the
outthrds array contains the indexs of actions which must be done by one thread.
outthrds contains outthrdcols columns. In using outthrds, you don’t have to
know the number of columns. The GAL_BLANK_SIZE_T macro has a role very sim-
ilar to a string’s \0: every row finishes with this macro, so can easily stop parsing
the indexes in the row when you confront it. Please see the example program in
tests/lib/multithread.c for a demonstration.

10.3.3 Library data types (type.h)

Data in astronomy can have many types, numeric (numbers) and strings (names, identifiers).
The former can also be divided into integers and floats, see Section 4.4 [Numeric data types],
page 82, for a thorough discussion of the different numeric data types and which one is useful
for different contexts.

To deal with the very large diversity of types that are available (and used in different
contexts), in Gnuastro each type is identified with global integer variable with a fixed
name, this variable is then passed onto functions that can work on any type or is stored in
Gnuastro’s Section 10.3.5.1 [Generic data container (gal_data_t)], page 276, as one piece
of meta-data.

The actual values within these integer constants is irrelevant and you should never rely
on them. When you need to check, explicitly use the named variable in the table below. If
you want to check with more than one type, you can use C’s switch statement.

Since Gnuastro heavily deals with file input-output, the types it defines are fixed width
types, these types are portable to all systems and are defined in the standard C header
stdint.h. You don’t need to include this header, it is included by any Gnuastro header
that deals with the different types. However, the most commonly used types in a C (or
C++) program (for example int or long are not defined by their exact width (storage), but
by their minimum storage. So for example on some systems, int may be 2 bytes (16-bits,
the minimum required by the standard) and on others it may be 4 bytes (32-bits, common
in modern systems).



Chapter 10: Library 270

With every type, a unique “blank” value (or place holder showing the absence of data)
can be defined. Please see Section 10.3.4 [Library blank values (blank.h)], page 273, for
constants that Gnuastro recognizes as a blank value for each type. See Section 4.4 [Numeric
data types], page 82, for more explanation on the limits and particular aspects of each type.

[Global integer]GAL_TYPE_INVALID
This is just a place holder to specifically mark that no type has been set.

[Global integer]GAL_TYPE_BIT
Identifier for a bit-stream. Currently no program in Gnuastro works directly on bits,
but features will be added in the future.

[Global integer]GAL_TYPE_UINT8
Identifier for an unsigned, 8-bit integer type: uint8_t (from stdint.h), or an
unsigned char in most modern systems.

[Global integer]GAL_TYPE_INT8
Identifier for a signed, 8-bit integer type: int8_t (from stdint.h), or an signed

char in most modern systems.

[Global integer]GAL_TYPE_UINT16
Identifier for an unsigned, 16-bit integer type: uint16_t (from stdint.h), or an
unsigned short in most modern systems.

[Global integer]GAL_TYPE_INT16
Identifier for a signed, 16-bit integer type: int16_t (from stdint.h), or a short in
most modern systems.

[Global integer]GAL_TYPE_UINT32
Identifier for an unsigned, 32-bit integer type: uint32_t (from stdint.h), or an
unsigned int in most modern systems.

[Global integer]GAL_TYPE_INT32
Identifier for a signed, 32-bit integer type: int32_t (from stdint.h), or an int in
most modern systems.

[Global integer]GAL_TYPE_UINT64
Identifier for an unsigned, 64-bit integer type: uint64_t (from stdint.h), or an
unsigned long in most modern 64-bit systems.

[Global integer]GAL_TYPE_INT64
Identifier for a signed, 64-bit integer type: int64_t (from stdint.h), or an long in
most modern 64-bit systems.

[Global integer]GAL_TYPE_SIZE_T
Identifier for a size_t type. This is just an alias to uint32, or uint64 types for
32-bit, or 64-bit systems respectively.

[Global integer]GAL_TYPE_LONG
Identifier for a long type. This is just an alias to int32, or int64 types for 32-bit,
or 64-bit systems respectively.
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[Global integer]GAL_TYPE_FLOAT32
Identifier for a 32-bit single precision floating point type or float in C.

[Global integer]GAL_TYPE_FLOAT64
Identifier for a 64-bit double precision floating point type or double in C.

[Global integer]GAL_TYPE_COMPLEX32
Identifier for a complex number composed of two float types. Note that the complex
type is not yet fully implemented in all Gnuastro’s programs.

[Global integer]GAL_TYPE_COMPLEX64
Identifier for a complex number composed of two double types. Note that the complex
type is not yet fully implemented in all Gnuastro’s programs.

[Global integer]GAL_TYPE_STRING
Identifier for a string of characters (char *).

[Global integer]GAL_TYPE_STRLL
Identifier for a linked list of string of characters (gal_list_str_t, see Section 10.3.7.1
[List of strings], page 287).

The functions below are defined to make working with the integer constants above easier.
In the functions below, the constants above can be used for the type input argument.

[Function]size_t
gal_type_sizeof (uint8 t type)

Return the number of bytes occupied by type. Internally, this function uses C’s
sizeof operator to measure the size of each type.

[Function]char *
gal_type_name (uint8 t type, int long_name)

Return a string that contains the name of type. This can be used in messages to
the users when your function/program accepts many types. It can return both short
and long formats of the type names (for example f32 and float32). If long_name is
non-zero, the long format will be returned, otherwise the short name will be returned.
The output string is statically allocated, so it should not be freed. This function is
the inverse of the gal_type_from_name function. For the full list of names/strings
that this function will return, see Section 4.4 [Numeric data types], page 82.

[Function]uint8_t
gal_type_from_name (char *str)

Return the Gnuastro integer constant that corresponds to the string str. This func-
tion is the inverse of the gal_type_name function and accepts both the short and
long formats of each type. For the full list of names/strings that this function will
return, see Section 4.4 [Numeric data types], page 82.

[Function]void
gal_type_min (uint8 t type, void *in)

Put the minimum possible value of type in the space pointed to by in. Since the
value can have any type, this function doesn’t return anything, it assumes the space
for the given type is available to in and writes the value there. Here is one example

int32_t min;
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gal_type_min(GAL_TYPE_INT32, &min);

Note: Do not use the minimum value for a blank value of a general (initially unknown)
type, please use the constants/functions provided in Section 10.3.4 [Library blank
values (blank.h)], page 273, for the definition and usage of blank values.

[Function]void
gal_type_max (uint8 t type, void *in)

Put the maximum possible value of type in the space pointed to by in. Since the
value can have any type, this function doesn’t return anything, it assumes the space
for the given type is available to in and writes the value there. Here is one example

uint16_t max;

gal_type_max(GAL_TYPE_INT16, &max);

Note: Do not use the maximum value for a blank value of a general (initially unknown)
type, please use the constants/functions provided in Section 10.3.4 [Library blank
values (blank.h)], page 273, for the definition and usage of blank values.

[Function]int
gal_type_is_list (uint8 t type)

Return 1 if the type is a linked list and zero otherwise.

[Function]int
gal_type_out (int first_type, int second_type)

Return the larger of the two given types which can be used for the type of the output
of an operation involving the two input types.

[Function]char *
gal_type_bit_string (void *in, size t size)

Return the bit-string in the size bytes that in points to. The string is dynamically
allocated and must be freed afterwards. You can use it to inspect the bits within one
region of memory. Here is one short example:

int32_t a=2017;

char *bitstr=gal_type_bit_string(&a, 4);

printf("%d: %s (%X)\n", a, bitstr, a);

free(bitstr);

which will produce:

2017: 11100001000001110000000000000000 (7E1)

As the example above shows, the bit-string is not the most efficient way to inspect
bits. If you are familiar with hexadecimal notation, it is much more compact, see
https://en.wikipedia.org/wiki/Hexadecimal. You can use printf’s %x or %X to
print integers in hexadecimal format.

[Function]char *
gal_type_to_string (void *ptr, uint8 t type, int quote_if_str_has_space);

Read the contents of the memory that ptr points to (assuming it has type type and
print it into an allocated string which is returned.

If the memory is a string of characters and quote_if_str_has_space is non-zero,
the output string will have double-quotes around it if it contains space characters.

https://en.wikipedia.org/wiki/Hexadecimal
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Also, note that in this case, ptr must be a pointer to an array of characters (or char
**), as in the example below (which will put "sample string" into out):

char *out, *string="sample string"

out = gal_type_to_string(&string, GAL_TYPE_STRING, 1);

[Function]int
gal_type_from_string (void **out, char *string, uint8 t type)

Read a string as a given data type and put a the pointer to it in *out. When
*out!=NULL, then it is assumed to be already allocated and the value will be simply
put the memory. If *out==NULL, then space will be allocated for the given type and
the string will be read into that type.

Note that when we are dealing with a string type, *out should be interpretted as
char ** (one element in an array of pointers to different strings). In other words, out
should be char ***.

This function can be used to fill in arrays of numbers from strings (in an already
allocated data structure), or add nodes to a linked list (if the type is a list type). For
an array, you have to pass the pointer to the ith element where you want the value
to be stored, for example &(array[i]).

If the string was successfully parsed to the requested type, this function will return a
0 (zero), otherwise it will return 1 (one). This output format will help you check the
status of the conversion in a code like the example below:

if( gal_type_from_string(&out, string, GAL_TYPE_FLOAT32) )

{

fprintf(stderr, "%s couldn’t be read as float32.\n", string);

exit(EXIT_FAILURE);

}

[Function]void *
gal_type_string_to_number (char *string, uint8 t *type)

Read string into smallest type that can host the number, the allocated space for
the number will be returned and the type of the number will be put into the memory
that type points to. If string couldn’t be read as a number, this function will return
NULL.

For the ranges acceptable by each type see Section 4.4 [Numeric data types], page 82.
For integers it is clear, for floating point types, this function will count the number
of significant digits and determine if the given string is single or double precision as
described in that section.

10.3.4 Library blank values (blank.h)

When the position of an element in a dataset is important (for example a pixel in an image),
a place-holder is necessary for the element if we don’t have a value to fill it with (for example
the CCD cannot read those pixels). We cannot simply shift all the other pixels to fill in the
one we have no value for. In other cases, it often occurs that the field of sky that you are
studying is not a clean rectangle to nicely fit into the boundaries of an image. You need a
way to separate the pixels outside your scientific field from those inside it. Blank values act
as these place holders in a dataset. They have no usable value but they have a position.
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Every type needs a corresponding blank value (see Section 4.4 [Numeric data types],
page 82, and Section 10.3.3 [Library data types (type.h)], page 269). Floating point types
have a unique value identified by IEEE known as Not-a-Number (or NaN) which is a unique
value that is recognized by the compiler. However, integer and string types don’t have any
standard value. For integers, in Gnuastro we take an extremum of the given type: for signed
types (that allow negatives), the minimum possible value is used as blank and for unsigned
types (that only accept positives), the maximum possible value is used. To be generic and
easy to read/write we define a macro for these blank values and strongly encourage you
only use these, and never make any assumption on the value of a type’s blank value.

The IEEE NaN blank value type is defined to fail on any comparison, so if you are
dealing with floating point types, you cannot use equality (a NaN will not be equal to a
NaN). If you know your dataset if floating point, you can use the isnan function in C’s
math.h header. For a description of numeric data types see Section 4.4 [Numeric data
types], page 82. For the constants identifying integers, please see Section 10.3.3 [Library
data types (type.h)], page 269.

[Global integer]GAL_BLANK_UINT8
Blank value for an unsigned, 8-bit integer.

[Global integer]GAL_BLANK_INT8
Blank value for a signed, 8-bit integer.

[Global integer]GAL_BLANK_UINT16
Blank value for an unsigned, 16-bit integer.

[Global integer]GAL_BLANK_INT16
Blank value for a signed, 16-bit integer.

[Global integer]GAL_BLANK_UINT32
Blank value for an unsigned, 32-bit integer.

[Global integer]GAL_BLANK_INT32
Blank value for a signed, 32-bit integer.

[Global integer]GAL_BLANK_UINT64
Blank value for an unsigned, 64-bit integer.

[Global integer]GAL_BLANK_INT64
Blank value for a signed, 64-bit integer.

[Global integer]GAL_BLANK_SIZE_T
Blank value for size_t type (uint32_t or uint64_t in 32-bit or 64-bit systems).

[Global integer]GAL_BLANK_FLOAT32
Blank value for a single precision, 32-bit floating point type (IEEE NaN value).

[Global integer]GAL_BLANK_FLOAT64
Blank value for a double precision, 64-bit floating point type (IEEE NaN value).

[Global integer]GAL_BLANK_STRING
Blank value for string types (this is itself a string, it isn’t the NULL pointer).
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The functions below can be used to work with blank pixels.

[Function]void
gal_blank_write (void *pointer, uint8 t type)

Write the blank value for the given type into the space that pointer points to. This
can be used when the space is already allocated (for example one element in an array
or a statically allocated variable).

[Function]void *
gal_blank_alloc_write (uint8 t type)

Allocate the space required to keep the blank for the given data type type, write the
blank value into it and return the pointer to it.

[Function]void
gal_blank_initialize (gal data t *input)

Initialize all the elements in the input dataset to the blank value that corresponds to
its type. If input is a tile over a larger dataset, only the region that the tile covers
will be set to blank.

[Function]int
gal_blank_present (gal data t *input, int updateflag)

Return 1 if the dataset has a blank value and zero if it doesn’t. Before checking
the dataset, this function will look at input’s flags. If the GAL_DATA_FLAG_HASBLANK
or GAL_DATA_FLAG_DONT_CHECK_ZERO bits of input->flag are set to 1, this function
will not do any check and will just use the information in the flags. This can greatly
speed up processing when a dataset needs to be checked multiple times.

If you want to re-check a dataset which has non-zero flags, then explicitly set the
appropriate flag to zero before calling this function. When there are no other flags,
you can just set input->flags to zero, otherwise you can use this expression:

input->flags &= ~(GAL_DATA_FLAG_HASBLANK | GAL_DATA_FLAG_USE_ZERO);

When updateflags is zero, this function has no side-effects on the dataset: it will
not toggle the flags. When the dataset’s flags were not used and updateflags is
non-zero, this function will set the flags appropriately to avoid having to re-check the
dataset in future calls.

[Function]gal_data_t *
gal_blank_flag (gal data t *input)

Create a dataset of the the same size as the input, but with an uint8_t type that
has a value of 1 for data that are blank and 0 for those that aren’t.

[Function]void
gal_blank_remove (gal data t *input)

Remove blank elements from a dataset, convert it to a 1D dataset, and adjust the
size properly (the number of non-blank elements). In practice this function doesn’t
realloc the input array, it just shifts the blank elements to the end and adjusts
the size elements of the gal_data_t, see Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276.
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[Function]char *
gal_blank_as_string (uint8 t type, int width)

Write the blank value for the given data type type into a string and return it. The
space for the string is dynamically allocated so it must be freed after you are done
with it.

10.3.5 Data container (data.h)

Astronomical datasets have various dimensions, for example 1D spectra or table columns,
2D images, or 3D Integral field data cubes. Datasets can also have various numeric data
types, depending on the operation/purpose, for example processed images are in commonly
in floating point, but their mask images are integers using bit-wise flags to identify certain
classes of special pixels, see Section 4.4 [Numeric data types], page 82). Certain other
information about a dataset are also commonly necessary, for example the units of the
dataset, the name of the dataset and some comments. To deal with any generic dataset,
Gnuastro defines the gal_data_t as input or output.

10.3.5.1 Generic data container (gal_data_t)

To be able to deal with any dataset (various dimensions, numeric data types, units
and higher-level structures), Gnuastro defines the gal_data_t type which is the
input/output container of choice for many of Gnuastro library’s functions. It is defined
in gnuastro/data.h. If you will be using (‘# include’ing) those libraries, you don’t need
to include this header explicitly, it is already included by any library header that uses
gal_data_t.

[Type (C struct)]gal_data_t
The main container for datasets in Gnuastro. It can host data of any dimensions,
with any numeric data type. It is actually a structure, but typedef’d as a new type
to avoid having to write the struct before any declaration. The actual structure is
shown below which is followed by a description of each element.

typedef struct gal_data_t

{

void *restrict array; /* Basic array information. */

uint8_t type;

size_t ndim;

size_t *dsize;

size_t size;

char *mmapname;

size_t minmapsize;

int nwcs; /* WCS information. */

struct wcsprm *wcs;

uint8_t flag; /* Content description. */

int status;

char *name;

char *unit;

char *comment;
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int disp_fmt; /* For text printing. */

int disp_width;

int disp_precision;

struct gal_data_t *next; /* For higher-level datasets. */

struct gal_data_t *block;

} gal_data_t;

The list below contains a description for each gal_data_t element.

void *restrict array

This is the pointer to the main array of the dataset containing the raw data
(values). All the other elements in this data-structure are actually meta-data
enabling us to use/understand the series of values in this array. It must allow
data of any type (see Section 4.4 [Numeric data types], page 82), so it is defined
as a void * pointer. A void * array is not directly usable in C, so you have to
cast it to proper type before using it, please see Section 10.4.1 [Library demo -
reading a FITS image], page 347, for a demonstration.

The restrict keyword was formally introduced in C99 and is used to tell the
compiler that at any moment only this pointer will modify what it points to (a
pixel in an image for example)15. This extra piece of information can greatly
help in compiler optimizations and thus the running time of the program. But
older compilers might not have this capability, so at ./configure time, Gnu-
astro checks this feature and if the user’s compiler doesn’t support restrict,
it will be removed from this definition.

uint8_t type

A fixed code (integer) used to identify the type of data in array (see Section 4.4
[Numeric data types], page 82). For the list of acceptable values to this variable,
please see Section 10.3.3 [Library data types (type.h)], page 269.

size_t ndim

The dataset’s number of dimensions.

size_t *dsize

The size of the dataset along each dimension. This is an array (with ndim

elements), of positive integers in row-major order16 (based on C). When a data
file is read into memory with Gnuastro’s libraries, this array is dynamically
allocated based on the number of dimensions that the dataset has.

It is important to remember that C’s row-major ordering is the opposite of the
FITS standard which is in column-major order: in the FITS standard the fastest
dimension’s size is specified by NAXIS1, and slower dimensions follow. The FITS
standard was defined mainly based on the FORTRAN language which is the
opposite of C’s approach to multi-dimensional arrays (and also starts counting
from 1 not 0). Hence if a FITS image has NAXIS1==20 and NAXIS2==50, the
dsize array must be filled with dsize[0]==50 and dsize[1]==20.

15 Also see https://en.wikipedia.org/wiki/Restrict.
16 Also see https://en.wikipedia.org/wiki/Row-_and_column-major_order.

https://en.wikipedia.org/wiki/Restrict
https://en.wikipedia.org/wiki/Row-_and_column-major_order
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The fastest dimension is the one that is contiguous in memory: to increment
by one along that dimension, just go to the next element in the array. As we
go to slower dimensions, the number of memory cells we have to skip for an
increment along that dimension becomes larger.

size_t size

The total number of elements in the dataset. This is actually a multiplication
of all the values in the dsize array, so it is not an independent parameter.
However, low-level operations with the dataset (irrespective of its dimensions)
commonly need this number, so this element is designed to avoid calculating it
every time.

char *mmapname

Name of file hosting the mmap’d contents of array. If the value of this variable
is NULL, then the contents of array are actually stored in RAM, not in a file on
the HDD/SSD. See the description of minmapsize below for more.

If a file is used, it will be kept in the hidden .gnuastro directory with a ran-
domly selected name to allow multiple arrays to be kept there at the same time.
When gal_data_free is called the randomly named file will be deleted.

size_t minmapsize

The minimum size of an array (in bytes) to store the contents of array as a
file (on the non-volatile HDD/SSD), not in RAM. This can be very useful for
large datasets which can be very memory intensive and the user’s RAM might
not be sufficient to keep/process it. A random filename is assigned to the array
which is available in the mmapname element of gal_data_t (above), see there
for more. minmapsize is stored in each gal_data_t, so it can be passed on to
subsequent/derived datasets.

See the description of the --minmapsize option in Section 4.1.2.2 [Processing
options], page 71, for more on using this value.

nwcs The number of WCS coordinate representations (for WCSLIB).

struct wcsprm *wcs

The main WCSLIB structure keeping all the relevant information necessary
for WCSLIB to do its processing and convert data-set positions into real-
world positions. When it is given a NULL value, all possible WCS calcula-
tions/measurements will be ignored.

uint8_t flag

Bit-wise flags to describe general properties of the dataset. The number of
bytes available in this flag is stored in the GAL_DATA_FLAG_SIZE macro. Note
that you should use bit-wise operators17 to check these flags. The currently
recognized bits are stored in these macros:

GAL_DATA_FLAG_BLANK_CH

Marking that the dataset has been checked for blank values. There-
fore, the value of the bit in GAL_DATA_FLAG_HASBLANK is reliable.
Without this bit, when a dataset doesn’t have any blank values (and

17 See https://en.wikipedia.org/wiki/Bitwise_operations_in_C.

https://en.wikipedia.org/wiki/Bitwise_operations_in_C


Chapter 10: Library 279

this has been checked), the GAL_DATA_FLAG_HASBLANK bit will be
zero so a checker has no way to know if this zero is real or if no
check has been done yet.

GAL_DATA_FLAG_HASBLANK

This bit has a value of 1 when the given dataset has blank values.
If this bit is 0 and GAL_DATA_FLAG_BLANK_CH is 1, then the dataset
has been checked and it didn’t have any blank values, so there is
no more need for further checks.

GAL_DATA_FLAG_SORT_CH

Marking that the dataset is already checked for being sorted or not
and thus that the possible 0 values in GAL_DATA_FLAG_SORTED_I

and GAL_DATA_FLAG_SORTED_D are meaningful.

GAL_DATA_FLAG_SORTED_I

This bit has a value of 1 when the given dataset is sorted in an
increasing manner. If this bit is 0 and GAL_DATA_FLAG_SORT_CH is
1, then the dataset has been checked and wasn’t sorted (increasing),
so there is no more need for further checks.

GAL_DATA_FLAG_SORTED_D

This bit has a value of 1 when the given dataset is sorted in a
decreasing manner. If this bit is 0 and GAL_DATA_FLAG_SORT_CH is
1, then the dataset has been checked and wasn’t sorted (decreasing),
so there is no more need for further checks.

The macro GAL_DATA_FLAG_MAXFLAG contains the largest internally used bit-
position. Higher-level flags can be defined with the bit-wise shift operators
using this macro to define internal flags for libraries/programs that depend on
Gnuastro without causing any possible conflict with the internal flags discussed
above or having to check the values manually on every release.

int status

A context-specific status values for this data-structure. This integer will not be
set by Gnuastro’s libraries. You can use it keep some additional information
about the dataset (with integer constants) depending on your applications.

char *name

The name of the dataset. If the dataset is a multi-dimensional array and
read/written as a FITS image, this will be the value in the EXTNAME FITS
keyword. If the dataset is a one-dimensional table column, this will be the
column name. If it is set to NULL (by default), it will be ignored.

char *unit

The units of the dataset (for example BUNIT in the standard FITS keywords)
that will be read from or written to files/tables along with the dataset. If it is
set to NULL (by default), it will be ignored.

char *comment

Any further explanation about the dataset which will be written to any output
file if present.
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disp_fmt Format to use for printing each element of the dataset to a plain text file, the
acceptable values to this element are defined in Section 10.3.11 [Table input
output (table.h)], page 312. Based on C’s printf standards.

disp_width

Width of printing each element of the dataset to a plain text file, the accept-
able values to this element are defined in Section 10.3.11 [Table input output
(table.h)], page 312. Based on C’s printf standards.

disp_precision

Precision of printing each element of the dataset to a plain text file, the accept-
able values to this element are defined in Section 10.3.11 [Table input output
(table.h)], page 312. Based on C’s printf standards.

gal_data_t *next

Through this pointer, you can link a gal_data_t with other datasets related
datasets, for example the different columns in a dataset each have one gal_

data_t associate with them and they are linked to each other using this element.
There are several functions described below to facilitate using gal_data_t as
a linked list. See Section 10.3.7 [Linked lists (list.h)], page 286, for more on
these wonderful high-level constructs.

gal_data_t *block

Pointer to the start of the complete allocated block of memory. When this
pointer is not NULL, the dataset is not treated as a contiguous patch of memory.
Rather, it is seen as covering only a portion of the larger patch of memory that
block points to. See Section 10.3.13 [Tessellation library (tile.h)], page 319,
for a more thorough explanation and functions to help work with tiles that are
created from this pointer.

10.3.5.2 Dataset size and allocation

Gnuastro’s main data container was defined in Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276. The functions listed in this section describe the most basic op-
erations on gal_data_t: those related to the size, pointers, allocation and freeing. These
functions are declared in gnuastro/data.h which is also visible from the function names
(see Section 10.3 [Gnuastro library], page 264).

[Function]int
gal_data_dsize_is_different (gal data t *first, gal data t *second)

Return 1 (one) if the two datasets don’t have the same size along all dimensions. This
function will also return 1 when the number of dimensions of the two datasets are
different.

[Function]void *
gal_data_ptr_increment (void *pointer, size t increment, uint8 t type)

Return a pointer to an element that is increment elements ahead of pointer, as-
suming each element has type of type (for the type codes, see Section 10.3.3 [Library
data types (type.h)], page 269).

When working with the array elements of gal_data_t, we are actually dealing with
void * pointers. However, pointer arithmetic doesn’t apply to void *, because the
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system doesn’t know how many bytes there are in each element to increment the
pointer respectively. This function will use the given type to calculate where the
incremented element is located in memory.

[Function]size_t
gal_data_ptr_dist (void *earlier, void *later, uint8 t type)

Return the number of elements between earlier and later assuming each element
has a type defined by type (for the type codes, see Section 10.3.3 [Library data types
(type.h)], page 269).

[Function]void *
gal_data_malloc_array (uint8 t type, size t size, const char *funcname, const

char *varname)
Allocate an array of type type with size elements in RAM (for the type codes, see
Section 10.3.3 [Library data types (type.h)], page 269). This is effectively just a
wrapper around C’s malloc function but takes Gnuastro’s integer type codes and
will also abort with an error if there the allocation was not successful.

When space cannot be allocated, this function will abort the program with a message
containing the reason for the failure. funcname (name of the function calling this
function) and varname (name of variable that needs this space) will be used in this
error message if they are not NULL. In most modern compilers, you can use the generic
__func__ variable for funcname. In this way, you don’t have to manually copy and
paste the function name or worry about it changing later (__func__ was standardized
in C99).

[Function]void *
gal_data_calloc_array (uint8 t type, size t size, const char *funcname, const

char *varname)
Similar to gal_data_malloc_array, but the space is cleared (set to 0) after allocation.

[Function]void
gal_data_initialize (gal data t *data, void *array, uint8 t type, size t ndim,

size t *dsize, struct wcsprm *wcs, int clear, size t minmapsize, char
*name, char *unit, char *comment)

Initialize the given data structure (data) with all the given values. Note that the
raw input gal_data_t must already have been allocated before calling this func-
tion. For a description of each variable see Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276. It will set the values and do the necessary allocations. If
they aren’t NULL, all input arrays (dsize, wcs, name, unit, comment) are separately
copied (allocated) by this function for usage in data, so you can safely use one value
to initialize many datasets or use statically allocated variables in this function call.
Once you are done with the dataset, you can clean all the allocated spaces with
gal_data_free_contents.

If array is not NULL, it will be directly copied into data->array and no new space will
be allocated for the array of this dataset, this has many low-level advantages and can
be used to work on regions of a dataset instead of the whole allocated array (see the
description under block in Section 10.3.5.1 [Generic data container (gal_data_t)],
page 276, for one example). If the given pointer is not the start of an allocated
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block of memory or it is used in multiple datasets, be sure to set it to NULL (with
data->array=NULL) before cleaning up with gal_data_free_contents.

ndim may be zero. In this case no allocation will occur, data->array and
data->dsize will be set to NULL and data->size will be zero. However (when
necessary) dsize must not have any zero values (a dimension of length zero is not
defined).

[Function]gal_data_t *
gal_data_alloc (void *array, uint8 t type, size t ndim, size t *dsize, struct

wcsprm *wcs, int clear, size t minmapsize, char *name, char *unit,
char *comment)

Dynamically allocate a gal_data_t and initialize it will all the given values. See the
description of gal_data_initialize and Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276, for more information. This function will often be the most
frequently used because it allocates the gal_data_t hosting all the values and ini-
tializes it. Once you are done with the dataset, be sure to clean up all the allocated
spaces with gal_data_free.

[Function]void
gal_data_free_contents (gal data t *data)

Free all the non-NULL pointers in gal_data_t. If data is actually a tile
(data->block!=NULL, see Section 10.3.13 [Tessellation library (tile.h)], page 319),
then tile->array is not freed. For a complete description of gal_data_t and its
contents, see Section 10.3.5.1 [Generic data container (gal_data_t)], page 276.

[Function]void
gal_data_free (gal data t *data)

Free all the non-NULL pointers in gal_data_t, then free the actual data structure.

10.3.5.3 Arrays of datasets

Gnuastro’s generic data container (gal_data_t) is a very versatile structure that can be
used in many higher-level contexts. One such higher-level construct is an array of gal_
data_t structures to simplify the allocation (and later cleaning) of several gal_data_ts
that are related.

For example, each column in a table is usually represented by one gal_data_t (so it
has its own name, numeric data type, units and etc). A table (with many columns) can
be seen as an array of gal_data_ts (when the number of columns is known a-priori). The
functions below are defined to create a cleared array of data structures and to free them in
the end. These functions are declared in gnuastro/data.h which is also visible from the
function names (see Section 10.3 [Gnuastro library], page 264).

[Function]gal_data_t *
gal_data_array_calloc (size t size)

Allocate an array of gal_data_t with size elements. This function will also initialize
all the values (NULL for pointers and 0 for other types). You can use gal_data_

initialize to fill each element of the array afterwards. The following code snippet
is one example of doing this.

size_t i;
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gal_data_t *dataarr;

dataarr=gal_data_array_calloc(10);

for(i=0;i<10;++i) gal_data_initialize(&dataarr[i], ...);

...

gal_data_array_free(dataarr, 10, 1);

[Function]void
gal_data_array_free (gal data t *dataarr, size t num, int free_array)

Free all the num elements within dataarr and the actual allocated array. If free_
array is not zero, then the array element of all the datasets will also be freed, see
Section 10.3.5.1 [Generic data container (gal_data_t)], page 276.

10.3.5.4 Copying datasets

The functions in this section describes Gnuastro’s facilities to copy a given dataset into
another. The new dataset can have a different type (including a string), it can be already
allocated (in which case only the values will be written into it). In all these cases, if the
input dataset is a tile, only the data within the tile are copied.

In many of the functions here, it is possible to copy the dataset to a new numeric data
type (see Section 4.4 [Numeric data types], page 82. In such cases, Gnuastro’s library is
going to use the native conversion by C. So if you are converting to a smaller type, it is up
to you to make sure that the values fit into the output type.

