

100

Techno-economic Analysis of Alternative Rail Electrification Technologies Application to the Nordland Line

Federico Zenith

22 October, 2019 MoZEES workshop on heavy-duty transport solutions Oslo, Norway

Motivation and Context

Alternative Technologies' Cost Structure

Particular and General Results

Outline

Motivation and Context

Alternative Technologies' Cost Structure

Particular and General Results

Motivation

- Most railways worldwide are not electrified
- Diesel is less and less acceptable
- Electric operation is cheaper
- Electric infrastructure is expensive
- Variable degree of electrification
 - Switzerland 99 %
 - Norway 64%
 - Europe 62%
 - World 25 %
 - North America 1%

SINTEF Report on Alternative Rail Electrification

- On behalf of the Norwegian Railway Directorate
- Report unfortunately in Norwegian only
- Just released (October 2019; previous edition 2015)
- Updated parameters to latest estimates
- Wider spectrum of authors
- Stronger sections on biofuels and batteries
- Added partial catenary electrification
- Safety aspects for gaseous fuels in tunnels

	🕥 SINTI
2019:00997 - Åpen	
2019:00997 - Apen	
Rapport	
Analyse av alternativ	e driftsformer
for ikke-elektrifiserte	
2. utgave	
Forfatter(e) Federico Zenith, Steffen Møller-Holst, Magnus S R. Tolchard, Jon Hovland, Tonje W. Thomasse Andreas D. Landmark, Roman Tschentscher, Ol	en, Bernd Wittgens, Joakim Busta

Comparison Criteria for Alternatives

• Different lifetimes for technologies

- Catenary, 75 years
- Batteries, x-000 cycles
- ...
- Difficult to employ Net Present Value
- Equivalent Annual Cost (EAC)
 - "Spread" CAPEX over years (ACAPEX)
 - Sum with OPEX
 - Lose sight of investment duration
- Benefit-Cost Ratio (BCR)
 - Referred to diesel: EAC_{diesel}/EAC_i
 - >1 is a good investment

• Pay-Back Period (PBP)

- Re-introduces time scale
- Can be undefined
- Gives "partial" answers
- Up-Front Investment (UFI)
 - Important for decision making
- Non-economic criteria:
 - Environmental requirements
 - Availability of technology
 - Availability of regulations
 - Flexibility and robustness

Outline

Motivation and Context

Alternative Technologies' Cost Structure

Particular and General Results

Reference Train: Freight on Nordland Line

- Diesel-driven freight train, 1000 t
- Locomotive Vossloh Euro 4000, 3.2 MW
- 731 km, single track
- Passing loops 600 m (length limit)
- Over 150 tunnels for 50 km
- Passes Arctic Circle at Saltfjellet
- Energy consumption 23.3 kWh/km

Traditional Technologies

Combustion technologies

- Major cost items:
 - Diesel: 2.50 NOK/kWh
 - Locomotive maintenance: 33 NOK/km
 - Emission taxes: 17 NOK/km

Total: 4.65 NOK/kWh

- Add 0.43 NOK/kWh for biodiesel
- Add 1.42 NOK/kWh for biogas
- No infrastructure costs
- Cost proportional to traffic

Traditional Technologies

Combustion technologies

- Major cost items:
 - Diesel: 2.50 NOK/kWh
 - Locomotive maintenance: 33 NOK/km
 - Emission taxes: 17 NOK/km

Total: 4.65 NOK/kWh

- Add 0.43 NOK/kWh for biodiesel
- Add 1.42 NOK/kWh for biogas
- No infrastructure costs
- Cost proportional to traffic

Electrification by Catenary

- Infrastructure costs:
 - ACAPEX: 591 NOK/m
 - OPEX: 50 NOK/m
- Energy costs:
 - Electricity: 0.53 NOK/kWh
 - Locomotive maintenance: 11.5 NOK/km
- Total: 1.02 NOK/kWh + 641 NOK/m
- Traffic and infrastructure costs

Storing Electricity On-board

- Concept: batteries, fuel cells, hydrogen tanks on own wagon
 - 58 t capacity on a standard Sgnss platform
- Wagon delivers power to normal electric locomotive
- Reduced cargo load is usually a minor cost, compensated with more train movements
- Concept also suggested by Austrian ÖBB (RailCargo) for freight

