
H2020-ICT-2018-2-825377

UNICORE

UNICORE: A Common Code Base and Toolkit for Deployment of

Applications to Secure and Reliable Virtual Execution Environments

Horizon 2020 - Research and Innovation Framework Programme

D4.1 Design & Implementation of Tools for Unikernel

Deployment

Due date of deliverable: 30 September 2019

Actual submission date: 30 September 2019

Start date of project 1 January 2019

Duration 36 months

Lead contractor for this deliverable University of Liège (ULiège)

Version 1.0

Confidentiality status “Public”

c© UNICORE Consortium 2019 Page 1 of (50)

Abstract

The goal of the EU-funded UNICORE project is to develop a common code-base and toolchain that will

enable software developers to rapidly create secure, portable, scalable, high-performance solutions start-

ing from existing applications. The key to this is to compile an application into very light-weight virtual

machines – known as unikernels – where there is no traditional operating system, only the specific bits

of operating system functionality that the application needs. The resulting unikernels can then be de-

ployed and run on standard high-volume servers or cloud computing infrastructure. The objective of this

deliverable is to describe the current architecture of the toolchain as well as the different tools that have

been developed to build and orchestrate unikernels. The current toolchain contains two fully-functional

tools (dependency analysis tool and automatic build tool) that have been tested with different schemes and

configurations. Others tools are still in research and will be released in a next milestone.

Target Audience

The target audience for this document is public.

Disclaimer

This document contains material, which is the copyright of certain UNICORE consortium parties, and may

not be reproduced or copied without permission. All UNICORE consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the UNICORE consortium as a whole, nor a certain party of the UNICORE consortium warrant that

the information contained in this document is capable of use, or that use of the information is free from risk,

and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Impressum

Full project title UNICORE: A Common Code Base and Toolkit for Deployment of Ap-

plications to Secure and Reliable Virtual Execution Environments

Title of the workpackage D4.1 Compilation toolchain

Editor University of Liège (ULiège)

Project Co-ordinator Emil Slusanschi, UPB

Technical Manager Felipe Huici, NEC

Copyright notice c© 2019 Participants in project UNICORE

Page 2 of (50) c© UNICORE Consortium 2019

Executive Summary

This is the first version of the UNICORE D4.1 document, ”Design & Implementation of Tools for Uniker-

nel Deployment”. This document describes the current architecture of the UNICORE toolchain as well as

the different tools that have been developed to build and orchestrate unikernels. The approach taken is to

describe the general structure of the UNICORE toolchain and then explain each tool in a separate way. The

main objective of the UNICORE toolchain is to provide a set of tools to automatically build unikernels by ex-

tracting OS primitives and selecting micro-libs and third-party libraries. Extracting components and building

lightweight operating system are not the only tasks of the toolchain. Indeed, the toolchain must also provide

tools to verify the correctness and security of unikernels. Furthermore, the tool must be able to profile and

update configuration parameters to improve unikernels performance. In total, five different tools must be

integrated to the toolchain: decomposition tool, dependency analysis tool, automatic build tool, verification

tool and performance optimization tool. In addition to the UNICORE toolchain, a library pool will also be

maintained. This component handles all the micro-libs (e.g., schedulers, memory allocators, ...) that will be

used by applications. The pool consists of a set of micro-libs and can be divided into three sub-pools: main

libraries pool, platform libraries pool and architecture libraries pool. The first contains all libraries related to

drivers, network stack, ... The second one contains all the libraries for a particular target platforms such as

Xen, KVM and bare metal. Finally, the last one provides libraries dedicated to a particular computer archi-

tecture (e.g., x86, ARM, ...). In this way, the toolchain will select the relevant micro-libs from these pools,

link them against the application, eliminate used code and finally produce a UNICORE unikernel image. The

current toolchain is designed to run on a UNIX/LINUX platform and is written in Golang. For now, two

tools are fully-functional and have been tested with different schemes and configurations. The first one, the

dependency analysis tool aims to break down a binary application by analysing its symbols, its system calls

and its dependencies. The tool is a console-based application and relied on static and dynamic analysis. It

was decided that the best way to gather information was to examine application binaries (source code not

always accessible, independent of the programming language, binary rewriting techniques, ...). Using a static

and dynamic analysis allows to retrieve as much information as possible. Indeed, results of the static anal-

ysis can be limited if the binary is stripped or obfuscated. It is why a second analysis is performed on the

application. This one is dynamic since it requires running the program. To gather all symbols and depen-

dencies of a process, it is necessary to explore all possible execution paths of the application. Nevertheless,

exploring all execution paths is in general infeasible. Fortunately, it was possible to approach this scenario

by using a heuristic approach which requires high application code coverage. Tests with expected input and

fuzz-testing techniques have been used in order to find the most possible symbols/dependencies. Although

this approach allows to gather process information, it is also a limitation since it explores only a subset of the

execution paths of a program. That is why it is combined with a static analysis of the binary file. The current

version of the dependency analysis tool allowed to collect results of more than 2500 applications. The second

c© UNICORE Consortium 2019 Page 3 of (50)

functional tool is the automatic build tool. The tool is also divided into two components: a controller written

in Go and the Unikraft build system which relies upon the existing automake component to build binaries.

The build controller is directly integrated to the toolchain and interacts with the Unikraft build system. These

main operations consist of matching and selecting micro-libs from the pool, generating configuration files

and moving source files to a Unikraft repository. Concerning the Unikraft build system, it consists of a set

of Makefiles to run the build, and a set of kConfig files to drive the menu. These two tools acts in a coor-

dinated way in order to build unikernels. Having two different components allows to preserve the Unikraft

build system without having to modify it. For now the automatic tool is fully functional with lightweight

and ”basic” applications. Using complex applications results into compilation errors due to the small number

of µ-libraries. With the development of new micro-libraries, the tool shall support more applications. The

other tools (e.g., decomposition, verification and performance optimization tool), are still in research phase

therefore only analysis and hypothesis have been made about their behaviour. They will be developed in next

milestones. All in all, this first document related to WP4 delivers a first usable version of the UNICORE

toolchain which allows to build unikernels in a easy way. An initial release of the open source tool set has

been deployed in a git repository in order that it can be used by developers. A wiki as well as a README

are available in order to help developers to use or even contribute on the UNICORE toolchain.

Page 4 of (50) c© UNICORE Consortium 2019

List of Authors
Authors Gaulthier Gain and Cyril Soldani (ULiège), Felipe Huici (NEC), Razvan Deaconescu (UPB)

Participants ULiège, NEC, UPB

Work-package WP4 - Toolstack implementation

Security PUBLIC

Nature R

Version 1.0

Total number of pages 50

c© UNICORE Consortium 2019 Page 5 of (50)

Contents

Executive Summary 3

List of Authors 5

List of Figures 8

List of Tables 9

1 Introduction 10

1.1 Objectives . 11

1.2 Organization . 11

2 General Overview 12

2.1 UNICORE Toolchain . 12

2.2 UNICORE library pools . 14

2.3 General requirements . 15

2.4 Deployment . 15

3 Decomposition Tool 16

3.1 General overview . 16

3.1.1 Decomposing Software into Subsystems . 16

3.1.2 Using existing tools . 17

4 Dependency Analysis Tool 18

4.1 General overview . 18

4.2 Tests and Fuzz-Tests . 20

4.3 Results . 21

4.4 Limitations and improvements . 23

5 Automatic Build Tool 24

5.1 General overview . 24

5.1.1 Controller component . 24

5.1.2 Unikraft Build system component . 25

5.2 Results . 28

5.3 Limitations and improvements . 28

6 Verification Tool 30

Page 6 of (50) c© UNICORE Consortium 2019

6.1 Verify application behaviour . 30

6.2 Verify micro-libs implementation . 30

7 Performance Optimization Tool 32

7.1 The configuration space . 32

7.2 Performance measurement . 33

7.3 The optimisation process . 33

8 Conclusion 35

Appendices 37

References 50

c© UNICORE Consortium 2019 Page 7 of (50)

List of Figures

2.1 High-level overview concept of UNICORE . 12

2.2 The UNICORE toolchain . 13

2.3 The UNICORE library pools . 14

3.1 Architectural perspective of the Linux kernel . 16

4.1 High-level overview of the UNICORE dependency analysis tool 18

4.2 Shared libraries required by SQLite (dynamic analysis) . 20

4.3 Dependencies required by SQLite (static analysis) . 20

5.1 High-level overview of the UNICORE automatic build tool 24

5.2 Flow chart of the UNICORE automatic build tool (controller part) 26

5.3 Unikraft’s build system architecture . 27

5.4 Unikraft’s library files, menu system, and resulting configuration file. 28

1 The current toolchain dependency analysis tool . 48

2 The current toolchain automatic build tool . 49

Page 8 of (50) c© UNICORE Consortium 2019

List of Tables

4.1 Usage of shared libraries for database servers . 21

4.2 Usage of system calls for database servers . 22

4.3 Usage of library calls for database servers . 22

4.4 Usage of fork and pthread library by application . 23

5.1 Unikraft architecture . 26

c© UNICORE Consortium 2019 Page 9 of (50)

1 Introduction

Deploying applications is the core business of the IT industry. Indeed, network operators, CDNs, and even

Internet providers need to be able to quickly deploy their applications to deliver high-performance services to

the market. These services are typically deployed on shared hardware hosted in public and/or private clouds.