[Function]gal_data_t *
gal_data_copy (gal data t *in)

Return a new dataset that is a copy of in, all of in’s meta-data will also copied into
the output, except for block.

[Function]gal_data_t *
gal_data_copy_to_new_type (gal data t *in, uint8 t newtype)

Return a copy of the dataset in, converted to newtype, see Section 10.3.3 [Library
data types (type.h)], page 269, for Gnuastro library’s type identifiers. The returned
dataset will have all meta-data except their type and block equal to the input’s
metadata.

[Function]gal_data_t *
gal_data_copy_to_new_type_free (gal data t *in, uint8 t newtype)

Return a copy of the dataset in that is converted to newtype and free the input
dataset. See Section 10.3.3 [Library data types (type.h)], page 269, for Gnuastro
library’s type identifiers. The returned dataset will have all meta-data, except their
type, equal to the input’s metadata. This function is similar to gal_data_copy_to_

new_type, except that it will free the input dataset.

[Function]void
gal_data_copy_to_allocated (gal data t *in, gal data t *out)

Copy the contents of the array in in into the already allocated array in out. The
types of the input and output may be different, type conversion will be done internally.
When in->size != out->size this function will behave as follows:
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out->size < in->size

This function won’t re-allocate the necessary space, it will abort with an
error, so please check before calling this function.

out->size > in->size

This function will write the values in out->size and out->dsize from
the same values of in. So if you want to use a pre-allocated space/dataset
multiple times with varying input sizes, be sure to reset out->size before
every call to this function.

[Function]gal_data_t *
gal_data_copy_string_to_number (char *string)

Read string into the smallest type that can store the value (see Section 4.4 [Numeric
data types], page 82). This function is just a wrapper for the gal_type_string_to_
number, but will put the value into a single-element dataset.

10.3.6 Dimensions (dimension.h)

An array is a contiguous region of memory. Hence, at the lowest level, every element of
an array just has one single-valued position: the number of elements that lie between it
and the first element in the array. This is also known as the index of the element within
the array. A dataset’s number of dimensions is high-level abstraction (meta-data) that we
project onto that contiguous patch of memory. When the array is interpreted as a one-
dimensional dataset, this index is also the coordinate of the element. But once we associate
the patch of memory with a higher dimension, there must also be one coordinate for each
dimension.

The functions and macros in this section provide you with the tools to convert an index
into a coordinate and vice-versa along with several other issues for example issues with the
neighbors of an element in a multi-dimensional context.

[Function]size_t
gal_dimension_total_size (size t ndim, size t *dsize)

Return the total number of elements for a dataset with ndim dimensions that has
dsize elements along each dimension.

[Function]size_t *
gal_dimension_increment (size t ndim, size t *dsize)

Return an allocated array that has the number of elements necessary to increment an
index along every dimension. For example along the fastest dimension (last element
in the dsize and returned arrays), the value is 1 (one).

[Function]size_t
gal_dimension_num_neighbors (size t ndim)

The maximum number of neighbors (any connectivity) that a data element can have
in ndim dimensions. Effectively, this function just returns 3n − 1 (where n is the
number of dimensions).

[Function-like macro]GAL_DIMENSION_FLT_TO_INT (FLT)
Calculate the integer pixel position that the floating point FLT number belongs to. In
the FITS format (and thus in Gnuastro), the center of each pixel is allocated on an
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integer (not it edge), so the pixel which hosts a floating point number cannot simply
be found with internal type conversion.

[Function]void
gal_dimension_add_coords (size t *c1, size t *c2, size t *out, size t ndim)

For every dimension, add the coordinates in c1 with c2 and put the result into out.
In other words, for dimension i run out[i]=c1[i]+c2[i];. Hence out may be equal
to any one of c1 or c2.

[Function]size_t
gal_dimension_coord_to_index (size t ndim, size t *dsize, size t *coord)

Return the index (counting from zero) from the coordinates in coord (counting from
zero) assuming the dataset has ndim elements and the size of the dataset along each
dimension is in the dsize array.

[Function]void
gal_dimension_index_to_coord (size t index, size t ndim, size t *dsize, size t

*coord)
Fill in the coord array with the coordinates that correspond to index assuming the
dataset has ndim elements and the size of the dataset along each dimension is in the
dsize array. Note that both index and each value in coord are assumed to start
from 0 (zero). Also that the space which coord points to must already be allocated
before calling this function.

[Function]size_t
gal_dimension_dist_manhattan (size t *a, size t *b, size t ndim)

Return the manhattan distance (see Wikipedia (https://en.wikipedia.org/wiki/
Taxicab_geometry)) between the two coordinates a and b (each an array of ndim
elements).

[Function-like macro]GAL_DIMENSION_NEIGHBOR_OP (index, ndim, dsize,
connectivity, dinc, operation)

Parse the neighbors of the element located at index and do the requested operation
on them. This is defined as a macro to allow easy definition of any operation on the
neighbors of a given element without having to use loops within your source code
(the loops are implemented by this macro). For an example of using this function,
please see Section 10.4.2 [Library demo - inspecting neighbors], page 348. The input
arguments to this function-like macro are described below:

index Distance of this element from the first element in the array on a contiguous
patch of memory (starting from 0), see the discussion above.

ndim The number of dimensions associated with the contiguous patch of mem-
ory.

dsize The full array size along each dimension. This must be an array and
is assumed to have the same number elements as ndim. See the discus-
sion under the same element in Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276.

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Taxicab_geometry
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connectivity

Most distant neighbors to consider. Depending on the number of dimen-
sions, different neighbors may be defined for each element. This function-
like macro distinguish between these different neighbors with this argu-
ment. It has a value between 1 (one) and ndim. For example in a 2D
dataset, 4-connected neighbors have a connectivity of 1 and 8-connected
neighbors have a connectivity of 2. Note that this is inclusive, so in this
example, a connectivity of 2 will also include connectivity 1 neighbors.

dinc An array keeping the length necessary to increment along each dimension.
You can make this array with the following function. Just don’t forget
to free the array after you are done with it:

size_t *dinc=gal_dimension_increment(ndim, dsize);

dinc depends on ndim and dsize, but it must be defined outside this
function-like macro since it involves allocation to help in performance.

operation

Any C operation that you would like to do on the neighbor. This macro
will provide you a nind variable that can be used as the index of the
neighbor that is currently being studied. It is defined as ‘size_t ndim;’.
Note that operation will be repeated the number of times there is a
neighbor for this element.

This macro works fully within its own {} block and except for the nind variable that
shows the neighbor’s index, all the variables within this macro’s block start with gdn_.

10.3.7 Linked lists (list.h)

An array is a contiguous region of memory that is very efficient and easy to use for recording
and later accessing any random element as fast as any other. This makes array the primary
data container when you have many elements (for example an image which has millions of
pixels). One major problem with an array is that the number of elements that go into it
must be known in advance and adding or removing an element will require a re-set of all the
other elements. For example if you want to remove the 3rd element in a 1000 element array,
all 997 subsequent elements have to pulled back by one position, the reverse will happen if
you need to add an element.

In many contexts such situations never come up, for example you don’t want to shift
all the pixels in an image by one or two pixels from some random position in the image:
their positions have scientific value. But in other contexts you will find your self frequently
adding/removing an a-priori unknown number of elements. Linked lists (or lists for short)
are the data-container of choice in such situations. As in a chain, each node in a list is
an independent C structure, keeping its own data along with pointer(s) to its immediate
neighbor(s). Below, you can see one simple linked list node structure along with an ASCII
art schematic of how we can use the next pointer to add any number of elements to the list
that we want. By convention, a list is terminated when next is the NULL pointer.

struct list_float /* --------- --------- */

{ /* | Value | | Value | */

float value; /* | --- | | --- | */

struct list_float *next; /* | next-|--> | next-|--> NULL */



Chapter 10: Library 287

} /* --------- --------- */

The schematic shows another great advantage of linked lists: it is very easy to add or
remove/pop a node anywhere in the list. If you want to modify the first node, you just have
to change one pointer. If it is in the middle, you just have to change two. You initially
define a variable of this type with a NULL pointer as shown below:

struct list_float *mylist=NULL;

To add or remove/pop a node from the list you can use functions provided for the respective
type in the sections below.

When you add an element to the list, it is conventionally added to the “top” of the list: the
general list pointer will point to the newly created node, which will point to the previously
created node and so on. So when you “pop” from the top of the list, you are actually
retrieving the last value you put in and changing the list pointer to the next youngest node.
This is thus known as a “last-in-first-out” list. This is the most efficient type of linked list
(easier to implement and faster to process). Alternatively, you can add each newly created
node at the end of the list. If you do that, you will get a “first-in-first-out” list. But that
will force you to go through the whole list for each new element that is created (this will
slow down the processing)18.

The node example above creates the simplest kind of a list. We can define each node
with two pointers to both the next and previous neighbors, this is called a “Doubly linked
list”. In general, lists are very powerful and simple constructs that can be very useful.
But going into more detail would be out of the scope of this short introduction in this
book. Wikipedia (https://en.wikipedia.org/wiki/Linked_list) has a nice and more
thorough discussion of the various types of lists. To appreciate/use the beauty and elegance
of these powerful constructs even further, see Chapter 2 (Information Structures, in volume
1) of Donald Knuth’s “The art of computer programming”.

In this section we will review the functions and structures that are available in Gnuastro
for working on lists. They differ by the type of data that each node can keep. For each linked-
list node structure, we will first introduce the structure, then the functions for working on the
structure. All these structures and functions are defined and declared in gnuastro/list.h.

10.3.7.1 List of strings

Probably one of the most common lists you will be using are lists of strings. They are the
best tools when you are reading the user’s inputs, or when adding comments to the output
files. Below you can see Gnuastro’s string list type and several functions to help in adding,
removing/popping, reversing and freeing the list.

[Type (C struct)]gal_list_str_t
A single node in a list containing a string of characters.

typedef struct gal_list_str_t

{

char *v;

18 A better way to get a first-in-first-out is to first keep the data as last-in-first-out until they are all read.
Afterwards, reverse the list by popping each node and immediately add it to the new list. This practically
reverses the last-in-first-out list to a first-in-first-out one. All the list types discussed in this chapter have
a function with a _reverse suffix for this job.

https://en.wikipedia.org/wiki/Linked_list
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struct gal_list_str_t *next;

} gal_list_str_t;

[Function]void
gal_list_str_add (gal list str t **list, char *value, int allocate)

Add a new node to the list of strings (list) and update it. The new node will contain
the string value. If allocate is not zero, space will be allocated specifically for the
string of the new node and the contents of value will be copied into it. This can be
useful when your string may be changed later in the program, but you want your list
to remain. Here is one short/simple example of initializing and adding elements to a
string list:

gal_list_str_t *strlist;

gal_list_str_add(&strlist, "bottom of list.");

gal_list_str_add(&strlist, "second last element of list.");

[Function]char *
gal_list_str_pop (gal list str t **list)

Pop the top element of list, change list to point to the next node in the list, and
return the string that was in the popped node. If *list==NULL, then this function
will also return a NULL pointer.

[Function]size_t
gal_list_str_number (gal list str t *list)

Return the number of nodes in list.

[Function]void
gal_list_str_print (gal list str t *list)

Print the strings within each node of *list on the standard output in the same order
that they are stored. Each string is printed on one line. This function is mainly
good for checking/debugging your program. For program outputs, its best to make
your own implementation with a better, more user-friendly, format. For example the
following code snippet.

size_t i;

gal_list_str_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("String %zu: %s\n", i, tmp->v);

[Function]void
gal_list_str_reverse (gal list str t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]void
gal_list_str_free (gal list str t *list, int freevalue)

Free every node in list. If freevalue is not zero, also free the string within the
nodes.



Chapter 10: Library 289

10.3.7.2 List of int32_t

Signed integers are the best types when you are dealing with a positive or negative integers.
The are generally useful in many contexts, for example when you want to keep the order of
a series of states (each state stored as a given number in an enum for example). On many
modern systems, int32_t is just an alias for int, so you can use them interchangeably. To
make sure, check the size of int on your system:

[Type (C struct)]gal_list_i32_t
A single node in a list containing a 32-bit signed integer (see Section 4.4 [Numeric
data types], page 82).

typedef struct gal_list_i32_t

{

int32_t v;

struct gal_list_i32_t *next;

} gal_list_i32_t;

[Function]void
gal_list_i32_add (gal list i32 t **list, int32 t value)

Add a new node (containing value) to the top of the list of int32_ts (uint32_t is
equal to int on many modern systems), and update list. Here is one short example
of initializing and adding elements to a string list:

gal_list_i32_t *i32list=NULL;

gal_list_i32_add(&i32list, 52);

gal_list_i32_add(&i32list, -4);

[Function]int32_t
gal_list_i32_pop (gal list i32 t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
also return GAL_BLANK_INT32 (see Section 10.3.4 [Library blank values (blank.h)],
page 273).

[Function]size_t
gal_list_i32_number (gal list i32 t *list)

Return the number of nodes in list.

[Function]void
gal_list_i32_print (gal list i32 t *list)

Print the integers within each node of *list on the standard output in the same
order that they are stored. Each integer is printed on one line. This function is
mainly good for checking/debugging your program. For program outputs, its best to
make your own implementation with a better, more user-friendly format. For example
the following code snippet. You can also modify it to print all values in one line, and
etc, depending on the context of your program.

size_t i;

gal_list_i32_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("String %zu: %s\n", i, tmp->v);
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[Function]void
gal_list_i32_reverse (gal list i32 t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]int32_t *
gal_list_i32_to_array (gal list i32 t *list, int reverse, size t *num)

Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
opposite order of elements in list. This function can be useful after you have finished
reading an initially unknown number of values and want to put them in an array for
easy random access.

[Function]void
gal_list_i32_free (gal list i32 t *list)

Free every node in list.

10.3.7.3 List of size_t

The size_t type is a unique type in C: as the name suggests it is defined to store sizes,
or more accurately, the distances between memory locations. Hence it is always positive
(an unsigned type) and it is directly related to the address-able spaces on the host system:
on 32-bit and 64-bit systems it is an alias for uint32_t and uint64_t, respectively (see
Section 4.4 [Numeric data types], page 82).

size_t is the default compiler type to index an array (recall that an array index in
C is just a pointer increment of a given size). Since it is unsigned, its a great type for
counting (where negative is not defined), you are always sure it will never exceed the
system’s (virtual) memory and since its name has the word “size” inside it, it provides
a good level of documentation19. In Gnuastro, we do all counting and array indexing with
this type, so this list is very handy. As discussed above, size_t maps to different types on
different machines, so a portable way to print them with printf is to use C99’s %zu format.

[Type (C struct)]gal_list_sizet_t
A single node in a list containing a size_t value (which maps to uint32_t or uint64_
t on 32-bit and 64-bit systems), see Section 4.4 [Numeric data types], page 82.

typedef struct gal_list_sizet_t

{

size_t v;

struct gal_list_sizet_t *next;

} gal_list_sizet_t;

[Function]void
gal_list_sizet_add (gal list sizet t **list, size t value)

Add a new node (containing value) to the top of the list of size_ts and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_sizet_t *slist=NULL;

19 So you know that a variable of this type is not used to store some generic state for example.
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gal_list_sizet_add(&slist, 45493);

gal_list_sizet_add(&slist, 930484);

[Function]sizet_t
gal_list_sizet_pop (gal list sizet t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
also return GAL_BLANK_SIZE_T (see Section 10.3.4 [Library blank values (blank.h)],
page 273).

[Function]size_t
gal_list_sizet_number (gal list sizet t *list)

Return the number of nodes in list.

[Function]void
gal_list_sizet_print (gal list sizet t *list)

Print the values within each node of *list on the standard output in the same order
that they are stored. Each integer is printed on one line. This function is mainly
good for checking/debugging your program. For program outputs, its best to make
your own implementation with a better, more user-friendly format. For example, the
following code snippet. You can also modify it to print all values in one line, and etc,
depending on the context of your program.

size_t i;

gal_list_sizet_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("String %zu: %zu\n", i, tmp->v);

[Function]void
gal_list_sizet_reverse (gal list sizet t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]size_t *
gal_list_sizet_to_array (gal list sizet t *list, int reverse, size t *num)

Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
inverse of the order of elements in list. This function can be useful after you have
finished reading an initially unknown number of values and want to put them in an
array for easy random access.

[Function]void
gal_list_sizet_free (gal list sizet t *list)

Free every node in list.

10.3.7.4 List of float

Single precision floating point numbers can accurately store real number until 7.2 decimals
and only consume 4 bytes (32-bits) of memory, see Section 4.4 [Numeric data types], page 82.
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Since astronomical data rarely reach that level of precision, single precision floating points
are the type of choice to keep and read data. However, when processing the data, it is best
to use double precision floating points (since errors propagate).

[Type (C struct)]gal_list_f32_t
A single node in a list containing a 32-bit single precision float value: see Section 4.4
[Numeric data types], page 82.

typedef struct gal_list_f32_t

{

float v;

struct gal_list_f32_t *next;

} gal_list_f32_t;

[Function]void
gal_list_f32_add (gal list f32 t **list, float value)

Add a new node (containing value) to the top of the list of floats and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_f32_t *flist=NULL;

gal_list_f32_add(&flist, 3.89);

gal_list_f32_add(&flist, 1.23e-20);

[Function]float
gal_list_f32_pop (gal list f32 t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
return GAL_BLANK_FLOAT32 (NaN, see Section 10.3.4 [Library blank values (blank.h)],
page 273).

[Function]size_t
gal_list_f32_number (gal list f32 t *list)

Return the number of nodes in list.

[Function]void
gal_list_f32_print (gal list f32 t *list)

Print the values within each node of *list on the standard output in the same order
that they are stored. Each floating point number is printed on one line. This function
is mainly good for checking/debugging your program. For program outputs, its best
to make your own implementation with a better, more user-friendly format. For
example, in the following code snippet. You can also modify it to print all values in
one line, and etc, depending on the context of your program.

size_t i;

gal_list_f32_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("Node %zu: %f\n", i, tmp->v);

[Function]void
gal_list_f32_reverse (gal list f32 t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.
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[Function]float *
gal_list_f32_to_array (gal list f32 t *list, int reverse, size t *num)

Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
inverse of the order of elements in list. This function can be useful after you have
finished reading an initially unknown number of values and want to put them in an
array for easy random access.

[Function]void
gal_list_f32_free (gal list f32 t *list)

Free every node in list.

10.3.7.5 List of double

Double precision floating point numbers can accurately store real number until 15.9 decimals
and consume 8 bytes (64-bits) of memory, see Section 4.4 [Numeric data types], page 82.
This level of precision makes them very good for serious processing in the middle of a
program’s execution: in many cases, the propagation of errors will still be insignificant
compared to actual observational errors in a data set. But since they consume 8 bytes and
more CPU processing power, they are often not the best choice for storing and transferring
of data.

[Type (C struct)]gal_list_f64_t
A single node in a list containing a 64-bit double precision double value: see
Section 4.4 [Numeric data types], page 82.

typedef struct gal_list_f64_t

{

double v;

struct gal_list_f64_t *next;

} gal_list_f64_t;

[Function]void
gal_list_f64_add (gal list f64 t **list, double value)

Add a new node (containing value) to the top of the list of doubles and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_f64_t *dlist=NULL;

gal_list_f64_add(&dlist, 3.8129395763193);

gal_list_f64_add(&dlist, 1.239378923931e-20);

[Function]double
gal_list_f64_pop (gal list f64 t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
return GAL_BLANK_FLOAT64 (NaN, see Section 10.3.4 [Library blank values (blank.h)],
page 273).

[Function]size_t
gal_list_f64_number (gal list f64 t *list)

Return the number of nodes in list.
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[Function]void
gal_list_f64_print (gal list f64 t *list)

Print the values within each node of *list on the standard output in the same order
that they are stored. Each floating point number is printed on one line. This function
is mainly good for checking/debugging your program. For program outputs, its best
to make your own implementation with a better, more user-friendly format. For
example, in the following code snippet. You can also modify it to print all values in
one line, and etc, depending on the context of your program.

size_t i;

gal_list_f64_t *tmp;

for(tmp=list; tmp!=NULL; tmp=tmp->next)

printf("Node %zu: %f\n", i, tmp->v);

[Function]void
gal_list_f64_reverse (gal list f64 t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]double *
gal_list_f64_to_array (gal list f64 t *list, int reverse, size t *num)

Dynamically allocate an array and fill it with the values in list. The function will
return a pointer to the allocated array and put the number of elements in the array
into the num pointer. If reverse has a non-zero value, the array will be filled in the
inverse of the order of elements in list. This function can be useful after you have
finished reading an initially unknown number of values and want to put them in an
array for easy random access.

[Function]void
gal_list_f64_free (gal list f64 t *list)

Free every node in list.

10.3.7.6 List of void *

In C, void * is the most generic pointer. Usually pointers are associated with the type of
content they point to. For example int * means a pointer to an integer. This ancillary
information about the contents of the memory location is very useful for the compiler,
catching bad errors and also documentation (it helps the reader see what the address in
memory actually contains). However, void * is just a raw address (pointer), it contains no
information on the contents it points to.

These properties make the void * very useful when you want to treat the contents of an
address in different ways. You can use the void * list defined in this section and its function
on any kind of data: for example you can use it to keep a list of custom data structures that
you have built for your own separate program. Each node in the list can keep anything and
this gives you great versatility. But in using void *, please beware that “with great power
comes great responsibility”.

[Type (C struct)]gal_list_void_t
A single node in a list containing a void * pointer.

typedef struct gal_list_void_t
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{

void *v;

struct gal_list_void_t *next;

} gal_list_void_t;

[Function]void
gal_list_void_add (gal list void t **list, void *value)

Add a new node (containing value) to the top of the list of void *s and update
list. Here is one short example of initializing and adding elements to a string list:

gal_list_void_t *vlist=NULL;

gal_list_f64_add(&vlist, some_pointer);

gal_list_f64_add(&vlist, another_pointer);

[Function]void *
gal_list_void_pop (gal list void t **list)

Pop the top element of list and return the value. This function will also change
list to point to the next node in the list. If *list==NULL, then this function will
return NULL.

[Function]size_t
gal_list_void_number (gal list void t *list)

Return the number of nodes in list.

[Function]void
gal_list_void_reverse (gal list void t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]void
gal_list_void_free (gal list void t *list)

Free every node in list.

10.3.7.7 Ordered list of size_t

Positions/sizes in a dataset are conventionally in the size_t type (see Section 10.3.7.3 [List
of size_t], page 290) and it sometimes occurs that you want to parse and read the values
in a specific order. For example you want to start from one pixel and add pixels to the list
based on their distance to that pixel. So that ever time you pop an element from the list,
you know it is the nearest that has not yet been studied. The gal_list_osizet_t type
and its functions in this section are designed to facilitate such operations.

[Type (C struct)]gal_list_osizet_t
Each node in this singly-linked list contains a size_t value and a floating point value.
The floating point value is used as a reference to add new nodes in a sorted manner.
At any moment, the first popped node in this list will have the smallest tosort value,
and subsequent nodes will have larger to values.

typedef struct gal_list_osizet_t

{

size_t v; /* The actual value. */
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float s; /* The parameter to sort by. */

struct gal_list_osizet_t *next;

} gal_list_osizet_t;

[Function]void
gal_list_osizet_add (gal list osizet t **list, size t value, float tosort)

Allocate space for a new node in list, and store value and tosort into it. The new
node will not necessarily be at the “top” of the list. If *list!=NULL, then the tosort
values of existing nodes is inspected and the given node is placed in the list such
that the top element (which is popped with gal_list_osizet_pop) has the smallest
tosort value.

[Function]size_t
gal_list_osizet_pop (gal list osizet t **list, float *sortvalue)

Pop a node from the top of list, return the node’s value and put its sort value in
the space that sortvalue points to. This function will also free the allocated space
for the popped node and after this function, list will point to the next node (which
has a larger tosort element).

[Function]void
gal_list_osizet_to_sizet_free (gal list osizet t *in, gal list sizet t **out)

Convert the ordered list of size_ts into an ordinary size_t linked list. This can be
useful when all the elements have been added and you just need to pop-out elements
and don’t care about the sorting values any more. After the conversion is done, this
function will free the input list. Note that the out list doesn’t have to be empty. If
it already contains some nodes, the new nodes will be added on top of them.

10.3.7.8 Doubly linked ordered list of size_t

An ordered list of indexs is required in many contexts, one example was discussed at the
beginning of Section 10.3.7.7 [Ordered list of size_t], page 295. But the list that was
introduced there only has one point of entry: you can always only parse the list from
smallest to largest. In this section, the doubly-linked gal_list_dosizet_t node is defined
which will allow us to parse the values in ascending or descending order.

[Type (C struct)]gal_list_dosizet_t
Doubly-linked, ordered size_t list node structure. Each node in this Doubly-linked
list contains a size_t value and a floating point value. The floating point value is
used as a reference to add new nodes in a sorted manner. In the functions here, this
linked list can be pointed to by two pointers (largest and smallest) with the following
format:

largest pointer

|

NULL <-- (v0,s0) <--> (v1,s1) <--> ... (vn,sn) --> NULL

|

smallest pointer

At any moment, the two pointers will point to the nodes containing the “largest” and
“smallest” values and the rest of the nodes will be sorted. This is useful when an
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unknown number of nodes are being added continuously and during the operations it
is important to have the nodes in a sorted format.

typedef struct gal_list_dosizet_t

{

size_t v; /* The actual value. */

float s; /* The parameter to sort by. */

struct gal_list_dosizet_t *prev;

struct gal_list_dosizet_t *next;

} gal_list_dosizet_t;

[Function]void
gal_list_dosizet_add (gal list dosizet t **largest, gal list dosizet t

**smallest, size t value, float tosort)
Allocate space for a new node in list, and store value and tosort into it. If the list
is empty, both largest and smallest must be NULL.

[Function]size_t
gal_list_dosizet_pop_smallest (gal list dosizet t **largest,

gal list dosizet t **smallest, float tosort)
Pop the value with the smallest reference from the doubly linked list and store the
reference into the space pointed to by tosort. Note that even though only the smallest
pointer will be popped, when there was only one node in the list, the largest pointer
also has to change, so we need both.

[Function]void
gal_list_dosizet_print (gal list dosizet t *largest, gal list dosizet t

*smallest)
Print the largest and smallest values sequentially until the list is parsed.

[Function]void
gal_list_dosizet_to_sizet (gal list dosizet t *in, gal list sizet t **out)

Convert the doubly linked, ordered size_t list into a singly-linked list of size_t.

[Function]void
gal_list_dosizet_free (gal list dosizet t *largest)

Free the doubly linked, ordered sizet_t list.

10.3.7.9 List of gal_data_t

Gnuastro’s generic data container has a next element which enables it to be used as a
singly-linked list (see Section 10.3.5.1 [Generic data container (gal_data_t)], page 276).
The ability to connect the different data containers offers great advantages. For example
each column in a table in an independent dataset: with its own name, units, numeric data
type (see Section 4.4 [Numeric data types], page 82). Another application is in Tessellating
an input dataset into separate tiles or only studying particular regions, or tiles, of a larger
dataset (see Section 4.6 [Tessellation], page 90, and Section 10.3.13 [Tessellation library
(tile.h)], page 319). Each independent tile over the dataset can be connected to the
others as a linked list and thus any number of tiles can be represented with one variable.
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[Function]void
gal_list_data_add (gal data t **list, gal data t *newnode)

Add an already allocated dataset (newnode) to top of list. Note that if
newnode->next!=NULL (newnode is itself a list), then list will be added to its end.

In this example multiple images are linked together as a list:

size_t minmapsize=-1;

gal_data_t *tmp, *list=NULL;

tmp = gal_fits_img_read("file1.fits", "1", minmapsize, 0, 0);

gal_list_data_add( &list, tmp );

tmp = gal_fits_img_read("file2.fits", "1", minmapsize, 0, 0);

gal_list_data_add( &list, tmp );

[Function]void
gal_list_data_add_alloc (gal data t **list, void *array, uint8 t type, size t

ndim, size t *dsize, struct wcsprm *wcs, int clear, size t minmapsize,
char *name, char *unit, char *comment)

Allocate a new dataset (with gal_data_alloc in Section 10.3.5.2 [Dataset size and
allocation], page 280) and put it as the first element of list. Note that if this is the
first node to be added to the list, list must be NULL.

[Function]gal_data_t *
gal_list_data_pop (gal data t **list)

Pop the top node from list and return it.

[Function]void
gal_list_data_reverse (gal data t **list)

Reverse the order of the list such that the top node in the list before calling this
function becomes the bottom node after it.

[Function]size_t
gal_list_data_number (gal data t *list)

Return the number of nodes in list.

[Function]void
gal_list_data_free (gal data t *list)

Free all the datasets in list along with all the allocated spaces in each.

10.3.8 FITS files (fits.h)

The FITS format is the most common format to store data (images and tables) in astronomy.
The CFITSIO library already provides a very good low-level collection of functions for
manipulating FITS data. The low-level nature of CFITSIO is defined for versatility and
portability. As a result, even a simple a basic operation, like reading an image or table
column into memory, will require a special sequence of CFITSIO function calls which can
be inconvenient and buggy to manage in separate locations. Therefore Gnuastro library
provides wrappers for CFITSIO functions to make it much easier to read/write/modify
FITS file data, header keywords and extensions. Hence, if you feel these functions don’t
exactly do what you want, we strongly recommend reading the CFITSIO manual to use its
great features directly.
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All the functions and macros introduced in this section are declared in gnuastro/fits.h.
When you include this header, you are also including CFITSIO’s fitsio.h header. So you
don’t need to explicitly include fitsio.h anymore and can freely use any of its macros or
functions in your code along with those discussed here.

10.3.8.1 FITS Macros, errors and filenames

Some general constructs provided by Gnuastro’s FITS handling functions are discussed
here. In particular there are several useful functions about FITS file names.

[Macro]GAL_FITS_MAX_NDIM
The maximum number of dimensions a dataset can have in FITS format, according
to the FITS standard this is 999.

[Function]void
gal_fits_io_error (int status, char *message)

If status is non-zero, this function will print the CFITSIO error message correspond-
ing to status, print message (optional) in the next line and abort the program. If
message==NULL, it will print a default string after the CFITSIO error.

[Function]int
gal_fits_name_is_fits (char *name)

If the name is an acceptable CFITSIO FITS filename return 1 (one), otherwise return
0 (zero). The currently acceptable FITS suffixes are .fits, .fit, .fits.gz, .fits.Z,
.imh, .fits.fz. IMH is the IRAF format which is acceptable to CFITSIO.

[Function]int
gal_fits_suffix_is_fits (char *suffix)

Similar to gal_fits_name_is_fits, but only for the suffix. The suffix doesn’t have
to start with ‘.’: this function will return 1 (one) for both fits and .fits.

