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Summary 

  

EWSR1-FLI1, the chimeric oncogene specific for Ewing sarcoma (EwS), induces a 

cascade of signaling events leading to cell transformation. However, it remains elusive 

how genetically homogeneous EwS cells can drive heterogeneity of transcriptional 

programs. Here, we combined independent component analysis of single cell RNA-

sequencing data from diverse cell types and model systems with time-resolved mapping 

of EWSR1-FLI1 binding sites and of open chromatin regions to characterize dynamic 

cellular processes associated with EWSR1-FLI1 activity. We thus defined an exquisitely 

specific and direct, super-enhancer-driven EWSR1-FLI1 program. In EwS tumors, cell 

proliferation was associated with a well-defined range of EWSR1-FLI1 activity; 

moreover, cells with a high EWSR1-FLI1 activity presented a strong oxidative 

phosphorylation metabolism. In contrast, a subpopulation of cells from below and above 

optimal EWSR1-FLI1 activity was characterized by increased hypoxia. Overall, our 

study reveals sources of intratumoral heterogeneity within Ewing tumors. 

Keywords 

Single-cell RNA-sequencing, Ewing sarcoma, intratumor heterogeneity, Patient Derived 

Xenografts, transcriptional factor, histone marks, Independent Component Analysis. 

Introduction 

Ewing sarcoma (EwS) is a highly aggressive pediatric bone cancer, which is defined by 

a pathognomonic recurrent somatic mutation - a fusion between the EWSR1 gene and 

an ETS family member, most frequently the FLI1 gene (Delattre et al., 1992; Grunewald 

et al., 2018). This leads to the expression of EWSR1-FLI1, an aberrant and potent 

chimeric transcription factor. EWSR1-FLI1 can act both as a transcriptional activator 

and as a repressor, depending on the sequences of DNA binding sites and on the 

presence of additional co-factors (Bilke et al., 2013; Riggi et al., 2014). EWSR1-FLI1 

binds to DNA either at ETS-like consensus sites with a GGAA core motif or at GGAA-

microsatellites (GGAA-mSats) which are diverted by EWSR1-FLI1 as de novo 

enhancers (Gangwal et al., 2008; Guillon et al., 2009; Riggi et al., 2014). Through 

binding to these sites, EWSR1-FLI1 has been reported to act directly or indirectly on 

many key cellular processes including cell cycle, apoptosis, angiogenesis, metabolism 

and cell migration (Grunewald et al., 2018; Stoll et al, 2013). 

EwS is genetically stable and ranks among tumors with the lowest mutation rates (Brohl 

et al., 2014; Crompton et al., 2014; Lawrence et al., 2013; Tirode et al., 2014). Indeed, 

apart from the EWSR1-FLI1 fusion, EwS harbors only few other recurrent mutations at 

low frequencies: TP53 (5-10%), CDKN2A (10%) and STAG2 (15%) (Brohl et al., 2014; 

Crompton et al., 2014; Grunewald et al., 2018; Huang et al., 2005; Tirode et al., 2014). 

Despite this remarkable paucity of somatic mutations, EwS is a very aggressive tumor 
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with a strong propensity to progress, metastasize and resist to treatments, suggesting 

potent adaptation properties of cancer cells. Recent data suggests that epigenetic and 

transcriptional heterogeneity can play an important role in explaining the mechanisms of 

such adaptation. Indeed, from a large cohort of EwS tumors, a study on a genome-scale 

DNA methylation sequencing described consistent DNA hypomethylation at enhancers 

regulated by EWSR1-FLI1 and strong epigenetic heterogeneity within tumors (Sheffield 

et al., 2017). Moreover, variable expression of EWSR1-FLI1 was recently suggested as 

a source of heterogeneity in cell lines and tumors, with a high level of EWSR1-FLI1 

expression (EWSR1-FLI1high) cells being highly proliferative whereas EWSR1-FLI1low 

demonstrate a strong propensity to migrate, invade and metastasize (Franzetti et al., 

2017). EwS therefore constitutes an appropriate model to investigate how a single 

somatic driver mutation may impact on critical cell fate decisions ultimately leading to 

tumorigenesis. 

Intratumoral heterogeneity can now be investigated at the single cell level through 

single cell ‘omics’ technologies that enable to explore in great details the cell-to-cell 

variations in gene expression (Baslan and Hicks, 2017). These approaches can help 

characterize the origins of genetic and non-genetic heterogeneity which can modulate 

cell response to exogenous and endogenous factors such as the activation of cancer 

driver genes (Almendro et al., 2013). Such approaches can also decipher essential bi- 

or multi-modalities in the distribution of expression of the genes regulating the cell fates 

(Shalek et al., 2013) or the interplay between progression through the cell cycle and the 

action of signaling and/or differentiation pathways, which can hardly be addressed 

through bulk-cell analysis (Buettner et al., 2015). 

Here, we first used single cell analysis to explore the dynamics of EWSR1-FLI1-related 

expression changes at the single cell level using a time course upon the EWSR1-FLI1 

induction. Ewing cell transcriptomic profiles were also compared with a set of single cell 

profiles from other reference systems chosen by various aspects of similarity to the 

Ewing cell system: being either time series experiments, cells corresponding to EwS 

cell-of-origin or cells of various tumor types. This analysis was combined with the 

exploration of the epigenetic changes. Overall, this approach allowed us to distinguish 

generic dynamics of transcriptional changes that are shared by most scrutinized 

systems from system-specific, and particularly EwS-specific, dynamics. These 

components were then used to investigate single cells from Ewing tumors. This two-

steps approach illuminates the heterogeneity of Ewing tumors, distinguishing different 

cell populations based on EWSR1-FLI1 activity, proliferation and metabolic 

characteristics. 
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Results 

  

Experimental design for collecting EwS single cell RNA-sequencing profiles 

  

In order to explore the dynamics of individual cell transcriptomes under EWSR1-FLI1 

expression, we used the previously developed A673/TR/shEF inducible cellular model 

derived from the A673 EwS cell line where the expression of EWSR1-FLI1 can be 

modulated through a doxycycline-controlled shRNA (Carrillo et al., 2007). Following 

down-modulation of EWSR1-FLI1 (EWSR1-FLI1low) by 7 days of doxycycline (DOX) 

treatment, we performed a time course experiment after removal of DOX from the 

medium leading to EWSR1-FLI1 re-expression. We made single-cell transcriptome 

measurements at 7 time points (days 7: EWSR1-FLI1low, 9, 10, 11, 14, 17 and 22: 

EWSR1-FLI1high) (Figure 1A). We also tested in vivo the impact of EWSR1-FLI1 on 

gene expression. From A673/TR/shEF xenografts in SCID mouse, single-cell RNA-

sequencing (scRNA-seq) was conducted without DOX (EWSR1-FLI1high) and after 7 

days of DOX treatment (EWSR1-FLI1low ). The modulation of EWSR1-FLI1 protein 

expression was confirmed by western blot (Figure 1B). In addition, the expression of 

CD99 at the membrane and the nuclear expression of LOX, surrogate markers of 

EWSR1-FLI1 activation and repression respectively, was confirmed by 

immunohistochemistry (IHC) (Figure 1B). We also conducted scRNA-seq experiments 

on 3 Ewing patient derived xenografts (PDX), established in the laboratory by 

implantation of tumor samples in SCID mice. PDX-83 and PDX-84 expressed EWSR1-

FLI1 type I fusion and PDX-111 harbors EWSR1-FLI1 type X fusion. Finally, we profiled 

two primary cultures of mesenchymal stem cells (MSCs), the likely EwS cell-of-origin 

(Tirode et al., 2007). 