Since the advent of cloud computing services, IT departments have embraced virtual machines (VMs) as a

way to lower costs and increase efficiencies. Although VMs can limit the number of physical machines, they

have some drawbacks. Indeed, they can take up a lot of system resources. These are very heavy since they

require a complete image of the operating system to run. This quickly adds up to a lot of RAM and CPU

cycles. Memory and disk space are wasted, and starting or stopping virtual machines takes several seconds at

best.

For these reasons, the software industry has adopted containers to replace virtual machines, with the aim of

further improving the performance of shared hardware and thus reducing costs. With containers, instead of

virtualizing the underlying computer like a VM, just the OS is virtualized. Containers are as economical as

traditional operating system processes, which means that they can start, stop, or migrate in less than a second.

Nevertheless, as they share the host OS kernel and, usually, the binaries and libraries, the attack surface is

quite large and containers are thus subject to a lot of vulnerabilities.

Offering a great trade-off between size and isolation, a new model has been defined to replace virtual ma-

chines and containers: unikernels. Also known as lightweight VMs, they are specialized VMs that include

only the minimum feature(s) to run a specific application. Unikernels are thus the smallest lightweight virtual

machines that can be created. In a unikernel, the application is compiled only with the necessary components

of the operating system. The attack surface and the size are thus considerably reduced, resulting in better

performance and protection.

The fundamental disadvantage of this approach is that it is necessary to manually port application(s) to the

underlying operating system. For example, the nginx web server can be ported as a unikernel by selecting and

extracting the right operating system components and primitives. Once the migration is done, verification and

optimization processes are needed. Indeed, developers must verify and optimize the code and the resulting

binary in order that the application is operational and optimized on the underlying platform and architecture,

which is a very tedious and complex job for developers.

To circumvent these drawbacks, the aim of UNICORE is to develop a toolkit comprising a set of tools to au-

tomatically build images of operating systems targeting a single (or multiple) applications that are optimized

to run on bare metal or as virtual machines. In this way, the resulting image(s) will have lower image size,

boot time, and amount of memory used. This will ensure both strong isolation and performance comparable

to solutions such as containers.

Page 10 of (50) c© UNICORE Consortium 2019

1.1 Objectives
The main objective of this deliverable is to analyse and explain the UNICORE toolchain. Each tool developed

will be detailed and its general operation will be explained. As the toolchain is being developed, some tools

have not yet been developed and are therefore not operational. In this case, an analysis as well as hypothesis

concerning the behaviour of the tool are mentioned.

1.2 Organization
This document is organized as follows. Chapter 2 gives a general overview of the UNICORE toolchain, and

discusses its general principles. Chapter 3 describes the analysis concerning the decomposition tool. Chapter

4 gives an overview of the dependency analysis tool. Chapter 5 describes the automatic build tool. Chapter

6 and 7 respectively provide an analysis of the verification tool and the optimization tool. Finally, Chapter 8

summarises what has been achieved and any shortcomings that have been identified.

c© UNICORE Consortium 2019 Page 11 of (50)

2 General Overview
This chapter will first define the general principles of the UNICORE toolchain and will briefly present the

tools to develop and to incorporate in the toolkit. Furthermore, general requirements will be discussed in this

chapter.

2.1 UNICORE Toolchain
The UNICORE toolchain will provide a set of tools to automatically build images of operating systems

targeting applications. In a general way, the toolchain will build unikernels by extracting OS primitives and

selecting micro-libs and third party libraries. Figure 2.1 illustrates the high-level concept of UNICORE.

APP

APP

UNICORE TOOLCHAIN

3rd party
libraries

OS
libraries

OS
Kernel

Figure 2.1: High-level overview concept of UNICORE

In order to be able to build secure and reliable unikernels, several tools must be integrated into the toolchain.

This one will include the following tools:

(i) Decomposition tool to assist developers in breaking existing monolithic software into smaller compo-

nents.

(ii) Dependency analysis tool to analyse existing, unmodified applications to determine which set of li-

braries and OS primitives are absolutely necessary for correct execution.

(iii) Automatic build tool to match the requirements derived by the dependency analysis tools to the avail-

Page 12 of (50) c© UNICORE Consortium 2019

able libraries constructed by the OS decomposition tools.

(iv) Verification tool to ensure that the functionality of the resulting, specialized OS+application matches

that of the application running on a standard OS. The tool will also take care of ensuring software

quality.

(v) Performance optimization tool to analyse the running specialized OS+application and to use this

information as input to the automatic build tools so that they can generate even more optimized images.

The combination of these tools is shown in Figure 2.2 and represents a unikernel toolkit able to automatically

build efficient, customized, verifiable and secure specialized operating systems and virtual machine images.

With a such toolchain, applications become independent of the system against which they are built, not only

providing vertical but also horizontal scaling across diverse infrastructures (e.g., Linux, FreeBSD, etc).

Dependency
analysis

Libs

Optimize

Build

Verify
Kernel

APP Depend
encies

APIs

VM

µlib µlib

µlib µlib

UNICORE
code repo

TestReconfig

De
co

m
po

se

Figure 2.2: The UNICORE toolchain

The upper part of the figure shows the workflow for users of UNICORE: a dependency analysis tool will

examine and extract dependencies from existing, unmodified applications. The user will then invoke the

UNICORE build tool, specifying one or multiple target platforms (e.g., a hypervisor such as Xen or KVM).

The tool will use the dependencies to select the relevant micro-libs from a library pools (see Section 2.2),

link them against the application, eliminate used code and produce a UNICORE unikernel image which can

then be deployed using standard provisioning tools such as Openstack, Docker or Kubernetes. Finally, the

resulting unikernel will be automatically profiled and the configuration parameters for the micro-libs changed

to improve performance, in an iterative process driven by the optimization tool.

c© UNICORE Consortium 2019 Page 13 of (50)

2.2 UNICORE library pools

In addition to UNICORE toolchain, a library pools will also be maintained. This component handles all the

micro-libs that will be used by applications. The pool consists of a set of micro-libs and can be divided into

three sub-pools:

(i) Main lib pool will contain all the libraries related to drivers, network stack, memory allocator, ...

(ii) Platform lib pool will contain all the libraries for a particular target platforms such as Xen, KVM and

bare metal.

(iii) Architecture lib pool will provide libraries dedicated to a particular computer architecture.

This type of procedure allows great flexibility and better efficiency since micro-libraries are smaller. It is

therefore easier to verify their behaviour. Figure 2.3 illustrates the UNICORE library pools.

unicore_bare_x86_64

unikernel binaries

custom API

unicore_bare_ARM32

unicore_xen_x86_64

unicore_xen_ARM32

unicore_kvm_x86_64

unicore_kvm_ARM32

libx86_64arch.o libarm32arch.o libmipsarch.o

libbareplat.o libxenplat.o libkvmplat.o

arch lib pool

platform lib pool

main lib pool

liblwip.o libvfs.o libc.o

libnewlibc.olibfat.olibtcpip.o

libnetback.o

libnetfront.o

libbuddy.o

libheap.o

libpython.o

liberlang.o

drivers memory allocators runtimes

network stack filesystems standard libs

APP

Figure 2.3: The UNICORE library pools

Page 14 of (50) c© UNICORE Consortium 2019

2.3 General requirements
In general, the toolchain has been designed to run on a UNIX/LINUX platform. In future versions, another

platform such as Windows can also be considered to support the toolchain. The toolkit has been designed with

the Golang language[1] (also known as Go). The choice of the programming language of the toolchain has

been analysed at length. The trade-off was to find a powerful but easy-to-use programming language. Higher

level languages such as Java[2] and Python[3] are poorly efficient compared to C and C++. Nevertheless,

large C/C++ projects can therefore be relatively difficult to maintain due to languages limitations[4]. Go

brings best of both the worlds. Like lower level languages, Go is compiled language. It offers thus good

performance combined with a gradual learning curve. The requirements of the toolchain as well as the tools

are further explained in deliverable D2.1[5].