[Function]char *
gal_fits_name_save_as_string (char *filename, char *hdu)

If the name is a FITS name, then put a (hdu: ...) after it and return the string. If it
isn’t a FITS file, just print the name. Note that the space is allocated. This function
is useful when you want to report a random file to the user which may be FITS or
not (for a FITS file, simply the filename is not enough, the HDU is also necessary).

10.3.8.2 CFITSIO and Gnuastro types

Both Gnuastro and CFITSIO have special identifiers for each type that they accept. Gnu-
astro’s type identifiers are fully described in Section 10.3.3 [Library data types (type.h)],
page 269, and are usable for all kinds of datasets (images, table columns and etc) as part
of Gnuastro’s Section 10.3.5.1 [Generic data container (gal_data_t)], page 276. How-
ever, following the FITS standard, CFITSIO has different identifiers for images and tables.
Following CFITSIO’s own convention, we will use bitpix for image type identifiers and
datatype for its internal identifiers (and mainly used in tables). The functions introduced
in this section can be used to convert between CFITSIO and Gnuastro’s type identifiers.

One important issue to consider is that CFITSIO’s types are not fixed width (for example
long may be 32-bits or 64-bits on different systems). However, Gnuastro’s types are defined



Chapter 10: Library 300

by their width. These functions will use information on the host system to do the proper
conversion, so it strongly recommended to use these functions for portability of your code
and not to assume a fixed correspondence between CFITSIO and Gnuastro’s types.

[Function]uint8_t
gal_fits_bitpix_to_type (int bitpix)

Return the Gnuastro type identifier that corresponds to CFITSIO’s bitpix on this
system.

[Function]int
gal_fits_type_to_bitpix (uint8 t type)

Return the CFITSIO bitpix value that corresponds to Gnuastro’s type.

[Function]char
gal_fits_type_to_bin_tform (uint8 t type)

Return the FITS standard binary table TFORM character that corresponds to Gnuas-
tro’s type.

[Function]int
gal_fits_type_to_datatype (uint8 t type)

Return the CFITSIO datatype that corresponds to Gnuastro’s type on this machine.

[Function]uint8_t
gal_fits_datatype_to_type (int datatype, int is_table_column)

Return Gnuastro’s type identifier that corresponds to the CFITSIO datatype. Note
that when dealing with CFITSIO’s TLONG, the fixed width type differs between tables
and images. So if the corresponding dataset is a table column, put a non-zero value
into is_table_column.

10.3.8.3 FITS HDUs

A FITS file can contain multiple HDUs/extensions. The functions in this section can be used
to get basic information about the extensions or open them. Note that fitsfile is defined
in CFITSIO’s fitsio.h which is automatically included by Gnuastro’s gnuastro/fits.h.

[Function]fitsfile *
gal_fits_open_to_write (char *filename)

If filename exists, open it and return the fitsfile pointer that corresponds to it. If
filename doesn’t exist, the file will be created which contains a blank first extension
and the pointer to its next extension will be returned.

[Function]size_t
gal_fits_hdu_num (char *filename)

Return the number of HDUs/extensions in filename.

[Function]int
gal_fits_hdu_format (char *filename, char *hdu)

Return the format of the HDU as one of CFITSIO’s recognized macros: IMAGE_HDU,
ASCII_TBL, or BINARY_TBL.
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[Function]fitsfile *
gal_fits_hdu_open (char *filename, char *hdu, int iomode)

Open the HDU/extension hdu from filename and return a pointer to CFITSIO’s
fitsfile. iomode determines how the FITS file will be opened using CFITSIO’s
macros: READONLY or READWRITE.

The string in hdu will be appended to filename in square brackets so CFITSIO only
opens this extension. You can use any formatting for the hdu that is acceptable to
CFITSIO. See the description under --hdu in Section 4.1.2.1 [Input/Output options],
page 69, for more.

[Function]fitsfile *
gal_fits_hdu_open_format (char *filename, char *hdu, int img0_tab1)

Open (in read-only format) the hdu HDU/extension of filename as an image or table.
When img0_tab1 is 0(zero) but the HDU is a table, this function will abort with an
error. It will also abort with an error when img0_tab1 is 1 (one), but the HDU is an
image.

A FITS HDU may contain both tables or images. When your program needs one of
these formats, you can call this function so if the user provided the wrong HDU/file,
it will abort and inform the user that the file/HDU is has the wrong format.

10.3.8.4 FITS header keywords

Each FITS extension/HDU contains a raw dataset which can either be a table or an image
along with some header keywords. The keywords can be used to store meta-data about
the actual dataset. The functions in this section describe Gnuastro’s high-level functions
for reading and writing FITS keywords. Similar to all Gnuastro’s FITS-related functions,
these functions are all wrappers for CFITSIO’s low-level functions.

The necessary meta-data (header keywords) for a particular dataset are commonly nu-
merous, it is much more efficient to list them in one variable and call the reading/writing
functions once. Hence the functions in this section use linked lists, a thorough introduc-
tion to them is given in Section 10.3.7 [Linked lists (list.h)], page 286. To reading FITS
keywords, these functions use a list of Gnuastro’s generic dataset format that is discussed
in Section 10.3.7.9 [List of gal_data_t], page 297. To write FITS keywords we define the
gal_fits_list_key_t node that is defined below.

[Type (C struct)]gal_fits_list_key_t
Structure for writing FITS keywords. This structure is used for one keyword and you
don’t need to set all elements. With the next element, you can link it to another
keyword thus creating a linked list to add any number of keywords easily and at any
step during your program (see Section 10.3.7 [Linked lists (list.h)], page 286, for an
introduction on lists). See the functions below for adding elements to the list.

typedef struct gal_fits_list_key_t

{

int kfree; /* ==1, free name. */

int vfree; /* ==1, free value. */

int cfree; /* ==1, free comment. */

uint8_t type; /* Keyword value type. */
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char *keyname; /* Keyword Name. */

void *value; /* Keyword value. */

char *comment; /* Keyword comment. */

char *unit; /* Keyword unit. */

struct gal_fits_list_key_t *next; /* Next keyword. */

} gal_fits_list_key_t;

[Function]void *
gal_fits_key_img_blank (uint8 t type)

Returns a pointer to an allocated space for the FITS BLANK header keyword when the
input array has a type of type.

According to the FITS standard: “If the BSCALE and BZERO keywords do not have the
default values of 1.0 and 0.0, respectively, then the value of the BLANK keyword must
equal the actual value in the FITS data array that is used to represent an undefined
pixel and not the corresponding physical value”. Therefore a special BLANK value is
needed for datasets containing signed 8-bit integers and unsigned 16-bit, 32-bit and
64-bit integers (types that are defined with BSCALE and BZERO in the FITS standard).

[Function]void
gal_fits_key_clean_str_value (char *string)

Remove the single quotes and possible extra spaces around the keyword values that
CFITSIO returns when reading a string keyword. CFITSIO doesn’t remove the two
single quotes around the string value of a keyword. Hence the strings it reads are like:
’value ’, or ’some_very_long_value’. To use the value during your processing, it
is commonly necessary to remove the single quotes (and possible extra spaces). This
function will do this within the allocated space of the string.

[Function]void
gal_fits_key_read_from_ptr (fitsfile *fptr, gal data t *keysll, int

readcomment, int readunit)
Read the list of keyword values from a FITS pointer. The input should be a linked
list of Gnuastro’s generic data container (gal_data_t). Before calling this function,
you just have to set the name and desired type values of each node in the list to the
keyword you want it to keep the value of. The given name value will be directly passed
to CFITSIO to read the desired keyword name. This function will allocate space to
keep the value. If readcomment and readunit are non-zero, this function will also
try to read the possible comments and units of the keyword.

Here is one example of using this function:

/* Allocate an array of datasets. */

gal_data_t *keysll=gal_data_array_calloc(N);

/* Use the array as a list.*/

for(i=0;i<N-2;++i) keysll[i].next=keysll[i+1];

/* Fill the datasets with a ‘name’ and a ‘type’. */

keysll[0].name="NAME1"; keysll[0].type=GAL_TYPE_INT32;

keysll[1].name="NAME2"; keysll[1].type=GAL_TYPE_STRING;
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...

...

/* Call this function. */

gal_fits_key_read_from_ptr(fptr, keysll, 0, 0);

/* Use the values as you like... */

/* Free all the allocated spaces. */

gal_data_array_free(keysll, N, 1);

If the array pointer of each keyword’s dataset is not NULL, then it is assumed that
the space to keep the value has already been allocated. If it is NULL, space will be
allocated for the value by this function.

Strings need special consideration: the reason is that generally, gal_data_t needs to
also allow for array of strings (as it supports arrays of integers for example). Hence
when reading a string value, two allocations may be done by this function (one if
array!=NULL).

Therefore, when using the values of strings after this function, keysll[i].array

must be interpretted as char **: one allocation for the pointer, one for the actual
characters. If you use something like the example, above you don’t have to worry
about the freeing, gal_data_array_free will free both allocations. So to read a
string, one easy way would be the following:

char *str, **strarray;

strarr = keysll[i].array;

str = strarray[0];

If CFITSIO is unable to read a keyword for any reason the status element of the
respective gal_data_t will be non-zero. If it is zero, then the keyword was found and
successfully read. Otherwise, it is a CFITSIO status value. You can use CFITSIO’s
error reporting tools or gal_fits_io_error (see Section 10.3.8.1 [FITS Macros, er-
rors and filenames], page 299) for reporting the reason of the failure. A tip: when the
keyword doesn’t exist, CFITSIO’s status value will be KEY_NO_EXIST.

CFITSIO will start searching for the keywords from the last place in the header that
it searched for a keyword. So it is much more efficient if the order that you ask for
keywords is based on the order they are stored in the header.

[Function]void
gal_fits_key_read (char *filename, char *hdu, gal data t *keysll, int

readcomment, int readunit)
Same as gal_fits_read_keywords_fptr (see above), but accepts the filename and
HDU as input instead of an already opened CFITSIO fitsfile pointer.

[Function]void
gal_fits_key_list_add (gal fits list key t **list, uint8 t type, char

*keyname, int kfree, void *value, int vfree, char *comment, int cfree,
char *unit)

Add a keyword to the top of list of header keywords that need to be written into a
FITS file. In the end, the keywords will have to be freed, so it is important to know
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before hand if they were allocated or not (hence the presence of the arguments ending
in free). If the space for the respective element is not allocated, set these arguments
to 0 (zero).

Important note for strings: the value should be the pointer to the string its-self (char
*), not a pointer to a pointer (char **).

[Function]void
gal_fits_key_list_add_end (gal fits list key t **list, uint8 t type, char

*keyname, int kfree, void *value, int vfree, char *comment, int cfree,
char *unit)

Similar to gal_fits_key_list_add (see above) but add the keyword to the end of
the list. Use this function if you want the keywords to be written in the same order
that you add nodes to the list of keywords.

[Function]void
gal_fits_key_write_filename (char *keynamebase, char *filename,

gal fits list key t **list)
Put filename into the gal_fits_list_key_t list (possibly broken up into multi-
ple keywords) to later write into a HDU header. The keynamebase string will be
appended with a _N (N>0) and used as the keyword name.

The FITS standard sets a maximum length for the value of a keyword. This creates
problems with file names (which include directories). Because file names/addresses
can become very long. Therefore, when filename is longer than the maximum length
of a FITS keyword value, this function will break it into several keywords (breaking
up the string on directory separators).

[Function]void
gal_fits_key_write_wcsstr (fitsfile *fptr, char *wcsstr, int nkeyrec)

Write the WCS header string (produced with WCSLIB’s wcshdo function) into the
CFITSIO fitsfile pointer. nkeyrec is the number of FITS header keywords in
wcsstr. This function will put a few blank keyword lines along with a comment WCS
information before writing each keyword record.

[Function]void
gal_fits_key_write (fitsfile *fptr, gal fits list key t **keylist)

Write the list of keywords in keylist into the CFITSIO fitsfile.

[Function]void
gal_fits_key_write_version (fitsfile *fptr, gal fits list key t *headers, char

*program_name)
Write or update (all the) keyword(s) in headers into the FITS pointer, but also the
date, name of your program (program_name), along with the versions of CFITSIO,
WCSLIB (when available), GSL, Gnuastro, and (the possible) commit information
into the header as described in Section 4.9 [Output headers], page 96.

Since the data processing depends on the versions of the libraries you have used, it is
strongly recommended to include this information in every FITS output. gal_fits_
img_write and gal_fits_tab_write will automatically use this function.
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10.3.8.5 FITS arrays (images)

Images (or multi-dimensional arrays in general) are one of the common data formats that
is stored in FITS files. Only one image may be stored in each FITS HDU/extension. The
functions described here can be used to get the information of, read, or write images in
FITS files.

[Function]void
gal_fits_img_info (fitsfile *fptr, int *type, size t *ndim, size t **dsize, char

**name, char **unit)
Read the type (see Section 10.3.3 [Library data types (type.h)], page 269), number of
dimensions, and size along each dimension of the CFITSIO fitsfile into the type,
ndim, and dsize pointers respectively. If name and unit are not NULL (point to a
char *), then if the image has a name and units, the respective string will be put in
these pointers.

[Function]gal_data_t *
gal_fits_img_read (char *filename, char *hdu, size t minmapsize, size t

hstartwcs, size t hendwcs)
Read the contents of the hdu extension/HDU of filename into a Gnuastro generic
data container (see Section 10.3.5.1 [Generic data container (gal_data_t)], page 276)
and return it. If the necessary space is larger than minmapsize, then don’t keep
the data in RAM, but in a file on the HDD/SSD. For more on minmapsize see
the description under the same name in Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276.

The hstartwcs and hendwcs arguments are the starting and ending header key-
words to search for WCS information, if no limit is needed, set them to zero. For
more on these two options, please see the description of gal_wcs_read_fitsptr in
Section 10.3.9 [World Coordinate System (wcs.h)], page 308.

[Function]gal_data_t *
gal_fits_img_read_to_type (char *inputname, char *inhdu, uint8 t type,

size t minmapsize, )
Read the contents of the hdu extension/HDU of filename into a Gnuastro generic
data container (see Section 10.3.5.1 [Generic data container (gal_data_t)], page 276)
of type type and return it.

This is just a wrapper around gal_fits_img_read (to read the image/array of any
type) and gal_data_copy_to_new_type_free (to convert it to type and free the
initially read dataset). See the description there for more.

[Function]gal_data_t *
gal_fits_img_read_kernel (char *filename, char *hdu, size t minmapsize)

Read the hdu of filename as a convolution kernel. A convolution kernel must have
an odd size along all dimensions, it must not have blank (NaN in floating point
types) values and must be flipped around the center to make the proper convolution
(see Section 6.3.1.1 [Convolution process], page 136). If there are blank values, this
function will change the blank values to 0.0. If the input image doesn’t have the other
two requirements, this function will abort with an error describing the condition to
the user. The finally returned dataset will have a float32 type.
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[Function]fitsfile *
gal_fits_img_write_to_ptr (gal data t *input, char *filename)

Write the input dataset into a FITS file named filename and return the correspond-
ing CFITSIO fitsfile pointer. This function won’t close fitsfile, so you can still
add other extensions to it after this function or make other modifications.

[Function]void
gal_fits_img_write (gal data t *data, char *filename, gal fits list key t

*headers, char *program_string)
Write the input dataset into the FITS file named filename. Also add the headers

keywords to the newly created HDU/extension it along with your program’s name
(program_string).

[Function]void
gal_fits_img_write_to_type (gal data t *data, char *filename,

gal fits list key t *headers, char *program_string, int type)
Convert the input dataset into type, then write it into the FITS file named filename.
Also add the headers keywords to the newly created HDU/extension along with your
program’s name (program_string). After the FITS file is written, this function will
free the copied dataset (with type type) from memory.

This is just a wrapper for the gal_data_copy_to_new_type and gal_fits_img_

write functions.

[Function]void
gal_fits_img_write_corr_wcs_str (gal data t *data, char *filename, char

*wcsstr, int nkeyrec, double *crpix, gal fits list key t *headers, char
*program_string)

Write the input dataset into filename using the wcsstr while correcting the CRPIX
values.

This function is mainly useful when you want to make FITS files in parallel (from one
main WCS structure, with just differing CRPIX). This can happen in the following
cases for example:

• When a large number of FITS images (with WCS) need to be created in parallel,
it can be much more efficient to write the header’s WCS keywords once at first,
write them in the FITS file, then just correct the CRPIX values.

• WCSLIB’s header writing function is not thread safe. So when writing FITS
images in parallel, we can’t write the header keywords in each thread.

10.3.8.6 FITS tables

Tables are one of the common formats of data that is stored in FITS files. Only one table
may be stored in each FITS HDU/extension, but each table column must be viewed as a
different dataset (with its own name, units and numeric data type for example). The only
constraint of the column datasets in a table is that they must be one-dimensional and have
the same number of elements as the other columns. The functions described here can be
used to get the information of, read, or write columns into FITS tables.
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[Function]void
gal_fits_tab_size (fitsfile *fitsptr, size t *nrows, size t *ncols)

Read the number of rows and columns in the table within CFITSIO’s fitsptr.

[Function]int
gal_fits_tab_format (fitsfile *fitsptr)

Return the format of the FITS table contained in CFITSIO’s fitsptr. Recall that
FITS tables can be in binary or ASCII formats. This function will return GAL_TABLE_

FORMAT_AFITS or GAL_TABLE_FORMAT_BFITS (defined in Section 10.3.11 [Table input
output (table.h)], page 312). If the fitsptr is not a table, this function will abort
the program with an error message informing the user of the problem.

[Function]gal_data_t *
gal_fits_tab_info (char *filename, char *hdu, size t *numcols, size t

*numrows, int *tableformat)
Store the information of each column in hdu of filename into an array of data struc-
tures with numcols elements (one data structure for each column) see Section 10.3.5.3
[Arrays of datasets], page 282. The total number of rows in the table is also put into
the memory that numrows points to. The format of the table (e.g., FITS binary or
ASCII table) will be put in tableformat (macros defined in Section 10.3.11 [Table
input output (table.h)], page 312).

This function is just for column information. Therefore it only stores meta-data like
column name, units and comments. No actual data (contents of the columns for
example the array or dsize elements) will be allocated by this function. This is
a low-level function particular to reading tables in FITS format. To be generic, it
is recommended to use gal_table_info which will allow getting information from a
variety of table formats based on the filename (see Section 10.3.11 [Table input output
(table.h)], page 312).

[Function]gal_data_t *
gal_fits_tab_read (char *filename, char *hdu, size t numrows, gal data t

*colinfo, gal list sizet t *indexll, int minmapsize)
Read the columns given in the list indexll from a FITS table into a linked list of
data structures, see Section 10.3.7.3 [List of size_t], page 290, and Section 10.3.7.9
[List of gal_data_t], page 297. If the necessary space for each column is larger
than minmapsize, don’t keep it in the RAM, but in a file in the HDD/SSD, see
the description under the same name in Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276.

Note that this is a low-level function, so the output data linked list is the inverse of
the input indexs linked list. It is recommended to use gal_table_read for generic
reading of tables, see Section 10.3.11 [Table input output (table.h)], page 312.

[Function]void
gal_fits_tab_write (gal data t *cols, gal list str t *comments, int

tableformat, char *filename)
Write the list of datasets in cols (see Section 10.3.7.9 [List of gal_data_t], page 297)
as separate columns in a FITS table in filename. If filename already exists then
this function will write the table as a new extension after all existing ones. The
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format of the table (ASCII or binary) may be specified with the tableformat (see
Section 10.3.11 [Table input output (table.h)], page 312). If comments!=NULL, each
node of the list of strings will be written as a COMMENT keywords in the output FITS
file (see Section 10.3.7.1 [List of strings], page 287.

This is a low-level function for tables. It is recommended to use gal_table_write

for generic writing of tables in a variety of formats, see Section 10.3.11 [Table input
output (table.h)], page 312.

10.3.9 World Coordinate System (wcs.h)

The FITS standard defines the world coordinate system (WCS) as a mechanism to associate
physical values to positions within a dataset. For example, it can be used to convert pixel
coordinates in an image to celestial coordinates like the right ascension and declination.
The functions in this section are mainly just wrappers over CFITSIO, WCSLIB and GSL
library functions to help in common applications.

[Function]struct wcsprm *
gal_wcs_read_fitsptr (fitsfile *fptr, size t hstartwcs, size t hendwcs, int

*nwcs)
[Not thread-safe] Return the WCSLIB wcsprm structure that is read from the CFIT-
SIO fptr pointer to an opened FITS file. Also put the number of coordinate rep-
resentations found into the space that nwcs points to. To read the WCS structure
directly from a filename, see gal_wcs_read below. After processing has finished, you
can free the returned structure with WCSLIB’s wcsvfree keyword:

status = wcsvfree(&nwcs,&wcs);

If you don’t want to search the full FITS header for WCS-related FITS keywords
(for example due to conflicting keywords), but only a specific range of the header
keywords you can use the hstartwcs and hendwcs arguments to specify the keyword
number range (counting from zero). If hendwcs is larger than hstartwcs, then only
keywords in the given range will be checked. Hence, to ignore this feature (and search
the full FITS header), give both these arguments the same value.

If the WCS information couldn’t be read from the FITS file, this function will return
a NULL pointer and put a zero in nwcs. A WCSLIB error message will also be printed
in stderr if there was an error.

This function is just a wrapper over WCSLIB’s wcspih function which is not thread-
safe. Therefore, be sure to not call this function simultaneously (over multiple
threads).

[Function]struct wcsprm *
gal_wcs_read (char *filename, char *hdu, size t hstartwcs, size t hendwcs, int

*nwcs)
[Not thread-safe] Return the WCSLIB structure that is read from the HDU/extension
hdu of the file filename. Also put the number of coordinate representations found
into the space that nwcs points to. Please see gal_wcs_read_fitsptr for more.

[Function]struct wcsprm *
gal_wcs_copy (struct wcsprm *wcs)

Return a fully allocated (independent) copy of wcs.
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[Function]void
gal_wcs_on_tile (gal data t *tile)

Create a WCSLIB wcsprm structure for tile using WCS parameters of the tile’s
allocated block dataset, see Section 10.3.13 [Tessellation library (tile.h)], page 319,
for the definition of tiles. If tile already has a WCS structure, this function won’t
do anything.

In many cases, tiles are created for internal/low-level processing. Hence for perfor-
mance reasons, when creating the tiles they don’t have any WCS structure. When
needed, this function can be used to add a WCS structure to each tile tile by copying
the WCS structure of its block and correcting the reference point’s coordinates within
the tile.

[Function]double *
gal_wcs_warp_matrix (struct wcsprm *wcs)

Return the Warping matrix of the given WCS structure as an array of double precision
floating points. This will be the final matrix, irrespective of the type of storage in
the WCS structure. Recall that the FITS standard has several methods to store the
matrix. The output is an allocated square matrix with each side equal to the number
of dimensions.

[Function]void
gal_wcs_decompose_pc_cdelt (struct wcsprm *wcs)

Decompose the PCi_j and CDELTi elements of wcs. According to the FITS standard,
in the PCi_j WCS formalism, the rotation matrix elements mij are encoded in the
PCi_j keywords and the scale factors are encoded in the CDELTi keywords. There is
also another formalism (the CDi_j formalism) which merges the two into one matrix.

However, WCSLIB’s internal operations are apparently done in the PCi_j formalism.
So its outputs are also all in that format by default. When the input is a CDi_j,
WCSLIB will still read the matrix directly into the PCi_j matrix and the CDELTi

values are set to 1 (one). This function is designed to correct such issues: after it is
finished, the CDELTi values in wcs will correspond to the pixel scale, and the PCi_j

will correction show the rotation.

[Function]double
gal_wcs_angular_distance_deg (double r1, double d1, double r2, double d2)

Return the angular distance (in degrees) between a point located at (r1, d1) to (r2,
d2). All input coordinates are in degrees. The distance (along a great circle) on a
sphere between two points is calculated with the equation below.

cos(d) = sin(d1) sin(d2) + cos(d1) cos(d2) cos(r1 − r2)

However, since the the pixel scales are usually very small numbers, this function
won’t use that direct formula. It will be use the Haversine formula (https://en.
wikipedia.org/wiki/Haversine_formula) which is better considering floating point
errors:

https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
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[Function]double *
gal_wcs_pixel_scale (struct wcsprm *wcs)

Return the pixel scale for each dimension of wcs in degrees. The output is an array
of double precision floating point type with one element for each dimension.

[Function]double
gal_wcs_pixel_area_arcsec2 (struct wcsprm *wcs)

Return the pixel area of wcs in arcsecond squared. If the input WCS structure is not
two dimensional and the units (CUNIT keywords) are not deg (for degrees), then this
function will return a NaN.

[Function]gal_data_t *
gal_wcs_world_to_img (gal data t *coords, struct wcsprm *wcs, int inplace)

Convert the linked list of world coordinates in coords to a linked list of image coordi-
nates given the input WCS structure. coords must be a linked list of data structures
of float64 (‘double’) type, seeSection 10.3.7 [Linked lists (list.h)], page 286, and
Section 10.3.7.9 [List of gal_data_t], page 297. The top (first popped/read) node of
the linked list must be the first WCS coordinate (RA in an image usually) and etc.
Similarly, the top node of the output will be the first image coordinate (in the FITS
standard).

If inplace is zero, then the output will be a newly allocated list and the input list
will be untouched. However, if inplace is non-zero, the output values will be written
into the input’s already allocated array and the returned pointer will be the same
pointer to coords (in other words, you can ignore the returned value). Note that in
the latter case, only the values will be changed, things like units or name (if present)
will be untouched.

[Function]gal_data_t *
gal_wcs_img_to_world (gal data t *coords, struct wcsprm *wcs, int inplace)

Convert the linked list of image coordinates in coords to a linked list of world coordi-
nates given the input WCS structure. See the description of gal_wcs_world_to_img
for more details.

10.3.10 Text files (txt.h)

FITS files are the primary data container in astronomy. FITS indeed as many useful
features, but the most universal and portable format for data storage are plain text files.
They can be viewed and edited on any text editor or even on the command-line. Therefore
the functions in this section are defined to simplify reading from and writing to plain text
files.

Lines are one of the most basic buiding blocks (delimiters) of a text file. Some operating
systems like Microsoft Windows, terminate their ASCII text lines with a carriage return
character and a new-line character (two characters, also known as CRLF line terminators).
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While Unix-like operating systems just use a single new-line character. The functions below
that read an ASCII text file are able to identify lines with both kinds of line terminators.

Gnuastro defines a simple format for metadata of table columns in a plain text file that
is discussed in Section 4.5.2 [Gnuastro text table format], page 87. The functions to get
information from, read from and write to plain text files also follow those conventions.

[Macro]GAL_TXT_LINESTAT_INVALID
[Macro]GAL_TXT_LINESTAT_BLANK
[Macro]GAL_TXT_LINESTAT_COMMENT
[Macro]GAL_TXT_LINESTAT_DATAROW

Status codes for lines in a plain text file that are returned by gal_txt_line_stat.
Lines which have a # character as their first non-white character are considered to be
comments. Lines with nothing but white space characters are considered blank. The
remaining lines are considered as containing data.

[Function]int
gal_txt_line_stat (char *line)

Check the contents of line and see if it is a blank, comment, or data line. The
returned values are the macros that start with GAL_TXT_LINESTAT.

[Function]gal_data_t *
gal_txt_table_info (char *filename, size t *numcols, size t *numrows)

Store the information of each column in filename into an array of data structures
with numcols elements (one data structure for each column) see Section 10.3.5.3
[Arrays of datasets], page 282. The total number of rows in the table is also put into
the memory that numrows points to.

This function is just for column information. Therefore it only stores meta-data like
column name, units and comments. No actual data (contents of the columns for
example the array or dsize elements) will be allocated by this function. This is a
low-level function particular to reading tables in plain text format. To be generic,
it is recommended to use gal_table_info which will allow getting information from
a variety of table formats based on the filename (see Section 10.3.11 [Table input
output (table.h)], page 312).

[Function]gal_data_t *
gal_txt_table_read (char *filename, size t numrows, gal data t *colinfo,

gal list sizet t *indexll, size t minmapsize)
Read the columns given in the list indexll from a plain text table into a linked list of
data structures, see Section 10.3.7.3 [List of size_t], page 290, and Section 10.3.7.9
[List of gal_data_t], page 297. If the necessary space for each column is larger
than minmapsize, don’t keep it in the RAM, but in a file on the HDD/SSD, see
the description under the same name in Section 10.3.5.1 [Generic data container
(gal_data_t)], page 276.

Note that this is a low-level function, so the output data list is the inverse of the input
indexs linked list. It is recommended to use gal_table_read for generic reading of
tables in any format, see Section 10.3.11 [Table input output (table.h)], page 312.
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[Function]gal_data_t *
gal_txt_image_read (char *filename, size t minmapsize)

Read the 2D plain text dataset in filename into a dataset and return the dataset.
If the necessary space for the image is larger than minmapsize, don’t keep it in the
RAM, but in a file on the HDD/SSD, see the description under the same name in
Section 10.3.5.1 [Generic data container (gal_data_t)], page 276.

[Function]void
gal_txt_write (gal data t *cols, gal list str t *comment, char *filename)

Write cols in a plain text file filename. cols may have one or two dimensions which
determines the output:

1D cols is treated as a column and a list of datasets (see Section 10.3.7.9
[List of gal_data_t], page 297): every node in the list is written as one
column in a table.

2D cols is a two dimensional array, it cannot be treated as a list (only one
2D array can currently be written to a text file). So if cols->next!=NULL
the next nodes in the list are ignored and will not be written.

If filename already exists this function will abort with an error and will not write
over the existing file. Please make sure if the file exists or not and take the appropriate
action before calling this function. If comments!=NULL, a # will be put at the start
of each node of the list of strings and will be written in the file before the column
meta-data in filename (see Section 10.3.7.1 [List of strings], page 287).

This is a low-level function for tables. It is recommended to use gal_table_write

for generic writing of tables in a variety of formats, see Section 10.3.11 [Table input
output (table.h)], page 312.

10.3.11 Table input output (table.h)

Tables are a collection of one dimensional datasets that are packed together into one file.
They are the single most common format to store high-level (processed) information, hence
they play a very important role in Gnuastro. For a more thorough introduction, please see
Section 5.3 [Table], page 112. Gnuastro’s Table program, and all the other programs that
can read from and write into tables, use the functions of this section for reading and writing
their input/output tables. For a simple demonstration of using the constructs introduced
here, see Section 10.4.4 [Library demo - reading and writing table columns], page 352.

Currently only plain text (see Section 4.5.2 [Gnuastro text table format], page 87) and
FITS (ASCII and binary) tables are supported by Gnuastro. However, the low-level table
infra-structure is written such that accommodating other formats is also possible and in
future releases more formats will hopefully be supported. Please don’t hesitate to suggest
your favorite format so it can be implemented when possible.