Unsupervised analysis of the Ewing single-cell transcriptomic data by Principal 

Component Analysis (PCA), clearly separated in vitro (A673/TR/shEF time series & 

Ewing MSCs) (Figure 1C, upper left panel) and in vivo datasets (A673/TR/shEF 

xenograft & Ewing PDXs) (Figure 1C, middle and right upper panel) along the first 

principal component (PC1, 14.7% of explained variance) (Figure 1C). The second 

principal component (PC2, 4.2% of explained variance) projection revealed the effect of 

EWSR1-FLI1 activation on transcriptomic dynamics. For A673/TR/shEF time series, 

EWSR1-FLI1low cells (d7) were grouped close to MSCs and clearly separated from 

EWSR1-FLI1high cells (d22). As early as the second (d9) and the third (d10) days of 

EWSR1-FLI1 re-expression, the distribution of single cell transcriptomes is already 

significantly different from EWSR1-FLI1low cells (d7). 4 and 7 days after re-induction 

(d11 and d14) represent intermediate (between EWSR1-FLI1low and EWSR1-FLI1high) 

states of single cell transcriptome distributions. Finally, at d17 most of the single cells 
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converge to the EWSR1-FLI1high state of d22. Similarly, EWSR1-FLI1low and EWSR1-

FLI1high states of A673/TR/shEF xenografts could be clearly distinguished. All EWSR1-

FLI1high cells, including the 3 PDXs, converge together in the transcriptomic space 

(Figure 1C, All samples). The first component was not significantly enriched with any 

gene ontology gene set, while the second principal component was associated by 

functional enrichment analysis to EWSR1-FLI1 modulated genes (taken from Kinsey et 

al., 2006), positive correlation, p < 10-65), Cell Cycle (GO:0007049, positive correlation, 

p < 10-26), and Extracellular Matrix (ECM) Organization (GO:0030198, negative 

correlation, p < 10-25). 

We also checked the single cell expression dynamics of 8 genes known to be directly 

modulated by EWSR1-FLI1 (up-regulated genes: PRKCB, LIPI, CCND1, NR0B1; down-

regulated genes: IGFBP3, IL8, LOX, VIM) (Figure S1). These results confirmed 

consistent re-induction dynamics of EWSR1-FLI1. Single cell expression of these genes 

highlights early and late responsive cells to EWSR1-FLI1 re-expression at any given 

time point (Figure S1) (Hancock and Lessnick, 2008). 

Collectively, these analyses show that these Ewing single cell transcriptome datasets 

recapitulated the main results found previously in bulk expression measurements in 

similar biological systems. However, just as in the bulk data, this standard multivariate 

analysis did not allow to distinguish processes directly related to EWSR1-FLI1 specific 

transcriptional activity from generic biological processes (cell cycle, ECM organization, 

etc...), indirectly modified following EWSR1-FLI1 expression. 

Joint deconvolution of multiple scRNA-seq datasets into independent 

components 

In order to create a negative control to the Ewing-specific datasets and evaluate the 

specificity of the sources of cellular heterogeneity, we jointly normalized and merged the 

Ewing-specific single cell datasets together with several other single cell datasets 

generated in-house or obtained from public resources (Patel et al., 2014; Trapnell et al., 

2014). Altogether we analyzed 1,964 single cell transcriptomic profiles from 8 different 

datasets (Table S1). A t-distributed stochastic neighbor embedding (t-SNE) plot of all 

cells is shown in Figure S2. The different Ewing-specific datasets are grouped together, 

separated from the other datasets. In both in vitro and xenograft cases, cells in which 

the EWSR1-FLI1 oncogene has been induced converge to the same area at the center 

of the plot. Cells of mesenchymal origin (MSC and myoblasts) are localized close to 

each other in the plot. 
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Figure 1. Experimental design for collecting EwS scRNA-seq profiles. A. A673/TR/shEF in vitro - 

Scheme of the time-resolved induction of DOX-regulated EWSR1-FLI1 and western blot. After 7 days of 

DOX treatment, cells are extensively rinsed, grown in a DOX-free medium then collected at 2 days (d9), 3 

days (d10), 4 days (d11), 7 days (d14), 10 days (d17) and 15 days (d22) and isolated using the 

Fluidigm
TM

 C1 system for scRNA-seq. B. A673/TR/shEF xenograft. A673/TR/shEF were injected sub-

cutaneously in SCID mice. After 18 days, mice were separated in two groups, one with DOX added to the 

drinking water for 7 days and the other group without DOX. EWSR1-FLI1 expression was controlled by 

western blot. IHC with positive (CD99) and negative (LOX) EWSR1-FLI1 surrogate markers are shown. 

C. PCA of single cells EwS datasets. Cells are indicated by colored circles, from d7 (light blue circles) to 

d22 (dark blue dot), A673/TR/shEF xenograft cells at d0 (dark blue triangle) and d7 (light blue triangle), 3 

Ewing PDXs (blue square), MSCs (yellow circles). 
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We applied Independent Component Analysis (ICA) in order to decompose the 

heterogeneity of scRNA-seq profiles into a relatively small number (30, as it was close 

to the estimated optimal number, see Methods) of independently acting factors or 

independent components (ICs). The rationale for choosing this approach is that ICA can 

in principle deconvolute signals correlated to a common hidden factor, since the 

covariance matrix was made unity before application of ICA by data whitening (Zinovyev 

et al., 2013). For each IC, the analysis associated a weight for each gene (collectively 

denoted as metagene) and a score for each sample (denoted as metasample) (Tables 

S2 and 3). 

Correlating the computed 30 meta-samples to the binary vectors describing different cell 

subsets enabled us to distinguish generic and cell type-specific independent sources of 

heterogeneity (Figure 2A and Table S2) including Ewing specific independent 

components (IC10, IC30) as well as components specific to other cell types (Figure 2A). 

In addition, ICA deconvolution leads to the identification of components not specific to 

any cell type, whose correlations with the cell subsets binary vectors were small (those 

are located in the right bottom part of the Figure 2A). 

Generic and EWSR1-FLI1 specific components 

We then looked for biological processes that could be associated with each of the ICs. 

For this we defined two sets of top contributing genes for each component, one with 

positive weights and one with negative weights (denoted as ICx+ and ICx- respectively 

where x denotes the component number and +/- indicates the long and short tail of the 

weight distribution, respectively), using a threshold of 5 standard deviations roughly 

corresponding to a statistical significance of 1%. On these, we then performed gene set 

enrichment analyses using the Toppgene suite (Chen et al., 2009) (online table: 

http://bioinfo-out.curie.fr/projects/sitcon/mosaic/toppgene_analysis/).This analysis 

highlighted associations with various generic biological processes, some having 

remarkably strong enrichment scores, and led us to focus on 4 gene sets: IC1+, IC2+, 

IC10+ and IC30+. Thus, IC1+ was associated with chromosome segregation 

(GO:0007059, p = 10-80) and mitotic nuclear division (GO:0007067, p = 10-80), IC2+, 

with DNA replication (GO:0006260, p = 10-69) and IC30+, with extracellular matrix 

organization (GO:30198, p = 10-16, 10-25, and 10-14, respectively). IC10+ was not 

strongly associated with any biological process. We matched the IC1+ and IC2+ scores 

to two recently established transcriptomic signatures for the specific phases of the cell 

cycle (Giotti et al., 2017), and found strong match between IC1+ and G2/M score and 

between IC2+ and G1/S score. Accordingly to this analysis, we will refer to IC1+, IC2+, 

IC30+ gene sets as IC-G2/M, IC-G1/S and IC-ECM correspondingly, for the sake of 

clarity (Figure S3).  
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Figure 2. Deconvoluting the cell cycle phases and specific transcriptional program of EWSR1-FLI1 

activity. A. PCA plot visualizing the matrix of correlations computed between independent components 

(ICs) and the binary vectors distinguishing different groups of cells: Ewing (blue), Neuroblastoma, NB 

(grey), Rhabdoid, RHABD (green), Myoblast (red), Glioblastoma, GB (orange). B. Gene set score 

distribution across all cell datasets for four selected ICs (IC1+: IC-G2/M, IC2+: IC-G1/S, IC10+: IC-EwS 

and IC30+: IC-ECM). The scores are computed as average value of the gene expression of the most 

variable genes in the set (see Materials and Methods). For Ewing dataset, blue scale illustrate EWSR1-

FLI1 level of expression: from EWSR1-FLI1
low

 (light blue) to EWSR1-FLI1
high

 (dark blue). For Rhabdoid 

dataset, green scale shows SMARCB1
-
 (light green) and SMARCB1

+
 (dark green). For GB dataset, GB 

cell line are in light orange and GB tumors are in dark orange. For the myoblast dataset, red color scale 

illustrate the myoblast differentiation time course. C. Specificity of IC-EwS gene set for EwS. Gene 

expression analysis is applied on a cohort of 22,956 non EwS tumors and 156 EwSs (all measured by 

Affymetrix HG-U133Plus 2.0 array). Box plot of gene expression log2 fold change of EwS vs. other tumors 

of the non regulated genes (n = 100), IC-EwS genes (n = 220), the up- (n = 503) and down-regulated 

genes (n = 293) described by Hancock and Lessnick, 2008(Hancock and Lessnick, 2008), the IC-G2/M (n 

= 212), IC-G1/S (n = 291) and IC-ECM (n = 252) genes. 
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IC10+ gene set was interpreted as highly Ewing sarcoma-specific; therefore, further we 

refer to it as IC-EwS. The IC-EwS list (220 genes) was highly enriched in “Genes up-

regulated in mesenchymal stem cells (MSC) engineered to express EWSR1-FLI1 fusion 

protein” (Riggi et al., 2008) (p = 10-102) and several other Ewing-related transcriptomic 

signatures from MSigDB C2 collection (targets of EWSR1 ETS fusions up (Miyagawa et 

al., 2008), p = 10-50; targets of EWSR1-FLI1 fusion (Hu-Lieskovan et al., 2005), p = 10-

48; Ewing family tumor (Staege et al., 2004), p = 10-25) and to a lesser extent with the 

“Ewing sarcoma disease” gene set (C3536893 entry in DisGeNET database (Pinero et 

al., 2015), p = 10-9). Unlike previously reported EwS-related gene signatures, IC-EwS 

was not enriched in cell cycle-related reference gene sets. 