2.4 Deployment
An initial release of the open source tool set has been deployed in a git repository in order that it can be used

by developers. This one is available at the following address: https://github.com/unikraft/tools. A wiki as

well as a README have been written in order to help developers to use or even contribute on the UNICORE

toolchain. All files are licensed under the BSD license.

c© UNICORE Consortium 2019 Page 15 of (50)

https://github.com/unikraft/tools

3 Decomposition Tool
The decomposition tool will be used to break down monolithic libraries such as libc and operating system

primitives (e.g., memory allocators, network stack, ...) into a set of small modules that can be selected from a

libraries pool to build unikernel(s). The tool will help developers in decomposing the software, and is targeted

at the UNICORE consortium and not the software community at large.

Another objective was to identify dependencies between functions and libraries, as well as dependencies be-

tween different libraries that are known by package managers such as dpkg, yum or apt. Then, these relations

are displayed in graphical form to help the human expert understand the interactions between different com-

ponents. For this part, it was chosen to merge this identification procedure within the dependency analysis

tool (see Chapter 4).

3.1 General overview
The decomposition tool is still in research phase therefore only some assumptions are established. Two areas

of research were considered and needs to be further analysed.

3.1.1 Decomposing Software into Subsystems

Architecture of large and complex systems is structured into a series of packages. One goal of an architectural

decomposition is to provide a way to better understand the source. Considering the Linux kernel, this one

implements a number of important architectural attributes. At a high level, and at lower levels, the kernel is

layered into a number of distinct subsystems. This model proposes a regulatory system that classifies services

based on their common characteristics. Major components of the Linux kernel are illustrated in Figure 3.1.

System Call Interface

Process
Management

Virtual File
System

Memory
Management

Network Stack

Device DriversArch

Figure 3.1: Architectural perspective of the Linux kernel

The decomposition process consists of three main steps:

(i) Treat all source files from specified directories built into the Linux kernel as subsystems and perform

incremental decomposition isolating one kernel subcomponent at a time;

(ii) When kernel subsystems have been isolated, patterns recognition techniques can be used to extract

Page 16 of (50) c© UNICORE Consortium 2019

relevant files and blocks of code. The idea is to provide as input, all the symbols that are used by a

particular application and that are unknown by the UNICORE build system (see Chapter 5);

(iii) These components are then integrated with each other where unknown functions and symbols are

replaced by stubs.

The first objective of the tool is thus to help experts to understand the interactions between different compo-

nents and to obtain a first skeleton of a micro-library. After this semi-automatic extraction, developers will

have to work on their own by implementing and verifying all stub functions to have fully functional modules.

3.1.2 Using existing tools

Another approach is to use open-source tools like Clang Static Analyser[6] and to integrate them to the

toolchain. Such tool(s) would allow to perform an analysis of the application flow code. Once the application

flow code has been identified, a graph can be generated in order to help developer(s) to extract the identified

sub-systems.

c© UNICORE Consortium 2019 Page 17 of (50)

4 Dependency Analysis Tool
The objective of the dependency analysis tool is to gather, for the target applications, which software in the

operating system they actually use. Such software will include shared libraries, other applications, core kernel

components, kernel modules, and so forth. The tool needs to find a sufficient, but minimal superset of other

software that must be installed for the application to work correctly.

4.1 General overview

A first functional dependency analysis tool has been developed. This one aims to break down a binary

application and analyses its symbols, its system calls and its dependencies. The tool is a console-based

application and relied on static and dynamic analysis.

The tool has been designed to examine binary files. Indeed, source code is not always accessible. Moreover,

this way of doing is independent of the programming language and is thus easier to use to gather binary

information. Finally, gathering data of binary is also useful for binary rewriting techniques[7]. Nevertheless,

code parsing tools can also be considered in future release(s) even if they require more time and resources to

develop. Figure 4.1 represents a high-level overview of the tool.

Analyser

static dynamic

Output

UNIX/LINUX system

other
argumentsAppName

required optional

Files: PNG (graph), Text (data), JSON (data)

strace

ltrace

lsof

cat /proc/

objdump

apt
depends

ldd

nm

display symbols

display dependencies

display shared libraries

display symbols

display system calls

display library calls

display shared libraries

display shared libraries

Figure 4.1: High-level overview of the UNICORE dependency analysis tool

Firstly, the dependency analysis tool requires the application name as an argument to gather binary informa-

tion. This one can either be absolute or simply passed as an executable file name (e.g., sqlite). In that case,

the tool will search in the path environment variable to locate the executable file and gets its absolute path

(e.g., /usr/bin/sqlite). Others arguments will be discussed later.

A static analysis is performed on the binary file of the application. It allows to recover all the symbols which

Page 18 of (50) c© UNICORE Consortium 2019

compose it. In order to perform such a task, the tool uses several internal commands such as nm, objdump,

apt-cache depends and ldd. The output of each command is then parsed and various information is

stored into adequate data structures. However, the result of this analysis can be limited since binaries can be

stripped or obfuscated.

A second analysis is thus performed on the application. This one is dynamic since it requires running the

program. It allows to collect various information such as system calls, library calls and shared libraries. To

gather all the symbols and dependencies of a process, it is necessary to explore all possible execution paths

of the application. Nevertheless, exploring all execution paths is in general infeasible. Fortunately we can

approach this scenario, by using a heuristic approach which requires high application code coverage. Tests

with expected input and fuzz-testing techniques have been used in order to find the most possible symbols

and dependencies (see Section 4.2). As for the static analysis, several internal commands are executed:

strace, ltrace, lsof, cat and /proc/pid. The difference here is that the program is executed.

Binary information is also saved into several data structures. When both analysis are completed, a JSON

file is automatically generated. For example, considering the SQLite[8] program, a summary of the resulting

JSON file is shown below:

” s t a t i c d a t a ” : {

” d e p e n d e n c i e s ” : {

” l i b l z m a 5 ” : [

” l i b c 6 ”

] , . . .

}

” s h a r e d l i b s ” : {

” l i b p t h r e a d . so . 0 ” : [

” l i b c . so . 6 ”

] , . . .

} ,

” s y s t e m c a l l s ” : {

” a c c e s s ” : ” ” ,

” e x i t ” : ””

, . . .

} ,

” symbols ” : {

” a c c e s s ” : ”GLIBC 2 . 2 . 5 ”

, . . .

}

}

Listing 4.1: data gathered from static analysis

” d y n a m i c d a t a ” : {

” s h a r e d l i b s ” : {

” l i b p c r e . so . 3 ” : [

” l i b p t h r e a d . so . 0 ” ,

” l i b c . so . 6 ”

] , . . .

} ,

” s y s t e m c a l l s ” : {

” a c c e s s ” : ” ” ,

” a r c h p r c t l ” : ””

, . . .

} ,

” symbols ” : {

” a c c e s s ” : ” ” ,

” f f l u s h ” : ””

, . . .

}

}

Listing 4.2: data gathered from dynamic analysis

c© UNICORE Consortium 2019 Page 19 of (50)

A complete detailed output of the SQLite program is shown in Appendix 8. In addition to the JSON file, the

tool can automatically generate dependencies and shared libraries graphs. Such graphs allow to illustrate the

relation between the dependencies. For example, considering again SQLite, Figure 4.2 represents all shared

libraries (as well as their dependencies) acquired during the dynamic dependency analysis.

Figure 4.2: Shared libraries required by SQLite (dynamic analysis)

Required dependencies gathered during the static analysis procedure are shown in Figure 4.3.

Figure 4.3: Dependencies required by SQLite (static analysis)

4.2 Tests and Fuzz-Tests

For the dynamic analysis, different tests were used to explore execution paths of a particular application. In

order to do it, the dependency tool provides two different ways: either passing a test file as argument which

contains internal commands to test the current application (e.g., SQL queries for a database, ...) or either to

perform manually tests by specifying a duration to test.

Page 20 of (50) c© UNICORE Consortium 2019

For each application, it is thus necessary to manually write the tests or test the program. In addition, tests

can use the default configuration of an application. As a result, it is possible that not all execution paths are

tested.