[Macro]GAL_TABLE_DEF_WIDTH_STR
[Macro]GAL_TABLE_DEF_WIDTH_INT
[Macro]GAL_TABLE_DEF_WIDTH_LINT
[Macro]GAL_TABLE_DEF_WIDTH_FLT
[Macro]GAL_TABLE_DEF_WIDTH_DBL
[Macro]GAL_TABLE_DEF_PRECISION_INT
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[Macro]GAL_TABLE_DEF_PRECISION_FLT
[Macro]GAL_TABLE_DEF_PRECISION_DBL

The default width and precision for generic types to use in writing numeric types into
a text file (plain text and FITS ASCII tables). When the dataset doesn’t have any
pre-set width and precision (see disp_width and disp_precision in Section 10.3.5.1
[Generic data container (gal_data_t)], page 276) these will be directly used in C’s
printf command to write the number as a string.

[Macro]GAL_TABLE_DISPLAY_FMT_STRING
[Macro]GAL_TABLE_DISPLAY_FMT_DECIMAL
[Macro]GAL_TABLE_DISPLAY_FMT_UDECIMAL
[Macro]GAL_TABLE_DISPLAY_FMT_OCTAL
[Macro]GAL_TABLE_DISPLAY_FMT_HEX
[Macro]GAL_TABLE_DISPLAY_FMT_FLOAT
[Macro]GAL_TABLE_DISPLAY_FMT_EXP
[Macro]GAL_TABLE_DISPLAY_FMT_GENERAL

The display format used in C’s printf to display data of different types. The _

STRING and _DECIMAL are unique for printing strings and signed integers, they are
mainly here for completeness. However, unsigned integers and floating points can be
displayed in multiple formats:

Unsigned integer
For unsigned integers, it is possible to choose from _UDECIMAL (unsigned
decimal), _OCTAL (octal notation, for example 125 in decimal will be
displayed as 175), and _HEX (hexadecimal notation, for example 125 in
decimal will be displayed as 7D).

Floating point
For floating point, it is possible to display the number in _FLOAT

(floating point, for example 1500.345), _EXP (exponential, for example
1.500345e+03), or _GENERAL which is the best of the two for the given
number.

[Macro]GAL_TABLE_FORMAT_INVALID
[Macro]GAL_TABLE_FORMAT_TXT
[Macro]GAL_TABLE_FORMAT_AFITS
[Macro]GAL_TABLE_FORMAT_BFITS

All the current acceptable table formats to Gnuastro. The AFITS and BFITS represent
FITS ASCII tables and FITS Binary tables. You can use these anywhere you see the
tableformat variable.

[Macro]GAL_TABLE_SEARCH_INVALID
[Macro]GAL_TABLE_SEARCH_NAME
[Macro]GAL_TABLE_SEARCH_UNIT
[Macro]GAL_TABLE_SEARCH_COMMENT

When the desired column is not a number, these values determine if the string to
match, or regular expression to search, be in the name, units or comments of the
column meta data. These values should be used for the searchin variables of the
functions.
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[Function]gal_data_t *
gal_table_info (char *filename, char *hdu, size t *numcols, size t *numrows,

int *tableformat)
Store the information of each column in a table (either as a text file or as a FITS
table) into an array of data structures with numcols structures (one data structure
for each column). The number of rows is stored in the space that numrows points to.
The format of the table (e.g., ascii text file, or FITS binary or ASCII table) will be
put in tableformat (macros defined above). If the filename is not a FITS file, then
hdu will not be used (can be NULL).

Note that other than the character strings (column name, units and comments),
nothing in the data structure(s) will be allocated by this function for the actual data
(e.g., the ‘array’ or ‘dsize’ elements). This function is just for column information
(meta-data), not column contents.

[Function]void
gal_table_print_info (gal data t *allcols, size t numcols, size t numrows)

This program will print the column information for all the columns (output of gal_
table_info). The output is in the same format as this command with Gnuastro
Table program (see Section 5.3 [Table], page 112):

$ asttable --info table.fits

[Function]gal_data_t *
gal_table_read (char *filename, char *hdu, gal list str t *cols, int searchin,

int ignorecase, int minmapsize, size t colmatch)
Read the specified columns in a text file (named filename) into a linked list of data
structures. If the file is FITS, then hdu will also be used, otherwise, hdu is ignored.

The information to search for columns should be specified by the cols list of strings
(see Section 10.3.7.1 [List of strings], page 287). The string in each node of the list
may be a number, an exact match to a column name, or a regular expression (in
GNU AWK format) enclosed in / /. The searchin value must be one of the macros
defined above. If cols is NULL, then this function will read the full table.

The output is an individually allocated list of datasets (see Section 10.3.7.9 [List
of gal_data_t], page 297) with the same order of the cols list. Note that one
column node in the cols list might give multiple columns (for example from regular
expressions), in this case, the order of output columns that correspond to that one
input, are in order of the table (which column was read first). So the first requested
column is the first popped data structure and so on.

if colmatch!=NULL, it is assumed to be an array that has at least the same number of
elements as nodes in the cols list. The number of columns that matched each input
column will be stored in each element.

[Function]void
gal_table_comments_add_intro (gal list str t **comments, char

*program_string, time t *rawtime)
Add some basic information to the list of comments. This basic information includes
the following information
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• If the program is run in a Git version controlled directory, Git’s description is
printed (see description under COMMIT in Section 4.9 [Output headers], page 96).

• The calendar time that is stored in rawtime (time_t is C’s calendar time format
defined in time.h). You can calculate the time in this format with the following
expressions:

time_t rawtime;

time(&rawtime);

• The name of your program in program_string. If it is NULL, this line is ignored.

[Function]void
gal_table_write (gal data t *cols, gal list str t *comments, int tableformat,

char *filename, char *extname)
Write the cols list of datasets into a table in filename (see Section 10.3.7.9
[List of gal_data_t], page 297). The format of the table can be determined with
tableformat that accepts the macros defined above. If comments is not NULL, then
the list of comments will also be printed into the output table. When the output
table is a plain text file, each node’s string will be printed after a # (so it can be
considered as a comment) and in FITS table they will follow a COMMENT keyword. If
filename is a FITS file, the table extension that will be written will have the name
extname.

If a file named filename already exists, the operation depends on the type of output.
When filename is a FITS file, the table will be added as a new extension after all
existing ones. If filename is a plain text file, this function will abort with an error.

[Function]void
gal_table_write_log (gal data t *logll, char *program_string, time t

*rawtime, gal list str t *comments, char *filename, int quiet)
Write the logll list of datasets into a table in filename (see Section 10.3.7.9 [List
of gal_data_t], page 297). This function is just a wrapper around gal_table_

comments_add_intro and gal_table_write (see above). If quiet is non-zero, this
function will print a message saying that the filename has been created.

10.3.12 Arithmetic on datasets (arithmetic.h)

When the dataset’s type and other information are already known, any programming lan-
guage (including C) provides some very good tools for various operations (including arith-
metic operations like addition) on the dataset with a simple loop. However, as an author
of a program, making assumptions about the type of data, its dimensions and other basic
characteristics will come with a large processing burden.

For example if you always read your data as double precision floating points for a simple
operation like addition with an integer constant, you will be wasting a lot of CPU and
memory when the input dataset is int32 type for example (see Section 4.4 [Numeric data
types], page 82). This overhead may be small for small images, but as you scale your process
up and work with hundred/thousands of files that can be very large, this overhead will take
a significant portion of the processing power. The functions and macros in this section are
designed precisely for this purpose: to allow you to do any of the defined operations on any
dataset with no overhead (in the native type of the dataset).
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Gnuastro’s Arithmetic program uses the functions and macros of this section, so please
also have a look at the Section 6.2 [Arithmetic], page 125, program and in particular
Section 6.2.2 [Arithmetic operators], page 126, for a better description of the operators
discussed here.

The main function of this library is gal_arithmetic that is described below. It can
take an arbitrary number of arguments as operands (depending on the operator, similar
to printf). Its first two arguments are integers specifying the flags and operator. So first
we will review the constants for the recognized flags and operators and discuss them, then
introduce the actual function.

[Macro]GAL_ARITHMETIC_INPLACE
[Macro]GAL_ARITHMETIC_FREE
[Macro]GAL_ARITHMETIC_NUMOK
[Macro]GAL_ARITHMETIC_FLAGS_ALL

Bit-wise flags to pass onto gal_arithmetic (see below). To pass multiple flags, use
the bitwise-or operator, for example GAL_ARITHMETIC_INPLACE | GAL_ARITHMETIC_

FREE. GAL_ARITHMETIC_FLAGS_ALL is a combination of all flags to shorten your code
if you want all flags activated. Each flag is described below:

GAL_ARITHMETIC_INPLACE

Do the operation in-place (in the input dataset, thus modifying it) to im-
prove CPU and memory usage. If this flag is used, after gal_arithmetic
finishes, the input dataset will be modified. It is thus useful if you have
no more need for the input after the operation.

GAL_ARITHMETIC_FREE

Free (all the) input dataset(s) after the operation is done. Hence the
inputs are no longer usable after gal_arithmetic.

GAL_ARITHMETIC_NUMOK

It is acceptable to use a number and an array together. For example if
you want to add all the pixels in an image with a single number you can
pass this flag to avoid having to allocate a constant array the size of the
image (with all the pixels having the same number).

[Macro]GAL_ARITHMETIC_OP_PLUS
[Macro]GAL_ARITHMETIC_OP_MINUS
[Macro]GAL_ARITHMETIC_OP_MULTIPLY
[Macro]GAL_ARITHMETIC_OP_DIVIDE
[Macro]GAL_ARITHMETIC_OP_LT
[Macro]GAL_ARITHMETIC_OP_LE
[Macro]GAL_ARITHMETIC_OP_GT
[Macro]GAL_ARITHMETIC_OP_GE
[Macro]GAL_ARITHMETIC_OP_EQ
[Macro]GAL_ARITHMETIC_OP_NE
[Macro]GAL_ARITHMETIC_OP_AND
[Macro]GAL_ARITHMETIC_OP_OR

Binary operators (requiring two operands) that accept datasets of any recognized type
(see Section 4.4 [Numeric data types], page 82). When gal_arithmetic is called with
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any of these operators, it expects two datasets as arguments. For a full description
of these operators with the same name, see Section 6.2.2 [Arithmetic operators],
page 126. The first dataset/operand will be put on the left of the operator and the
second will be put on the right. The output type of the first four is determined
from the input types (largest type of the inputs). The rest (which are all conditional
operators) will output a binary uint8_t (or unsigned char) dataset with values of
either 0 (zero) or 1 (one).

[Macro]GAL_ARITHMETIC_OP_NOT
The logical NOT operator. When gal_arithmetic is called with this operator, it
only expects one operand (dataset), since this is a unary operator. The output is
uint8_t (or unsigned char) dataset of the same size as the input. Any non-zero
element in the input will be 0 (zero) in the output and any 0 (zero) will have a value
of 1 (one).

[Macro]GAL_ARITHMETIC_OP_ISBLANK
A unary operator with output that is 1 for any element in the input that is blank, and 0
for any non-blank element. When gal_arithmetic is called with this operator, it will
only expect one input dataset. The output dataset will have uint8_t (or unsigned
char) type.

gal_arithmetic with this operator is just a wrapper for the gal_blank_flag func-
tion of Section 10.3.4 [Library blank values (blank.h)], page 273, and this operator is
just included for completeness in arithmetic operations. So in your program, it might
be easier to just call gal_blank_flag.

[Macro]GAL_ARITHMETIC_OP_WHERE
The three-operand where operator thoroughly discussed in Section 6.2.2 [Arithmetic
operators], page 126. When gal_arithmetic is called with this operator, it will only
expect three input datasets: the first (which is the same as the returned dataset) is
the array that will be modified. The second is the condition dataset (that must have
a uint8_t or unsigned char type), and the third is the value to be used if condition
is non-zero.

As a result, note that the order of operands when calling gal_arithmetic with GAL_

ARITHMETIC_OP_WHERE is the opposite of running Gnuastro’s Arithmetic program
with the where operator (see Section 6.2 [Arithmetic], page 125). This is because the
latter uses the reverse-Polish notation which isn’t necessary when calling a function
(see Section 6.2.1 [Reverse polish notation], page 125).

[Macro]GAL_ARITHMETIC_OP_SQRT
[Macro]GAL_ARITHMETIC_OP_LOG
[Macro]GAL_ARITHMETIC_OP_LOG10

Unary operator functions for calculating the square root (
√
i), ln(i) and log(i) mathe-

matic operators on each element of the input dataset. The output will have the same
type as the input, so if your inputs are integer types be careful.

If you want your output to be floating point but your input is an integer type, you can
convert the input to a floating point type with gal_data_copy_to_new_type or gal_
data_copy_to_new_type_free(see Section 10.3.5.4 [Copying datasets], page 283).
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[Macro]GAL_ARITHMETIC_OP_MINVAL
[Macro]GAL_ARITHMETIC_OP_MAXVAL
[Macro]GAL_ARITHMETIC_OP_NUMVAL
[Macro]GAL_ARITHMETIC_OP_SUMVAL
[Macro]GAL_ARITHMETIC_OP_MEANVAL
[Macro]GAL_ARITHMETIC_OP_STDVAL
[Macro]GAL_ARITHMETIC_OP_MEDIANVAL

Unary operand statistical operators that will return a single value for datasets of any
size. These are just wrappers around similar functions in Section 10.3.19 [Statistical
operations (statistics.h)], page 336, and are included in gal_arithmetic only for
completeness (to use easily in Section 6.2 [Arithmetic], page 125). In your programs,
it will probably be easier if you use those gal_statistics_ functions directly.

[Macro]GAL_ARITHMETIC_OP_ABS
Unary operand absolute-value operator.

[Macro]GAL_ARITHMETIC_OP_MIN
[Macro]GAL_ARITHMETIC_OP_MAX
[Macro]GAL_ARITHMETIC_OP_NUM
[Macro]GAL_ARITHMETIC_OP_SUM
[Macro]GAL_ARITHMETIC_OP_MEAN
[Macro]GAL_ARITHMETIC_OP_STD
[Macro]GAL_ARITHMETIC_OP_MEDIAN

Multi-operand statistical operations. When gal_arithmetic is called with any of
these operators, it will expect only a single operand that will be interpretted as a
list of datasets (see Section 10.3.7.9 [List of gal_data_t], page 297. The output
will be a single dataset with each of its elements replaced by the respective statistical
operation on the whole list. See the discussion under the min operator in Section 6.2.2
[Arithmetic operators], page 126.

[Macro]GAL_ARITHMETIC_OP_POW
Binary operator to-power operator. When gal_arithmetic is called with any of these
operators, it will expect two operands: raising the first by the second. This operator
only accepts floating point inputs and the output is also floating point.

[Macro]GAL_ARITHMETIC_OP_BITAND
[Macro]GAL_ARITHMETIC_OP_BITOR
[Macro]GAL_ARITHMETIC_OP_BITXOR
[Macro]GAL_ARITHMETIC_OP_BITLSH
[Macro]GAL_ARITHMETIC_OP_BITRSH
[Macro]GAL_ARITHMETIC_OP_MODULO

Binary integer-only operand operators. These operators are only defined on integer
data types. When gal_arithmetic is called with any of these operators, it will expect
two operands: the first is put on the left of the operator and the second on the right.
The ones starting with BIT are the respective bit-wise operators in C and MODULO

is the modulo/remainder operator. For a discussion on these operators, please see
Section 6.2.2 [Arithmetic operators], page 126.
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The output type is determined from the input types and C’s internal conversions:
it is strongly recommended that both inputs have the same type (any integer type),
otherwise the bit-wise behavior will be determined by your compiler.

[Macro]GAL_ARITHMETIC_OP_BITNOT
The unary bit-wise NOT operator. When gal_arithmetic is called with any of these
operators, it will expect one operand of an integer type and preform the bitwise-NOT
operation on it. The output will have the same type as the input.

[Macro]GAL_ARITHMETIC_OP_TO_UINT8
[Macro]GAL_ARITHMETIC_OP_TO_INT8
[Macro]GAL_ARITHMETIC_OP_TO_UINT16
[Macro]GAL_ARITHMETIC_OP_TO_INT16
[Macro]GAL_ARITHMETIC_OP_TO_UINT32
[Macro]GAL_ARITHMETIC_OP_TO_INT32
[Macro]GAL_ARITHMETIC_OP_TO_UINT64
[Macro]GAL_ARITHMETIC_OP_TO_INT64
[Macro]GAL_ARITHMETIC_OP_TO_FLOAT32
[Macro]GAL_ARITHMETIC_OP_TO_FLOAT64

Unary type-conversion operators. When gal_arithmetic is called with any
of these operators, it will expect one operand and convert it to the requested
type. Note that with these operators, gal_arithmetic is just a wrapper over
the gal_data_copy_to_new_type or gal_data_copy_to_new_type_free that are
discussed in Copying datasets. It accepts these operators only for completeness
and easy usage in Section 6.2 [Arithmetic], page 125. So in your programs, it might
be preferable to directly use those functions.

[Function]gal_data_t *
gal_arithmetic (int operator, int flags, ...)

Do the arithmetic operation of operator on the given operands (the third argument
and any further argument). Certain special conditions can also be specified with the
flag operator. The acceptable values for operator are defined in the macros above.

gal_arithmetic is a multi-argument function (like C’s printf). In other words, the
number of necessary arguments is not fixed and depends on the value to operator.
Here are a few examples showing this variability:

out_1=gal_arithmetic(GAL_ARITHMETIC_OP_LOG, 0, in_1);

out_2=gal_arithmetic(GAL_ARITHMETIC_OP_PLUS, 0, in_1, in_2);

out_3=gal_arithmetic(GAL_ARITHMETIC_OP_WHERE, 0, in_1, in_2, in_3);

The number of necessary operands for each operator (and thus the number of neces-
sary arguments to gal_arithmetic) are described above under each operator.

10.3.13 Tessellation library (tile.h)

In many contexts, it is desirable to slice the dataset into subsets or tiles (overlapping or
not). In such a way that you can work on each tile independently. One method would be
to copy that region to a separate allocated space, but in many contexts this isn’t necessary
and in fact can be a big burden on CPU/Memory usage. The block pointer in Gnuastro’s
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Section 10.3.5.1 [Generic data container (gal_data_t)], page 276, is defined for such sit-
uations: where allocation is not necessary. You just want to read the data or write to it
independently (or in coordination with) other regions of the dataset. Added with parallel
processing, this can greatly improve the time/memory consumption.

See the figure below for example: assume the larger dataset is a contiguous block of
memory that you are interpreting as a 2D array. But you only want to work on the smaller
tile region.

larger

---------------------------------

| |

| tile |

| ---------- |

| | | |

| |_ | |

| |*| | |

| ---------- |

| tile->block = larger |

|_ |

|*| |

---------------------------------

To use gal_data_t’s block concept, you allocate a gal_data_t *tile which is initial-
ized with the pointer to the first element in the sub-array (as its array argument). Note
that this is not necessarily the first element in the larger array. You can set the size of the
tile along with the initialization as you please. Recall that, when given a non-NULL pointer
as array, gal_data_initialize (and thus gal_data_alloc) do not allocate any space
and just uses the given pointer for the new array element of the gal_data_t. So your tile
data structure will not be pointing to a separately allocated space.

After the allocation is done, you just point tile->block to the larger dataset which
hosts the full block of memory. Where relevant, Gnuastro’s library functions will check the
block pointer of their input dataset to see how to deal with dimensions and increments so
they can always remain within the tile. The tools introduced in this section are designed
to help in defining and working with tiles that are created in this manner.

Since the block structure is defined as a pointer, arbitrary levels of tessellation/grid-ing
are possible (tile->block may itself be a tile in an even larger allocated space). Therefore,
just like a linked-list (see Section 10.3.7 [Linked lists (list.h)], page 286), it is important to
have the block pointer of the largest (allocated) dataset set to NULL. Normally, you won’t
have to worry about this, because gal_data_initialize (and thus gal_data_alloc) will
set the block element to NULL by default, just remember not to change it. You can then
only change the block element for the tiles you define over the allocated space.

Below, we will first review constructs for Section 10.3.13.1 [Independent tiles], page 321,
and then define the current approach to fully tessellating a dataset (or covering every
pixel/data-element with a non-overlapping tile grid in Section 10.3.13.2 [Tile grid], page 326.
This approach to dealing with parts of a larger block was inspired from a similarly named
concept in the GNU Scientific Library (GSL), see its “Vectors and Matrices” chapter for
their implementation.
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10.3.13.1 Independent tiles

The most general application of tiles is to treat each independently, for example they may
overlap, or they may not cover the full image. This section provides functions to help in
checking/inspecting such tiles. In Section 10.3.13.2 [Tile grid], page 326, we will discuss
functions that define/work-with a tile grid (where the tiles don’t overlap and fully cover the
input dataset). Therefore, the functions in this section are general and can be used for the
tiles produced by that section also.

[Function]void
gal_tile_start_coord (gal data t *tile, size t *start_coord)

Calculate the starting coordinates of a tile in its allocated block of memory and
write them in the memory that start_coord points to (which must have tile->ndim
elements).

[Function]void
gal_tile_start_end_coord (gal data t *tile, size t *start_end, int

rel_block)
Put the starting and ending (end point is not inclusive) coordinates of tile into
the start_end array. It is assumed that a space of 2*tile->ndim has been already
allocated (static or dynamic) for start_end before this function is called.

rel_block (or relative-to-block) is only relevant when tile has an intermediate tile
between it and the allocated space (like a channel, see gal_tile_full_two_layers).
If it doesn’t (tile->block points the allocated dataset), then the value to rel_block
is irrelevant.

When tile->block is its self a larger block and rel_block is set to 0, then the
starting and ending positions will be based on the position within tile->block, not
the allocated space.

[Function]void *
gal_tile_start_end_ind_inclusive (gal data t *tile, gal data t *work, size t

*start_end_inc)
Put the indexs of the first/start and last/end pixels (inclusive) in a tile into the
start_end array (that must have two elements). NOTE: this function stores the
index of each point, not its coordinates. It will then return the pointer to the start of
the tile in the work data structure (which doesn’t have to be equal to tile->block.

The outputs of this function are defined to make it easy to parse over an n-dimensional
tile. For example, this function is one of the most important parts of the internal pro-
cessing of in GAL_TILE_PARSE_OPERATE function-like macro that is described below.

[Function]gal_data_t *
gal_tile_series_from_minmax (gal data t *block, size t *minmax, size t

number)
Construct a list of tile(s) given coordinates of the minimum and maximum of each
tile. The minimum and maximums are assumed to be inclusive. The returned pointer
is an allocated gal_data_t array that can later be freed with gal_data_array_free

(see Section 10.3.5.3 [Arrays of datasets], page 282). Internally, each element of the
output array points to the next element, so the output may also be treated as a list
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of datasets (see Section 10.3.7.9 [List of gal_data_t], page 297) and passed onto the
other functions described in this section.

The array keeping the minimum and maximum coordinates for each tile must have
the following format. So in total minmax must have 2*ndim*number elements.

| min0_d0 | min0_d1 | max0_d0 | max0_d1 | ...

... | minN_d0 | minN_d1 | maxN_d0 | maxN_d1 |

[Function]gal_data_t *
gal_tile_block (gal data t *tile)

Return the dataset that contains tile’s allocated block of memory. If tile is immedi-
ately defined as part of the allocated block, then this is equivalent to tile->block.
However, it is possible to have multiple layers of tiles (where tile->block is itself a
tile). So this function is the most generic way to get to the actual allocated dataset.

[Function]size_t
gal_tile_block_increment (gal data t *block, size t *tsize, size t

num_increment, size t *coord)
Return the increment necessary to start at the next contiguous patch memory associ-
ated with a tile. block is the allocated block of memory and tsize is the size of the
tile along every dimension. If coord is NULL, it is ignored. Otherwise, it will contain
the coordinate of the start of the next contiguous patch of memory.

This function is intended to be used in a loop and num_increment is the main variable
to this function. For the first time you call this function, it should be 1. In subsequent
calls (while you are parsing a tile), it should be increased by one.

[Function]gal_data_t *
gal_tile_block_write_const_value (gal data t *tilevalues, gal data t

*tilesll, int withblank, int initialize)
Write a constant value for each tile over the area it covers in an allocated dataset
that is the size of tile’s allocated block of memory (found through gal_tile_block

described above). The arguments to this function are:

tilevalues

This must be an array that has the same number of elements as the nodes
in in tilesll and in the same order that ‘tilesll’ elements are parsed (from
top to bottom, see Section 10.3.7 [Linked lists (list.h)], page 286). As
a result the array’s number of dimensions is irrelevant, it will be parsed
contiguously.

tilesll The list of input tiles (see Section 10.3.7.9 [List of gal_data_t], page 297).
Internally, it might be stored as an array (for example the output of gal_
tile_series_from_minmax described above), but this function doesn’t
care, it will parse the next elements to go to the next tile. This function
will not pop-from or free the tilesll, it will only parse it from start to
end.

withblank

If the block containing the tiles has blank elements, those blank elements
will be blank in the output of this function also, hence the array will be
initialized with blank values when this option is called (see below).
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initialize

Initialize the allocated space with blank values before writing in the con-
stant values. This can be useful when the tiles don’t cover the full allo-
cated block.

[Function]gal_data_t *
gal_tile_block_check_tiles (gal data t *tilesll)

Make a copy of the memory block and fill it with the index of each tile in tilesll

(counting from 0). The non-filled areas will have blank values. The output dataset
will have a type of GAL_TYPE_INT32 (see Section 10.3.3 [Library data types (type.h)],
page 269).

This function can be used when you want to check the coverage of each tile over the
allocated block of memory. It is just a wrapper over the gal_tile_block_write_

const_value (with withblank set to zero).

[Function]void *
gal_tile_block_relative_to_other (gal data t *tile, gal data t *other)

Return the pointer corresponding to the start of the region covered by tile over
the other dataset. See the examples in GAL_TILE_PARSE_OPERATE for some example
applications of this function.

[Function]void
gal_tile_block_blank_flag (gal data t *tilell, size t numthreads)

Check if each tile in the list has blank values and update its flag to mark this check
and its result (see Section 10.3.5.1 [Generic data container (gal_data_t)], page 276).
The operation will be done on numthreads threads.

[Function-like macro]GAL_TILE_PARSE_OPERATE (IN, OTHER, PARSE_OTHER,
CHECK_BLANK, OP)

Parse IN (which can be a tile or a fully allocated block of memory) and do the OP

operation on it. OP can be any combination of C expressions. If OTHER!=NULL, OTHER
will be interpretted as a dataset and this macro will allow access to its element(s) and
it can optionally be parsed while parsing over IN.

If OTHER is a fully allocated block of memory (not a tile), then the same region that
is covered by IN within its own block will be parsed (the same starting pixel with the
same number of pixels in each dimension). Hence, in this case, the blocks of OTHER
and IN must have the same size. When OTHER is a tile it must have the same size as IN
and parsing will start from its starting element/pixel. Also, the respective allocated
blocks of OTHER and IN (if different) may have different sizes. Using OTHER (along
with PARSE_OTHER), this funciton-like macro will thus enable you to parse and define
your own operation on two fixed size regions in one or two blocks of memory. In the
latter case, they may have different numeric datatypes, see Section 4.4 [Numeric data
types], page 82).

The input arguments to this macro are explained below, the expected type of each
argument are also written following the argument name:

IN (gal_data_t)

Input dataset, this can be a tile or an allocated block of memory.
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OTHER (gal_data_t)

Dataset (gal_data_t) to parse along with IN. It can be NULL. In that
case, o (see description of OP below) will be NULL and should not be used.
If PARSE_OTHER is zero, only its first element will be used and the size of
this dataset is irrelevant.

When OTHER is a block of memory, it has to have the same size as the
allocated block of IN. When its a tile, it has to have the same size as IN.

PARSE_OTHER (int)

Parse the other dataset along with the input. When this is non-zero and
OTHER!=NULL, then the o pointer will be incremented to cover the OTHER
tile at the same rate as i, see description of OP for i and o.

CHECK_BLANK (int)

If it is non-zero, then the input will be checked for blank values and OP

will only be called when we are not on a blank element.

OP Operator: this can be any number of C expressions. This macro is going
to define a itype *i variable which will increment over each element
of the input array/tile. itype will be replaced with the C type that
corresponds to the type of INPUT. As an example, if INPUT’s type is
GAL_DATA_UINT16 or GAL_DATA_FLOAT32, i will be defined as uint16 or
float respectively.

This function-like macro will also define an otype *o which you can use
to access an element of the OTHER dataset (if OTHER!=NULL). o will corre-
spond to the type of OTHER (similar to itype and INPUT discussed above).
If PARSE_OTHER is non-zero, then o will also be incremented to the same
index element but in the other array. You can use these along with any
other variable you define before this macro to process the input and store
it in the other.

All variables within this function-like macro begin with tpo_ except for
the three variables listed above. So as long as you don’t start the names
of your variables with this prefix everything will be fine. Note that i (and
possibly o) will be incremented once by this function-like macro, so don’t
increment them within OP. As a summary, the three variables you have
access to within OP are:

i Pointer to the element of INPUT that is being parsed with the
proper type.

o Pointer to the element of OTHER that is being parsed with the
proper type. o can only be used if OTHER!=NULL and it will
be parsed/incremented if PARSE_OTHER is non-zero.

b Blank value in the type of INPUT.

You can use a given tile (tile on a dataset that it was not initialized with but has
the same size, let’s call it new) with the following steps:

void *tarray;

gal_data_t *tblock;
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/* ‘tile->block’ must be corrected AFTER ‘tile->array’. */

tarray = tile->array;

tblock = tile->block;

tile->array = gal_tile_block_relative_to_other(tile, new);

tile->block = new;

/* Parse and operate over this region of the ‘new’ dataset. */

GAL_TILE_PARSE_OPERATE(tile, NULL, 0, 0, {

YOUR_PROCESSING;

});

/* Reset ‘tile->block’ and ‘tile->array’. */

tile->array=tarray;

tile->block=tblock;

You can work on the same region of another block in one run of this function-like
macro. To do that, you can make a fake tile and pass that as the OTHER argument.
Below is a demonstration, tile is the actual tile that you start with and new is the
other block of allocated memory.

size_t zero=0;

gal_data_t *faketile;

/* Allocate the fake tile, these can be done outside a loop

* (over many tiles). */

faketile=gal_data_alloc(NULL, new->type, 1, &zero,

NULL, 0, -1, NULL, NULL, NULL);

free(faketile->array); /* To keep things clean. */

free(faketile->dsize); /* To keep things clean. */

faketile->block = new;

faketile->ndim = new->ndim;

/* These can be done in a loop (over many tiles). */

faketile->size = tile->size;

faketile->dsize = tile->dsize;

faketile->array = gal_tile_block_relative_to_other(tile, new);

/* Do your processing.... in a loop (over many tiles). */

GAL_TILE_PARSE_OPERATE(tile, faketile, 1, 1, {

YOUR_PROCESSING_EXPRESSIONS;

});

/* Clean up (outside the loop). */

faketile->array=NULL;

faketile->dsize=NULL;

gal_data_free(faketile);
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10.3.13.2 Tile grid

One very useful application of tiles is to completely cover an input dataset with tiles. Such
that you know every pixel/data-element of the input image is covered by only one tile. The
constructs in this section allow easy definition of such a tile structure. They will create lists
of tiles that are also usable by the general tools discussed in Section 10.3.13.1 [Independent
tiles], page 321.