We then assigned a gene set activation score to each cell regarding the different ICs 

(an average expression of most variable genes in the gene set, see Methods). The 

score distributions allowed to make the following conclusions: (1) IC-G2/M and IC-G1/S 

scores are distributed across all datasets peaking in the states that can be associated to 

active proliferation (Figure 2B); (2) within each dataset IC-G2/M and IC-G1/S scores are 

highly variable; (3) IC-EwS and IC-ECM high score values are almost exclusively 

associated to Ewing cells; (4) IC-EwS, IC-ECM scores clearly distinguish EWSR1-

FLI1high and EWSR1-FLI1low cell states and change monotonically with time, increasing 

or decreasing, respectively. This is observed in the in vitro and xenograft inducible 

cellular systems. Figure 2B visualizes IC-G2/M, IC-G1/S, IC-EwS, IC-ECM scores 

across the studied datasets. 

To further test the specificity of IC-EwS and IC-ECM gene expression in EwS, we 

performed gene expression analysis in a combined cohort of 23,112 samples including 

156 EwSs and 22,956 other tumors (Gene investigator(Hruz et al., 2008)). The IC-EwS 

gene set strikingly discriminated EwS from all other samples (Figure 2C), better than the 

gene signature previously defined by transcriptomic data meta-analysis and containing 

genes regulated by EWSR1-FLI1 and enriched in EwSs(Hancock and Lessnick, 2008). 

This analysis also showed that the IC-ECM gene set is not specific to EwS (Figure 2C). 

Altogether, these data highlight that the IC-EwS gene set is highly specific to EwS both 

in model systems (cell line and PDX) and in tumors. 

 

Characterization of the specific EWSR1-FLI1 activity signature 

To further characterize the IC-EwS signatures, we performed EWSR1-FLI1 ChIP-seq on 

A673/TR/shEF at d7, d9, d10, d11, d14 and d17, following the experimental design 

used to generate the A673/TR/shEF time series (Figure 1A). EWSR1-FLI1-specific 

peaks (EF-peaks) were defined as peaks that significantly varied upon EWSR1-FLI1 re-

expression (p < 0.005). 
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For each gene we calculated the distance between the transcription start site (TSS) to 

the nearest EF-peak. We then compared the distribution of these distances for genes of 

the various ICs to the distribution of distances of a set of 1,000 control genes that are 

not regulated by EWSR1-FLI1. As shown in Figure 3A, this distance is significantly 

smaller for IC-EwS genes (p = 10-29) as compared to other ICs and to the reference 

Hancock et al. EWSR1-FLI1 signature. Indeed, we observed a highly significant 

enrichment in percentage of genes with EF-peaks between 0-100 kb from TSS for IC-

EwS (38% of genes) as compared to “non-regulated” genes (<10%), from which we 

concluded that many of IC-EwS genes are likely to be directly regulated by EWSR1-

FLI1 (Figure 3B). A slight enrichment was also observed for the 100-200 and 200-300 

kb ranges (12%) but not for distances > 300 kb from TSS. TSS of the Hancock et al. 

and of the IC-ECM genes are also slightly significantly closer to EF peaks than controls 

but with a much less significant statistical association (Figure 3A). 

Direct EWSR1-FLI1 target binding sites are shown to be either bona fide ETS motifs or 

GGAA-mSats (Gangwal et al., 2008; Guillon et al., 2009; Riggi et al., 2014). We used 

FIMO (Grant et al., 2011) to analyze the occurrences of these two motifs in EF-peaks 

located less than 100 kb from TSS of IC-EwS genes (n = 83/220) as compared to 

control genes (n = 72/1000). While most EF-peaks related to control genes were ETS 

sites, most EF-peaks of IC-EwS genes contained GGAA-mSats with at least 4 repeats 

(GGAA-mSats≥ 4) (Figure 3C). 

We also performed ChIP-seq analysis of H3K27ac histone mark to map active 

chromatin regions at d0 (EWSR1-FLI1high) and d7 (EWSR1-FLI1low). We observed that 

91% of EF-peaks are associated with H3K27ac marks at d0, in agreement with 

EWSR1-FLI1 being a pioneer factor for chromatin remodeling (Boulay et al., 2017). 

When considering only EF-peaks localized in super-enhancers (SEs) regions, as 

defined by the ROSE algorithm (Loven et al., 2013; Whyte et al., 2013), we can define 

SE associated with EF-peak at d0, at d7 and at both time points. We observed that SEs 

defined at d0 and containing EF-peaks are enriched in the IC-EwS set of genes (p < 10-

5) (Figure 3D). Moreover, it appeared that the IC-EwS associated SEs ranked among 

the strongest SEs (Figure 3E). Such an association is specific for IC-EwS as it was 

observed neither for control genes (Figure 3F) nor for any other ICs (data not shown). 

Altogether, these analyses allowed us to define the IC-EwS signature as strongly 

enriched in EWSR1-FLI1 direct target genes. These genes are associated to EF-peaks 

that (1) significantly vary upon EWSR1-FLI1 expression, (2) are significantly closer to 

the TSS, (3) are enriched in GGAAmSat ≥ 4, (4) are significantly enriched in potent 

super-enhancers. Given all the analysis steps described above, we defined a set of 83 

genes that have most of these characteristics and hence appear to be excellent 

candidates for being EWSR1-FLI1 direct targets, playing key roles in EwS oncogenesis 

(Figure 4). 
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Figure 3. Characterizing the IC-EwS gene set. A. Barplot showing for each IC the Log(1/p-value) of 

comparisons of the “gene to EF peak” distance as compared to control genes (“Non-regulated genes” (n 

= 1,000) ). IC+ are in red and IC- in blue. The Hancock et al EWSR1-FLI1 up and down 

signatures(Hancock and Lessnick, 2008) are also shown. The dotted line indicates the significant 

threshold for the p-value according to Bonferroni correction (p = 8.10
-4

). B. Comparison of the enrichment 

of genes with EF peaks in IC-EwS (n = 220) depending upon the distance to TSS as compared to control 

genes (n = 1,000). C. Analysis of the two types of EF peaks (ETS and GGAA-mSats≥4) in control and IC-

EwS genes. Only EF peaks <100 kb of TSS are considered, i.e. 72 peaks for control and 83 for IC-EwS 

genes. D. Percentage of genes with EF peaks in super-enhancers (as defined by the ROSE software) for 

the different ICs. The star indicates the group with is significantly different from the control (Fisher test 

with Bonferroni correction, p = 5.10
-4

). E. Super-Enhancer rank curve showing enrichment of top super-

enhancers (low rank) in IC-EwS genes at d0 (black line) as compared to d7 (red line). F. Super-Enhancer 

rank curve for the control geneset. 
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Figure 4. The 83 genes identified as likely direct EWSR1-FLI1 targets. From left to right: heatmap of 

their expression in single cell normalized expression center scaled and winsorized (5%) in A673/TR/shEF 

time course from EWSR1-FLI1
low

 (d7, light blue) to EWSR1-FLI1
high

 (d22, dark blue), heatmap of EF-peak 

intensities in A673/TR/shEF time course from EWSR1-FLI1
low

 (d7, white) to EWSR1-FLI1
high

 (d17, red), 

number of GGAA in EF-peaks (grey scale), heatmap of H3K27ac histone mark co-localized with EF 

peaks (from light green to dark green) and of super-enhancer ranking in A673/TR/shEF d0 and d7 (from 

dark purple to light purple). The 83 genes are ranked by their weight in IC-EwS. 
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Unraveling heterogeneity of Ewing tumors at single cell level in tumors 