4.3 Results
The tool made it possible to gather some results. These were obtained by running the tool on a multitude of

applications. These are divided into several categories:

(i) HTTP servers;

(ii) Database servers;

(iii) DNS servers;

(iv) Mail servers;

(v) Monitoring tools;

(vi) Miscellaneous.

Static and dynamic analysis have been performed on each category except the last one. Indeed, only static

analysis has been executed on the miscellaneous category. It contains various applications from the popcorn

debian[9] website. A big majority of applications in this folder are basic utilities and tools such as xxd,

hexdump, ...

Considering database servers, it was possible to collect the following results. These results show how easy it

is to gather useful data using the dependency analysis tool. In order to have a clean display, some symbols,

system calls or dependencies are skipped in some tables. Furthermore, only results about database servers are

shown. It should be considered that these results are also available for other categories. Table 4.1 represents

the most used shared libraries by databases.

% Shared libraries
84.62 libpthread-2.27.so, ld-2.27.so, libc-2.27.so
76.92 libdl-2.27.so
69.23 libpthread.so, libm-2.27.so
53.85 libnss files-2.27.so, libm.so, libdl.so
46.15 libz.so
38.46 libnsl.so, libgcc s.so, libnsl-2.27.so, libnss compat-2.27.so, libnss nis-2.27.so, libnss files.so, lib-

stdc++.so
30.77 librt-2.27.so, libresolv-2.27.so
23.08 libcrypt-2.27.so, liblz4.so, libresolv.so, libsasl2.so, libcrypto.so, libssl.so
15.38 librt.so, libffi.so, liblber-2.4.so, libldap r-2.4.so, libwind.so, libgmp.so, libnettle.so, libroken.so,

libhx509.so, libcrypt.so, libp11-kit.so, libcom err.so, libhcrypto.so, libheimntlm.so, libkrb5.so,
libasn1.so, libgssapi.so, libtasn1.so, libheimbase.so, libunistring.so, libidn2.so, libgnutls.so, lib-
hogweed.so, libsqlite3.so, libpcre.so, libnss dns-2.27.so, libnss mdns4 minimal.so, liblzma.so, li-
bicuuc.so, libicudata.so

7.69 43 others

Table 4.1: Usage of shared libraries for database servers

It also possible to visualize which system calls are the most used by database servers. Table 4.2 represents

these results.

c© UNICORE Consortium 2019 Page 21 of (50)

% System calls
84.62 arch prctl, set robust list, mprotect, close, rt sigaction, rt sigprocmask, mmap, write, fstat, openat,

futex, brk, socket, access, set tid address, read, prlimit64, munmap, execve
76.92 stat, clone, lseek
69.23 setsockopt, bind, fcntl
61.54 uname, connect, fsync, getpid, listen, getsockname
53.85 getcwd, getdents, ioctl
46.15 unlink, lstat, geteuid, accept, sendto, getuid, exit group, epoll ctl, epoll wait
38.46 poll, chdir, umask, madvise, sysinfo, pipe
30.77 nanosleep, sched yield, gettid, recvfrom, pread64, pwrite64, getppid, fdatasync, dup, dup2, read-

link, sched getaffinity, ftruncate, rt sigreturn, select, getrusage, rename, getpeername, wait4,
recvmsg, epoll create1

23.08 exit, mkdir, fallocate, setsid, clock getres, getegid, getgid, getsockopt, statfs
15.38 setuid, shutdown, rt sigtimedwait, setgid, kill, getrandom, epoll create, pipe2, faccessat, WIFEX-

ITED, sendmsg, chmod, fadvise64, flock, accept4
7.69 getpriority, rmdir, setgroups, setpriority, times, io setup, io submit, io getevents, htons, getres-

gid, getresuid, pselect6, creat, fchown, bash, chown, getpgrp, fchmod, msync, prctl, writev,
eventfd2, mlock, timerfd settime, mincore, timerfd create, sigaltstack, renameat, getdents64, un-
linkat, mkdirat, setitimer, shmget, shmdt, shmat, fchdir, socketpair, sendmmsg, setpgid

Table 4.2: Usage of system calls for database servers

After system calls, the most used library calls (symbols) can also be retrieved. Table 4.3 shows their usage.

% Library calls
69.23 pthread mutex lock, pthread mutex unlock
61.54 pthread mutex init, strlen, memset, close, fclose, errno location, malloc, getenv, ctype b loc
53.85 strtol, memcmp, read, getpid, time, memcpy, strncmp, calloc, memmove, strchr, free, fcntl
46.15 sigaction, sigemptyset, pthread create, strcpy, gethostname, pthread cond init, strcmp, gettimeof-

day, strdup, write, getaddrinfo, snprintf chk
38.46 chdir, fflush, geteuid, fileno, memcpy chk, strncpy, strrchr, cxa atexit, pthread key create,

pthread attr init, strcasecmp, strstr, fopen, open, signal, sysconf, socket, vsnprintf chk, realloc,
setsockopt, bind

30.77 sigfillset, pthread setspecific, unlink, closedir, fopen64, opendir, open64,
pthread mutexattr settype, pthread mutexattr init, pthread mutex destroy,
pthread attr getstacksize, umask, fprintf chk, fgets, clock gettime, strtoul, fputs,
pthread sigmask, sigaddset, dup, snprintf, xstat, memchr, getcwd, freeaddrinfo, pipe, exit,
setlocale, getuid, getrlimit

23.08 pthread getspecific, gmtime r, pthread attr setstacksize, localtime r, dup2, pthread cond signal,
xstat64, cxa guard acquire, cxa guard release, getrlimit64, pthread cond broadcast, setr-

limit64, sscanf, lseek64, pthread cond wait, strftime, setjmp, log, setsid, sprintf chk, uname,
strtod, fwrite, listen, epoll ctl, fxstat64, fsync, rename, fork, fxstat, ioctl, readdir, qsort, fdata-
sync, lseek, strcpy chk, mmap, feof

15.38 77 others
7.69 337 others

Table 4.3: Usage of library calls for database servers

It is also possible to perform further analysis on the gathering results. Indeed, it is possible to discriminate

which applications are threaded. Table 4.4 shows which program uses the pthreads library, the fork function

or both.

Page 22 of (50) c© UNICORE Consortium 2019

Application use pthreads use fork
mysql(Server) X X

mariadb
virtuoso X X

memcached X X
groonga X X

sqlite X X
firebird X X

sun-javadb-core
mongodb X X
postgres X

redis X X
influxdb X

mysql(Client) X

Table 4.4: Usage of fork and pthread library by application

4.4 Limitations and improvements
As mentioned above, fuzz testing is in itself a limitation. Indeed, it explores only a subset of the execution

paths of a program. That is why it is combined it with a static analysis of the binary file. Nevertheless,

this one has also some limitations (binary stripped or obfuscated). A considerable improvement will be to

develop a testing framework to test a large number of applications in order to gather as much information

as possible. Another limitation concerns the type of application. If the application is not an executable file

(ELF), some gathering procedures are omitted. Its due to some limitations of the ptrace module. More spe-

cially with the library calls procedure. This limitation reduces the number of applications that use particular

symbol(s)/library(s). Nevertheless, only a small part of applications is impacted. Therefore, it allows to get

significant results in the dependency analysis part.

c© UNICORE Consortium 2019 Page 23 of (50)

5 Automatic Build Tool
The objective of the automatic build tool is to automatically build an OS image (kernel and filesystem) that

can run, out of the box, the target application(s).

5.1 General overview

As for the dependency analysis, a first version of the automatic build tool has been developed. The tool is also

divided into two components: a controller written in Golang and the Unikraft build system which relies upon

the existing autoconfigure/automake[10] combination to build binaries and the existing package management

tools such as apt on Ubuntu or yum on Redhat. Figure 5.1 represents these two components.

Controller

Unikraft Build System

UNIX/LINUX system

path to
unikraftdata*

*Data from the dependency analysis tool (e.g., shared
libs, system calls, …)

unikernel(s)

path to
sources

Figure 5.1: High-level overview of the UNICORE automatic build tool

Having two different components allows to preserve the Unikraft build system without having to modify it.

It allows to get a greater flexibility since each component has a very specific behaviour.

5.1.1 Controller component

The build controller is directly integrated to the toolchain and is also written in Go. This component requires

three arguments as input: all the pieces of data (e.g., shared libraries, system calls, library calls, ...) gathered

by the dependency analysis tool, the path to the application source files and the path to the Unikraft workspace

(see Section 5.1.2).