As discussed in Section 4.6 [Tessellation], page 90, (mainly raw) astronomical images will
mostly require two layers of tessellation, one for amplifier channels which all have the same
size and another (smaller tile-size) tessellation over each channel. Hence, in this section we
define a general structure to keep the main parameters of this two-layer tessellation and
help in benefiting from it.

[Type (C struct)]gal_tile_two_layer_params
This is the general structure to keep all the necessary parameters for a two-layer
tessellation.

struct gal_tile_two_layer_params

{

/* Inputs */

size_t *tilesize; /*******************************/

size_t *numchannels; /* These parameters have to be */

float remainderfrac; /* filled manually before */

uint8_t workoverch; /* calling the functions in */

uint8_t checktiles; /* this section. */

uint8_t oneelempertile; /*******************************/

/* Internal parameters. */

size_t ndim;

size_t tottiles;

size_t tottilesinch;

size_t totchannels;

size_t *channelsize;

size_t *numtiles;

size_t *numtilesinch;

char *tilecheckname;

size_t *permutation;

size_t *firsttsize;

/* Tile and channel arrays (which are also lists). */

gal_data_t *tiles;

gal_data_t *channels;

};

[Function]size_t *
gal_tile_full (gal data t *input, size t *regular, float remainderfrac,

gal data t **out, size t multiple, size t **firsttsize)
Cover the full dataset with (mostly) identical tiles and return the number of tiles cre-
ated along each dimension. The regular tile size (along each dimension) is determined
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from the regular array. If input’s size is not an exact multiple of regular for each
dimension, then the tiles touching the edges in that dimension will have a different
size to fully cover every element of the input (depending on remainderfrac).

The output is an array with the same dimensions as input which contains the number
of tiles along each dimension. See Section 4.6 [Tessellation], page 90, for a description
of its application in Gnuastro’s programs and remainderfrac, just note that this
function defines only one layer of tiles.

This is a low-level function (independent of the gal_tile_two_layer_params struc-
ture defined above). If you want a two-layer tessellation, directly call gal_tile_
full_two_layers that is described below. The input arguments to this function
are:

input The main dataset (allocated block) which you want to create a tessellation
over (only used for its sizes). So input may be a tile also.

regular The the size of the regular tiles along each of the input’s dimensions. So
it must have the same number of elements as the dimensions of input (or
input->ndim).

remainderfrac

The significant fraction of the remainder space to see if it should be split
into two and put on both sides of a dimension or not. This is thus
only relevant input length along a dimension isn’t an exact multiple of
the regular tile size along that dimension. See Section 4.6 [Tessellation],
page 90, for a more thorough discussion.

out Pointer to the array of data structures that will keep all the tiles (see
Section 10.3.5.3 [Arrays of datasets], page 282). If *out==NULL, then the
necessary space to keep all the tiles will be allocated. If not, then all the
tile information will be filled from the dataset that *out points to, see
multiple for more.

multiple When *out==NULL (and thus will be allocated by this function), allocate
space for multiple times the number of tiles needed. This can be very
useful when you have several more identically sized inputs, and you want
all their tiles to be allocated (and thus indexed) together, even though
they have different block datasets (that then link to one allocated space).
See the definition of channels in Section 4.6 [Tessellation], page 90, and
gal_tile_full_two_layers below.

firsttsize

The size of the first tile along every dimension. This is only different from
the regular tile size when regular is not an exact multiple of input’s
length along every dimension. This array is allocated internally by this
function.
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[Function]void
gal_tile_full_sanity_check (char *filename, char *hdu, gal data t *input,

struct gal tile two layer params *tl)
Make sure that the input parameters (in tl, short for two-layer) correspond to the
input dataset. filename and hdu are only required for error messages. Also, allocate
and fill the tl->channelsize array.

[Function]void
gal_tile_full_two_layers (gal data t *input, struct gal tile two layer params

*tl)
Create the two layered tessellation in tl. The general set of steps you need to take
to define the two-layered tessellation over an image can be seen in the example code
below.

gal_data_t *input;

struct gal_tile_two_layer_params tl;

char *filename="input.fits", *hdu="1";

/* Set all the inputs shown in the structure definition. */

...

/* Read the input dataset. */

input=gal_fits_img_read(filename, hdu, -1, 0, 0);

/* Do a sanity check and preparations. */

gal_tile_full_sanity_check(filename, hdu, input, &tl);

/* Build the two-layer tessellation*/

gal_tile_full_two_layers(input, &tl);

/* ‘tl.tiles’ and ‘tl.channels’ are now a lists of tiles.*/

[Function]void
gal_tile_full_permutation (struct gal tile two layer params *tl)

Make a permutation to allow the conversion of tile location in memory to its location
in the full input dataset and put it in tl->permutation. If a permutation has already
been defined for the tessellation, this function will not do anything. If permutation
won’t be necessary (there is only one channel or one dimension), then this function
will not do anything (tl->permutation must have been initialized to NULL).

When there is only one channel OR one dimension, the tiles are allocated in memory
in the same order that they represent the input data. However, to make channel-
independent processing possible in a generic way, the tiles of each channel are allocated
contiguously. So, when there is more than one channel AND more than one dimension,
the index of the tile does not correspond to its position in the grid covering the input
dataset.

The example below may help clarify: assume you have a 6x6 tessellation with two
channels in the horizontal and one in the vertical. On the left you can see how the
tile IDs correspond to the input dataset. NOTE how ‘03’ is on the second row, not
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on the first after ‘02’. On the right, you can see how the tiles are stored in memory
(and shown if you simply write the array into a FITS file for example).

Corresponding to input In memory

---------------------- --------------

15 16 17 33 34 35 30 31 32 33 34 35

12 13 14 30 31 32 24 25 26 27 28 29

09 10 11 27 28 29 18 19 20 21 22 23

06 07 08 24 25 26 <-- 12 13 14 15 16 17

03 04 05 21 22 23 06 07 08 09 10 11

00 01 02 18 19 20 00 01 02 03 04 05

As a result, if your values are stored in same order as the tiles, and you want them in
over-all memory (for example to save as a FITS file), you need to permute the values:

gal_permutation_apply(values, tl->permutation);

If you have values over-all and you want them in tile-order, you can apply the inverse
permutation:

gal_permutation_apply_inverse(values, tl->permutation);

Recall that this is the definition of permutation in this context:

permute: IN_ALL[ i ] = IN_MEMORY[ perm[i] ]

inverse: IN_ALL[ perm[i] ] = IN_MEMORY[ i ]

[Function]void
gal_tile_full_values_write (gal data t *tilevalues, struct

gal tile two layer params *tl, int withblank, char *filename,
gal fits list key t *keys, char *program_string)

Write one value for each tile into a file. It is important to note that the
values in tilevalues must be ordered in the same manner as the tiles, so
tilevalues->array[i] is the value that should be given to tl->tiles[i]. The
tl->permutation array must have been initialized before calling this function with
gal_tile_full_permutation.

If withblank is non-zero, then block structure of the tiles will be checked and all
blank pixels in the block will be blank in the final output file also.

[Function]gal_data_t *
gal_tile_full_values_smooth (gal data t *tilevalues, struct

gal tile two layer params *tl, size t width, size t numthreads)
Smooth the given values with a flat kernel of the given width. This cannot be
done manually because if tl->workoverch==0, tiles in different channels must not
be mixed/smoothed. Also the tiles are contiguous within the channel, not within the
image, see the description under gal_tile_full_permutation.

[Function]size_t
gal_tile_full_id_from_coord (struct gal tile two layer params *tl, size t

*coord)
Return the ID of the tile that corresponds to the coordinates coord. Having this ID,
you can use the tl->tiles array to get to the proper tile or read/write a value into
an array that has one value per tile.
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[Function]void
gal_tile_full_free_contents (struct gal tile two layer params *tl)

Free all the allocated arrays within tl.

10.3.14 Bounding box (box.h)

Functions related to reporting a the bounding box of certain inputs are declared in
gnuastro/box.h. All coordinates in this header are in the FITS format (first axis is the
horizontal and the second axis is vertical).

[Function]void
gal_box_bound_ellipse_extent (double a, double b, double theta_deg, double

*extent)
Return the maximum extent along each dimension of the given ellipse from the center
of the ellipse. Therefore this is half the extent of the box in each dimension. a is the
ellipse major axis, b is the minor axis, theta_deg is the position angle in degrees.
The extent in each dimension is in floating point format and stored in extent which
must already be allocated before this function.

[Function]void
gal_box_bound_ellipse (double a, double b, double theta_deg, long *width)

Any ellipse can be enclosed into a rectangular box. The purpose of this function is
to give the height and width of that box assuming the center of the ellipse is in the
box center. a is the ellipse major axis, b is the minor axis, theta_deg is the position
angle in degrees. The width array will contain the output size in long integer type.
width[0], and width[1] are the number of pixels along the first and second FITS
axis. Since the ellipse center is assumed to be in the center of the box, all the values
in width will be an odd integer.

[Function]void
gal_box_border_from_center (double center, size t ndim, long *width, long

*fpixel, long *lpixel)
Given the center coordinates in center and the width (along each dimension) of a
box, return the coordinates of the first (fpixel) and last (lpixel) pixels. All arrays
must have ndim elements (one for each dimension).

[Function]int
gal_box_overlap (long *naxes, long *fpixel_i, long *lpixel_i, long

*fpixel_o, long *lpixel_o, size t ndim)
An ndim-dimensional dataset of size naxes (along each dimension, in FITS order) and
a box with first and last (inclusive) coordinate of fpixel_i and lpixel_i is given.
This box doesn’t necessarily have to lie within the dataset, it can be outside of it, or
only patially overlap. This function will change the values of fpixel_i and lpixel_i

to exactly cover the overlap in the input dataset’s coordinates.

This function will return 1 if there is an overlap and 0 if there isn’t. When there is
an overlap, the coordinates of the first and last pixels of the overlap will be put in
fpixel_o and lpixel_o.
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10.3.15 Polygons (polygon.h)

Polygons are commonly necessary in image processing. In Gnuastro, they are used in Crop
(see Section 6.1 [Crop], page 115) for cutting out non-rectangular regions of a image. Warp
(see Section 6.4 [Warp], page 156) uses them to warp the images into a new pixel grid. The
polygon related Gnuastro library macros and functions are introduced here.

In all the functions here the vertices (and points) are defined as an array. So a polygon
with 4 vertices will be identified with an array of 8 elements with the first two elements
keeping the 2D coordinates of the first vertice and so on.

[Macro]GAL_POLYGON_MAX_CORNERS
The largest number of vertices a polygon can have in this library.

[Macro]GAL_POLYGON_ROUND_ERR
We have to consider floating point round-off errors when dealing with polygons. For
example we will take A as the maximum of A and B when A>B-GAL_POLYGON_ROUND_

ERR.

[Function]void
gal_polygon_ordered_corners (double *in, size t n, size t *ordinds)

We have a simple polygon (that can result from projection, so its edges don’t collide
or it doesn’t have holes) and we want to order its corners in an anticlockwise fashion.
This is necessary for clipping it and finding its area later. The input vertices can have
practically any order.

The input (in) is an array containing the coordinates (two values) of each vertice. n
is the number of corners. So in should have 2*n elements. The output (ordinds)
is an array with n elements specifying the indexs in order. This array must have
been allocated before calling this function. The indexes are output for more generic
usage, for example in a homographic transform (necessary in warping an image, see
Section 6.4.1 [Warping basics], page 157), the necessary order of vertices is the same
for all the pixels. In other words, only the positions of the vertices change, not the
way they need to be ordered. Therefore, this function would only be necessary once.

As a summary, the input is unchanged, only n values will be put in the ordinds

array. Such that calling the input coordinates in the following fashion will give an
anti-clockwise order when there are 4 vertices:

1st vertice: in[ordinds[0]*2], in[ordinds[0]*2+1]

2nd vertice: in[ordinds[1]*2], in[ordinds[1]*2+1]

3rd vertice: in[ordinds[2]*2], in[ordinds[2]*2+1]

4th vertice: in[ordinds[3]*2], in[ordinds[3]*2+1]

The implementation of this is very similar to the Graham scan in finding the Convex
Hull. However, in projection we will never have a concave polygon (the left condition
below, where this algorithm will get to E before D), we will always have a convex
polygon (right case) or E won’t exist!

Concave Polygon Convex Polygon

D --------C D------------- C

\ | E / |



Chapter 10: Library 332

\E | \ |

/ | \ |

A--------B A ----------B

This is because we are always going to be calculating the area of the overlap between
a quadrilateral and the pixel grid or the quadrilateral its self.

The GAL_POLYGON_MAX_CORNERS macro is defined so there will be no need to allocate
these temporary arrays separately. Since we are dealing with pixels, the polygon can’t
really have too many vertices.

[Function]double
gal_polygon_area (double *v, size t n)

Find the area of a polygon with vertices defined in v. v points to an array of doubles
which keep the positions of the vertices such that v[0] and v[1] are the positions of
the first vertice to be considered.

[Function]int
gal_polygon_pin (double *v, double *p, size t n)

Return 1 if the point p is within the polygon whose vertices are defined by v and 0

otherwise. Note that the vertices of the polygon have to be sorted in an anti-clock-wise
manner.

[Function]int
gal_polygon_ppropin (double *v, double *p, size t n)

Similar to gal_polygon_pin, except that if the point p is on one of the edges of a
polygon, this will return 0.

[Function]void
gal_polygon_clip (double *s, size t n, double *c, size t m, double *o, size t

*numcrn)
Clip (find the overlap of) two polygons. This function uses the Sutherland-Hodgman
(https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm)
polygon clipping algorithm. Note that the vertices of both polygons have to be sorted
in an anti-clock-wise manner.

10.3.16 Qsort functions (qsort.h)

The C programming language comes with the qsort (Quick sort) function. qsort is a
generic function which allows you to sort any kind of data structure (not just a single
number). To define greater and smaller (for sorting), qsort needs another function, even for
simple numerical types. To facilitate numerical sorting for Gnuastro’s programs/libraries,
Gnuastro defines a function for each type’s increasing and decreasing function. You can pass
these functions to qsort when your array has the respective type (see Section 4.4 [Numeric
data types], page 82).

[Global variable]gal_qsort_index_arr
Pointer to a floating point array (float *) to use as a reference in gal_qsort_index_

float_decreasing, see the explanation there for more.

https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
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[Function]int
gal_qsort_index_float_decreasing (const void *a, const void *b)

When passed to qsort, this function will sort a size_t array based on decreasing
values in the gal_qsort_index_arr single precision floating point array. The floating
point array will not be changed, it is only read. For example, if we have the following
source code:

#include <stdio.h>

#include <stdlib.h> /* qsort is defined in stdlib.h. */

#include <gnuastro/qsort.h>

int

main (void)

{

size_t s[4]={0, 1, 2, 3};

float f[4]={1.3,0.2,1.8,0.1};

gal_qsort_index_arr=f;

qsort(s, 4, sizeof(size_t), gal_qsort_index_float_decreasing);

printf("%zu, %zu, %zu, %zu\n", s[0], s[1], s[2], s[3]);

return EXIT_SUCCESS;

}

The output will be: 2, 0, 1, 3.

[Function]int
gal_qsort_TYPE_increasing (const void *a, const void *b)

When passed to qsort, this function will sort an TYPE array in increasing order (first
element will be the smallest). Please replace TYPE (in the function name) with one
of the Section 4.4 [Numeric data types], page 82, for example gal_qsort_int32_

increasing, or gal_qsort_float64_increasing.

[Function]int
gal_qsort_TYPE_decreasing (const void *a, const void *b)

When passed to qsort, this function will sort an TYPE array in decreasing order (first
element will be the largest). Please replace TYPE (in the function name) with one
of the Section 4.4 [Numeric data types], page 82, for example gal_qsort_int32_

decreasing, or gal_qsort_float64_decreasing.

10.3.17 Permutations (permutation.h)

Permutation is the technical name for re-ordering of values. The need for permutations
occurs a lot during (mainly low-level) processing. To do permutation, you must provide
two inputs: an array of values (that you want to re-order in place) and a permutation array
which contains the new index of each element (let’s call it perm). The diagram below shows
the input array before and after the re-ordering.

permute: AFTER[ i ] = BEFORE[ perm[i] ] i = 0 .. N-1

inverse: AFTER[ perm[i] ] = BEFORE[ i ] i = 0 .. N-1

The functions here are a re-implementation of the GNU Scientific Library’s gsl_permute
function. The reason we didn’t use that function was that it uses system-specific types (like
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long and int) which can have different widths on different systems, hence are not easily
convertible to Gnuastro’s fixed width types (see Section 4.4 [Numeric data types], page 82).
There is also a separate function for each type, heavily using macros to allow a base function
to work on all the types. Thus it is hard to read/understand. Hence, Gnuastro contains
a re-write of their steps in a new type-agnostic method which is a single function that can
work on any type.

As described in GSL’s source code and manual, this implementation comes from Donald
Knuth’s Art of computer programming book, in the "Sorting and Searching" chapter of
Volume 3 (3rd ed). Exercise 10 of Section 5.2 defines the problem and in the answers,
Knuth describes the solution. So if you are interested, please have a look there for more.

We are in contact with the GSL developers and in the future20 we will submit these
implementations to GSL. If they are finally incorporated there, we will delete this section
in future versions.

[Function]void
gal_permutation_check (size t *permutation, size t size)

Print how permutation will re-order an array that has size elements for each element
in one one line.

[Function]void
gal_permutation_apply (gal data t *input, size t *permutation)

Apply permutation on the input dataset (can have any type), see above for the
definition of permutation.

[Function]void
gal_permutation_apply_inverse (gal data t *input, size t *permutation)

Apply the inverse of permutation on the input dataset (can have any type), see
above for the definition of permutation.

10.3.18 Matching (match.h)

Matching is often necessary when the measurements have been done using different instru-
ments, different software or different configurations of the same software. The functions
in this part of Gnuastro’s library will be growing to allow matching of images and finding
a match between different catalogs (register them). Currently it only provides the The
high-level measurements are stored in tables with positions (commonly in RA and Dec with
units of degrees).

[Function]gal_data_t *
gal_match_coordinates (gal data t *coord1, gal data t *coord2, double

*aperture, int sorted_by_first, int inplace, size t minmapsize,
size t *nummatched)

Return the permutations that when applied, the first nummatched rows of both inputs
match with each other (are the nearest within the given aperture). The two inputs
(coord1 and coord2) must be Section 10.3.7.9 [List of gal_data_t], page 297. Each

20 Gnuastro’s Task 14497 (http://savannah.gnu.org/task/?14497). If this task is still “postponed” when
you are reading this and you are interested to help, your help would be very welcome. Both Gnuastro
and GSL developers are very busy, hence both would appreciate your help.

http://savannah.gnu.org/task/?14497
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gal_data_t node in the list should be a single dimensional dataset (column in a
table). The dimensions of the coordinates is determined by the number of gal_data_
t nodes in the two input lists (which must be equal). Note that the number of rows
(or the number of elements in each gal_data_t) in the columns of coord1 and coord2

can be different.

The matching aperture is defined by the aperture array. If several points of one
catalog lie within this aperture of a point in the other, the nearest is defined as the
match. In a 2D situation (where the input lists have two nodes), for the most generic
case, it must have three elements: the major axis length, axis ratio and position angle
(see Section 8.1.1.1 [Defining an ellipse], page 221). If aperture[1]==1, the aperture
will be a circle of radius aperture[0] and the third value won’t be used. When
the aperture is an ellipse, distances between the points are also calculated in the
respective elliptical distances (rel in Section 8.1.1.1 [Defining an ellipse], page 221).

To speed up the search, this function will sort the input coordinates by their first
column (first axis). If both are already sorted by their first column, you can avoid the
sorting step by giving a non-zero value to sorted_by_first.

When sorting is necessary and inplace is non-zero, the actual input columns will be
sorted. Otherwise, an internal copy of the inputs will be made, used (sorted) and later
freed before returning. Therefore, when inplace==0, inputs will remain untouched,
but this function will take more time and memory.

If internal allocation is necessary and the space is larger than minmapsize, the space
will be not allocated in the RAM, but in a file, see description of --minmapsize in
Section 4.1.2.2 [Processing options], page 71.

The number of matches will be put in the space pointed by nummatched. If there
wasn’t any match, this function will return NULL. If match(s) were found, a list with
three gal_data_t nodes will be returned. The top two nodes in the list are the
permutations that must be applied to the first and second inputs respectively. After
applying the permutations, the top nummatched elements will match with each other.
The third node is the distances between the respective match. Note that the three
nodes of the list are all one-dimensional (a column) and can have different lengths.� �
Output permutations ignore internal sorting: the output permutations will corre-
spond to the initial inputs. Therefore, even when inplace!=0 (and this function
re-arranges the inputs), the output permutation will correspond to original (possibly
non-sorted) inputs.

The reason for this is that you rarely want the actual positional columns after the
match. Usually, you also have other columns (measurements, for example magnitudes)
for higher-level processing after the match (that correspond to the input order before
sorting). Once you have the permutations, they can be applied to those other columns
(see Section 10.3.17 [Permutations (permutation.h)], page 333) and the higher-level
processing can continue.
 	
When you read the coordinates from a table using gal_table_read (see
Section 10.3.11 [Table input output (table.h)], page 312), and only ask for the
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coordinate columns, the inputs to this function are the returned gal_data_t * from
two different tables.

10.3.19 Statistical operations (statistics.h)

After reading a dataset into memory from a file or fully simulating it with another process,
the most common processes that will be done on it are statistical operations to let you
quantify different aspects of the data. the functions in this section describe Gnuastro’s
current set of tools for this job. All these functions can work on any numeric data type
natively (see Section 4.4 [Numeric data types], page 82) and can also work on tiles over
a dataset. Hence the inputs and outputs are in Gnuastro’s Section 10.3.5.1 [Generic data
container (gal_data_t)], page 276.

[Macro]GAL_STATISTICS_SIG_CLIP_MAX_CONVERGE
The maximum number of clips, when σ-clipping should be done by convergence. If the
clipping does not converge before making this many clips, all sigma-clipping outputs
will be NaN.

[Macro]GAL_STATISTICS_MODE_GOOD_SYM
The minimum acceptable symmetricity of the mode calculation. If the symmetricity of
the derived mode is less than this value, all the returned values by gal_statistics_

mode will have a value of NaN.

[Macro]GAL_STATISTICS_SORTED_NOT
[Macro]GAL_STATISTICS_SORTED_INCREASING
[Macro]GAL_STATISTICS_SORTED_DECREASING

Macros used to identify if the dataset is sorted and increasing, sorted and decreasing
or not sorted.

[Macro]GAL_STATISTICS_BINS_INVALID
[Macro]GAL_STATISTICS_BINS_REGULAR
[Macro]GAL_STATISTICS_BINS_IRREGULAR

Macros used to identify if the regularity of the bins when defining bins.

[Function]gal_data_t *
gal_statistics_number (gal data t *input)

Return a single-element uint64 dataset containing the number of non-blank elements
in input.

[Function]gal_data_t *
gal_statistics_minimum (gal data t *input)

Return a single-element dataset containing the minimum non-blank value in input.
The numerical datatype of the output is the same as input.

[Function]gal_data_t *
gal_statistics_maximum (gal data t *input)

Return a single-element dataset containing the maximum non-blank value in input.
The numerical datatype of the output is the same as input.
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[Function]gal_data_t *
gal_statistics_sum (gal data t *input)

Return a single-element (double or float64) dataset containing the sum of the non-
blank values in input.

[Function]gal_data_t *
gal_statistics_mean (gal data t *input)

Return a single-element (double or float64) dataset containing the mean of the
non-blank values in input.

[Function]gal_data_t *
gal_statistics_std (gal data t *input)

Return a single-element (double or float64) dataset containing the standard devia-
tion of the non-blank values in input.

[Function]gal_data_t *
gal_statistics_mean_std (gal data t *input)

Return a two-element (double or float64) dataset containing the mean and standard
deviation of the non-blank values in input. The first element of the returned dataset
is the mean and the second is the standard deviation.

This function will calculate both values in one pass over the dataset. Hence when
both the mean and standard deviation of a dataset are necessary, this function is
much more efficient than calling gal_statistics_mean and gal_statistics_std

separately.

[Function]gal_data_t *
gal_statistics_median (gal data t *input, int inplace)

Return a single-element dataset containing the median of the non-blank values in
input. The numerical datatype of the output is the same as input.

Calculating the median involves sorting the dataset and removing blank values, for
better performance (and less memory usage), you can give a non-zero value to the
inplace argument. In this case, the sorting and removal of blank elements will be
done directly on the input dataset. However, after this function the original dataset
may have changed (if it wasn’t sorted or had blank values).

[Function]size_t
gal_statistics_quantile_index (size t size, double quantile)

Return the index of the element that has a quantile of quantile assuming the dataset
has size elements.

[Function]size_t
gal_statistics_quantile (gal data t *input, double quantile, int inplace)

Return a single-element dataset containing the value with in a quantile quantile of
the non-blank values in input. The numerical datatype of the output is the same as
input. See gal_statistics_median for a description of inplace.
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[Function]size_t
gal_statistics_quantile_function_index (gal data t *input, gal data t

*value, int inplace)
Return the index of the quantile function (inverse quantile) of input at value. In
other words, this function will return the index of the nearest element (of a sorted
and non-blank) input to value. See gal_statistics_median for a description of
inplace.

[Function]gal_data_t *
gal_statistics_quantile_function (gal data t *input, gal data t *value, int

inplace)
Return a single-element (double or float64) dataset containing the quantile function
of the non-blank values in input at value. In other words, this function will return
the quantile of value in input. See gal_statistics_median for a description of
inplace.

[Function]gal_data_t *
gal_statistics_mode (gal data t *input, float mirrordist, int inplace)

Return a four-element (double or float64) dataset that contains the mode of the
input distribution. This function implements the non-parametric algorithm to find
the mode that is described in Appendix C of Akhlaghi and Ichikawa [2015] (https://
arxiv.org/abs/1505.01664).

In short it compares the actual distribution and its “mirror distribution” to find
the mode. In order to be efficient, you can determine how far the comparison goes
away from the mirror through the mirrordist parameter (think of it as a multiple
of sigma/error). See gal_statistics_median for a description of inplace.

The output array has the following elements (in the given order, note that counting
in C starts from 0).

array[0]: mode

array[1]: mode quantile.

array[2]: symmetricity.

array[3]: value at the end of symmetricity.

[Function]gal_data_t *
gal_statistics_mode_mirror_plots (gal data t *input, gal data t *value,

size t numbins, int inplace, double *mirror_val)
Make a mirrored histogram and cumulative frequency plot (with numbins) with the
mirror distribution of the input with a value at value.

The output is a list of data structures (see Section 10.3.7.9 [List of gal_data_t],
page 297): the first is the bins with one bin at the mirror point, the second is the
histogram with a maximum of one and the third is the cumulative frequency plot
(with a maximum of one).

[Function]int
gal_statistics_is_sorted (gal data t *input)

Return the respective sort macro (see above) for the input dataset.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
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[Function]void
gal_statistics_sort_increasing (gal data t *input)

Sort the input dataset (in place) in an increasing order.

[Function]void
gal_statistics_sort_decreasing (gal data t *input)

Sort the input dataset (in place) in a decreasing order.

[Function]gal_data_t *
gal_statistics_no_blank_sorted (gal data t *input, int inplace)

Remove all the blanks and sort the input dataset. If inplace is non-zero this will
happen on the input dataset (and the output will be the same as the input). However,
if inplace is zero, this function will allocate a new copy of the dataset that is sorted
and has no blank values.

[Function]gal_data_t *
gal_statistics_regular_bins (gal data t *input, gal data t *inrange, size t

numbins, double onebinstart)
Generate an array of regularly spaced elements as a 1D array (column) of type double
(i.e., float64, it has to be double to account for small differences on the bin edges).
The input arguments are described below

input The dataset you want to apply the bins to. This is only necessary if
the range argument is not complete, see below. If inrange has all the
necessary information, you can pass a NULL pointer for this.

inrange This dataset keeps the desired range along each dimension of the input
data structure, it has to be in float (i.e., float32) type.

• If you want the full range of the dataset (in any dimensions, then
just set inrange to NULL and the range will be specified from the
minimum and maximum value of the dataset (input cannot be NULL
in this case).

• If there is one element for each dimension in range, then it is viewed
as a quantile (Q), and the range will be: ‘Q to 1-Q’.

• If there are two elements for each dimension in range, then they are
assumed to be your desired minimum and maximum values. When
either of the two are NaN, the minimum and maximum will be cal-
culated for it.

numbins The number of bins: must be larger than 0.

onebinstart

A desired value for onebinstart. Note that with this option, the bins
won’t start and end exactly on the given range values, it will be slightly
shifted to accommodate this request.

[Function]gal_data_t *
gal_statistics_histogram (gal data t *input, gal data t *bins, int

normalize, int maxone)
Make a histogram of all the elements in the given dataset with bin values that are
defined in the inbins structure (see gal_statistics_regular_bins). inbins is not
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mandatory, if you pass a NULL pointer, the bins structure will be built within this
function based on the numbins input. As a result, when you have already defined the
bins, numbins is not used.

[Function]gal_data_t *
gal_statistics_cfp (gal data t *input, gal data t *bins, int normalize)

Make a cumulative frequency plot (CFP) of all the elements in input with bin values
that are defined in the bins structure (see gal_statistics_regular_bins).

The CFP is built from the histogram: in each bin, the value is the sum of all previous
bins in the histogram. Thus, if you have already calculated the histogram before
calling this function, you can pass it onto this function as the data structure in
bins->next (see List of gal_data_t). If bin->next!=NULL, then it is assumed to
be the histogram. If it is NULL, then the histogram will be calculated internally and
freed after the job is finished.

When a histogram is given and it is normalized, the CFP will also be normalized
(even if the normalized flag is not set here): note that a normalized CFP’s maximum
value is 1.

[Function]gal_data_t *
gal_statistics_sigma_clip (gal data t *input, float multip, float param, int

inplace, int quiet)
Apply σ-clipping on a given dataset and return a dataset that contains the results.
For a description of σ-clipping see Section 7.1.2 [Sigma clipping], page 167. multip is
the multiple of the standard deviation (σ that is used to define outliers in each round
of clipping).