We then investigated whether the afore-mentioned signatures, mostly defined by in vitro 

systems, may be informative to explore the structure of large single cell datasets 

obtained from in vivo samples. 5 new patient-derived xenografts (PDX-352, PDX-861, 

PDX-856, PDX-184 and PDX-1058), from EWSR1-FLI1-positive EwSs were profiled 

using the 10x genomics sequencing platform. After quality checks and removal of 

profiles corresponding to dead cells, a total of 3,595, 1,245, 604, 1,245 and 1,742 

scRNA-seq profiles was obtained for PDX-352, PDX-861, PDX-856, PDX-184 and PDX-

1058, respectively. In order to visualize distances between individual cell 

transcriptomes, we used the SPRING web-based data visualization interface based on 

the application of a force-directed graph layout to the graph of similarity between full 

transcriptomic profiles of individual cells (kNN graph) (Weinreb et al., 2018). When IC-

EwS score, which can be considered as a direct assessment of EWSR1-FLI1 

transcriptional activity, was mapped onto the SPRING layout in all PDXs, we observed 

that this signature largely contributes to the intratumoral heterogeneity (Figure 5A and 

Figure S4A-D). In all PDXs, IC-G2/M and IC-G1/S define specific groups of cells that 

form a loop-like structure, most probably reflecting the transcriptional dynamics of the 

cell cycle program (Figure 5A-B, Figure S4A-D).  

An attempt was made to merge together the 5 PDXs transcriptomic datasets, but their 

transcriptomes remain too specific to be directly compared even when adjusted for the 

variations in library size. Instead, we found that the score distributions for specific set of 

genes in our focus of study can be easily aligned (Figure 5A). Thus, using joint analysis 

of 5 PDXs, we found that it is plausible to suggest existence of an optimal range of 

intermediate IC-EwS values to activate cell proliferation (Figure 5C). We define such a 

range as a window of IC-EwS scores containing 95% of proliferative cells, identified 

accordingly to IC-G1/S or IC-G2/M scores (Figure 5C). Below and above this range we 

observe only a small number of cells in proliferative state. By using Kolmogorov-

Smirnov test, we verified that this observation can not be a random sampling effect 

caused by the globally higher density of cells in this defined range (p < 10-22).  

We further investigated which biological factors can potentially explain the lack of 

proliferation outside the optimal window of EWSR1-FLI1 activity estimated through the 

IC-EwS score in PDXs. For each PDX separately, we defined IC-EwSOPT as the group 

of cells whose IC-EwS scores fall into the optimal proliferation range, an interval 

containing a majority of IC-EwS scores from proliferative cells. Other cells, 

characterized by IC-EwS scores below and above the optimal range, were respectively 

labeled as IC-EwS<OPT and IC-EwS>OPT. Cells of both of these types were relatively rare 

(in average, for 5 PDXs, IC-EwS<OPT and IC-EwS>OPT groups were 10% and 8% of the 

total cell number, correspondingly). 
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Figure 5. Quantification of PDXs heterogeneity based on identified transcriptional signatures. A. 

SPRING representation of the kNN graphs (k = 5) for PDX-352 dataset. The scores are either gene set 

(top contributing genes) scores of the ICs computed for model systems (IC-EwS recapitulating the 

transcriptional program of EWSR1-FLI1, IC-G2/M and IC-G1/S recapitulating the transcriptional programs 

of the cell cycle) or the scores of the reference gene sets recapitulating a biological function contributing 

to the intratumoral heterogeneity. An interactive version of this Fig. is available at https://goo.gl/XqCKuC 

B. Visualization of the cell cycle transcriptional program, used to define the proliferating cells of the 5 EwS 

PDXs. The scores were centered to have zero median for non-proliferating cells, separately for each 

PDX. C. Plot visualizing connection between IC-EwS and IC-G2/M scores shows that proliferative cells 

tend to appear in an optimal range IC-EwS
OPT

 of IC-EwS values. IC-EwS scores were centered to have 

zero median for proliferating cells, in each PDX. D. Plot showing connection between IC-EwS and HIF1α 

transcription factor network score. The HIF1α scores were centered to have zero median, in each PDX. In 

panels B,C,D, solid line shows local average of the score, and the dashed lines indicate one standard 

deviation interval. 
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First, we performed GSEA analysis, comparing IC-EwSOPT cells with the IC-EwS<OPT 

groups. We found that the strongest up-regulated signal characterizing the cells outside 

the optimal window was related to hypoxia (HALLMARK_HYPOXIA and PID138045 

“HIF1α transcription factor network” gene sets from MSigDB, NES = 5.2, 3.16, p < 10-3) 

and glucose catabolism (GO:0006007 “glucose catabolic process”, NES = 3.74, p < 10-

3). By contrast, cells residing inside the optimal range for proliferation were 

characterized by a high oxidative phosphorylation 

(HALLMARK_OXIDATIVE_PHOSPHORYLATION gene set from MSigDB, NES = 4.3, p 

< 10-3). In all PDXs, we observed that most of IC-EwS<OPT cells were characterized by 

increased glucose catabolism score (for example, Figure 5A). Inspection of hypoxia 

score in all PDXs showed that it highlights a compact subgroup of IC-EwS<OPT cells (see 

characteristic example in Figure 5A and D, and all other PDXs in Figure S4A-D). In all 

PDXs, this subgroup of IC-EwS<OPT cells highly expressed hypoxia-related markers, 

such as ALDOA, CA9, NDRG1, VEGFA, ADM, BNIP3 and NRN1 (all members of the 

“HIF1α transcription factor network” pathway) (Figure S5).  

A relatively rare population of IC-EwS>OPT cells was also characterized by a consistent 

increase of many genes from the HIF1α transcription factor network, especially towards 

the maximally observed IC-EwS scores (see Figure 5D). This signal was, however, not 

the strongest one among others, being masked and dominated by the increased 

expression of IC-EwS signature genes, in IC-EwS>OPT (which is expected from the 

definition of IC-EwS>OPT). When the IC-EwS score was regressed out from the 

expression of all genes, only the hypoxia-related signature remained positively enriched 

in IC-EwS>OPT subpopulation, compared to the rest of cells. Interestingly, several 

members of the HIF1α transcription factor network pathway including the anti-apoptotic 

hypoxia-induced gene MCL1 were expressed significantly more in IC-EwS>OPT than in 

IC-EwS<OPT (Figure S5). This observation can indicate an EWSR1-FLI1-modulated 

interplay between hypoxia and apoptosis regulation in cells falling out of the optimal 

proliferation range of IC-EwS scores. In favor of this hypothesis, in the top 10 

differentially expressed genes between IC-EwSOPT and IC-EwS<OPT cells there are 

several apoptosis-related genes, namely pro-apoptotic factor BNIP3 (down-regulated in 

IC-EwSOPT) and Cytochrome C oxidase COX6C (up-regulated in IC-EwSOPT) (Figure 

S6). 

We can conclude that the major sources of transcriptomic heterogeneity inside EwS 

PDXs are proliferation and the variation of activity of the EWSR-FLI1 transcription 

factor. We observe that there is an optimal range of activity of EWSR-FLI1 for cells to 

proliferate. We show that outside of this range, we can define cell subpopulations 

expressing hypoxia markers and genes involved in glucose pathways.  
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Discussion 

As most pediatric cancers, EwS is characterized by a paucity of genetic abnormalities. 

Accumulation of genetic alterations that frequently result from genetic instability, which 

are suspected to play major roles in the progression of adult cancers, is therefore not 

expected to be the major player in the progression of pediatric cancers. 

Here, based on our recent findings that the variation of expression of EWSR1-FLI1 

constitutes a major source of heterogeneity in EwS, we used a variety of experimental 

systems to investigate at the single cell level the gene expression dynamics associated 

with changes in EWSR1-FLI1 expression. To our knowledge this is the first report 

studying the dynamics of a transcriptome at the single cell level after induction of a 

known cancer driver gene. 