In a first time, the tool detects the programming language used by the application and moves all source and

Page 24 of (50) c© UNICORE Consortium 2019

header files into a newly created folder within the Unikraft workspace. All headers files are added into a

specific folder. Afterwards, the matching process between shared libraries (gathered from the dependency

analysis process) and the micro-libs (from the library pool) is performed. The matching is quite simple and

is based into two parts:

(i) First, a simple match is performed based on the name of the shared library and the name of the µ-library.

For example, if the libpthread.so shared library is used by an application, the resulting µ-library that

will be selected from the library pool is pthread-embedded.

(ii) There are also an additional matching that selects the right µ-library according to symbols (function

names) of the application. For example, an application which uses network related functions such as

socket, gethostbyname, ... requires a networking library. In that case, the tool will automatically

select the lwip library. Internally, a function matching score based on symbols usage is computed to

select the right µ-libraries. Indeed, the tool will read from the library pool, the exportsyms.uk file

of each library (see Section 5.1.2), save their symbols and then perform the matching. Note that for

external libraries, symbols file is directly read from git repositories avoiding to download, on the host

system, all the content of the µ-library.

Selecting the right µ-libraries is performed by fetching and cloning those from an external git-repository

platform: xenbits.xen.org. If those are already available on the host system, the cloning process is skipped

and local repositories are directly considered by the tool.

Once the µ-libraries are selected, configuration files and Makefiles are automatically generated and the tool

calls the make utility to build the application unikernel. In that case, several scenarios are to consider:

(i) The simplest scenario is that the compilation and linking process went smoothly. In this case, one or

several resulting image(s) is/are created in a build directory.

(ii) If the linking process fails due to undefined references, the tool will handle this case by automatically

created a new source file where all undefined references will be replaced by stub functions. Devel-

oper(s) should implement those to have a fully working application.

(iii) Finally, the worst case concerns a failed compilation. Indeed, if there are series of compiler errors,

these are displayed on the console and developer(s) must manually fix them.

All these operations are illustrated in Figure 5.2.

5.1.2 Unikraft Build system component

As explained earlier, we chose to rely on the existing Unikraft build system. The current version of Unikraft

supports multiple platforms (e.g., Xen, KVM, Solo5, Firecracker) and CPU architectures (e.g., ARM, x86).

It consists of three basic components:

c© UNICORE Consortium 2019 Page 25 of (50)

http://xenbits.xen.org/gitweb/?a=project_list;pf=unikraft

Get program
arguments

Check if Unikraft folder
exists

Read application folder
and get source files

Determine
Programming language
used by the application

Create Unikraft app
folder and include

folder

Copy source file to
Unikraft app folder and

include folder

Fetch symbols from
internal/external libs

(exportsyms.uk)

µ-lib µ-lib µ-lib

Generate Makefile.uk,
Makefile and Config.uk

Perform the micro-libs
matching

Generate .config and
update with new
configuration(s)

Run Unikraft build
system

Implement
undefined
references

by stubs

User(s)
must fix
compiler

errors

No
Error

Compiler
failures

Linking
failuresAnalyse

output

Figure 5.2: Flow chart of the UNICORE automatic build tool (controller part)

(i) Library Pools are Unikraft modules, each of which provides a basic piece of functionality.

(ii) Configuration Menu: Inspired by Linux’s Kconfig system, this menu allows users to pick and choose

which libraries to include in the build process, as well as to configure options for each of them, where

available. Like Kconfig, the menu keeps track of dependencies and automatically selects them where

applicable.

(iii) Build Tool: Based on make, it takes care of compiling and linking all the relevant libraries, and of

producing images for the different platforms selected via the configuration menu.

Unikraft contains a well structured hierarchy of repositories and packages. The general architecture is repre-

sented in Table 5.1.

Packages Description
arch contains all the build configuration files related to a particular architecture (x86/arm)
doc contains the official documentation

include contains the header files for architecture (x86, ARM) and platform (KVM, Xen, Linux userspace)
interface

lib contains all the internal libraries (nolibc, ukdebug, ukargparse, ...)
plat contains all the code related to a particular platform (KVM, Xen, Linux userspace)

support contains the files related to the Kconfig menu and additional scripts

Table 5.1: Unikraft architecture

An overview of the build system architecture is shown in Figure 5.3. As previously mentioned, Unikraft is

a modular system based on micro-libraries, some of which are internal, meaning that they provide low-level

functionality such as operating system primitives or CPU architecture specific code and are part of the main

Page 26 of (50) c© UNICORE Consortium 2019

Unikraft repository; and external libraries, which tend to provide higher-level functionality (e.g., openSSL,

protobuf, etc.) and have their own repository fully independent of the main Unikraft one.

Figure 5.3: Unikraft’s build system architecture

The Unikraft build system, contained within the support sub-directory of the main Unikraft repository,

consists of a set of Makefiles to run the build, and a set of kConfig files to drive the menu and generation of

.config configuration files.

As shown in Figure 5.4, a Unikraft library, whether internal or external, consists of a set of required files:

• Config.uk: Specificies nodes/items for the library that should be populated in the kConfig menu.

• Makefile.uk: The library’s main Makefile. This is a standard Makefile, except it must follow certain

Unikraft-specific formatting and variable rules. It must also specify the library’s source code files.

• exportsyms.uk: Only symbols listed in this file actually make it to the final image. This is to ensure

that functions that are private to the library (in other words, not belonging to the library’s public API),

are not exposed to the other libraries in the build, thus preventing potential name clashes. Clashes can

easily occur since most libraries are essentially individual, independent software projects that often

don’t expect to be built with other projects, and so are not properly namespaced.

• Linker.uk: This file applies only to platform libraries (platform libraries provide support for generating

Unikraft images than can run on technologies such as KVM, Xen, or OCI containers). Where needed,

c© UNICORE Consortium 2019 Page 27 of (50)

Figure 5.4: Unikraft’s library files, menu system, and resulting configuration file.

a platform library may specify a platform-specific linker script which will override Unikraft’s default

platform linker script.

• Makefile: Applicable to applications only, this file is used mostly to specify the location of Unikraft’s

main repository, as well as that of any external libraries and external platforms it may depend on.

Further shown in Figure 5.4 are screen captures of the system’s menu, a sample resulting configuration file,

and console output from a successful Unikraft build.

For further information, complete documentation of Unikraft can be found at the following address:

Unikraft’s Documentation.

5.2 Results

For now the automatic tool is fully functional with lightweight and ”basic” applications such as SQLite and

mini httpd[11]. Using complex applications such as nginx or MySQL[12] result into compilation errors due

to the small number of µ-libraries. With the development of new micro-libraries, the tool shall support more

applications.

5.3 Limitations and improvements

As for the dependency analysis, the current version of the tool has some limitations. The main boundary of

tool concerns the library pool. Indeed, for now only a small subset of µ-libraries are available. This limits

Page 28 of (50) c© UNICORE Consortium 2019

http://www.unikraft.org/index.html

thus the number applications that can be supported by the UNICORE automatic build tool. The more libraries

are provided, the more applications can be ported as unikernels. This limitation is thus related to the library

pool and not directly related to the automatic build tool. Another limit covers the controller part of the build

system. Indeed, for now, the tool doesn’t try to recover compilation error. Therefore, the user must fix all the

issues himself. A significant improvement will be to handle this case by having several procedures of compi-

lation. Another improvement will be to implement a new procedure to automatically convert application with

complex build systems (e.g., CMake[13], SCons[14], ...) to the Unikraft build system. Finally, an additional

tool can be developed to unload unused modules and disables some configuration entries to weed out useless

kernel components for the application at hand.

c© UNICORE Consortium 2019 Page 29 of (50)

6 Verification Tool
The verification tool will ensure the correctness and security of unikernels. Indeed, the tool will ensure that

the newly built application is equivalent to the initial one. In that case, heuristic methods will be used in order

to check if the old and new application behave the same. The tool will also ensures security in ring 0 and the

implementation of micro-libs.

6.1 Verify application behaviour

At this date, the tool has still not been developed, only the prerequisites have been analysed. Among these,

the following assumptions can be made on verifying applications:

(i) The tool will be integrated to the current toolchain and thus will be written in Golang.

(ii) The idea is to run two different images of a same application: one as a unikernel and the other as a

traditional application. It will then provide various inputs with different testing methods (e.g., fuzz

testing, stress testing, ...) to both and then analyse their behaviour and their output. Then, a matching

score will be computed in order to ensure the correctness.