The role of param is determined based on its value. If param is larger than 1 (one),
it must be an integer and will be interpretted as the number clips to do. If it is less
than 1 (one), it is interpretted as the tolerance level to stop the iteration.

The output dataset has the following elements with a GAL_TYPE_FLOAT32 type:

array[0]: Number of points used.

array[1]: Median.

array[2]: Mean.

array[3]: Standard deviation.

10.3.20 Binary datasets (binary.h)

Binary datasets only have two (usable) values: 0 (also known as background) or 1 (also
known as foreground). They are created after some binary classification is applied to the
dataset. The most common is thresholding: for example in an image, pixels with a value
above the threshold are given a value of 1 and those with a value less than the threshold
are assigned a value of 0.

Since there is only two values, in the processing of binary images, you are usually con-
cerned with the positioning of an element and its vicinity (neighbors). When a dataset
has more than one dimension, multiple classes of immediate neighbors (that are touching
the element) can be defined for each data-element. To separate these different classes of
immediate neighbors, we define connectivity.
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The classification is done by the distance from element center to the neighbor’s center.
The nearest immediate neighbors have a connectivity of 1, the second nearest class of
neighbors have a connectivity of 2 and so on. In total, the largest possible connectivity for
data with ndim dimensions is ndim. For example in a 2D dataset, 4-connected neighbors
(that share an edge and have a distance of 1 pixel) have a connectivity of 1. The other
4 neighbors that only share a vertice (with a distance of

√
2 pixels) have a connectivity

of 2. Conventionally, the class of connectivity-2 neighbors also includes the connectivity 1
neighbors, so for example we call them 8-connected neighbors in 2D datasets.

Ideally, one bit is sufficient for each element of a binary dataset. However, CPUs are
not designed to work on individual bits, the smallest unit of memory addresses is a byte
(containing 8 bits on modern CPUs). Therefore, in Gnuastro, the type used for binary
dataset is uint8_t (see Section 4.4 [Numeric data types], page 82). Although it does
take 8-times more memory, this choice offers much better performance and the some extra
(useful) features.

The advantage of using a full byte for each element of a binary dataset is that you can
also have other values (that will be ignored in the processing). One such common “other”
value in real datasets is a blank value (to mark regions that should not be processed because
there is no data). The constant GAL_BLANK_UINT8 value must be used in these cases (see
Section 10.3.4 [Library blank values (blank.h)], page 273). Another is some temporary
value(s) that can be given to a processed pixel to avoid having another copy of the dataset
as in GAL_BINARY_TMP_VALUE that is described below.

[Macro]GAL_BINARY_TMP_VALUE
The functions described below work on a uint8_t type dataset with values of 1
or 0 (no other pixel will be touched). However, in some cases, it is necessary to
put temporary values in each element during the processing of the functions. This
temporary value has a special meaning for the operation and will be operated on.
So if your input datasets have values other than 0 and 1 that you don’t want these
functions to work on, be sure they are not equal to this macro’s value. Note that
this value is also different from GAL_BLANK_UINT8, so your input datasets may also
contain blank elements.

[Function]gal_data_t *
gal_binary_erode (gal data t *input, size t num, int connectivity, int

inplace)
Do num erosions on the connectivity-connected neighbors of input (see above for
the definition of connectivity).

If inplace is non-zero and the input’s type is GAL_TYPE_UINT8, then the erosion will
be done within the input dataset and the returned pointer will be input. Otherwise,
input is copied (and converted if necessary) to GAL_TYPE_UINT8 and erosion will be
done on this new dataset which will also be returned. This function will only work
on the elements with a value of 1 or 0. It will leave all the rest unchanged.

Erosion (inverse of dilation) is an operation in mathematical morphology where each
foreground pixel that is touching a background pixel is flipped (changed to back-
ground). The connectivity value determines the definition of “touching”. Erosion
will thus decrease the area of the foreground regions by one layer of pixels.



Chapter 10: Library 342

[Function]gal_data_t *
gal_binary_dilate (gal data t *input, size t num, int connectivity, int

inplace)
Do num dilations on the connectivity-connected neighbors of input (see above for
the definition of connectivity). For more on inplace and the output, see gal_binary_
erode.

Dilation (inverse of erosion) is an operation in mathematical morphology where each
background pixel that is touching a foreground pixel is flipped (changed to fore-
ground). The connectivity value determines the definition of “touching”. Dilation
will thus increase the area of the foreground regions by one layer of pixels.

[Function]gal_data_t *
gal_binary_open (gal data t *input, size t num, int connectivity, int inplace)

Do num openings on the connectivity-connected neighbors of input (see above for
the definition of connectivity). For more on inplace and the output, see gal_binary_
erode.

Opening is an operation in mathematical morphology which is defined as erosion
followed by dilation (see above for the definitions of erosion and dilation). Opening
will thus remove the outer structure of the foreground. In this implementation, num
erosions are going to be applied on the dataset, then num dilations.

[Function]size_t
gal_binary_connected_components (gal data t *binary, gal data t **out, int

connectivity)
Return the number of connected components in binary through the breadth first
search algorithm (finding all pixels belonging to one component before going on to the
next). Connection between two pixels is defined based on the value to connectivity.
out is a dataset with the same size as binary with GAL_TYPE_INT32 type. Every pixel
in out will have the label of the connected component it belongs to. The labeling
of connected components starts from 1, so a label of zero is given to the input’s
background pixels.

When *out!=NULL (its space is already allocated), it will be cleared (to zero) at the
start of this function. Otherwise, when *out==NULL, the necessary dataset to keep
the output will be allocated by this function.

binary must have a type of GAL_TYPE_UINT8, otherwise this function will abort with
an error. Other than blank pixels (with a value of GAL_BLANK_UINT8 defined in
Section 10.3.4 [Library blank values (blank.h)], page 273), all other non-zero pixels
in binary will be considered as foreground (and will be labeled). Blank pixels in the
input will also be blank in the output.

[Function]gal_data_t *
gal_binary_connected_adjacency_matrix (gal data t *adjacency, size t

*numconnected)
Find the number of connected labels and new labels based on an adjacency matrix,
which must be a square binary array (type GAL_TYPE_UINT8). The returned dataset
is a list of new labels for each old label. In other words, this function will find the
objects that are connected (possibly through a third object) and in the output array,
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the respective elements for all input labels is going to have the same value. The total
number of connected labels is put into the space that numconnected points to.

An adjacency matrix defines connection between two labels. For example, let’s assume
we have 5 labels and we know that labels 1 and 5 are connected to label 3, but are
not connected with each other. Also, labels 2 and 4 are not touching any other label.
So in total we have 3 final labels: one combined object (merged from labels 1, 3, and
5) and the initial labels 2 and 4. The input adjacency matrix would look like this
(note the extra row and column for a label 0 which is ignored):

INPUT OUTPUT

===== ======

in_lab 1 2 3 4 5 |

| numconnected = 3

0 0 0 0 0 0 |

in_lab 1 --> 0 0 0 1 0 0 |

in_lab 2 --> 0 0 0 0 0 0 | Returned: new labels for the

in_lab 3 --> 0 1 0 0 0 1 | 5 initial objects

in_lab 4 --> 0 0 0 0 0 0 | | 0 | 1 | 2 | 1 | 3 | 1 |

in_lab 5 --> 0 0 0 1 0 0 |

Although the adjacency matrix as used here is symmetric, currently this function
assumes that it is filled on both sides of the diagonal.

[Function]void
gal_binary_fill_holes (gal data t *input, int connectivity)

Fill all the holes (0 valued pixels surrounded by 1 valued pixels) within a region of the
binary input dataset. The connectivity of the holes can be set with connectivity.
This function currently only works on a 2D dataset.

10.3.21 Convolution functions (convolve.h)

Convolution is a very common operation during data analysis and is thoroughly described
as part of Gnuastro’s Section 6.3 [Convolve], page 135, program which is fully devoted to
this job. Because of the complete introduction that was presented there, we will directly
skip onto the currently available convolution functions in Gnuastro’s library.

As of this version, only spatial domain convolution is available in Gnuastro’s libraries.
We haven’t had the time to liberate the frequency domain function convolution and de-
convolution functions that are available in the Convolve program21.

[Function]gal_data_t *
gal_convolve_spatial (gal data t *tiles, gal data t *kernel, size t

numthreads, int edgecorrection, int convoverch)
Convolve each node of the list of tiles (see Section 10.3.7.9 [List of gal_data_t],
page 297, and Section 10.3.13 [Tessellation library (tile.h)], page 319) with kernel

using numthreads. When edgecorrection is non-zero, it will correct for the edge
dimming effects as discussed in Section 6.3.1.2 [Edges in the spatial domain], page 137.

To create a tessellation that fully covers an input image, you may use gal_tile_full,
or gal_tile_full_two_layers to also define channels over your input dataset. These

21 Hence any help would be greatly appreciated.
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functions are discussed in Section 10.3.13.2 [Tile grid], page 326. You may then pass
the list of tiles to this function. This is the recommended way to call this function
because spatial domain convolution is slow and breaking the job into many small tiles
and working on simultaneously on several threads can greatly speed up the processing.

If the tiles are defined within a channel (a larger tile), by default convolution will be
done within the channel, so pixels on the edge of a channel will not be affected by
their neighbors that are in another channel. See Section 4.6 [Tessellation], page 90,
for the necessity of channels in astronomical data analysis. This behavior may be
disabled when convoverch is non-zero. In this case, it will ignore channel borders (if
they exist) and mix all pixels that cover the kernel within the dataset.

[Function]void
gal_convolve_spatial_correct_ch_edge (gal data t *tiles, gal data t

*kernel, size t numthreads, int edgecorrection, gal data t
*tocorrect)

Correct the edges of channels in an already convolved image when it was initially
convolved with gal_convolve_spatial and convoverch==0. In that case, strong
boundaries might exist on the channel edges. So if you later need to remove those
boundaries at later steps of your processing, you can call this function. It will only
do convolution on the tiles that are near the edge and were effected by the channel
borders. Other pixels in the image will not be touched. Hence, it is much faster.

10.3.22 Interpolation (interpolate.h)

During data analysis, it often happens that parts of the data cannot be given a value. For
example your image was saturated due to a very bright start and you have to mask that
star’s footprint. One other common situation in Gnuastro is when we do processing on tiles
(for example to estimate the Sky value and its Standard deviation, see Section 7.1.3 [Sky
value], page 168). Some tiles must not be used for the estimation of the Sky value, for
example because they cover a large galaxy. So we need to fill them in with blank values.
But ultimately, we need a Sky value for every pixel. This job (assigning a value to blank
element(s) based on their nearby neighbors with a value) is known as interpolation.

There are many ways to do interpolation, but (mainly due to lack of time), currently
Gnuastro only contains the (median of) nearest-neighbor method. The power of this method
of interpolation is its non-parametric nature. The produced values are also always within
the range of the known values and strong outliers do not get created. We will hopefully
implement other methods too (wrappers around the GNU Scientific Library’s very complete
set of functions), but currently the developers are too busy. So if you do have the chance
to help your contribution would be very welcome and appreciated.

[Function]gal_data_t *
gal_interpolate_close_neighbors (gal data t *input, struct

gal tile two layer params *tl, size t numneighbors, size t numthreads,
int onlyblank, int aslinkedlist)

Interpolate the values in the image using the median value of their numneighbors

closest neighbors. If onlyblank is non-zero, then only blank elements will be inter-
polated and pixels that already have a value will be left untouched. This function
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is multi-threaded and will run on numthreads threads (see gal_threads_number in
Section 10.3.2 [Multithreaded programming (threads.h)], page 266).

tl is Gnuastro’s two later tessellation structure used to define tiles over an image and
is fully described in Section 10.3.13.2 [Tile grid], page 326. When tl!=NULL, then it
is assumed that the input->array contains one value per tile and interpolation will
respect certain tessellation properties, for example to not interpolate over channel
borders.

If several datasets have the same set of blank values, you don’t need to call this
function multiple times. When aslinkedlist is non-zero, then input will be seen
as a Section 10.3.7.9 [List of gal_data_t], page 297, and for all the same neighbor
position checking will be done for all the datasets in the list. Of course, the values for
each dataset will be different, so a different value will be written in the each dataset,
but the neighbor checking that is the most CPU intensive part will only be done once.

10.3.23 Git wrappers (git.h)

Git is one of the most common tools for version control and it can often be useful during
development, for example see COMMIT keyword in Section 4.9 [Output headers], page 96. At
installation time, Gnuastro will also check for the existence of libgit2, and store the value in
the GAL_CONFIG_HAVE_LIBGIT2, see Section 10.3.1 [Configuration information (config.h)],
page 265, and Section 3.1.2 [Optional dependencies], page 45. gnuastro/git.h includes
gnuastro/config.h internally, so you won’t have to include both for this macro.

[Function]char *
gal_git_describe ( )

When libgit2 is present and the program is called within a directory that is version
controlled, this function will return a string containing the commit description (similar
to Gnuastro’s unofficial version number, see Section 1.5 [Version numbering], page 6).
If there are uncommitted changes in the running directory, it will add a ‘-dirty’
prefix to the description. When there is no tagged point in the previous commit, this
function will return a uniquely abbreviated commit object as fallback. This function
is used for generating the value of the COMMIT keyword in Section 4.9 [Output headers],
page 96. The output string is similar to the output of the following command:

$ git describe --dirty --always

Space for the output string is allocated within this function, so after using the value
you have to free the output string. If libgit2 is not installed or the program calling
this function is not within a version controlled directory, then the output will be the
NULL pointer.

10.3.24 Cosmology library (cosmology.h)

This library does the main cosmological calculations that are commonly necessary in extra-
galactic astronomical studies. The main variable in this context is the redshift (z). The
cosmological input parameters in the functions below are H0, o_lambda_0, o_matter_0, o_
radiation_0 which respectively represent the current (at redshift 0) expansion rate (Hubble
constant in units of km/sec/Mpc), cosmological constant (Λ), matter and radiation densi-
ties.
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All these functions are declared in gnuastro/cosmology.h. For a more extended intro-
duction/discussion of the cosmological parameters, please see Section 9.1 [CosmicCalcula-
tor], page 244.

[Function]double
gal_cosmology_age (double z, double H0, double o_lambda_0, double

o_matter_0, double o_radiation_0)
Returns the age of the universe at redshift z in units of Giga years.

[Function]double
gal_cosmology_proper_distance (double z, double H0, double o_lambda_0,

double o_matter_0, double o_radiation_0)
Returns the proper distance to an object at redshift z in units of Mega parsecs.

[Function]double
gal_cosmology_comoving_volume (double z, double H0, double o_lambda_0,

double o_matter_0, double o_radiation_0)
Returns the comoving volume over 4pi stradian to z in units of Mega parsecs cube.

[Function]double
gal_cosmology_critical_density (double z, double H0, double o_lambda_0,

double o_matter_0, double o_radiation_0)
Returns the critical density at redshift z in units of g/cm3.

[Function]double
gal_cosmology_angular_distance (double z, double H0, double o_lambda_0,

double o_matter_0, double o_radiation_0)
Return the angular diameter distance to an object at redshift z in units of Mega
parsecs.

[Function]double
gal_cosmology_luminosity_distance (double z, double H0, double o_lambda_0,

double o_matter_0, double o_radiation_0)
Return the luminosity diameter distance to an object at redshift z in units of Mega
parsecs.

[Function]double
gal_cosmology_distance_modulus (double z, double H0, double o_lambda_0,

double o_matter_0, double o_radiation_0)
Return the distance modulus at redshift z (with no units).

[Function]double
gal_cosmology_to_absolute_mag (double z, double H0, double o_lambda_0,

double o_matter_0, double o_radiation_0)
Return the conversion from apparent to absolute magnitude for an object at redshift z.
This value has to be added to the apparent magnitude to give the absolute magnitude
of an object at redshift z.
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10.4 Library demo programs

In this final section of Chapter 10 [Library], page 253, we give some example Gnuastro
programs to demonstrate various features in the library. All these programs have been
tested and once Gnuastro is installed you can compile and run them with with Gnuastro’s
Section 10.2 [BuildProgram], page 260, program that will take care of linking issues. If
you don’t have any FITS file to experiment on, you can use those that are generated by
Gnuastro after make check in the tests/ directory, see Section 1.1 [Quick start], page 1.

10.4.1 Library demo - reading a FITS image

The following simple program demonstrates how to read a FITS image into memory and
use the void *array pointer in of Section 10.3.5.1 [Generic data container (gal_data_t)],
page 276. For easy linking/compilation of this program along with a first run see Section 10.2
[BuildProgram], page 260. Before running, also change the filename and hdu variable
values to specify an existing FITS file and/or extension/HDU.

This is just intended to demonstrate how to use the array pointer of gal_data_t. Hence
it doesn’t do important sanity checks, for example in real datasets you may also have blank
pixels. In such cases, this program will return a NaN value (see Section 6.1.3 [Blank pixels],
page 118). So for general statistical information of a dataset, it is much better to use
Gnuastro’s Section 7.1 [Statistics], page 166, program which can deal with blank pixels any
many other issues in a generic dataset.

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/fits.h> /* includes gnuastro’s data.h and type.h */

#include <gnuastro/statistics.h>

int

main(void)

{

size_t i;

float *farray;

double sum=0.0f;

gal_data_t *image;

char *filename="img.fits", *hdu="1";

/* Read ‘img.fits’ (HDU: 1) as a float32 array. */

image=gal_fits_img_read_to_type(filename, hdu, GAL_TYPE_FLOAT32, -1,

0, 0);

/* Use the allocated space as a single precision floating

* point array (recall that ‘image->array’ has ‘void *’

* type, so it is not directly usable. */

farray=image->array;
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/* Calculate the sum of all the values. */

for(i=0; i<image->size; ++i)

sum += farray[i];

/* Report the sum. */

printf("Sum of values in %s (hdu %s) is: %f\n",

filename, hdu, sum);

/* Clean up and return. */

gal_data_free(image);

return EXIT_SUCCESS;

}

10.4.2 Library demo - inspecting neighbors

The following simple program shows how you can inspect the neighbors of a pixel using the
GAL_DIMENSION_NEIGHBOR_OP function-like macro that was introduced in Section 10.3.6
[Dimensions (dimension.h)], page 284. For easy linking/compilation of this program along
with a first run see Section 10.2 [BuildProgram], page 260. Before running, also change
the file name and HDU (first and second arguments to gal_fits_img_read_to_type) to
specify an existing FITS file and/or extension/HDU.

#include <stdio.h>

#include <gnuastro/fits.h>

#include <gnuastro/dimension.h>

int

main(void)

{

double sum;

float *array;

size_t i, num, *dinc;

gal_data_t *input=gal_fits_img_read_to_type("input.fits", "1",

GAL_TYPE_FLOAT32, -1,

0, 0);

/* To avoid the ‘void *’ pointer and have ‘dinc’. */

array=input->array;

dinc=gal_dimension_increment(input->ndim, input->dsize);

/* Go over all the pixels. */

for(i=0;i<input->size;++i)

{

num=0;

sum=0.0f;

GAL_DIMENSION_NEIGHBOR_OP( i, input->ndim, input->dsize,
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input->ndim, dinc,

{++num; sum+=array[nind];} );

printf("%zu: num: %zu, sum: %f\n", i, num, sum);

}

/* Clean up and return. */

gal_data_free(input);

return EXIT_SUCCESS;

}

10.4.3 Library demo - multi-threaded operation

The following simple program shows how to use Gnuastro to simplify spinning off threads
and distributing different jobs between the threads. The relevant thread-related functions
are defined in Section 10.3.2.2 [Gnuastro’s thread related functions], page 267. For easy
linking/compilation of this program, along with a first run, see Gnuastro’s Section 10.2
[BuildProgram], page 260. Before running, also change the filename and hdu variable
values to specify an existing FITS file and/or extension/HDU.

This is a very simple program to open a FITS image, distribute its pixels between
different threads and print the value of each pixel and the thread it was assigned to. The
actual operation is very simple (and would not usually be done with threads in a real-life
program). It is intentionally chosen to put more focus on the important steps in spinning
of threads and how the worker function (which is called by each thread) can identify the
job-IDs it should work on.

For example, instead of an array of pixels, you can define an array of tiles or any other
context-specific structures as separate targets. The important thing is that each action
should have its own unique ID (counting from zero, as is done in an array in C). You can
then follow the process below and use each thread to work on all the targets that are assigned
to it. Recall that spinning-off threads is its self an expensive process and we don’t want to
spin-off one thread for each target (see the description of gal_threads_dist_in_threads
in Section 10.3.2.2 [Gnuastro’s thread related functions], page 267.

There are many (more complicated, real-world) examples of using gal_threads_spin_

off in Gnuastro’s actual source code, you can see them by searching for the gal_threads_
spin_off function from the top source (after unpacking the tarball) directory (for example
with this command):

$ grep -r gal_threads_spin_off ./

The code of this demonstration program is shown below. This program was also built and
run when you ran make check during the building of Gnuastro (tests/lib/multithread.c,
so it is already tested for your system and you can safely use it as a guide.

#include <stdio.h>

#include <stdlib.h>

#include "gnuastro/fits.h"

#include "gnuastro/threads.h"
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/* This structure can keep all information you want to pass onto the

* worker function on each thread. */

struct params

{

gal_data_t *image; /* Dataset to print values of. */

};

/* This is the main worker function which will be called by the

* different threads. ‘gal_threads_params’ is defined in

* ‘gnuastro/threads.h’ and contains the pointer to the parameter we

* want. Note that the input argument and returned value of this

* function always must have ‘void *’ type. */

void *

worker_on_thread(void *in_prm)

{

/* Low-level definitions to be done first. */

struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;

struct params *p=(struct params *)tprm->params;

/* Subsequent definitions. */

float *array=p->image->array;

size_t i, index, *dsize=p->image->dsize;

/* Go over all the actions (pixels in this case) that were assigned

* to this thread. */

for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)

{

/* For easy reading. */

index = tprm->indexs[i];

/* Print the information. */

printf("(%zu, %zu) on thread %zu: %g\n", index%dsize[1]+1,

index/dsize[1]+1, tprm->id, array[index]);

}

/* Wait for all the other threads to finish, then return. */

if(tprm->b) pthread_barrier_wait(tprm->b);

return NULL;

}
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/* High-level function (called by the operating system). */

int

main(void)

{

struct params p;

char *filename="input.fits", *hdu="1";

size_t numthreads=gal_threads_number();

/* Read the image into memory as a float32 data type. We are using

* ‘-1’ for ‘minmapsize’ to ensure that the image is read into

* memory. */

p.image=gal_fits_img_read_to_type(filename, hdu, GAL_TYPE_FLOAT32,

-1, 0, 0);

/* Print some basic information before the actual contents: */

printf("Pixel values of %s (HDU: %s) on %zu threads.\n", filename,

hdu, numthreads);

printf("Used to check the compiled library’s capability in opening "

"a FITS file, and also spinning-off threads.\n");

/* A small sanity check: this is only intended for 2D arrays (to

* print the coordinates of each pixel). */

if(p.image->ndim!=2)

{

fprintf(stderr, "only 2D images are supported.");

exit(EXIT_FAILURE);

}

/* Spin-off the threads and do the processing on each thread. */

gal_threads_spin_off(worker_on_thread, &p, p.image->size, numthreads);

/* Clean up and return. */

gal_data_free(p.image);

return EXIT_SUCCESS;

}
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10.4.4 Library demo - reading and writing table columns

Tables are some of the most common inputs to, and outputs of programs. This section
contains a small program for reading and writing tables using the constructs described in
Section 10.3.11 [Table input output (table.h)], page 312. For easy linking/compilation of
this program, along with a first run, see Gnuastro’s Section 10.2 [BuildProgram], page 260.
Before running, also set the following file and column names in the first two lines of main.
The input and output names may be .txt and .fits tables, gal_table_read and gal_

table_write will be able to write to both formats. For plain text tables see see Section 4.5.2
[Gnuastro text table format], page 87.

This example program reads three columns from a table. The first two columns are
selected by their name (NAME1 and NAME2) and the third is selected by its number: column
10 (counting from 1). Gnuastro’s column selection is discussed in Section 4.5.3 [Selecting
table columns], page 89. The first and second columns can be any type, but this program
will convert them to int32_t and float for its internal usage respectively. However, the
third column must be double for this program. So if it isn’t, the program will abort with an
error. Having the columns in memory, it will print them out along with their sum (just a
simple application, you can do what ever you want at this stage). Reading the table finishes
here.

The rest of the program is a demonstration of writing a table. While parsing the rows,
this program will change the first column (to be counters) and multiply the second by
10 (so the output will be different). Then it will define the order of the output columns
by setting the next element (to create a Section 10.3.7.9 [List of gal_data_t], page 297).
Before writing, this function will also set names for the columns (units and comments can
be defined in a similar manner). Writing the columns to a file is then done through a simple
call to gal_table_write.

The operations that are shown in this example program are not necessary all the time.
For example, in many cases, you know the numerical data type of the column before writing
your program (see Section 4.4 [Numeric data types], page 82), so type checking and copying
to a specific type won’t be necessary.

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/table.h>

int

main(void)

{

/* File names and column names (which may also be numbers). */

char *c1_name="NAME1", *c2_name="NAME2", *c3_name="10";

char *inname="input.fits", *hdu="1", *outname="out.fits";

/* Internal parameters. */

float *array2;

double *array3;

int32_t *array1;

size_t i, counter=0;
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gal_data_t *c1, *c2;

gal_data_t tmp, *col, *columns;

gal_list_str_t *column_ids=NULL;

/* Define the columns to read. */

gal_list_str_add(&column_ids, c1_name, 0);

gal_list_str_add(&column_ids, c2_name, 0);

gal_list_str_add(&column_ids, c3_name, 0);

/* The columns were added in reverse, so correct it. */

gal_list_str_reverse(&column_ids);

/* Read the desired columns. */

columns = gal_table_read(inname, hdu, column_ids,

GAL_TABLE_SEARCH_NAME, 1, -1, NULL);

/* Go over the columns, we’ll assume that you don’t know their type

* a-priori, so we’ll check */

counter=1;

for(col=columns; col!=NULL; col=col->next)

switch(counter++)

{

case 1: /* First column: we want it as int32_t. */

c1=gal_data_copy_to_new_type(col, GAL_TYPE_INT32);

array1 = c1->array;

break;

case 2: /* Second column: we want it as float. */

c2=gal_data_copy_to_new_type(col, GAL_TYPE_FLOAT32);

array2 = c2->array;

break;

case 3: /* Third column: it MUST be double. */

if(col->type!=GAL_TYPE_FLOAT64)

{

fprintf(stderr, "Column %s must be float64 type, it is "

"%s", c3_name, gal_type_name(col->type, 1));

exit(EXIT_FAILURE);

}

array3 = col->array;

break;

}

/* As an example application we’ll just print them out. In the

* meantime (just for a simple demonstration), change the first

* array value to the counter and multiply the second by 10. */

for(i=0;i<c1->size;++i)
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{

printf("%zu: %d + %f + %f = %f\n", i+1, array1[i], array2[i],

array3[i], array1[i]+array2[i]+array3[i]);

array1[i] = i+1;

array2[i] *= 10;

}

/* Link the first two columns as a list. */

c1->next = c2;

c2->next = NULL;

/* Set names for the columns and write them out. */

c1->name = "COUNTER";

c2->name = "VALUE";

gal_table_write(c1, NULL, GAL_TABLE_FORMAT_BFITS, outname);

/* The names weren’t allocated, so to avoid cleaning-up problems,

* we’ll set them to NULL. */

c1->name = c2->name = NULL;

/* Clean up and return. */

gal_data_free(c1);

gal_data_free(c2);

gal_list_data_free(columns);

gal_list_str_free(column_ids, 0); /* strings weren’t allocated. */

return EXIT_SUCCESS;

}
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11 Developing

The basic idea of GNU Astronomy Utilities is for an interested astronomer to be able to
easily understand the code of any of the programs or libraries, be able to modify the code if
s/he feels there is an improvement and finally, to be able to add new programs or libraries
for their own benefit, and the larger community if they are willing to share it. In short, we
hope that at least from the software point of view, the “obscurantist faith in the expert’s
special skill and in his personal knowledge and authority” can be broken, see Section 1.2
[Science and its tools], page 2. With this aim in mind, Gnuastro was designed to have a
very basic, simple, and easy to understand architecture for any interested inquirer.

This chapter starts with very general design choices, in particular Section 11.1 [Why C
programming language?], page 355, and Section 11.2 [Program design philosophy], page 357.
It will then get a little more technical about the Gnuastro code and file/directory structure
in Section 11.3 [Coding conventions], page 358, and Section 11.4 [Program source], page 361.
Section 11.4.2 [The TEMPLATE program], page 364, discusses a minimal (and working)
template to help in creating new programs or easier learning of a program’s internal struc-
ture. Some other general issues about documentation, building and debugging are then
discussed. This chapter concludes with how you can learn about the development and get
involved in Section 11.9 [Gnuastro project webpage], page 368, Section 11.10 [Developing
mailing lists], page 370, and Section 11.11 [Contributing to Gnuastro], page 370.

11.1 Why C programming language?

Currently the programming language that is most commonly used in scientific applications
is C++1, Python2, and Julia3 (which is a newcomer but swiftly gaining ground). One of the
main reasons behind this choice is their high-level abstractions. However, GNU Astronomy
Utilities is fully written in the C programming language4. The reasons can be summarized
with simplicity, portability and efficiency/speed. All three are very important in a scientific
software and we will discuss them below.

Simplicity can best be demonstrated in a comparison of the main books of C++ and C.
The “C programming language”5 book, written by the authors of C, is only 286 pages and
covers a very good fraction of the language, it has also remained unchanged from 1988. C
is the main programming language of nearly all operating systems and there is no plan of
any significant update. On the other hand, the most recent “C++ programming language”6

book, also written by its author, has 1366 pages and its fourth edition came out in 2013!
As discussed in Section 1.2 [Science and its tools], page 2, it is very important for other
scientists to be able to readily read the code of a program at their will with minimum
requirements.

In C++, inheriting objects in the object oriented programming paradigm and their inter-
nal functions make the code very easy to write for a programmer who is deeply invested in

1 https://isocpp.org/
2 https://www.python.org/
3 https://julialang.org/
4 https://en.wikipedia.org/wiki/C_(programming_language)
5 Brian Kernighan, Dennis Ritchie. The C programming language. Prentice Hall, Inc., Second edition,

1988. It is also commonly known as K&R and is based on the ANSI C and ISO C90 standards.
6 Bjarne Stroustrup. The C++ programming language. Addison-Wesley Professional; 4 edition, 2013.

https://isocpp.org/
https://www.python.org/
https://julialang.org/
https://en.wikipedia.org/wiki/C_(programming_language)
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those objects and understands all their relations well. But it simultaneously makes reading
the program for a first time reader (a curious scientist who wants to know only how a small
step was done) extremely hard. Before understanding the methods, the scientist has to
invest a lot of time and energy in understanding those objects and their relations. But
in C, everything is done with basic language types for example ints or floats and their
pointers to define arrays. So when an outside reader is only interested in one part of the
program, that part is all they have to understand.