We applied unsupervised independent component analysis (ICA), which first identified 

two components that are extremely specific to G1/S and G2/M cell cycle phases (IC-

G2/M and IC-G1/S). These components are not EwS-specific and characterize a subset 

of cells in all the experimental systems included in the analysis. In EwS cells, IC-G2/M 

and IC-G1/S are clearly correlated with the expression level of EWSR1-FLI1. 

Furthermore an independent component exquisitely specific for EWSR1-FLI1 activity 

was identified which i) did not highlight any non-Ewing cells or tumors in single cell, 

tumor bulk or normal tissue datasets, ii) is strongly enriched by EF1 peaks associated 

with the presence of GGAA-mSats sequences in the vicinity of the TSS, iii) is strongly 

associated with EWSR1-FLI1-dependent super-enhancers regions. Based on filtering 

genes associated with this component, we further identified a set of 83 strong candidate 

genes for direct regulation by EWSR1-FLI1, a characteristic which was not reported 

previously for most of them. Previously proposed lists of EWSR1-FLI1 direct targets 

contain numerous cell cycle genes as a result of the correlation between EWSR1-FLI1 

induction and cell cycle gene expression. In contrast, this restricted list only contains 

CCND1 as a gene directly involved in cell cycle strongly reinforcing the role of this gene 

as a major player in EWSR1-FLI1-induced activation of the cell cycle. Clear distinction 

between IC-EwS and IC-G2/M and IC-G1/S underlines the ability of the ICA approach to 

discriminate the cell cycle process, a usual confounding factor which hides the effects of 

other essential factors, and EWSR1-FLI1 direct downstream regulated genes. This is an 

alternative to the use of other methods that have been developed to “subtract” the 

signal related to the cell cycle signal from the data(Bacher and Kendziorski, 2016; 

Barron and Li, 2016), a step which would not be suitable in our study as the cell cycle 

and the proper oncogene transcriptional programs appear to be highly correlated. 

The identification of the IC-EwS signature constitutes a considerable improvement as 

compared to the previously defined EWSR1-FLI1 signatures. When investigated with 

functional annotation tools (Toppgene, DAVID), IC-EwS only retrieves weak enrichment 

annotations as synapses, neurogenesis, or cell adhesion, in agreement with previous 

observations that EWSR1-FLI1 activates some neural and cell-cell adhesion processes 
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(Franzetti et al., 2017; Hu-Lieskovan et al., 2005). Rather, this list contains genes 

involved in a variety of functions highlighting the pleiotropic effects of EWSR1-FLI1. 

Importantly, a number of these genes appears to be controlled by EWSR1-FLI1 binding 

to GGAA-mSats sequences that are highly polymorphic in the human population. The 

hypothesis of polymorphisms in these regions being involved in hereditary susceptibility, 

as shown recently for the EGR2 locus (Grunewald et al., 2015), or in the inter-tumoral 

heterogeneity of EwS can now be more directly tested. 

 

Exploration of 5 EwS tumors based on these independent components and on the most 

significant functional reference genesets they pointed at, enables to illuminate some 

aspects of intratumoral heterogeneity. One distinct group corresponds to actively 

proliferating cells. The number of cycling cells is variable, from 9% to 30%. Rather 

expectedly, these cells demonstrate increased scores for oxidative phosphorylation 

signatures. 

We observe strong cell-to-cell variability of IC-EwS signature score, being an indirect 

measure of EWSR1-FLI1 activity. As expected, cells with a low IC-EwS score are not 

cycling, in agreement with the hypothesis of a significant expression of EWSR1-FLI1 

being necessary for cell cycle entry and progression. More surprisingly, cells with the 

highest IC-EwS scores are not cycling either suggesting that proliferation of Ewing cells 

is induced by an intermediary, potentially optimal level of EWSR1-FLI1 expression 

(called IC-EwSOPT in this study). 

In addition to the cell cycle, EWSR1-FLI1 expression may induce metabolic 

heterogeneity. In all tumors, our analyses highlight a subgroup of IC-EwS<OPT,>OPT cells 

that are characterized by hypoxia signal. We observe that the number of cells that may 

be assigned to a Warburg effect, i.e. an aerobic glycolysis, appears relatively low. It will 

be of strong interest to follow in vivo the relationship of these cell subpopulations with 

the microenvironment including blood vessels, fibroblasts and immune cells, and follow 

their evolution in response to therapy.  

In conclusion, in this study we characterize the dynamic effect of EWSR1-FLI1 at single 

cell level. We can distinguish, in an unsupervised and unbiased manner, its oncogene-

specific transcriptional program (IC-EwS) from a process strongly coupled to it, the 

induction of proliferation. The IC-EwS allowed us to describe tumoral heterogeneity in 

EwS’s PDXs highlighting three major populations: one corresponding to the optimal 

window for cell proliferation activation and two others characterized by lower or higher 

activity of IC-EwS and associated to hypoxia. 

The methodology developed can be applied to other biological contexts, for example, in 

order to dissect different transcriptional programs of other known cancer drivers or 

tumor suppressors. The different components identified enable to characterize the 

transcriptional heterogeneity of a tumor cell population. Further studies will be needed 
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to assess whether the composition of tumors in these different compartments influences 

the response to treatment and prognosis of tumors. 
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Methods 

  

Cell lines and animal experiments 

All cells are grown at 37°C with 5% of CO2 with 100 UI/mL Penicillin and 100 µg/mL 

Streptomycin (Gibco). A673/TR/shEF (Carrillo et al., 2007) are cultured in DMEM 

(Gibco) 10% FBS (Eurobio), with 50 µg/mL Zeocin (Invitrogen), 2 µg/mL Blasticidin 

(Invitrogen) added ex-tempo. I2A cells were grown in RPMI (Gibco), 10% FBS (Eurobio) 

with 50 µg/mL hygromycin B (Life Technology), 300 µg/mL G418 (geneticin) and 50 

ng/mL DOX (doxycyclin, Invitrogen) added ex-tempo when indicated. MSCs from bone 

marrow Ewing patients were isolated by density-gradient centrifugation using Ficoll 

technique and were cultured in alpha MEM (Gibco), MSC-qualified serum (Gibco), 1% 

L-glutamine (Gibco) and 1 ng/mL bFGF (Sigma), added ex-tempo. CLB-berlud are 

cultured in RPMI (Gibco) 10% FBS (Eurobio), 100U/mL. 

EWSR1-FLI1 specific small hairpin RNA was induced in A673/TR/shEF cells by adding 

DOX at 1 ug/mL. After 7 days, DOX was removed and cells were washed three times to 

allow silencing of the shRNA and induction of EWSR1-FLI1. Cells were harvested at 

seven different times points: 0 day (d7), 2 days (d9), 3 days (d10), 4 days (d11), 7 days 

(d14), 10 days (d17) and 15 days (d22) after DOX removal. 

For A673/TR/shEF xenograft, 20 millions cells were resuspended in 200 µL of PBS and 

subcutaneously injected into severe combined immunodeficiency (SCID) mice. When 

tumor volume reached 1,000 mm3, DOX was added in the drinking water of a subset of 

mice (+ DOX group) for 7 days. 

For I2A cells, DOX was removed and cells were washed three times to induce 

SMARCB1 expression. 

  

Patient-derived xenograft 

 

Ewing Patient Derived Xenografts (PDX) were established in the laboratory by 

subcutaneous implantation of tumor samples in SCID mice. Patients consented 

preoperatively to take part in the study which received agreement by the Institutional 

Review Board Protocol. 

Eight PDX from EWSR1-FLI1-positive EwSs were profiled using either the 

FluidigmTM(PDX-83, PDX-84 and PDX-111) or the 10xGenomics (PDX-184, PDX-352, 

PDX-856, PDX-861 and PDX-1058) single cell technology. Four of them were derived 

from localized primary tumor, expressing an EWSR1-FLI1 fusion type 1 transcript, either 

localized to the humerus and presenting a CDKN2A gene deletion (IC-pPDX-3 model: 

PDX-84 and PDX-184) or located in the sacrum and presenting a STAG2 R614* gene 
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mutation (IC-pPDX-8 model: PDX-83 and PDX-352). PDX-111 and PDX-861 were 

derived from an Ewing primary tumor presenting metastasis at diagnosis and 

expressing an EWSR1-FLI1 fusion type 1 (IC-pPDX-52 model: PDX-861) or type X 

transcript (IC-pPDX-5 model: PDX-111). Finally, PDX-856 (IC-pPDX-80 model) and 

PDX-1058 (IC-pPDX-87 model, relapse from IC-pPDX-52 mode) were obtained from a 

relapse and expressed an EWSR1-FLI1 fusion type 1 transcript. PDX-1058 presented a 

CDKN2A gene deletion and a TP53 R175C* gene mutation. 