New Technologies: Batteries and Hydrogen

All-battery train

- Same energy cost as catenary
- Batteries: 2.1 NOK/kWh (2020)
 - Very uncertain number, can fall
 - 0.88 NOK/kWh (2030)
 - 0.69 NOK/kWh (2050)
- Total: 3.12 NOK/kWh
- Same structure as diesel, but cheaper
- Caveat: assuming few battery wagons

New Technologies: Batteries and Hydrogen

All-battery train

- Same energy cost as catenary
- Batteries: 2.1 NOK/kWh (2020)
 - Very uncertain number, can fall
 - 0.88 NOK/kWh (2030)
 - 0.69 NOK/kWh (2050)
- Total: 3.12 NOK/kWh
- Same structure as diesel, but cheaper
- Caveat: assuming few battery wagons

Hydrogen train (CH₂ from electrolysis)

- Different energy cost: 1.21 NOK/kWh (power tariff, efficiency)
- Fuel cells: 0.40 NOK/kWh
- Tanks: 0.07 NOK/kWh
- Electrolysers: 0.51 NOK/kWh
- Compressors: 0.15 NOK/kWh
- Total: 2.83 NOK/kWh

New Technologies: Hybrids and Fast Chargers

Hydrogen-battery hybrid

- Fuel cells downsized to average power
- Extra batteries handle dynamics
- Same tanks and refuelling infrastructure
- Fuel cells 0.13 NOK/kWh
- Batteries 0.75 NOK/kWh
- Total: 3.31 NOK/kWh

Smaller battery with fast charging stop

- Batteries: 1.94 NOK/kWh
- Charging station: 834 NOK/kW
- Total: 2.96 NOK/kWh + 834 NOK/kW
 - With Nordland line traffic 3.3 NOK/kWh
- Can be advantageous with too many battery wagons

Partial Electrification

Catenary-Battery Hybrid

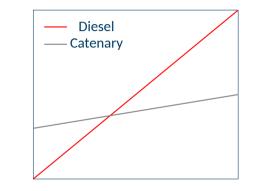
- Sections of catenary (total $\frac{1}{3}$ of track)
- Select best areas, e.g. avoid tunnels
- Other sections covered by batteries
- Batteries recharge under catenary
- Catenary cost estimate by Railway Directorate: 11.2 MNOK/km

Cost breakdown

- Batteries: 1.2 NOK/kWh
- Catenary: 158 NOK/m
- Total: 2.22 NOK/kWh + 174 NOK/m

Outline

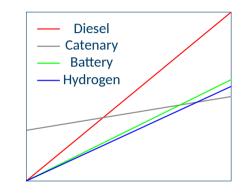
Motivation and Context


Alternative Technologies' Cost Structure

Particular and General Results

Competitiveness of Different Technologies

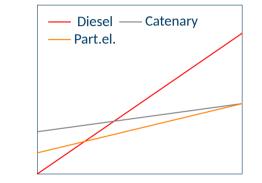
- Cost structures for diesel and catenary:
 - Diesel proportional to energy
 - Catenary to energy and line length
- Break-even energy-length ratio:
 - E/L > 176 kWh/m \Rightarrow catenary
 - $E/L < 176 \, kWh/m \Rightarrow diesel$
 - E.g.: Nordland line is 28 kWh/m


Cost

Traffic

Competitiveness of Different Technologies

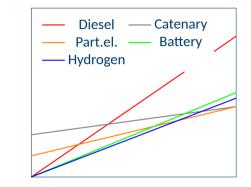
- Cost structures for diesel and catenary:
 - Diesel proportional to energy
 - Catenary to energy and line length
- Break-even energy-length ratio:
 - E/L > 176 kWh/m \Rightarrow catenary
 - $E/L < 176 \, kWh/m \Rightarrow diesel$
 - E.g.: Nordland line is 28 kWh/m
- Hydrogen & battery:
 - Cost structure like diesel but cheaper
 - $E/L > 354 \, \text{kWh/m} \Rightarrow \text{catenary}$
 - $E/L < 354 \, kWh/m \Rightarrow hydrogen$


Cost

Traffic

Competitiveness of Different Technologies Hydrogen and Batteries

- Partial electrification break-evens:
 - $E/L < 389 \, \text{kWh/m}$ against catenary
 - $E/L > 72 \, \text{kWh/m}$ against diesel
 - Niche between diesel and catenary