Recently it is also becoming common to write scientific software in Python, or a combi-
nation of it with C or C++. Python is a high level scripting language which doesn’t need
compilation. It is very useful when you want to do something on the go and don’t want to
be halted by the troubles of compiling, linking, memory checking, etc. When the datasets
are small and the job is temporary, this ability of Python is great and is highly encouraged.
A very good example might be plotting, in which Python is undoubtedly one of the best.

But as the data sets increase in size and the processing becomes more complicated, the
speed of Python scripts significantly decrease. So when the program doesn’t change too
often and is widely used in a large community, mostly on large data sets (like astronomical
images), using Python will waste a lot of valuable research-hours. It is possible to wrap
C or C++ functions with Python to fix the speed issue. But this creates further complex-
ity, because the interested scientist has to master two programming languages and their
connection (which is not trivial).

Like C++, Python is object oriented, so as explained above, it needs a high level of
experience with that particular program to reasonably understand its inner workings. To
make things worse, since it is mainly for on-the-go programming7, it can undergo significant
changes. One recent example is how Python 2.x and Python 3.x are not compatible. Lots
of research teams that invested heavily in Python 2.x cannot benefit from Python 3.x or
future versions any more. Some converters are available, but since they are automatic, lots
of complications might arise in the conversion8.

If a research project begins using Python 3.x today, there is no telling how compatible
their investments will be when Python 4.x or 5.x will come out. This stems from the core
principles of Python, which are very useful when you look in the ‘on the go’ basis as described
before and not future usage. Reproducibility (ability to run the code in the future) is a core
principal of any scientific result, or the software that produced that result. Rebuilding all
the dependencies of a software in an obsolete language is not easy. Future-proof code (as
long as current operating systems will be used) is written in C.

The portability of C is best demonstrated by the fact that both C++ and Python are
part of the C-family of programming languages which also include Julia, Java, Perl, and
many other languages. C libraries can be immediately included in C++, and it is easy to
write wrappers for them in all C-family programming languages. This will allow other
scientists to benefit from C libraries using any C-family language that they prefer. As a
result, Gnuastro’s library is already usable in C and C++, and wrappers will be9 added for
higher-level languages like Python, Julia and Java.

7 Note that Python is good for fast programming, not fast programs.
8 For example see Jenness (2017) (https://arxiv.org/abs/1712.00461) which describes how LSST is

managing the transition.
9 http://savannah.gnu.org/task/?13786

https://arxiv.org/abs/1712.00461
http://savannah.gnu.org/task/?13786
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The final reason was speed. This is another very important aspect of C which is not
independent of simplicity (first reason discussed above). The abstractions provided by the
higher-level languages (which also makes learning them harder for a newcomer) comes at
the cost of speed. Since C is a low-level language10 (closer to the hardware), it is much
less complex for both the human reader and the computer. The benefits of simplicity for
a human were discussed above. Simplicity for the computer translates into more efficiently
(faster) programs. This creates a much closer relation between the scientist/programmer
(or their program) and the actual data and processing. The GNU coding standards11 also
encourage the use of C over all other languages when generality of usage and “high speed”
is desired.

11.2 Program design philosophy

The core processing functions of each program (and all libraries) are written mostly with
the basic ISO C90 standard. We do make lots of use of the GNU additions to the C
language in the GNU C library12, but these functions are mainly used in the user interface
functions (reading your inputs and preparing them prior to or after the analysis). The
actual algorithms, which most scientists would be more interested in, are much more closer
to ISO C90. For this reason, program source files that deal with user interface issues and
those doing the actual processing are clearly separated, see Section 11.4 [Program source],
page 361. If anything particular to the GNU C library is used in the processing functions,
it is explained in the comments in between the code.

All the Gnuastro programs provide very low level and modular operations (modeled
on GNU Coreutils). Almost all the basic command-line programs like ls, cp or rm on
GNU/Linux operating systems are part of GNU Coreutils. This enables you to use shell
scripting languages (for example GNU Bash) to operate on a large number of files or do
very complex things through the creative combinations of these tools that the authors had
never dreamed of. We have put a few simple examples in Chapter 2 [Tutorials], page 14.

For example all the analysis output can be saved as ASCII tables which can be fed
into your favorite plotting program to inspect visually. Python’s Matplotlib is very useful
for fast plotting of the tables to immediately check your results. If you want to include
the plots in a document, you can use the PGFplots package within LATEX, no attempt is
made to include such operations in Gnuastro. In short, Bash can act as a glue to connect
the inputs and outputs of all these various Gnuastro programs (and other programs) in
any fashion. Of course, Gnuastro’s programs are just front-ends to the main workhorse
(Section 10.3 [Gnuastro library], page 264), allowing a user to create their own programs
(for example with Section 10.2 [BuildProgram], page 260). So once the functions within
programs become mature enough, they will be moved within the libraries for even more
general applications.

10 Low-level languages are those that directly operate the hardware like assembly languages. So C is actually
a high-level language, but it can be considered one of the lowest-level languages among all high-level
languages.

11 http://www.gnu.org/prep/standards/
12 Gnuastro uses many GNU additions to the C library. However, thanks to the GNU Portability library

(Gnulib) which is included in the Gnuastro tarball, users of non-GNU/Linux operating systems can also
benefit from all these features when using Gnuastro.

http://www.gnu.org/prep/standards/


Chapter 11: Developing 358

The advantage of this architecture is that the programs become small and transparent:
the starting and finishing point of every program is clearly demarcated. For nearly all
operations on a modern computer (fast file input-output) with a modest level of complexity,
the read/write speed is insignificant compared to the actual processing a program does.
Therefore the complexity which arises from sharing memory in a large application is simply
not worth the speed gain. Gnuastro’s design is heavily influenced from Eric Raymond’s
“The Art of Unix Programming”13 which beautifully describes the design philosophy and
practice which lead to the success of Unix-based operating systems14.

11.3 Coding conventions

In Gnuastro, we try our best to follow the GNU coding standards. Added to those, Gnuastro
defines the following conventions. It is very important for readability that the whole package
follows the same convention.

• The code must be easy to read by eye. So when the order of several lines within
a function does not matter (for example when defining variables at the start of a
function). You should put the lines in the order of increasing length and group the
variables with similar types such that this half-pyramid of declarations becomes most
visible. If the reader is interested, a simple search will show them the variable they are
interested in. However, this visual aid greatly helps in general inspections of the code
and help the reader get a grip of the function’s processing.

• A function that cannot be fully displayed (vertically) in your monitor is probably too
long and may be more useful if it is broken up into multiple functions. 40 lines is
usually a good reference. When the start and end of a function are clearly visible in
one glance, the function is much more easier to understand. This is most important
for low-level functions (which usually define a lot of variables). Low-level functions do
most of the processing, they will also be the most interesting part of a program for
an inquiring astronomer. This convention is less important for higher level functions
that don’t define too many variables and whose only purpose is to run the lower-level
functions in a specific order and with checks.

In general you can be very liberal in breaking up the functions into smaller parts, the
GNU Compiler Collection (GCC) will automatically compile the functions as inline
functions when the optimizations are turned on. So you don’t have to worry about
decreasing the speed. By default Gnuastro will compile with the -O3 optimization flag.

• All Gnuastro hand-written text files (C source code, Texinfo documentation source, and
version control commit messages) should not exceed 75 characters per line. Monitors
today are certainly much wider, but with this limit, reading the functions becomes
much more easier. Also for the developers, it allows multiple files (or multiple views of
one file) to be displayed beside each other on wide monitors.

Emacs’s buffers are excellent for this capability, setting a buffer width of 80 with ‘C-u
80 C-x 3’ will allow you to view and work on several files or different parts of one
file using the wide monitors common today. Emacs buffers can also be used as a shell
prompt and compile the program (with M-x compile), and 80 characters is the default

13 Eric S. Raymond, 2004, The Art of Unix Programming, Addison-Wesley Professional Computing Series.
14 KISS principle: Keep It Simple, Stupid!
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width in most terminal emulators. If you use Emacs, Gnuastro sets the 75 character
fill-column variable automatically for you, see cartouche below.

For long comments you can use press Alt-q in Emacs to separate them into separate
lines automatically. For long literal strings, you can use the fact that in C, two strings
immediately after each other are concatenated, for example "The first part, " "and

the second part.". Note the space character in the end of the first part. Since they
are now separated, you can easily break a long literal string into several lines and adhere
to the maximum 75 character line length policy.

• The headers required by each source file (ending with .c) should be defined inside
of it. All the headers a complete program needs should not be stacked in another
header to include in all source files (for example main.h). Although most ‘professional’
programmers choose this single header method, Gnuastro is primarily written for pro-
fessional/inquisitive astronomers (who are generally amateur programmers). The list
of header files included provides valuable general information and helps the reader.
main.h may only include the header file(s) that define types that the main program
structure needs, see main.h in Section 11.4 [Program source], page 361. Those partic-
ular header files that are included in main.h can of course be ignored (not included)
in separate source files.

• The headers should be classified (by an empty line) into separate groups:

1. #include <config.h>: This must be the first code line (not commented or blank)
in each source file within Gnuastro. It sets macros that the GNU Portability
Library (Gnulib) will use for a unified environment (GNU C Library), even when
the user is building on a system that doesn’t use the GNU C library.

2. The C library header files, for example stdio.h, stdlib.h, or math.h.

3. Installed library header files, including Gnuastro’s installed headers (for example
cfitsio.h or gsl/gsl_rng.h, or gnuastro/fits.h).

4. Gnuastro’s internal headers (that are not installed), for example
gnuastro-internal/options.h.

5. For programs, the main.h file (which is needed by the next group of headers).

6. That particular program’s header files, for example mkprof.h, or noisechisel.h.

As much as order does not matter when you include the header of each group, sort
them by length, as described above.

• All function names, variables, etc should be in lower case. Macros and constant global
enums should be in upper case.

• For the naming of exported header files, functions, variables, macros, and library
functions, we adopt similar conventions to those used by the GNU Scientific Library
(GSL)15. In particular, in order to avoid clashes with the names of functions and vari-
ables coming from other libraries the name-space ‘gal_’ is prefixed to them. GAL
stands for GNU Astronomy Library.

• All installed header files should be in the lib/gnuastro directory (under the
top Gnuastro source directory). After installation, they will be put in the
$prefix/include/gnuastro directory (see Section 3.3.1.2 [Installation directory],

15 https://www.gnu.org/software/gsl/design/gsl-design.html#SEC15

https://www.gnu.org/software/gsl/design/gsl-design.html#SEC15
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page 55, for $prefix). Therefore with this convention Gnuastro’s headers can be
included in internal (to Gnuastro) and external (a library user) source files with the
same line

# include <gnuastro/headername.h>

Note that the GSL convention for header file names is gsl_specialname.h,
so your include directive for a GSL header must be something like #include

<gsl/gsl_specialname.h>. Gnuastro doesn’t follow this GSL guideline because of
the repeated gsl in the include directive. It can be confusing and cause bugs for
beginners. All Gnuastro (and GSL) headers must be located within a unique directory
and will not be mixed with other headers. Therefore the ‘gsl_’ prefix to the header
file names is redundant16.

• All installed functions and variables should also include the base-name of the file
in which they are defined as prefix, using underscores to separate words17. The
same applies to exported macros, but in upper case. For example in Gnuastro’s
top source directory, the prototype of function gal_box_border_from_center is
in lib/gnuastro/box.h, and the macro GAL_POLYGON_MAX_CORNERS is defined in
lib/gnuastro/polygon.h.

This is necessary to give any user (who is not familiar with the library structure) the
ability to follow the code. This convention does make the function names longer (a
little harder to write), but the extra documentation it provides plays an important role
in Gnuastro and is worth the cost.

• There should be no trailing white space in a line. To do this automatically every time
you save a file in Emacs, add the following line to your ~/.emacs file.

(add-hook ’before-save-hook ’delete-trailing-whitespace)

• There should be no tabs in the indentation18.

• Individual, contextually similar, functions in a source file are separated by 5 blank
lines to be easily seen to be related in a group when parsing the source code by eye. In
Emacs you can use CTRL-u 5 CTRL-o.

• One group of contextually similar functions in a source file is separated from another
with 20 blank lines. In Emacs you can use CTRL-u 20 CTRL-o. Each group of functions
has short descriptive title of the functions in that group. This title is surrounded by
asterisks (*) to make it clearly distinguishable. Such contextual grouping and clear
title are very important for easily understanding the code.

• Always read the comments before the patch of code under it. Similarly, try to add
as many comments as you can regarding every patch of code. Effectively, we want
someone to get a good feeling of the steps, without having to read the C code and
only by reading the comments. This follows similar principles as Literate programming
(https://en.wikipedia.org/wiki/Literate_programming).

16 For GSL, this prefix has an internal technical application: GSL’s architecture mixes installed and not-
installed headers in the same directory. This prefix is used to identify their installation status. Therefore
this filename prefix in GSL a technical internal issue (for developers, not users).

17 The convention to use underscores to separate words, called “snake case” (or “snake case”). This is also
recommended by the GNU coding standards.

18 If you use Emacs, Gnuastro’s .dir-locals.el file will automatically never use tabs for indentation. To
make this a default in all your Emacs sessions, you can add the following line to your ~/.emacs file:
(setq-default indent-tabs-mode nil)

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
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The last two conventions are not common and might benefit from a short discussion here.
With a good experience in advanced text editor operations, the last two are redundant for a
professional developer. However, recall that Gnuastro aspires to be friendly to un-familiar,
and un-experienced (in programming) eyes. In other words, as discussed in Section 1.2
[Science and its tools], page 2, we want the code to appear welcoming to someone who is
completely new to coding (and text editors) and only has a scientific curiosity.

Newcomers to coding and development, who are curious enough to venture into the code,
will probably not be using (or have any knowledge of) advanced text editors. They will see
the raw code in the webpage or on a simple text editor (like Gedit) as plain text. Trying to
learn and understand a file with dense functions that are all spaced with one or two blank
lines can be very taunting for a newcomer. But when they scroll through the file and see
clear titles and meaningful spaces for similar functions, we are helping them find and focus
on the part they are most interested in sooner and easier.� �
GNU Emacs, the recommended text editor: GNU Emacs is an extensible and easily cus-
tomizable text editor which many programmers rely on for developing due to its countless
features. Among them, it allows specification of certain settings that are applied to a single
file or to all files in a directory and its sub-directories. In order to harmonize code coming
from different contributors, Gnuastro comes with a .dir-locals.el file which automati-
cally configures Emacs to satisfy most of the coding conventions above when you are using
it within Gnuastro’s directories. Thus, Emacs users can readily start hacking into Gnuas-
tro. If you are new to developing, we strongly recommend this editor. Emacs was the first
project released by GNU and is still one of its flagship projects. Some resources can be
found at:

Official manual
At https://www.gnu.org/software/emacs/manual/emacs.html. This is a
great and very complete manual which is being improved for over 30 years and is
the best starting point to learn it. It just requires a little patience and practice,
but rest assured that you will be rewarded. If you install Emacs, you also have
access to this manual on the command-line with the following command (see
Section 4.7.4 [Info], page 94).

$ info emacs

A guided tour of emacs
At https://www.gnu.org/software/emacs/tour/. A short visual tour of
Emacs, officially maintained by the Emacs developers.

Unofficial mini-manual
At https://tuhdo.github.io/emacs-tutor.html. A shorter manual which
contains nice animated images of using Emacs.
 	

11.4 Program source

Besides the fact that all the programs share some functions that were explained in
Chapter 10 [Library], page 253, everything else about each program is completely
independent. Recall that Gnuastro is written for an active astronomer/scientist (not a

https://www.gnu.org/software/emacs/manual/emacs.html
https://www.gnu.org/software/emacs/tour/
https://tuhdo.github.io/emacs-tutor.html
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passive one who just uses a software). It must thus be easily navigable. Hence there are
fixed source files (that contain fixed operations) that must be present in all programs, these
are discussed fully in Section 11.4.1 [Mandatory source code files], page 362. To easily
understand the explanations in this section you can use Section 11.4.2 [The TEMPLATE
program], page 364, which contains the bare minimum code for one working program. This
template can also be used to easily add new utilities: just copy and paste the directory
and change TEMPLATE with your program’s name.

11.4.1 Mandatory source code files

Some programs might need lots of source files and if there is no fixed convention, navigating
them can become very hard for a new inquirer into the code. The following source files
exist in every program’s source directory (which is located in bin/progname). For small
programs, these files are enough. Larger programs will need more files and developers are
encouraged to define any number of new files. It is just important that the following list
of files exist and do what is described here. When creating other source files, please choose
filenames that are a complete single word: don’t abbreviate (abbreviations are cryptic). For
a minimal program containing all these files, see Section 11.4.2 [The TEMPLATE program],
page 364.

main.c Each executable has a main function, which is located in main.c. Therefore this
file is the starting point when reading any program’s source code. No actual
processing functions must be defined in this file, the function(s) in this file are
only meant to connect the most high level steps of each program. Generally,
main will first call the top user interface function to read user input and make
all the preparations. Then it will pass control to the top processing function
for that program. The functions to do both these jobs must be defined in other
source files.

main.h All the major parameters which will be used in the program must be stored
in a structure which is defined in main.h. The name of this structure is usu-
ally prognameparams, for example cropparams or noisechiselparams. So
#include "main.h" will be a staple in all the source codes of the program. It
is also regularly the first (and only) argument most of the program’s functions
which greatly helps in readability.

Keeping all the major parameters of a program in this structure has the major
benefit that most functions will only need one argument: a pointer to this struc-
ture. This will significantly facilitate the job of the programmer, the inquirer
and the computer. All the programs in Gnuastro are designed to be low-level,
small and independent parts, so this structure should not get too large.

The main root structure of all programs contains at least one instance of the
gal_options_common_params structure. This structure will keep the values to
all common options in Gnuastro’s programs (see Section 4.1.2 [Common op-
tions], page 69). This top root structure is conveniently called p (short for
parameters) by all the functions in the programs and the common options
parameters within it are called cp. With this convention any reader can im-
mediately understand where to look for the definition of one parameter. For
example you know that p->cp->output is in the common parameters while
p->threshold is in the program’s parameters.
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With this basic root structure, source code of functions can potentially become
full of structure de-reference operators (->) which can make the code very un-
readable. In order to avoid this, whenever a structure element is used more
than a couple of times in a function, a variable of the same type and with the
same name (so it can be searched) as the desired structure element should be
defined with the value of the root structure inside of it in definition time. Here
is an example.

char *hdu=p->cp.hdu;

float threshold=p->threshold;

args.h The options particular to each program are defined in this file. Each option
is defined by a block of parameters in program_options. These blocks are all
you should modify in this file, leave the bottom group of definitions untouched.
These are fed directly into the GNU C library’s Argp facilities and it is recom-
mended to have a look at that for better understand what is going on, although
this is not required here.

Each element of the block defining an option is described under argp_option
in bootstrapped/lib/argp.h (from Gnuastro’s top source file). Note that the
last few elements of this structure are Gnuastro additions (not documented in
the standard Argp manual). The values to these last elements are defined in
lib/gnuastro/type.h and lib/gnuastro-internal/options.h (from Gnu-
astro’s top source directory).

ui.h Besides declaring the exported functions of ui.c, this header also keeps the
“key”s to every program-specific option. The first class of keys for the op-
tions that have a short-option version (single letter, see Section 4.1.1.2 [Op-
tions], page 67). The character that is defined here is the option’s short option
name. The list of available alphabet characters can be seen in the comments.
Recall that some common options also take some characters, for those, see
lib/gnuastro-internal/options.h.

The second group of options are those that don’t have a short option alternative.
Only the first in this group needs a value (1000), the rest will be given a value
by C’s enum definition, so the actual value is irrelevant and must never be used,
always use the name.

ui.c Everything related to reading the user input arguments and options, checking
the configuration files and checking the consistency of the input parameters be-
fore the actual processing is run should be done in this file. Since most functions
are the same, with only the internal checks and structure parameters differing.
We recommend going through the ui.c of Section 11.4.2 [The TEMPLATE
program], page 364, or several other programs for a better understanding.

The most high-level function in ui.c is named ui_read_check_inputs_setup.
It accepts the raw command-line inputs and a pointer to the root structure
for that program (see the explanation for main.h). This is the function that
main calls. The basic idea of the functions in this file is that the processing
functions should need a minimum number of such checks. With this convention
an inquirer who only wants to understand only one part (mostly the processing
part and not user input details and sanity checks) of the code can easily do so
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in the later files. It also makes all the errors related to input appear before the
processing begins which is more convenient for the user.

progname.c, progname.h

The high-level processing functions in each program are in a file named
progname.c, for example crop.c or noisechisel.c. The function within
these files which main calls is also named after the program, for example

void

crop(struct cropparams *p)

or

void

noisechisel(struct noisechiselparams *p)

In this manner, if an inquirer is interested the processing steps, they can imme-
diately come and check this file for the first processing step without having to
go through main.c and ui.c first. In most situations, any failure in any step
of the programs will result in an informative error message and an immediate
abort in the program. So there is usually no need for return values. Under
more complicated situations where a return value might be necessary, void will
be replaced with an int in the examples above. This value must be directly
returned by main, so it has to be an int.

authors-cite.h

This header file keeps the global variable for the program authors and its Bib-
TeX record for citation. They are used in the outputs of the common options
--version and --cite, see Section 4.1.2.3 [Operating mode options], page 73.

11.4.2 The TEMPLATE program

The extra creativity offered by libraries comes at a cost: you have to actually write your
main function and get your hands dirty in managing user inputs: are all the necessary
parameters given a value? is the input in the correct format? do the options and the inputs
correspond? and many other similar checks. So when an operation has well-defined inputs
and outputs and is commonly needed, it is much more worthwhile to simply do use all the
great features that Gnuastro has already defined for such operations.

To make it easier to learn/apply the internal program infra-structure discussed in
Section 11.4.1 [Mandatory source code files], page 362, Gnuastro ships with a template
program when using the Section 3.2.2 [Version controlled source], page 50. It is not
available in the Gnuastro tarball so it doesn’t confuse people using the tarball. The
bin/TEMPLATE directory in Gnuastro’s clone contains the bare-minimum files necessary to
define a new program and all the necessary files/functions are pre-defined there. You can
take the following steps if you want to add a new program to Gnuastro:

1. Select a name for your new program (for example myprog).

2. Copy the TEMPLATE directory to a directory with your program’s name:

$ cp -R bin/TEMPLATE bin/myprog

3. Open configure.ac in the top Gnuastro source. This file manages the operations
that are done when a user runs ./configure. Going down the file, you will notice
repetitive parts for each program. Copy one of those and correct the names of the
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copied program to your new program name. We follow alphabetic ordering here, so
please place it correctly. There are multiple places where this has to be done, so be
patient and go down to the bottom of the file. Ultimately add bin/myprog/Makefile

to AC_CONFIG_FILES, only here the ordering depends on the length of the name.

4. Open Makefile.am in the top Gnuastro source. Similar to the previous step, add your
new program similar to all the other programs.

5. Change TEMPLATE to myprog in the file names and contents of the files in the
bin/myprog/ directory.

6. Run the following command to re-build the configuration and build system.

$ autoreconf -f

Your new program will be built the next time you run ./configure and make. You
can now start adding your special checks/processing.

11.5 Documentation

Documentation (this book) is an integral part of Gnuastro (see Section 1.2 [Science and its
tools], page 2). Documentation is not considered a separate project and must be written
by its developers. Users can make edits/corrections, but the initial writing must be by the
developer. So, no change is considered valid for implementation unless the respective parts
of the book have also been updated. The following procedure can be a good suggestion to
take when you have a new idea and are about to start implementing it.

The steps below are not a requirement, the important thing is that when you send the
program to be included in Gnuastro, the book and the code have to both be fully up-to-date
and compatible and the purpose should be very clearly explained. You can follow any path
you choose to do this, the following path was what we have found to be most successful
until now.

1. Edit the book and fully explain your desired change, such that your idea is completely
embedded in the general context of the book with no sense of discontinuity for a first
time reader. This will allow you to plan the idea much more accurately and in the
general context of Gnuastro or a particular program. Later on, when you are coding,
this general context will significantly help you as a road-map.

A very important part of this process is the program introduction, which explains the
purposes of the program. Before actually starting to code, explain your idea’s purpose
thoroughly in the start of the program section you wish to add or edit. While actually
writing its purpose for a new reader, you will probably get some very valuable ideas
that you hadn’t thought of before. This has occurred several times during the creation
of Gnuastro. If an introduction already exists, embed or blend your idea’s purpose with
the existing purposes. We emphasize that doing this is equally useful for you (as the
programmer) as it is useful for the user (reader). Recall that the purpose of a program
is very important, see Section 11.2 [Program design philosophy], page 357.

As you have already noticed for every program, it is very important that the basics of
the science and technique be explained in separate subsections prior to the ‘Invoking
Programname’ subsection. If you are writing a new program or your addition to an
existing program involves a new concept, also include such subsections and explain
the concepts so a person completely unfamiliar with the concepts can get a general
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initial understanding. You don’t have to go deep into the details, just enough to get
an interested person (with absolutely no background) started. If you feel you can’t
do that, then you have probably not understood the concept yourself! If you feel you
don’t have the time, then think about yourself as the reader in one year: you will forget
almost all the details, so now that you have done all the theoretical preparations, add a
few more hours and document it, so next time you don’t have to prepare as much. Have
in mind that your only limitation in length is the fatigue of the reader after reading a
long text, nothing else. So as long as you keep it relevant/interesting for the reader,
there is no page number limit/cost!

It might also help if you start discussing the usage of your idea in the ‘Invoking Pro-
gramName’ subsection (explaining the options and arguments you have in mind) at
this stage too. Actually starting to write it here will really help you later when you are
coding.

2. After you have finished adding your initial intended plan to the book, then start coding
your change or new program within the Gnuastro source files. While you are coding,
you will notice that somethings should be different from what you wrote in the book
(your initial plan). So correct them as you are actually coding, but don’t worry too
much about missing a few things (see the next step).

3. After your work has been fully implemented, read the section documentation from the
start and see if you didn’t miss any change in the coding and to see if the context
is fairly continuous for a first time reader (who hasn’t seen the book or had known
Gnuastro before you made your change).

11.6 Building and debugging

To build the various programs and libraries in Gnuastro, the GNU build system is used
which defines the steps in Section 1.1 [Quick start], page 1. It consists of GNU Autoconf,
GNU Automake and GNU Libtool which are collectively known as GNU Autotools. They
provide a very portable system to check the hosts environment and compile Gnuastro based
on that. They also make installing everything in their standard places very easy for the
programmer. Most of the small caps files that you see in the top source directory of
the tarball are created by these three tools (see Section 3.2.2 [Version controlled source],
page 50). To facilitate the building and testing of your work during development, Gnuastro
comes with two useful scripts:

tmpfs-config-make

This is more fully described in Section 3.3.1.4 [Configure and build in RAM],
page 61. During development, you will usually run this command only once (at
the start of your work).

tests/during-dev.sh

This script is designed to be run each time you make a change and want to test
your work (with some possible input and output). The script itself is heavily
commented and thoroughly describes the best way to use it, so we won’t repeat
it here.

As a short summary: you specify the build directory, an output directory (for
the built program to be run in, and also contains the inputs), the program’s
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short name and the arguments and options that it should be run with. This
script will then build Gnuastro, go to the output directory and run the built
executable from there. One option for the output directory might be your
desktop, so you can easily see the output files and delete them when you are
finished. The main purpose of these scripts is to keep your source directory
clean and facilitate your development.

By default all the programs are compiled with optimization flags for increased speed. A
side effect of optimization is that valuable debugging information is lost. All the libraries
are also linked as shared libraries by default. Shared libraries further complicate the debug-
ging process and significantly slow down the compilation (the make command). So during
development it is recommended to configure Gnuastro as follows:

$ ./configure --disable-shared CFLAGS="-g -O0"

In tmpfs-config-make you can ask for this behavior by setting debug_noshared to 1.

In order to understand the building process, you can go through the Autoconf, Automake
and Libtool manuals, like all GNU manuals they provide both a great tutorial and technical
documentation. The “A small Hello World” section in Automake’s manual (in chapter 2)
can be a good starting guide after you have read the separate introductions.

11.7 Test scripts

As explained in Section 3.3.2 [Tests], page 62, for every program some simple tests are
written to check the various independent features of the program. All the tests are placed
in the tests/ directory. The tests/prepconf.sh script is the first ‘test’ that will be run.
It will copy all the configuration files from the various directories to a tests/.gnuastro

directory (which it will make) so the various tests can set the default values. This script
will also make sure the programs don’t go searching for user and system wide configuration
files to avoid the mixing of values with different Gnuastro version on the system.

For each program, the tests are placed inside directories with the program name. Each
test is written as a shell script. The last line of this script is the test which runs the program
with certain parameters. The return value of this script determines the fate of the test, see
the “Support for test suites” chapter of the Automake manual for a very nice and complete
explanation. In every script, two variables are defined at first: prog and execname. The
first specifies the program name and the second the location of the executable.

The most important thing to have in mind about all the test scripts is that they are
run from inside the tests/ directory in the “build tree”. Which can be different from the
directory they are stored in (known as the “source tree”)19. This distinction is made by
GNU Autoconf and Automake (which configure, build and install Gnuastro) so that you
can install the program even if you don’t have write access to the directory keeping the
source files. See the “Parallel build trees (a.k.a VPATH builds)” in the Automake manual
for a nice explanation.

Because of this, any necessary inputs that are distributed in the tarball20, for example
the catalogs necessary for checks in MakeProfiles and Crop, must be identified with the

19 The tmpfs-config-make script also uses this feature to keep the source and build directories separate
(see Section 3.3.1.4 [Configure and build in RAM], page 61).

20 In many cases, the inputs of a test are outputs of previous tests, this doesn’t apply to this class of inputs.
Because all outputs of previous tests are in the “build tree”.
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$topsrc prefix instead of ../ (for the top source directory that is unpacked). This $topsrc
variable points to the source tree where the script can find the source data (it is defined in
tests/Makefile.am). The executables and other test products were built in the build tree
(where they are being run), so they don’t need to be prefixed with that variable. This is
also true for images or files that were produced by other tests.

11.8 Developer’s checklist

This is a checklist of things to do after applying your changes/additions in Gnuastro:

1. If the change is non-trivial, write test(s) in the tests/progname/ directory to
test the change(s)/addition(s) you have made. Then add their file names to
tests/Makefile.am.

2. Run $ make check to make sure everything is working correctly.

3. Make sure the documentation (this book) is completely up to date with your changes,
see Section 11.5 [Documentation], page 365.