  

Tumor dissociation into single-cell suspension 

  

A673/TR/shEF xenografts and Ewing PDX were dissected from mice and mechanically 

dissociated. The finely minced tissue was transferred to a digestion mix consisting of 

C02 independent medium (Gibco) containing 1 mg/mL collagenase D (Roche), 2 mg/mL 

hyaluronidase (Sigma) and 25 µg/mL DNAse (Sigma), incubated for 45 min at 37 °C 

and gently resuspended every 10 min. Cell suspension was then filtered using 70 µm 

and 30 µm cell strainers (Miltenyi Biotec). For A673/TR/shEF xenograft experiments, 

the tumoral suspension was depleted of infiltrated murine cells using the mouse cell 

depletion kit from Milteny Biotec. Cells were then adjusted at 1x106 cell/mL in HBSS 

containing 2 mM EDTA. Viability was measured using trypan blue exclusion. 

  

Western blot 

  

All A673/TR/shEF in vitro and xenograft proteins were extracted with RIPA and anti-

protease cocktail (Roche). Western blots were hybridized with rabbit monoclonal anti-

FLI1 antibody (1:1000, ab133485, abcam) and mouse monoclonal anti-beta-actin 

(1:10,000, A-5316, Sigma Aldrich). Then, membrane was incubated with anti-

mouse/rabbit IgG horseradish peroxidase coupled (1:3,000, Amersham Bioscience). 

Proteins were detected using chemiluminescence (Pierce). 

  

C1 single cell capture and mRNA-seq 

  

Dissociated cells were captured and processed with the C1 Single-Cell Auto Prep 

System (FluidigmTM) following the manufacturer’s protocol. We started with a cell 

suspension at a concentration of 0.45 x 106 cells/mL. After observation at the 

microscope, we identified the sites where live single cells were captured. Processing of 

cells occurred in the C1 instrument to perform steps of cell lysis, cDNA synthesis with 

reverse transcriptase, and PCR amplification for each cDNA library. Quality of the 

resulting cDNA was checked using the LabChip GX Touch HT (Perkin Elmer, Waltham, 

MA).The cDNA synthesis and PCR used reagents from the SMARTer Ultra Low RNA kit 

from Illumina sequencing (Clontech, Mountain View, CA). After harvest from the C1 
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device, each cDNA library was tagmented using the Nextera XT DNA Sample 

Preparation Kit (Illumina). After PCR, cDNA libraries were pooled. All libraries were 

sequenced with HiSeq2500 (Illumina) using 150 bp paired-end sequencing. 

  

 

 

 

10x Genomics single cell capture and mRNA-seq 

  

Single-cell RNA-seq was performed using the Single Cell 3’GEM Code Single-Cell 

instrument (10x Genomics, Pleasanton, CA, USA), according to the manufacturer’s 

protocol. Cellular suspension (5,300 cells) was loaded on a 10x Chromium instrument to 

generate 3,000 single-cell GEMs, using the Chromium™ Single Cell 3' Library & Gel 

Bead Kit v2. The initial step consisted in performing an emulsion where individual cells 

were isolated into droplets together with gel beads coated with unique primers bearing 

10x cell barcodes, UMI (Unique Molecular Identifiers) and poly(dT) sequences. GEM-

RT was performed to generate barcoded full-length cDNA (53°C for 45 min, 85°C for 5 

min, held at 4°C). After RT, GEMs were broken using the recovery agent and the single-

strand cDNA was cleaned up with DynaBeads MyOne Silane Beads (Thermo Fisher 

Scientific). 

Bulk cDNA was amplified (98 °C for 3 min; 12 cycles : 98 °C for 15 s, 67 °C for 20 s, 

72 °C for 1 min; 72 °C for 1 min; held at 4 °C) and then cleaned up with the SPRIselect 

Reagent Kit (Beckman Coulter). A qualitative analysis on the amplified cDNA was 

performed using Agilent Bioanalyzer high sensitivity chip. 

Libraries were then constructed in 4 main steps: 1) fragmentation, end repair and A-

tailing, 2) adaptor ligation, 3) post ligation cleanup with SPRIselect and 4) sample index 

PCR, quantified by Qubit fluorometric assay (Invitrogen) with dsDNA HS (High 

Sensitivity) Assay Kit and qualified using LabChip (LabChip® GX Touch™ 

PerkinElmer). 

Indexed libraries were equimolarly pooled and sequenced on an Illumina HiSeq 2500 in 

rapid run mode, using paired-end (PE) 26/98 according to 10x recommendations. Using 

a full rapid flow cell, a coverage around 100M reads per sample were obtained 

corresponding to 100,000 reads/cell. 

In order to remove profiles corresponding to dead or stressed cells from the analysis of 

10x data, mitochondrial percentage score was computed for each cell as the 

percentage of UMIs captured by the genes from the previously described gene set (Ilicic 

et al., 2016). In the histograms of this score, a bimodal distribution was observed; 

therefore, all cells from the higher mode were removed from the analysis. After 

additional quality checks such as removal of cells with too small total number of UMIs 

(<5,000 UMIs per cell, compared to the median 15,000 number of UMIs per cell) or too 
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high (>40,000 UMIs), the number of selected cells in each PDX is indicated in the 

Results section. 

  

Alignment, counting and sample normalization of reads. 

  

Reads obtained from sequencing of cells were aligned on the human genome (v. hg19) 

using TopHat (version 2.0.6) (Trapnell et al., 2009). Reads mapping more than once 

(parameter -x 1) or having edit distances of more than 3 (-N 3) were discarded. 

Counting of reads on annotated genes from the GRCh37 gene build was done using 

htseq-count (v. HTSeq-0.5.3p9) (Anders et al., 2015) with the following parameters: 

reads with a quality score less than 10 (-a 10) were discarded and reads partially 

overlapping with the annotated gene transcript were included in the counts unless they 

overlapped with another read. In all experiments analysed the STRANDED=no option 

was used. 

Sample-to-sample normalization was performed by rescaling using DESeq size factors 

(Love et al., 2014). For all data analyses the number of reads was log10(x+1) 

transformed. 

In case of 10x Genomics data, the programs "cellranger mkfastq" and "cellranger count" 

from the Cell Ranger software suite (v. 1.3.1) provided by 10X Genomics were used for 

demultiplexing and counting the reads on the reference genome GRCh38. Sample-to-

sample normalization was performed using the total number of reads in the log scale.  

For all data analyses the number of reads was log10(x+1) transformed. More specifically 

if X is the count matrix the R code to obtain the normalised matrix X.tpm is the following: 

median.umi <- median(colSums(X)); X.tpm <- log(t(t(X)/colSums(X))*median.umi+1). 

For each cell, reads from the k = 5 most similar cells were pooled together to define the 

new cell measurement, in order to reduce the effect of drop-outs. For pooling, kNN 

graph was computed on log10(x+1) transformed data after filtering non-variant genes 

(variance smaller than 0.01) and reducing the dimension of the data by projecting it into 

20-dimensional subspace spanned by the standard PCA components. 

Exploratory analysis of scRNA-seq data 

  

ICA was applied as previously described (Biton et al., 2014), using stabilization, with an 

additional procedure for determining the optimal number of independent components 

(Kairov et al., 2017). In the ICA decomposition X = AS, X is the gene expression 

(sample vs. gene) matrix, A is the (sample vs. component) matrix describing the 

loadings of the independent components, and S is the (component vs. gene matrix) 

describing the weights (projections) of the genes in the components. We used a 

modified MATLAB implementations of fastICA (Hyvarinen, 1999) and icasso (Himberg 
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et al., 2004) as a part of the BIODICA software available at 

https://github.com/LabBandSB/BIODICA/, which contains an algorithm for estimating 

the optimal number of components to compute. Icasso applies FastICA algorithm for 

finding m independent components n = 100 times, and then uses hierarchical clustering 

to estimate compactness of clusters of the components computed in all runs. The 

resulting independent components represent medoids of the m clusters and are ranked 

by the reproducibility (cluster compactness) in n runs. The orientation of the 

components was chosen such that the longest tail of the gene projection distributions 

would correspond to the positive values. 