(iii) Even if the built application has the same behaviour than the original one, there can still remain bugs

(e.g., buffer overflows). To protect against such attacks, UNICORE will use privileged processor in-

structions to implement highly efficient sand-boxing mechanisms to circumvent possible attacks.

6.2 Verify micro-libs implementation

In order to verify micro-libs implementation, we can consider formal verification methods.

Since the UNICORE project has been designed for different platforms and architectures, the host system

should be able to execute and verify a unikernel on qemu-kvm or/and Xen. In the same way, it would be

optimal to be able to test the resulting unikernel on several architectures (e.g., ARM, x86, MIPS). Depending

on the resources available, it may be appropriate for the toolchain to be hosted on remote servers in order to

test all possible platforms and architectures.

In Figure 2.2, the verification tool uses, as input, unikernel libraries and APIs. Therefore, we are assuming

that the application shown in this figure is the generic part, that which is not modified to fit the unikernel

environment (e.g., an unmodified Python program instead versus the modified Python interpreter and Python

runtime).

There exist two ways that can be considered:

(i) The first approach is to consider the extended API provided by the unikernel (core libraries) and

application-specific libraries (runtime and others). This API must be a subset of the API provided

by the general purpose OS and libraries. Then, we fuzz the API on both platforms with the goal of

Page 30 of (50) c© UNICORE Consortium 2019

validating equivalent functionality. This approach for unikernel core libraries is integrated with the

overall security validation track in the project.

(ii) The second approach is grey-box fuzzing of the application running on top of the general-purpose OS

and the application+specialized OS. We select a set of applications and fuzz them to increase coverage

and validate equivalent functionality. These applications will call the underlying APIs in a realistic

manner.

Equivalent functionality means that for a given input the program provides the same effects (including output).

Effects are:

(i) Same output (standard output, files, networking, IPC), i.e. anything provided/ex-filtrated by the appli-

cation outside of its address space.

(ii) Exit/error values: in case of successful run and/or errors and crashes, the application provides the same

exit code.

(iii) Termination: application goes into an infinite loop (or equivalent) on both situations.

Furthermore, we can connect this to our work on evaluation of smart contract deterministic execution. There,

we plan to use the same application running on different environments (hardware or configured environment)

and then make sure it runs deterministically: i.e. it provides the same output for the same input.

c© UNICORE Consortium 2019 Page 31 of (50)

7 Performance Optimization Tool
Optimizing unikernel code for a given application traditionally requires significant expert time and manual

tweaking. The optimization process is done using a feedback loop that proceeds as follows:

(i) A unikernel is (manually) built, using the current code and set of configuration parameters.

(ii) The built unikernel is deployed in the infrastructure.

(iii) Performance of the application using the deployed unikernel is measured.

(iv) The code and configuration files must are (manually) modified based on the measured results.

(v) The whole process repeats.

While steps (i) to (iii) can be somewhat easily automated, step (iv) usually requires both expert knowledge,

and a significant amount of trial and error.

To help with the optimisation of unikernels, the UNICORE project will provide a tool to help automatise this

process as much as possible. The tool will comprise two parts: a tool that automates the build-deploy-measure

part, and a tool that proposes new configuration parameters based on measured results.

7.1 The configuration space

To avoid having to modify the unikernel code between experiments, all changes should be driven by config-

uration variables, used at build or deploy time.

There can be several types of configuration variables that will influence the application performance:

Choice of µ-libs. As UNICORE decomposes application and OS functionality into a set of µ-libs, some of

which are interchangeable, important parameters will be the chosen µ-libs. E.g., one could replace a

preemptive scheduler library by a cooperative one.

µ-lib/kernel parameters. E.g., how big should page size be? Should we use polling or interrupts to com-

municate with a given device?

Deployment parameters. E.g., should we use I/O passthrough? How many virtual CPUs?

Networking parameters. E.g., Which TCP congestion control algorithm should be used? What size should

the receive and send buffers be?

Application-specific parameters. Each application comes with its own set of parameters, that can influence

performance (e.g. cache size, number of threads, etc.).

Page 32 of (50) c© UNICORE Consortium 2019

7.2 Performance measurement
Performance can be assessed though various KPIs (Key Performance Indicator), chosen by the user. Some

example KPIs that could be measured are throughput, delay, instantiation time, response time, memory con-

sumption, etc.

To be able to automate performance measurement, the user will have to provide a way to exert the application

(e.g., a script with traffic generation), and a way to measure performance. While exerting the application

is very application-specific, many performance measurement such as instantiation time are shared by many

applications. The framework will thus have built-in support for the most common ones.

7.3 The optimisation process
In some cases, one can make use of profiling information to guide parameter selection and code optimizations

directly (e.g., to improve branch prediction). In general, however, configuration optimisation if a non-trivial

process.

For simple applications, the exploration of the parameter space could be done via an enumeration of all

configurations.

However, as the number of possible configurations grows exponentially with the number of available param-

eters, this does not scale to larger, more complex applications.

To allow for the optimisation of larger configuration spaces, UNICORE will follow two approaches:

(i) As the optimisation tool will be split between a build-deploy-measure tool and a configuration opti-

miser, an end-user can dispense with the later and generate candidate configurations manually using

expert knowledge. This approach only slightly improves the state-of-the-art, and still requires expert

time, but is a useful fall-back to have in case the automated optimizer would perform poorly.

(ii) The automated configuration optimiser could use machine-learning and optimisation techniques to

sift through the potential configurations, trying to reach high-performing configurations with as few

experiments as possible. This approach is more of a research venue, and is not guaranteed to work, but

preliminary results seem promising.

The fully automated approach would be based on some sort of reinforcement learning. Input features would

be the configuration parameters, and output features the different KPIs. A predictive model could then be

built, which could then be used as an oracle to guide an optimization process using a combination of the

predicted KPIs as an objective function.

As the configuration search space is large, we will try to use adaptive learning to reduce the number of re-

quired experiments. Adaptive learning is a machine-learning technique which aims at improving the accuracy

of a model, by choosing samples carefully. Given a model built using a given number of samples, the adaptive

learning process will output a set of experiments that are likely to best improve the model. The process runs

in a loop where experiments are chosen, measured, and used to refine the model. The new model is then used

c© UNICORE Consortium 2019 Page 33 of (50)

to provide new suggested experiments, etc. The process repeats until target model accuracy is reached, or

experiment budget is exceeded.

In our case, we are not so much interested in model accuracy, than in finding high-performance configurations.

There is no point in refining model accuracy in parts of the configuration space where the application performs

poorly. By tweaking the adaptive learning process, we might be able to jointly learn and optimise, further

reducing the number of required experiments.

Alternatively, we will also investigate the use of Bayesian optimisation to find good configurations with as

few experiments as possible.

Page 34 of (50) c© UNICORE Consortium 2019

8 Conclusion
This document describes the first milestone concerning design & implementation of tools for unikernel de-

ployment. It begins by introducing the general structure of the UNICORE toolchain as well as its main

objectives. This one allows to understand the purpose of the different tools and how they interact with each

other. Subsequently, a discussion on the chosen technologies were established. Each tool is then explained.

In this release, two tools are fully-functional and have been tested with different schemes and configurations:

the dependency analysis tool and the automatic build tool. They are already integrated to the toolchain and

are available in open source in a git repository in order that they can be used by developers. The other tools

(e.g., decomposition, verification and performance optimization tool) are still in research phase therefore only

analysis and hypothesis have been made. They will be released in next milestones.

c© UNICORE Consortium 2019 Page 35 of (50)

Page 36 of (50) c© UNICORE Consortium 2019

Appendices

37

Complete output of the Dependency Analysis Tool

{

” s t a t i c d a t a ” : {

” d e p e n d e n c i e s ” : {

” dpkg ” : [

” l i b b z 2 −1.0 ” ,

” l i b c 6 ” ,

” l i b l z m a 5 ” ,

” l i b s e l i n u x 1 ” ,

” l i b z s t d 1 ” ,

” z l i b 1 g ” ,

” t a r ”

] ,

” gcc−8−base ” : [

] ,

” i n s t a l l −i n f o ” : [

” dpkg ” ,

” l i b c 6 ”

] ,

” l i b a c l 1 ” : [

] ,

” l i b b z 2 −1.0 ” : [

” l i b c 6 ”

] ,

” l i b c 6 ” : [

” l i b g c c 1 ”

] ,

” l i b g c c 1 ” : [

” gcc−8−base ” ,

” l i b c 6 ”