4. Commit the change to your issue branch (see Section 11.11.3 [Production workflow],
page 373, and Section 11.11.4 [Forking tutorial], page 374). Afterwards, run Autoreconf
to generate the appropriate version number:

$ autoreconf -f

5. Finally, to make sure everything will be built, installed and checked correctly run the
following command (after re-configuring, and re-building). To greatly speed up the
process, use multiple threads (8 in the example below, change it appropriately)

$ make distcheck -j8

This command will create a distribution file (ending with .tar.gz) and try to compile
it in the most general cases, then it will run the tests on what it has built in its
own mini-environment. If $ make distcheck finishes successfully, then you are safe to
send your changes to us to implement or for your own purposes. See Section 11.11.3
[Production workflow], page 373, and Section 11.11.4 [Forking tutorial], page 374.

11.9 Gnuastro project webpage

Gnuastro’s central management hub (https://savannah.gnu.org/projects/gnuastro/
)21 is located on GNU Savannah (https://savannah.gnu.org/)22. Savannah is the central
software development management system for many GNU projects. Through this central
hub, you can view the list of activities that the developers are engaged in, their activity on
the version controlled source, and other things. Each defined activity in the development
cycle is known as an ‘issue’ (or ‘item’). An issue can be a bug (see Section 1.7 [Report a
bug], page 9), or a suggested feature (see Section 1.8 [Suggest new feature], page 11) or an
enhancement or generally any one job that is to be done. In Savannah, issues are classified
into three categories or ‘tracker’s:

Support This tracker is a way that (possibly anonymous) users can get in touch with the
Gnuastro developers. It is a complement to the bug-gnuastro mailing list (see
Section 1.7 [Report a bug], page 9). Anyone can post an issue to this tracker.

21 https://savannah.gnu.org/projects/gnuastro/
22 https://savannah.gnu.org/

https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/
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The developers will not submit an issue to this list. They will only reassign the
issues in this list to the other two trackers if they are valid23. Ideally (when the
developers have time to put on Gnuastro, please don’t forget that Gnuastro is
a volunteer effort), there should be no open items in this tracker.

Bugs This tracker contains all the known bugs in Gnuastro (problems with the ex-
isting tools).

Tasks The items in this tracker contain the future plans (or new features/capabilities)
that are to be added to Gnuastro.

All the trackers can be browsed by a (possibly anonymous) visitor, but to edit and comment
on the Bugs and Tasks trackers, you have to be a registered on Savannah. When posting an
issue to a tracker, it is very important to choose the ‘Category’ and ‘Item Group’ options
accurately. The first contains a list of all Gnuastro’s programs along with ‘Installation’,
‘New program’ and ‘Webpage’. The “Item Group” contains the nature of the issue, for
example if it is a ‘Crash’ in the software (a bug), or a problem in the documentation (also
a bug) or a feature request or an enhancement.

The set of horizontal links on the top of the page (Starting with ‘Main’ and ‘Homepage’
and finishing with ‘News’) are the easiest way to access these trackers (and other major
aspects of the project) from any part of the project webpage. Hovering your mouse over
them will open a drop down menu that will link you to the different things you can do on
each tracker (for example, ‘Submit new’ or ‘Browse’). When you browse each tracker, you
can use the “Display Criteria” link above the list to limit the displayed issues to what you
are interested in. The ‘Category’ and ‘Group Item’ (explained above) are a good starting
point.

Any new issue that is submitted to any of the trackers, or any comments that are posted
for an issue, is directly forwarded to the gnuastro-devel mailing list (https://lists.gnu.
org/mailman/listinfo/gnuastro-devel, see Section 11.10 [Developing mailing lists],
page 370, for more). This will allow anyone interested to be up to date on the over-
all development activity in Gnuastro and will also provide an alternative (to Savannah)
archiving for the development discussions. Therefore, it is not recommended to directly
post an email to this mailing list, but do all the activities (for example add new issues, or
comment on existing ones) on Savannah.� �
Do I need to be a member in Savannah to contribute to Gnuastro? No.

The full version controlled history of Gnuastro is available for anonymous download or
cloning. See Section 11.11.3 [Production workflow], page 373, for a description of Gnuastro’s
Integration-Manager Workflow. In short, you can either send in patches, or make your own
fork. If you choose the latter, you can push your changes to your own fork and inform
us. We will then pull your changes and merge them into the main project. Please see
Section 11.11.4 [Forking tutorial], page 374, for a tutorial.
 	
23 Some of the issues registered here might be due to a mistake on the user’s side, not an actual bug in the

program.

https://lists.gnu.org/mailman/listinfo/gnuastro-devel
https://lists.gnu.org/mailman/listinfo/gnuastro-devel
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11.10 Developing mailing lists

To keep the developers and interested users up to date with the activity and discussions
within Gnuastro, there are two mailing lists which you can subscribe to:

gnuastro-devel@gnu.org

(at https://lists.gnu.org/mailman/listinfo/gnuastro-devel)
All the posts made in the support, bugs and tasks discussions of Section 11.9
[Gnuastro project webpage], page 368, are also sent to this mailing address and
archived. By subscribing to this list you can stay up to date with the discussions
that are going on between the developers before, during and (possibly) after
working on an issue. All discussions are either in the context of bugs or tasks
which are done on Savannah and circulated to all interested people through this
mailing list. Therefore it is not recommended to post anything directly to this
mailing list. Any mail that is sent to it from Savannah to this list has a link
under the title “Reply to this item at:”. That link will take you directly to the
issue discussion page, where you can read the discussion history or join it.

While you are posting comments on the Savannah issues, be sure to update
the meta-data. For example if the task/bug is not assigned to anyone and you
would like to take it, change the “Assigned to” box, or if you want to report
that it has been applied, change the status and so on. All these changes will
also be circulated with the email very clearly.

gnuastro-commits@gnu.org

(at https://lists.gnu.org/mailman/listinfo/gnuastro-commits)
This mailing list is defined to circulate all commits that are done in Gnuastro’s
version controlled source, see Section 3.2.2 [Version controlled source], page 50.
If you have any ideas, or suggestions on the commits, please use the bug and
task trackers on Savannah to followup the discussion, do not post to this list.
All the commits that are made for an already defined issue or task will state
the respective ID so you can find it easily.

11.11 Contributing to Gnuastro

You have this great idea or have found a good fix to a problem which you would like to
implement in Gnuastro. You have also become familiar with the general design of Gnuastro
in the previous sections of this chapter (see Chapter 11 [Developing], page 355) and want to
start working on and sharing your new addition/change with the whole community as part
of the official release. This is great and your contribution is most welcome. This section
and the next (see Section 11.8 [Developer’s checklist], page 368) are written in the hope of
making it as easy as possible for you to share your great idea with the community.

In this section we discuss the final steps you have to take: legal and technical. From
the legal perspective, the copyright of any work you do on Gnuastro has to be assigned
to the Free Software Foundation (FSF) and the GNU operating system, or you have to
sign a disclaimer. We do this to ensure that Gnuastro can remain free in the future, see
Section 11.11.1 [Copyright assignment], page 371. From the technical point of view, in this
section we also discuss commit guidelines (Section 11.11.2 [Commit guidelines], page 372)
and the general version control workflow of Gnuastro in Section 11.11.3 [Production work-
flow], page 373, along with a tutorial in Section 11.11.4 [Forking tutorial], page 374.

https://lists.gnu.org/mailman/listinfo/gnuastro-devel
https://lists.gnu.org/mailman/listinfo/gnuastro-commits
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Recall that before starting the work on your idea, be sure to checkout the bugs and
tasks trackers in Section 11.9 [Gnuastro project webpage], page 368, and announce your
work there so you don’t end up spending time on something others have already worked
on, and also to attract similarly interested developers to help you.

11.11.1 Copyright assignment

Gnuastro’s copyright is owned by the FSF. Professor Eben Moglen, of the Columbia Uni-
versity Law School has given a nice summary of the reasons for this at https://www.gnu.
org/licenses/why-assign. Below we are copying it verbatim for self consistency (in case
you are offline or reading in print).

Under US copyright law, which is the law under which most free software pro-
grams have historically been first published, there are very substantial proce-
dural advantages to registration of copyright. And despite the broad right of
distribution conveyed by the GPL, enforcement of copyright is generally not
possible for distributors: only the copyright holder or someone having assign-
ment of the copyright can enforce the license. If there are multiple authors of
a copyrighted work, successful enforcement depends on having the cooperation
of all authors.

In order to make sure that all of our copyrights can meet the record keeping and
other requirements of registration, and in order to be able to enforce the GPL
most effectively, FSF requires that each author of code incorporated in FSF
projects provide a copyright assignment, and, where appropriate, a disclaimer
of any work-for-hire ownership claims by the programmer’s employer. That way
we can be sure that all the code in FSF projects is free code, whose freedom
we can most effectively protect, and therefore on which other developers can
completely rely.

Please get in touch with the Gnuastro maintainer (currently Mohammad Akhlaghi,
akhlaghi -at- gnu -dot- org) to follow the procedures. It is possible to do this for each change
(good for for a single contribution), and also more generally for all the changes/additions
you do in the future within Gnuastro. So if you have already assigned the copyright of your
work on another GNU software to the FSF, it should be done again for Gnuastro. The FSF
has staff working on these legal issues and the maintainer will get you in touch with them
to do the paperwork. The maintainer will just be informed in the end so your contributions
can be merged within the Gnuastro source code.

Gnuastro will gratefully acknowledge (see Section 1.11 [Acknowledgments], page 12) all
the people who have assigned their copyright to the FSF and have thus helped to guarantee
the freedom and reliability of Gnuastro. The Free Software Foundation will also acknowledge
your copyright contributions in the Free Software Supporter: https://www.fsf.org/

free-software-supporter which will circulate to a very large community (104,444 people
in April 2016). See the archives for some examples and subscribe to receive interesting
updates. The very active code contributors (or developers) will also be recognized as project
members on the Gnuastro project webpage (see Section 11.9 [Gnuastro project webpage],
page 368) and can be given a gnu.org email address. So your very valuable contribution
and copyright assignment will not be forgotten and is highly appreciated by a very large
community. If you are reluctant to sign an assignment, a disclaimer is also acceptable.

https://www.gnu.org/licenses/why-assign
https://www.gnu.org/licenses/why-assign
https://www.fsf.org/free-software-supporter
https://www.fsf.org/free-software-supporter
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� �
Do I need a disclaimer from my university or employer? It depends on the contract with
your university or employer. From the FSF’s /gd/gnuorg/conditions.text: “If you are
employed to do programming, or have made an agreement with your employer that says it
owns programs you write, we need a signed piece of paper from your employer disclaiming
rights to” Gnuastro. The FSF’s copyright clerk will kindly help you decide, please consult
the following email address: “assign -at- gnu -dot- org”.
 	
11.11.2 Commit guidelines

To be able to cleanly integrate your work with the other developers, never commit on
the master branch (see Section 11.11.3 [Production workflow], page 373, for a complete
discussion and Section 11.11.4 [Forking tutorial], page 374, for a cookbook example). In
short, leave master only for changes you fetch, or pull from the official repository (see
Section 3.2.2.2 [Synchronizing], page 52).

In the Gnuastro commit messages, we strive to follow these standards. Note that in the
early phases of Gnuastro’s development, we are experimenting and so if you notice earlier
commits don’t satisfy some of the guidelines below, it is because they predate that guideline.

Commit title
The commits have to start with one short descriptive title. The title is separated
from the body with one blank line. Run git log to see some of the most recent
commit messages as an example. In general, the title should satisfy the following
conditions:

• It is best for the title to be short, about 60 (or even 50) characters. Most
emulated command-line terminals are about 80 characters wide. However,
we should also allow for the commit hashes which are printed in git log

--oneline, and also branch names or the graph structure outputs of git
log which are also commonly used.

• The title should not finish with any full-stops or periods (‘.’).

Commit body
The body of the commit message is separated from the title by one empty line.
Recall that anyone who has subscribed to gnuastro-commits mailing list will
get the commit in their email after it has been pushed to master. People will
also read them when they synchronize with the main Gnuastro repository (see
Section 3.2.2.2 [Synchronizing], page 52). Finally, the commit messages will
later be used to update the NEWS file on each release. Therefore the commit
message body plays a very important role in the development of Gnuastro, so
please adhere to the following guidelines.

• The body should be very descriptive. Start the commit message body
by explaining what changes your commit makes from a user’s perspec-
tive (added, changed, or removed options, or arguments to programs or
libraries, or modified algorithms, or new installation step, or etc).

• Try to explain the committed contents as best as you can. Recall that
the readers of your commit message do not necessarily have your current
background. After some time you will also forget the context, so this
request is not just for others24. Therefore be very descriptive and explain

24 http://catb.org/esr/writings/unix-koans/prodigy.html

http://catb.org/esr/writings/unix-koans/prodigy.html
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as much as possible: what the bug/task was, justify the way you fixed
it and discuss other possible solutions that you might not have included.
For the last item, it is best to discuss them thoroughly as comments in
the appropriate section of the code, but only give a short summary in the
commit message. Note that all added and removed source code lines will
also be circulated in the gnuastro-commits mailing list.

• Like all other Gnuastro’s text files, the lines in the commit body should
not be longer than 75 characters, see Section 11.3 [Coding conventions],
page 358. This is to ensure that on standard terminal emulators (with
80 character width), the git log output can be cleanly displayed (note
that the commit message is indented in the output of git log). If you
use Emacs, Gnuastro’s .dir-locals.el file will ensure that your commits
satisfy this condition (using M-q).

• When the commit is related to a task or a bug, please include the respective
ID (in the format of bug/task #ID, note the space) in the commit message
(from Section 11.9 [Gnuastro project webpage], page 368) for interested
people to be able to followup the discussion that took place there. If
the commit fixes a bug or finishes a task, the recommended way is to
add a line after the body with ‘This fixes bug #ID.’, or ‘This finishes

task #ID.’. Don’t assume that the reader has internet access to check the
bug’s full description when reading the commit message, so give a short
introduction too.

11.11.3 Production workflow

Fortunately ‘Pro Git’ has done a wonderful job in explaining the different workflows in
Chapter 525 and in particular the “Integration-Manager Workflow” explained there. The
implementation of this workflow is nicely explained in Section 5.226 under “Forked-Public-
Project”. We have also prepared a short tutorial in Section 11.11.4 [Forking tutorial],
page 374. Anything on the master branch should always be tested and ready to be built
and used. As described in ‘Pro Git’, there are two methods for you to contribute to Gnuastro
in the Integration-Manager Workflow:

1. You can send commit patches by email as fully explained in ‘Pro Git’. This is good for
your first few contributions. Just note that raw patches (containing only the diff) do
not have any meta-data (author name, date and etc). Therefore they will not allow us
to fully acknowledge your contributions as an author in Gnuastro: in the AUTHORS file
and at the start of the PDF book. These author lists are created automatically from
the version controlled source.

To receive full acknowledgment when submitting a patch, is thus advised to use
Git’s format-patch tool. See Pro Git’s Public project over email (https: / /
git-scm . com / book / en / v2 / Distributed-Git-Contributing-to-a-Project #

Public-Project-over-Email) section for a nice explanation. If you would like to get
more heavily involved in Gnuastro’s development, then you can try the next solution.

25 http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
26 http://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Public-Project-over-Email
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Public-Project-over-Email
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Public-Project-over-Email
http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
http://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
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2. You can have your own forked copy of Gnuastro on any hosting site you like (GitHub,
GitLab, BitBucket, or etc) and inform us when your changes are ready so we merge
them in Gnuastro. This is more suited for people who commonly contribute to the
code (see Section 11.11.4 [Forking tutorial], page 374).

In both cases, your commits (with your name and information) will be preserved and
your contributions will thus be fully recorded in the history of Gnuastro and in the AUTHORS
file and this book (second page in the PDF format) once they have been incorporated into
the official repository. Needless to say that in such cases, be sure to follow the bug or task
trackers (or subscribe to the gnuastro-devel mailing list) and contact us before hand so
you don’t do something that someone else is already working on. In that case, you can get in
touch with them and help the job go on faster, see Section 11.9 [Gnuastro project webpage],
page 368. This workflow is currently mostly borrowed from the general recommendations of
Git27 and GitHub. But since Gnuastro is currently under heavy development, these might
change and evolve to better suit our needs.

11.11.4 Forking tutorial

This is a tutorial on the second suggested method (commonly known as forking) that you
can submit your modifications in Gnuastro (see Section 11.11.3 [Production workflow],
page 373).

To start, please create an empty repository on your hosting service webpage (we rec-
ommend GitLab28). If this is your first hosted repository on the webpage, you also have
to upload your public SSH key29 for the git push command below to work. Here we’ll
assume you use the name janedoe to refer to yourself everywhere and that you choose
gnuastro-janedoe as the name of your Gnuastro fork. Any online hosting service will give
you an address (similar to the ‘git@gitlab.com:...’ below) of the empty repository you
have created using their webpage, use that address in the third line below.

$ git clone git://git.sv.gnu.org/gnuastro.git

$ cd gnuastro

$ git remote add janedoe git@gitlab.com:janedoe/gnuastro-janedoe.git

$ git push janedoe master

The full Gnuastro history is now pushed onto your hosting service and the janedoe

remote is now also following your master branch. If you run git remote show REMOTENAME

for the origin and janedoe remotes, you will see their difference: the first has pull access
and the second doesn’t. This nicely summarizes the main idea behind this workflow: you
push to your remote repository, we pull from it and merge it into master, then you finalize
it by pulling from the main repository.

To test (compile) your changes during your work, you will need to bootstrap the version
controlled source, see Section 3.2.2.1 [Bootstrapping], page 51, for a full description. The
cloning process above is only necessary for your first time setup, you don’t need to repeat

27 https://github.com/git/git/blob/master/Documentation/SubmittingPatches
28 See https://www.gnu.org/software/repo-criteria-evaluation.html for an evaluation of the major

existing repositories. Gnuastro uses GNU Savannah (which also has the highest ranking in the evalua-
tion), but for starters, GitLab may be easier.

29 For example see this explanation provided by GitLab: http://docs.gitlab.com/ce/ssh/README.html.

https://github.com/git/git/blob/master/Documentation/SubmittingPatches
https://www.gnu.org/software/repo-criteria-evaluation.html
http://docs.gitlab.com/ce/ssh/README.html
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it. However, please repeat the steps below for each independent issue you intend to work
on.

Let’s assume you have found a bug in lib/statistics.c’s median calculating function.
Before actually doing anything, please announce it (see Section 1.7 [Report a bug], page 9)
so everyone knows you are working on it or to find out others aren’t already working on it.
With the commands below, you make a branch, checkout to it, correct the bug, check if it
is indeed fixed, add it to the staging area, commit it to the new branch and push it to your
hosting service. But before all of them, make sure that you are on the master branch and
that your master branch is up to date with the main Gnuastro repository with the first two
commands.

$ git checkout master

$ git pull

$ git checkout -b bug-median-stats # Choose a descriptive name

$ emacs lib/statistics.c

$ # do your checks here

$ git add lib/statistics.c

$ git commit

$ git push janedoe bug-median-stats

Your new branch is now on your hosted repository. Through the respective tacker on
Savannah (see Section 11.9 [Gnuastro project webpage], page 368) you can then let the
other developers know that your bug-median-stats branch is ready. They will pull your
work, test it themselves and if it is ready to be merged into the main Gnuastro history, they
will merge it into the master branch. After that is done, you can simply checkout your
local master branch and pull all the changes from the main repository. After the pull you
can run ‘git log’ as shown below, to see how bug-median-stats is merged with master.
To finalize, you can push all the changes to your hosted repository and delete the branch:

$ git checkout master

$ git pull

$ git log --oneline --graph --decorate --all

$ git push janedoe master

$ git branch -d bug-median-stats # delete local branch

$ git push janedoe --delete bug-median-stats # delete remote branch

Just as a reminder, always keep your work on each issue in a separate local and remote
branch so work can progress on them independently. After you make your announcement,
other people might contribute to the branch before merging it in to master, so this is very
important. As a final reminder: before starting each issue branch from master, be sure to
run git pull in master as shown above. This will enable you to start your branch (work)
from the most recent commit and thus simplify the final merging of your work.
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Appendix A Gnuastro programs list

GNU Astronomy Utilities 0.5, contains the following programs. They are sorted in alpha-
betical order and a short description is provided for each program. The description starts
with the executable names in thisfont followed by a pointer to the respective section in
parenthesis. Throughout this book, they are ordered based on their context, please see the
top-level contents for contextual ordering (based on what they do).

Arithmetic
(astarithmetic, see Section 6.2 [Arithmetic], page 125) For arithmetic oper-
ations on multiple (theoretically unlimited) number of datasets (images). It
has a large and growing set of arithmetic, mathematical, and even statistical
operators (for example +, -, *, /, sqrt, log, min, average, median).

BuildProgram
(astbuildprog, see Section 10.2 [BuildProgram], page 260) Compile, link and
run programs that depend on the Gnuastro library (see Section 10.3 [Gnuastro
library], page 264). This program will automatically link with the libraries that
Gnuastro depends on, so there is no need to explicitly mention them every time
you are compiling a Gnuastro library dependent program.

ConvertType
(astconvertt, see Section 5.2 [ConvertType], page 105) Convert astronomical
data files (FITS or IMH) to and from several other standard image and data
formats, for example TXT, JPEG, EPS or PDF.

Convolve (astconvolve, see Section 6.3 [Convolve], page 135) Convolve (blur or smooth)
data with a given kernel in spatial and frequency domain on multiple threads.
Convolve can also do de-convolution to find the appropriate kernel to PSF-
match two images.

CosmicCalculator
(astcosmiccal, see Section 9.1 [CosmicCalculator], page 244) Do cosmological
calculations, for example the luminosity distance, distance modulus, comoving
volume and many more.

Crop (astcrop, see Section 6.1 [Crop], page 115) Crop region(s) from an image and
stitch several images if necessary. Inputs can be in pixel coordinates or world
coordinates.

Fits (astfits, see Section 5.1 [Fits], page 98) View and manipulate FITS file ex-
tensions and header keywords.

Statistics (aststatistics, see Section 7.1 [Statistics], page 166) Get pixel statistics and
save histogram and cumulative frequency plots.

MakeCatalog
(astmkcatalog, see Section 7.3 [MakeCatalog], page 197) Make catalog of la-
beled image (output of NoiseChisel). The catalogs are highly customizable and
adding new calculations/columns is very straightforward.

MakeNoise
(astmknoise, see Section 8.2 [MakeNoise], page 238) Make (add) noise to an
image, with a large set of random number generators and any seed.
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MakeProfiles
(astmkprof, see Section 8.1 [MakeProfiles], page 221) Make mock 2D profiles
in an image. The central regions of radial profiles are made with a configurable
2D Monte Carlo integration. It can also build the profiles on an over-sampled
image.

Match (astmatch, see Section 7.4 [Match], page 217) Given two input catalogs, find
the rows that match with each other within a given aperture (may be an ellipse).

NoiseChisel
(astnoisechisel, see Section 7.2 [NoiseChisel], page 181) Detect and segment
signal in noise. It uses a technique to detect very faint and diffuse, irregularly
shaped signal in noise (galaxies in the sky), using thresholds that are below the
Sky value, see arXiv:1505.01664 (http://arxiv.org/abs/1505.01664).

Table (asttable, Section 5.3 [Table], page 112) Convert FITS binary and ASCII
tables into other such tables, print them on the command-line, save them in a
plain text file, or get the FITS table information.

Warp (astwarp, see Section 6.4 [Warp], page 156) Warp image to new pixel grid. Any
projective transformation or Homography can be applied to the input images.

http://arxiv.org/abs/1505.01664
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Appendix B Other useful software

In this appendix the installation of programs and libraries that are not direct Gnuastro
dependencies are discussed. However they can be useful for working with Gnuastro.

B.1 SAO ds9

SAO ds91 is not a requirement of Gnuastro, it is a FITS image viewer. So to check your
inputs and outputs, it is one of the best options. Like the other packages, it might already
be available in your distribution’s repositories. It is already pre-compiled in the download
section of its webpage. Once you download it you can unpack and install (move it to a
system recognized directory) with the following commands (x.x.x is the version number):

$ tar xf ds9.linux64.x.x.x.tar.gz

$ sudo mv ds9 /usr/local/bin

Once you run it, there might be a complaint about the Xss library, which you can find
in your distribution package management system. You might also get an XPA related error.
In this case, you have to add the following line to your ~/.bashrc and ~/.profile file (you
will have to log out and back in again for the latter):

export XPA_METHOD=local

B.1.1 Viewing multiextension FITS images

The FITS definition allows for multiple extensions inside a FITS file, each extension can
have a completely independent data set inside of it. If you ordinarily open a multi-extension
FITS file with SAO ds9, for example by double clicking on the file or running $ds9 foo.fits,
SAO ds9 will only show you the first extension. To be able to switch between the extensions
you have to follow these menus in the SAO ds9 window: File→Open Other→Open Multi
Ext Cube and then choose the Multi extension FITS file in your computer’s file structure.

The method above is a little tedious to do every time you want view a multi-extension
FITS file. Fortunately SAO ds9 also provides options that you can use to specify a particular
behavior. One of those options is -mecube which opens a FITS image as a multi-extension
data cube. So on the command-line, if you run $ds9 -mecube foo.fits a small window will
also be opened, which allows you to switch between the image extensions that foo.fits

might have. If foo.fits only consists of one extension, then SAO ds9 will open as usual.

Just to avoid confusion, note that SAO ds9 does not follow the GNU style of separating
long and short options as explained in Section 4.1.1 [Arguments and options], page 65. In
the GNU style, this ‘long’ option should have been called like --mecube, but SAO ds9 does
follow those conventions and has its own.

It is really convenient if you set ds9 to always run with the -mecube option on your
graphical display. On GNOME 3 (the most popular graphic user interface for GNU/Linux
systems) you can do this by taking the following steps:

• Open your favorite text editor and put the following text in a file that ends with
.desktop, for example saods9.desktop. The file is very descriptive.

[Desktop Entry]

1 http://ds9.si.edu/

http://ds9.si.edu/
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Type=Application

Version=1.0

Name=SAO ds9

Comment=View FITS images

Exec=ds9 -mecube %f

Terminal=false

Categories=Graphic;FITS;

• Copy this file into your local (user) applications directory:

$ cp saods9.desktop ~/.local/share/applications/

In case you don’t have the directory, you can make it yourself:

$ mkdir -p ~/.local/share/applications/

• The steps above will add SAO ds9 as one of your applications. To make it default for
every time you click on a FITS file. Right click on a FITS file and select “Open With”,
then go into “Other Application...” and choose “SAO ds9”.

In case you are using GNOME 2 you can take the following steps: right click on a FITS
file and choose Properties→Open With→Add button. A list of applications will show up,
ds9 might already be present in the list, but don’t choose it because it will run with no
options. Below the list is an option “Use a custom command”. Click on it and write the
following command: ds9 -mecube in the box and click “Add”. Then finally choose the
command you just added as the default and click the “Close” button.

B.2 PGPLOT

PGPLOT is a package for making plots in C. It is not directly needed by Gnuastro, but can
be used by WCSLIB, see Section 3.1.1.3 [WCSLIB], page 45. As explained in Section 3.1.1.3
[WCSLIB], page 45, you can install WCSLIB without it too. It is very old (the most recent
version was released early 2001!), but remains one of the main packages for plotting directly
in C. WCSLIB uses this package to make plots if you want it to make plots. If you are
interested you can also use it for your own purposes.

If you want your plotting codes in between your C program, PGPLOT is currently one
of your best options. The recommended alternative to this method is to get the raw data
for the plots in text files and input them into any of the various more modern and capable
plotting tools separately, for example the Matplotlib library in Python or PGFplots in
LATEX. This will also significantly help code readability. Let’s get back to PGPLOT for the
sake of WCSLIB. Installing it is a little tricky (mainly because it is so old!).

You can download the most recent version from the FTP link in its webpage2. You
can unpack it with the tar xf command. Let’s assume the directory you have unpacked
it to is PGPLOT, most probably it is: /home/username/Downloads/pgplot/. open the
drivers.list file:

$ gedit drivers.list

Remove the ! for the following lines and save the file in the end:

PSDRIV 1 /PS

PSDRIV 2 /VPS

2 http://www.astro.caltech.edu/~tjp/pgplot/

http://www.astro.caltech.edu/~tjp/pgplot/
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PSDRIV 3 /CPS

PSDRIV 4 /VCPS

XWDRIV 1 /XWINDOW

XWDRIV 2 /XSERVE

Don’t choose GIF or VGIF, there is a problem in their codes.

Open the PGPLOT/sys_linux/g77_gcc.conf file:

$ gedit PGPLOT/sys_linux/g77_gcc.conf

change the line saying: FCOMPL="g77" to FCOMPL="gfortran", and save it. This is a very
important step during the compilation of the code if you are in GNU/Linux. You now
have to create a folder in /usr/local, don’t forget to replace PGPLOT with your unpacked
address:

$ su

# mkdir /usr/local/pgplot

# cd /usr/local/pgplot

# cp PGPLOT/drivers.list ./

To make the Makefile, type the following command:

# PGPLOT/makemake PGPLOT linux g77_gcc

It should finish by saying: Determining object file dependencies. You have done the
hard part! The rest is easy: run these three commands in order:

# make

# make clean

# make cpg

Finally you have to place the position of this directory you just made into the LD_

LIBRARY_PATH environment variable and define the environment variable PGPLOT_DIR. To
do that, you have to edit your .bashrc file:

$ cd ~

$ gedit .bashrc

Copy these lines into the text editor and save it:

PGPLOT_DIR="/usr/local/pgplot/"; export PGPLOT_DIR

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/pgplot/

export LD_LIBRARY_PATH

You need to log out and log back in again so these definitions take effect. After you logged
back in, you want to see the result of all this labor, right? Tim Pearson has done that for
you, create a temporary folder in your home directory and copy all the demonstration files
in it:

$ cd ~

$ mkdir temp

$ cd temp

$ cp /usr/local/pgplot/pgdemo* ./

$ ls

You will see a lot of pgdemoXX files, where XX is a number. In order to execute them
type the following command and drink your coffee while looking at all the beautiful plots!
You are now ready to create your own.

$ ./pgdemoXX
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Appendix C GNU Free Doc. License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/
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under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
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You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
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be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
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titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.
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10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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Index: Macros, structures and functions

All Gnuastro library’s exported macros start with GAL_, and its exported structures and
functions start with gal_. This abbreviation stands for GNU Astronomy Library. The
next element in the name is the name of the header which declares or defines them, so
to use the gal_array_fset_const function, you have to #include <gnuastro/array.h>.
See Section 10.3 [Gnuastro library], page 264, for more. The pthread_barrier con-
structs are our implementation and are only available on systems that don’t have them,
see Section 10.3.2.1 [Implementation of pthread_barrier], page 266.
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Sérsic index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Sérsic profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
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