In order to explore the relation between IC metasamples and the binary vectors 

representing various subsets of cells, we used the mutual correlation metrics in which 

each IC was characterized by a vector of correlations with all other IC metasamples and 

the binary vectors (Table S2), normalized to the unity L1-norm. Subsequently, a 

standard PCA analysis was applied (Figure 2A). 

t-SNE analysis(Van der Maaten, 2008) was done using R with setting the initial 

dimension parameter to 100 and the perplexity parameter set to 80. 

SPRING visualization was produced through computing the kNN graph (k = 5) by 

applying a standard for SPRING approach (Weinreb et al., 2018) consisting in: 1) 

filtering genes with the coefficient of variance smaller than 0.05 and the average 

expression smaller than 0.01, computed for pooled read counts (this filter left from 8 to 9 

thousands of genes in our datasets); 2) normalizing the measurements on the library 

size and 3- reducing the dimension of the dataset to 20 by the standard PCA algorithm. 

 

 Functional enrichment analysis and gene set scoring 

  

For interpreting the biological meaning of the sets of top-contributing to each of the ICs 

genes, we applied toppgene functional analysis tool (Chen et al., 2009), limited to 

reference gene sets not larger than 500 genes (in order to focus on more specific 

functional categories). The toppgene analysis was automated through BIODICA 

graphical user interface available from https://github.com/LabBandSB/BIODICA/ and 

recapitulated in the form of an interactive online table http://bioinfo-

out.curie.fr/projects/sitcon/mosaic/toppgene_analysis/. The table is organized in two 

columns reporting the first most enriched functional gene sets for positive and negative 

part of each IC metagene, in each reference categories (the enriched function is 

mentioned in the table only if the the Bonferroni-corrected p < 0.05 and the number of 

genes from the function found in the top-contributing list is not smaller than 8). Also the 

sets of top-contributing genes smaller than 10 were not considered for the enrichment 

analysis. Each hyperlink in the form of “ICX+/-” leads to a saved detailed enrichment 

analysis as it was produced by toppgene. Each hyperlink in the form “X genes” leads to 

the tested list of top-contributing genes. 
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The table was further used to select a set of reference signatures for the analysis of the 

tumor data. Only signatures from GO and Pathway categories enriched with the 

Bonferroni-corrected p < 10-10 were selected for further analysis. On top of this, we 

added the standard HALLMARK set of transcriptomic signatures from MolSigDB. 

For associating IC-EwS score computed for tumor cells with the reference signatures, 

we applied the standard pre-ranked GSEA analysis to the t-test scores computed 

between the 10th and 90th percentiles of the IC-EwS score. Classical scoring scheme 

was used and 1,000 permutations estimating the empirical p-value. 

 

Gene set scores for gene sets were computed in all analyses as average gene 

expression of the genes composing the signatures, after removal of genes 

characterized by small variance (in all analyses, 2000 most variable genes were kept for 

computing the scores). 

  

Non-regulated control gene sets 

  

We selected “Non-regulated genes” for which at least 100 reads were detected at d7 

and/or d22 and which showed no significant differential expression between d7 and d22 

in A673/TR/shEF bulk expression dataset (0.5 < FC < 2, p > 0.01) (n = 2,117). Then, 

genes were ranked from the lowest to highest fold change. For our analysis, we used 

the top 100 non-regulated genes for the Figure 2C and the top 1,000 non-regulated 

genes for the Figure 3 as a negative control. 

 

Chromatin-immunoprecipitation and sequencing 

  

DNA-protein cross-linking was performed in the presence of 1% of paraformaldehyde 

on 12x106 cells for each condition during 10 minutes. Cell lysis, chromatin shearing, 

immunoprecipitation and DNA purification was performed with reagents from iDeal 

ChIP-seq kit for Transcription Factors (Diagenode, ref: C01010054). Twenty cycles of 

sonication (30s high, 30s off) using TPX tube (Diagenode, ref: 50001) and the Bioruptor 

(Diagenode) were achieved for chromatin shearing. We took 2 µg of FLI1 rabbit 

polyclonal antibody (abcam, ab15289-ChIP grade) to perform immunoprecipitation of 

EWSR1-FLI1 transcription factor and 1 µg of H3K27ac antibody (abcam, ab4729) for 

histone mark immunoprecipitation. IgG and CTCF ChIP was included as negative and 

positive control. To check quality of each ChIP reactions, quantitative PCR was realized 

prior to sequencing on 1/5 of purified DNA. Tested regions correspond to following 

primers: 1- CCND1 

(5’GGTGGGAGGTCTTTTTGTTTC3’/5’CACGCAATCCCAGATCAAAAC3’); 2- CDKN1A 

(5’ACTGACTCATCACTACTCCCTC3’/5’GTGTGCTATTCCCGCCAG3’); 3- CCND1 

(5’CACAGTGTGGGTATTTCCATCAAGCA 
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3’/5’GGTGTGTAGGAAAAACAGCTCTCTGGA3’); 4- Sec14L2 

(5’GCCCCCGCTGATGCACTTCC3’/5’AAGTGCGCCAGCAGAGCCAG3’). ChIP and 

input were sequenced with HiSeq2500 (Illumina) using 100 bp single-end sequencing. 

 

ChIP-seq peak detection and annotation 

  

ChIP-seq reads were aligned to the human genome (hg19 version) with 

Bowtie2(Langmead and Salzberg, 2012). Peaks were called with MACS2 (Zhang et al., 

2008), with option narrow for FLI1 antibody and broad for H3K27ac histone mark. To 

normalize, we took the input dataset from the same cell line. EWSR1-FLI1 specific 

peaks were defined as peaks varying upon EWSR1-FLI1 expression (p < 0.005). To 

obtain the p-values for each of the peaks we tested the statistical correlation (lm 

function in R) between the vectors formed by the EWSR1-FLI1 peak intensities at d7, 

d9, d10, d11, d14, d17 and the vector c (0, 2, 3, 4, 7, 10). That last vector consists in 

the number of days of EWSR1-FLI1 re-expression for each of these time points. For 

each gene, we reported the closest EF-peaks to TSS. We performed a Wilcoxon test to 

compare the distribution of distances for genes of each IC with the control gene set 

(Figure 3A). We used FIMO tool (Grant et al., 2011) to scan EF-peaks with ETS motif 

(JASPAR ID: MA0475.1, p < 0.1) and GGAA-mSats (JASPAR ID: MA0149.1, p < 

0.0005). If several motifs were found, we kept only the best motif. ROSE was used to 

predict Super-Enhancers from H3K27ac marks (Loven et al., 2013){Whyte, 2013 #77. 

We applied Fisher’s exact test to evaluate the enrichment of EF-peaks in Super-

Enhancer (Figure 3D). The Super-Enhancers were associated to the closest expressed 

gene (Figure 3E-F). 
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Supplementary Information 

  

 
 

Table S1. Summary of scRNA-seq datasets used in this study (A673/TR/shEF, PDX, MSC, I2A, CLB-

Berlud, glioblastoma and myoblasts). The model, the type of biological materials, the experiment 

description, the sequencing parameters, the normalization applied and the number of single cells 

sequenced are described for each dataset. 

M
odel

Type
Description (n)

Sequencing param
eters 

Norm
alisation

Nb of single 

cells

Ewing Sarcom
a

ASP14 cell line
Tim

e series: d7° (48), d9* (48), d10* (48), d11* (96), d14* (48), d17* (47), d22* 

(48) 
383

Ewing Sarcom
a

ASP14 xenograft
M

etastable: EW
SR1-FLI1

HIGH (106), EW
SR1-FLI1

LO
W (109)

215

Ewing Sarcom
a

Ewing Patient Derived Xenograft 

(PDX)
PDX-83 (39), PDX-84 (55), PDX-111 (48)

142

Ewing Sarcom
a

Ewing patient prim
ary cell line 

(M
SC)

15FL (48), 7BJ (48)
96

Rhabdoid 
I2A cell line 

M
etastable: SM

ARCB1
NEG (50), SM

ARCB1
PO

S (48)
98

Neuroblastom
a (NB)

CLB-Berlud cell line 
M

YCN
AMP,  ALK

wt (48)
48

G
lioblastom

a (G
B)         (Patel et al)

Tum
ors & cell lines

Tum
ors: M

G
H26 (1460), M

G
H28 (96), M

G
H29 (77), M

G
H30 (155), M

G
H31 (64)                                                               

Cell lines: CSC6 (61), CSC8 (66)

Hiseq2500 – paired-end 25 bp (M
G

H30L sequencing replicate of 

M
G

H30 paired-end 100 bp)
665

M
yoblast (Trapnell et al)

Hum
an skeletal m

uscle m
yoblasts 

(HSM
M

)
Tim

e series: 0h (82), 24h (79), 48h (88), 72h (68) **
Hiseq2500, paired-end 100 bp

317

Hiseq2500, paired-end 150 bp

HTSeq/DESeq
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Table S2. Correlations of the 30 components to the binary vector describing different cell subset. 