Cost

Competitiveness of Different Technologies Hydrogen and Batteries

- Partial electrification break-evens:
 - $E/L < 389 \, \text{kWh/m}$ against catenary
 - $E/L > 72 \, \text{kWh/m}$ against diesel
 - Niche between diesel and catenary
- New technologies change thresholds:
 - $E/L > 276 \, \text{kWh/m}$ against hydrogen
 - Significantly shrunk niche between hydrogen and catenary
 - Niche starts at 10imes actual traffic

Cost

Traffic

Technology	BCR —	PBP years	UFI MNOK
Catenary	0.22	_	9900
Biodiesel	0.93	—	0
Biogas	0.79	—	180
Battery	1.33	3.5	400
Hydrogen	1.41	3.3	326
Battery+H ₂	1.38	6.1	452
Fast charging	1.23	2.3	312
Partial electrification	0.66	—	2750

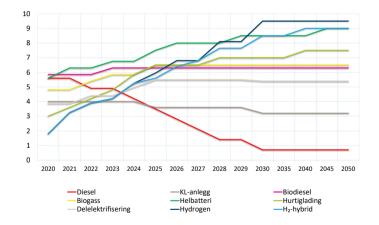
- On previous slides: only major cost components
- Here: report results
- Some inconsistencies due to different detail

Technology	BCR —	PBP years	UFI MNOK
Catenary	0.22	_	9900
Biodiesel	0.93	—	0
Biogas	0.79	—	180
Battery	1.33	3.5	400
Hydrogen	1.41	3.3	326
Battery+H ₂	1.38	6.1	452
Fast charging	1.23	2.3	312
Partial electrification	0.66	—	2750

- On previous slides: only major cost components
- Here: report results
- Some inconsistencies due to different detail

Technology	BCR —	PBP years	UFI MNOK
Catenary	0.22	_	9900
Biodiesel	0.93	—	0
Biogas	0.79	—	180
Battery	1.33	3.5	400
Hydrogen	1.41	3.3	326
Battery+H ₂	1.38	6.1	452
Fast charging	1.23	2.3	312
Partial electrification	0.66	—	2750

- On previous slides: only major cost components
- Here: report results
- Some inconsistencies due to different detail


Technology	BCR —	PBP years	UFI MNOK
Catenary	0.22	_	9900
Biodiesel	0.93	—	Ο
Biogas	0.79	—	180
Battery	1.33	3.5	400
Hydrogen	1.41	3.3	326
Battery+H ₂	1.38	6.1	452
Fast charging	1.23	2.3	312
Partial electrification	0.66	—	2750

- On previous slides: only major cost components
- Here: report results
- Some inconsistencies due to different detail

Actuality Evolution towards 2030

- Diesel environmentally unacceptable in 2030
- New technologies to market by 2025
- Hydrogen fully regulated by 2030

Upfront Costs for Test Project on Nordland Line

- Lock-in effect for catenary and partial electrification
 - Need large & expensive infrastructure
 - Several years of construction
 - Once built, cannot change course
- Biofuels, battery & hydrogen can run one single test train

Technology	UFI / MNOK
Biodiesel	0
Hydrogen	81
Battery	100
Hydrogen-battery hybrid	113
Fast charging	114
Partial electrification	2640
Catenary	9800

Conclusions

- Battery and hydrogen have similar performance—both better than diesel
- Partial electrification would have a niche between diesel and catenary...
- ... but it becomes much smaller when battery and hydrogen are an option
- Partial electrification still relevant with pre-existing catenaries
- Pilot projects with one train are possible with battery and hydrogen technologies
- For the Nordland line, the best technologies appear to be biodiesel today, battery soon, and hydrogen from the late 2020's.

Conclusions

- Battery and hydrogen have similar performance—both better than diesel
- Partial electrification would have a niche between diesel and catenary...
- ... but it becomes much smaller when battery and hydrogen are an option
- Partial electrification still relevant with pre-existing catenaries
- Pilot projects with one train are possible with battery and hydrogen technologies
- For the Nordland line, the best technologies appear to be biodiesel today, battery soon, and hydrogen from the late 2020's.

Thank you for your attention!

Technology for a better society