] ,

” l i b l z m a 5 ” : [

” l i b c 6 ”

] ,

” l i b p c r e 3 ” : [

] ,

” l i b r e a d l i n e 7 ” : [

c© UNICORE Consortium 2019 Page 39 of (50)

” r e a d l i n e−common” ,

” l i b c 6 ” ,

” l i b t i n f o 5 ”

] ,

” l i b s e l i n u x 1 ” : [

” l i b c 6 ” ,

” l i b p c r e 3 ”

] ,

” l i b s q l i t e 3 −0” : [

” l i b c 6 ”

] ,

” l i b t i n f o 5 ” : [

” l i b c 6 ”

] ,

” l i b z s t d 1 ” : [

” l i b c 6 ”

] ,

” r e a d l i n e−common” : [

” dpkg ” ,

” i n s t a l l −i n f o ”

] ,

” t a r ” : [

” l i b a c l 1 ” ,

” l i b c 6 ” ,

” l i b s e l i n u x 1 ”

] ,

” z l i b 1 g ” : [

” l i b c 6 ”

]

} ,

” s h a r e d l i b s ” : {

” l i b c . so . 6 ” : [

] ,

” l i b d l . so . 2 ” : [

” l i b c . so . 6 ”

] ,

” l i b p t h r e a d . so . 0 ” : [

” l i b c . so . 6 ”

]

Page 40 of (50) c© UNICORE Consortium 2019

} ,

” s y s t e m c a l l s ” : {

” a c c e s s ” : ” ” ,

” c h d i r ” : ” ” ,

”chmod” : ” ” ,

” e x i t ” : ” ” ,

” fchmod ” : ” ” ,

” fchown ” : ” ” ,

” f c n t l ” : ” ” ,

” f s y n c ” : ” ” ,

” f t r u n c a t e 6 4 ” : ” ” ,

” getcwd ” : ” ” ,

” g e t e u i d ” : ” ” ,

” g e t p i d ” : ” ” ,

” g e t r u s a g e ” : ” ” ,

” g e t t i m e o f d a y ” : ” ” ,

” g e t u i d ” : ” ” ,

” mkdir ” : ” ” ,

”mremap” : ” ” ,

”munmap” : ” ” ,

” r e a d ” : ” ” ,

” r e a d l i n k ” : ” ” ,

” r m d i r ” : ” ” ,

” s i g n a l ” : ” ” ,

” syml ink ” : ” ” ,

” t ime ” : ” ” ,

” u n l i n k ” : ” ” ,

” u t i m e s ” : ” ” ,

” w r i t e ” : ””

} ,

” symbols ” : {

” a s s e r t f a i l ” : ” ” ,

” c t y p e b l o c ” : ” ” ,

” c x a f i n a l i z e ” : ”GLIBC 2 . 2 . 5 ” ,

” e r r n o l o c a t i o n ” : ” ” ,

” f x s t a t 6 4 ” : ” ” ,

” l i b c s t a r t m a i n ” : ” ” ,

” l x s t a t 6 4 ” : ” ” ,

” s t a c k c h k f a i l ” : ” ” ,

” x s t a t 6 4 ” : ” ” ,

c© UNICORE Consortium 2019 Page 41 of (50)

” a c c e s s ” : ”GLIBC 2 . 2 . 5 ” ,

” a t o i ” : ” ” ,

” c h d i r ” : ”GLIBC 2 . 2 . 5 ” ,

”chmod” : ”GLIBC 2 . 2 . 5 ” ,

” c l o s e ” : ” ” ,

” c l o s e d i r ” : ” ” ,

” d l c l o s e ” : ” ” ,

” d l e r r o r ” : ” ” ,

” d lo pe n ” : ” ” ,

” dlsym ” : ” ” ,

” e x i t ” : ”GLIBC 2 . 2 . 5 ” ,

” fchmod ” : ”GLIBC 2 . 2 . 5 ” ,

” fchown ” : ”GLIBC 2 . 2 . 5 ” ,

” f c l o s e ” : ” ” ,

” f c n t l ” : ”GLIBC 2 . 2 . 5 ” ,

” f f l u s h ” : ” ” ,

” f g e t c ” : ” ” ,

” f g e t s ” : ” ” ,

” fopen64 ” : ” ” ,

” f p r i n t f ” : ” ” ,

” f p u t c ” : ” ” ,

” f p u t s ” : ” ” ,

” f r e a d ” : ” ” ,

” f r e e ” : ” ” ,

” f s e e k ” : ” ” ,

” f s y n c ” : ”GLIBC 2 . 2 . 5 ” ,

” f t e l l ” : ” ” ,

” f t r u n c a t e 6 4 ” : ”GLIBC 2 . 2 . 5 ” ,

” f w r i t e ” : ” ” ,

” getcwd ” : ”GLIBC 2 . 2 . 5 ” ,

” g e t e n v ” : ” ” ,

” g e t e u i d ” : ”GLIBC 2 . 2 . 5 ” ,

” g e t p i d ” : ”GLIBC 2 . 2 . 5 ” ,

” ge tpwuid ” : ” ” ,

” g e t r u s a g e ” : ”GLIBC 2 . 2 . 5 ” ,

” g e t t i m e o f d a y ” : ”GLIBC 2 . 2 . 5 ” ,

” g e t u i d ” : ”GLIBC 2 . 2 . 5 ” ,

” i s a t t y ” : ” ” ,

” l o c a l t i m e ” : ” ” ,

” l s e e k 6 4 ” : ” ” ,

Page 42 of (50) c© UNICORE Consortium 2019

” m a l lo c ” : ” ” ,

”memcmp” : ” ” ,

”memcpy” : ” ” ,

”memmove” : ” ” ,

” memset ” : ” ” ,

” mkdir ” : ”GLIBC 2 . 2 . 5 ” ,

”mmap64” : ” ” ,

”mremap” : ”GLIBC 2 . 2 . 5 ” ,

”munmap” : ”GLIBC 2 . 2 . 5 ” ,

” open64 ” : ” ” ,

” o p e n d i r ” : ” ” ,

” p c l o s e ” : ” ” ,

” popen ” : ” ” ,

” p r i n t f ” : ” ” ,

” p t h r e a d c r e a t e ” : ” ” ,

” p t h r e a d j o i n ” : ” ” ,

” p t h r e a d m u t e x d e s t r o y ” : ” ” ,

” p t h r e a d m u t e x i n i t ” : ” ” ,

” p t h r e a d m u t e x l o c k ” : ” ” ,

” p t h r e a d m u t e x t r y l o c k ” : ” ” ,

” p t h r e a d m u t e x u n l o c k ” : ” ” ,

” p t h r e a d m u t e x a t t r d e s t r o y ” : ” ” ,

” p t h r e a d m u t e x a t t r i n i t ” : ” ” ,

” p t h r e a d m u t e x a t t r s e t t y p e ” : ” ” ,

” p u t c h a r ” : ” ” ,

” p u t s ” : ” ” ,

” r a i s e ” : ” ” ,

” r e a d ” : ”GLIBC 2 . 2 . 5 ” ,

” r e a d d i r 6 4 ” : ” ” ,

” r e a d l i n k ” : ”GLIBC 2 . 2 . 5 ” ,

” r e a l l o c ” : ” ” ,

” rewind ” : ” ” ,

” r m d i r ” : ”GLIBC 2 . 2 . 5 ” ,

” s e t v b u f ” : ” ” ,

” s i g n a l ” : ”GLIBC 2 . 2 . 5 ” ,

” s l e e p ” : ” ” ,

” s t d e r r ” : ” ” ,

” s t d i n ” : ” ” ,

” s t d o u t ” : ” ” ,

” s t r c h r ” : ” ” ,

c© UNICORE Consortium 2019 Page 43 of (50)

” s t r cm p ” : ” ” ,

” s t r c s p n ” : ” ” ,

” s t r d u p ” : ” ” ,

” s t r l e n ” : ” ” ,

” s t rncmp ” : ” ” ,

” s t r n c p y ” : ” ” ,

” s t r r c h r ” : ” ” ,

” s t r s t r ” : ” ” ,

” s t r t o l ” : ” ” ,

” syml ink ” : ”GLIBC 2 . 2 . 5 ” ,

” s y s c o n f ” : ” ” ,

” sys tem ” : ” ” ,

” t ime ” : ”GLIBC 2 . 2 . 5 ” ,

” t o l o w e r ” : ” ” ,

” u n l i n k ” : ”GLIBC 2 . 2 . 5 ” ,

” u t i m e s ” : ”GLIBC 2 . 2 . 5 ” ,

” w r i t e ” : ”GLIBC 2 . 2 . 5 ”