  

 

  

ID IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13 IC14 IC15 IC16 IC17 IC18 IC19 IC20 IC21 IC22 IC23 IC24 IC25 IC26 IC27 IC28 IC29 IC30

E
W

IN
G

N
B

G
B

M
S

C

M
Y

O
B

L
A

S
T

S

R
H

A
B

D
O

ID

IC1 1.00 0.66 0.24 0.23 0.23 0.33 -0.21 0.20

IC2 0.66 1.00 0.28 0.22 0.24 0.43

IC3 1.00 -0.27 -0.32 -0.24 0.58 -0.24 0.42 0.26 0.45 -0.29 0.42

IC4 1.00 0.39 0.40 0.24

IC5 -0.27 1.00 0.25 0.28 0.31 -0.29 0.23 -0.33 0.21

IC6 0.24 0.28 -0.32 0.39 1.00 0.29 0.24 0.45 0.36 -0.22 -0.30 0.22 0.25

IC7 0.22 0.29 1.00 0.23 0.31 0.36

IC8 1.00 -0.27 -0.28 -0.21 -0.29 0.23 0.20 0.34 0.24 -0.38 -0.29 0.62

IC9 0.23 0.24 0.25 0.24 0.23 1.00 0.26 0.20 0.28 0.45 -0.21 0.21

IC10 0.23 -0.24 -0.27 0.26 1.00 0.20 0.28 0.21 0.20 -0.26 -0.22 0.26 -0.30 -0.31 -0.25 0.31 0.54 -0.21 -0.21 -0.23

IC11 0.58 1.00 0.26 0.44 0.24 0.29 0.26 0.29

IC12 0.20 1.00 0.29 -0.21 0.25

IC13 -0.24 0.20 0.28 0.29 1.00 0.23 -0.23

IC14 0.28 0.31 1.00 -0.25 0.24 -0.46 0.21 -0.23 0.67 -0.51 0.22

IC15 -0.28 0.21 -0.21 -0.25 1.00 -0.40 -0.24 -0.39 -0.31 -0.21 -0.37 0.74

IC16 -0.21 0.28 1.00 0.22 0.23 -0.28 0.39 0.33 -0.34 -0.30 -0.34

IC17 0.33 0.43 0.40 0.45 0.36 0.45 0.20 0.26 0.24 0.22 1.00 -0.24 0.31 -0.44

IC18 -0.29 -0.46 0.23 -0.24 1.00 -0.48 -0.21 0.34 -0.71 -0.22 0.59 0.25

IC19 0.24 0.31 0.36 0.23 0.21 -0.40 -0.28 1.00 -0.22 -0.40 -0.34 -0.51 0.24 0.26 0.31 0.30 -0.35 0.23

IC20 0.20 -0.21 -0.26 0.25 -0.48 -0.22 1.00 0.27 0.23 -0.28 -0.41 -0.39

IC21 0.42 -0.22 0.44 0.39 0.31 -0.40 1.00 0.26 0.47 -0.26 0.33 -0.22 -0.24 0.37 -0.21

IC22 -0.21 0.26 -0.22 0.24 -0.24 -0.21 0.26 1.00 -0.26 0.31 0.23

IC23 0.20 0.26 -0.34 -0.26 1.00 -0.34 -0.22 -0.31 -0.33 0.67

IC24 0.45 -0.29 -0.30 0.29 0.33 -0.51 0.47 1.00 -0.24 0.25 -0.21 -0.21 0.49

IC25 0.22 -0.23 -0.34 0.34 0.24 -0.26 -0.34 -0.24 1.00 -0.30 0.28 0.54

IC26 0.23 0.34 0.67 -0.39 -0.30 -0.71 0.26 0.27 -0.30 1.00 0.21 0.24 -0.58 0.27

IC27 -0.30 0.26 -0.31 -0.22 0.23 0.33 0.31 -0.22 0.25 0.21 1.00 -0.26 0.31 -0.21

IC28 0.25 0.24 -0.31 -0.21 -0.34 0.31 -0.22 -0.31 -0.21 0.28 0.24 1.00

IC29 -0.25 -0.51 -0.44 0.59 0.30 -0.28 -0.24 -0.33 0.54 -0.58 1.00

IC30 -0.38 0.31 -0.41 1.00 0.61 -0.46

EWING -0.29 -0.29 0.21 0.54 0.23 -0.39 -0.21 -0.26 0.61 1.00 -0.56 -0.34

NB -0.21 0.67 1.00

GB 0.42 -0.33 -0.21 0.29 -0.23 -0.35 0.37 0.23 0.49 0.31 -0.56 1.00 -0.31

MSC 0.22 0.25 0.27 1.00

MYOBLASTS 0.21 0.62 -0.23 -0.37 0.23 -0.46 -0.34 -0.31 1.00

RHABDOID 0.74 -0.21 -0.21 c
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Figure S1. Expression of selected known regulated genes in EwS single cell dataset. Eight genes 

known to be modulated by EWSR1-FLI1 are plotted for A673/TR/shEF in vitro, A673/TR/shEF xenograft, 

PDXs and MSCs: 4 known up-regulated genes (PRKCβ, LIPI, CCND1 and NR0B1) and 4 known down-

regulated genes (IGFBP3, IL8, LOX and VIM). The grey scale on the bottom illustrates the EWSR1-FLI1 

level of expression. 
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Figure S2. Exploratory analysis of several scRNA-seq datasets. t-SNE plot of the merged single cell 

data (1,964 profiles, 8 datasets jointly normalized, Table S1). 
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Figure S3. Comparison of cell cycle-associated independent components with cell cycle phase-

specific transcriptomic signatures (G1/S and G2/M). Two scores characterizing progression of a cell 

through G1/S and G2/M phases of cell cycle computed using transcriptomic signatures obtained from 

meta-analysis of public datasets{Giotti, 2017 #57} are compared against IC1+ and IC2+ scores. Global 

correlation and correlation per time point or sample are indicated under each plot A. Pairwise scatterplots 

for the G1/S and G2/M scores vs. IC1+ and IC2+ scores allows matching IC1+ to G2/M score and IC2+ to 

G1/S score for A673/TR/shEF in vitro cells. B. The same comparison made in A673/TR/shEF xenograft 

cells and PDXs. The Pearson correlation coefficient is shown below the plots. The r
2
 per time point or per 

group are indicated underneath each correlation graph. 
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Figure S4. Analysis of tumors heterogeneity using force-directed layout of the similarity graph 

(SPRING software). A-D. SPRING representation of the kNN graphs (k = 5) for the four EwS PDXs: 

PDX-861, PDX-856, PDX-184 and PDX-1058 datasets respectively. The scores are either gene set (top 

contributing genes) scores of the ICs computed for model systems (IC-EwS recapitulating the 

transcriptional program of EWSR1-FLI1, IC-G2/M and IC-G1/S recapitulating the transcriptional programs 

of the cell cycle) or the scores of the reference gene sets recapitulating a biological function contributing 

to the intratumoral heterogeneity.  
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Figure S5. Expression of HIF1α transcriptional factor network of genes. A-D. Plot showing 

connection between IC-EwS and genes of HIF1α transcription factor network score for the five EwS 

PDXs. The expression of genes was rescaled in each PDX in order to have the same median expression. 

Solid line shows local average of the gene expression, and the dashed lines indicate one standard 

deviation interval. Only the data for the genes among the top 10k most variant genes in each PDX is 

shown. 
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Figure S6. Expression of the top differentially expressed genes between IC-EWS
OPT

 and IC-
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<OPT,>OPT

. Plot showing connection between IC-EwS and several top genes differentially expressed 

between the optimal for proliferation region IC-EWS
OPT

 and other cell populations, for the five EwS PDXs. 

Solid line shows local average of the gene expression, and the dashed lines indicate one standard 

deviation interval. Only the data for the genes among the top 10k most variant genes in each PDX is 

shown. 
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