}

} ,

” d y n a m i c d a t a ” : {

” s h a r e d l i b s ” : {

” ld −2 .27 . so ” : [

] ,

” l i b c −2 .27 . so ” : [

] ,

” l i b c . so . 6 ” : [

] ,

” l i b d l −2 .27 . so ” : [

” l i b c . so . 6 ”

] ,

” l i b d l . so . 2 ” : [

” l i b c . so . 6 ”

] ,

” l i b e l f −0 .170 . so ” : [

” l i b z . so . 1 ” ,

” l i b c . so . 6 ”

] ,

Page 44 of (50) c© UNICORE Consortium 2019

” l i b l z m a . so . 5 ” : [

” l i b d l . so . 2 ” ,

” l i b p t h r e a d . so . 0 ” ,

” l i b c . so . 6 ”

] ,

” l i b l z m a . so . 5 . 2 . 2 ” : [

” l i b d l . so . 2 ” ,

” l i b p t h r e a d . so . 0 ” ,

” l i b c . so . 6 ”

] ,

” l i b p c r e . so . 3 ” : [

” l i b p t h r e a d . so . 0 ” ,

” l i b c . so . 6 ”

] ,

” l i b p c r e . so . 3 . 1 3 . 3 ” : [

” l i b p t h r e a d . so . 0 ” ,

” l i b c . so . 6 ”

] ,

” l i b p t h r e a d −2 .27 . so ” : [

” l i b c . so . 6 ”

] ,

” l i b p t h r e a d . so . 0 ” : [

” l i b c . so . 6 ”

] ,

” l i b s e l i n u x . so . 1 ” : [

” l i b p c r e . so . 3 ” ,

” l i b d l . so . 2 ” ,

” l i b c . so . 6 ” ,

” l i b p t h r e a d . so . 0 ”

] ,

” l i bunwind−p t r a c e . so . 0 . 0 . 0 ” : [

” l i b c . so . 6 ”

] ,

” l i bunwind−x86 64 . so . 8 . 0 . 1 ” : [

” l i b l z m a . so . 5 ” ,

” l i b u n w i n d . so . 8 ” ,

” l i b c . so . 6 ” ,

” l i b d l . so . 2 ” ,

” l i b p t h r e a d . so . 0 ”

] ,

c© UNICORE Consortium 2019 Page 45 of (50)

” l i b u n w i n d . so . 8 ” : [

” l i b c . so . 6 ” ,

” l i b l z m a . so . 5 ” ,

” l i b d l . so . 2 ” ,

” l i b p t h r e a d . so . 0 ”

] ,

” l i b u n w i n d . so . 8 . 0 . 1 ” : [

” l i b c . so . 6 ” ,

” l i b l z m a . so . 5 ” ,

” l i b d l . so . 2 ” ,

” l i b p t h r e a d . so . 0 ”

] ,

” l i b z . so . 1 ” : [

” l i b c . so . 6 ”

] ,

” l i b z . so . 1 . 2 . 1 1 ” : [

” l i b c . so . 6 ”

]

} ,

” s y s t e m c a l l s ” : {

” a c c e s s ” : ” ” ,

” a r c h p r c t l ” : ” ” ,

” b rk ” : ” ” ,

” c l o s e ” : ” ” ,

” c o n n e c t ” : ” ” ,

” execve ” : ” ” ,

” f s t a t ” : ” ” ,

” g e t u i d ” : ” ” ,

” i o c t l ” : ” ” ,

” l s e e k ” : ” ” ,

”mmap” : ” ” ,

” m p r o t e c t ” : ” ” ,

”munmap” : ” ” ,

” o p e n a t ” : ” ” ,

” p r l i m i t 6 4 ” : ” ” ,

” r e a d ” : ” ” ,

” r t s i g a c t i o n ” : ” ” ,

” r t s i g p r o c m a s k ” : ” ” ,

” s e t r o b u s t l i s t ” : ” ” ,

” s e t t i d a d d r e s s ” : ” ” ,

Page 46 of (50) c© UNICORE Consortium 2019

” s o c k e t ” : ” ” ,

” w r i t e ” : ””

} ,

” symbols ” : {

” a c c e s s ” : ” ” ,

” f f l u s h ” : ” ” ,

” fopen64 ” : ” ” ,

” f r e e ” : ” ” ,

” g e t e n v ” : ” ” ,

” ge tpwuid ” : ” ” ,

” g e t u i d ” : ” ” ,

” i s a t t y ” : ” ” ,

” m a l lo c ” : ” ” ,

”memcpy” : ” ” ,

” memset ” : ” ” ,

” p r i n t f ” : ” ” ,

” p t h r e a d m u t e x d e s t r o y ” : ” ” ,

” p t h r e a d m u t e x i n i t ” : ” ” ,

” p t h r e a d m u t e x l o c k ” : ” ” ,

” p t h r e a d m u t e x u n l o c k ” : ” ” ,

” p t h r e a d m u t e x a t t r d e s t r o y ” : ” ” ,

” p t h r e a d m u t e x a t t r i n i t ” : ” ” ,

” p t h r e a d m u t e x a t t r s e t t y p e ” : ” ” ,

” p u t s ” : ” ” ,

” r e a l l o c ” : ” ” ,

” s e t v b u f ” : ” ” ,

” s i g n a l ” : ” ” ,

” s t r l e n ” : ” ” ,

” s t rncmp ” : ””

}

}

}

Listing 1: data gathered from static analysis (complete)

c© UNICORE Consortium 2019 Page 47 of (50)

Dependency Analysis Tool

Figure 1: The current toolchain dependency analysis tool

Page 48 of (50) c© UNICORE Consortium 2019

Automatic Build Tool

Figure 2: The current toolchain automatic build tool

c© UNICORE Consortium 2019 Page 49 of (50)

References
[1] “The go programming language.” [Online]. Available: https://golang.org

[2] “Java.” [Online]. Available: https://www.java.com/com/download/

[3] “Python.” [Online]. Available: https://www.python.org

[4] J. Lakos, Large-scale C++ Software Design. Redwood City, CA, USA: Addison Wesley Longman

Publishing Co., Inc., 1996.

[5] C. Patachia, E. Slusanschi, F. Huici, G. Bosson, G. Carrozzo, J. Martı́n, J. Bromell, J. Guijarro,

M. Rapoport, R. Stoenescu, and R. Deaconescu, “D2.1 requirements,” Apr. 2019. [Online]. Available:

https://doi.org/10.5281/zenodo.2783992

[6] “Clang static analyzer.” [Online]. Available: https://clang-analyzer.llvm.org/

[7] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A Binary-Compatible Unikernel,” p. 15,

2019.

[8] “Sqlite.” [Online]. Available: https://www.sqlite.org

[9] “Debian popularity contest.” [Online]. Available: https://popcon.debian.org

[10] “Gnu operating system - automake.” [Online]. Available: https://www.gnu.org/software/automake/

[11] “mini httpd - small http server.” [Online]. Available: https://acme.com/software/mini httpd

[12] “Mysql.” [Online]. Available: https://www.mysql.com

[13] “Cmake.” [Online]. Available: https://cmake.org

[14] “Scons: A software construction tool.” [Online]. Available: https://scons.org

Page 50 of (50) c© UNICORE Consortium 2019

https://golang.org
https://www.java.com/com/download/
https://www.python.org
https://doi.org/10.5281/zenodo.2783992
https://clang-analyzer.llvm.org/
https://www.sqlite.org
https://popcon.debian.org
https://www.gnu.org/software/automake/
https://acme.com/software/mini_httpd
https://www.mysql.com
https://cmake.org
https://scons.org

	Executive Summary
	List of Authors
	List of Figures
	List of Tables
	Introduction
	Objectives
	Organization

	General Overview
	UNICORE Toolchain
	UNICORE library pools
	General requirements
	Deployment

	Decomposition Tool
	General overview
	Decomposing Software into Subsystems
	Using existing tools

	Dependency Analysis Tool
	General overview
	Tests and Fuzz-Tests
	Results
	Limitations and improvements

	Automatic Build Tool
	General overview
	Controller component
	Unikraft Build system component

	Results
	Limitations and improvements

	Verification Tool
	Verify application behaviour
	Verify micro-libs implementation

	Performance Optimization Tool
	The configuration space
	Performance measurement
	The optimisation process

	Conclusion
	Appendices
	References

