
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 1

Maintaining Scalability of Test Generation using
Multi-core Shared Memory Systems

Stavros Hadjitheophanous, Member, IEEE, and Stelios N. Neophytou, Senior Member, IEEE,
and Maria K. Michael, Member, IEEE,

Abstract—Taking advantage of multi-core architectures can
provide significant improvement for many design automation
problems. However, the parallelization procedure introduces
challenges such as workload duplication, limited search space
exploration and race contention among different threads. In this
work we propose a parallel framework for ATPG using shared
memory multi-core systems that supports test generation for both
single-detect and multiple-detect fault models. The framework
follows a two-epoch approach, each focusing on a different
category of faults, during which a test seed generation is followed
by compatibility merging. Various optimization techniques are
incorporated in each epoch, designed to achieve higher speed-up
for the overall test generation procedure without impacting much
the test set size. A cluster-based approach is also presented ex-
tending the proposed framework to consider multiple-detect fault
models without affecting its efficiency. The obtained experimental
results demonstrate increased speed-up rates compared to the
state-of-the-art multi-core based tools while, at the same time,
the test inflation problem is restrained. For the multiple-detect
extension, these properties are maintained despite the increased
workload and the additional constraint of retaining the number
of detections for each fault while merging.

Index Terms—ATPG; Parallel Test Generation; Test Com-
paction; n-detect; Multi-core systems;

I. Introduction

TECHNOLOGY shrinking in the integrated circuit manu-
facturing process allowed the implementation of multiple

processing units (cores) on a single chip as well as large
amounts of on-chip memory. These developments offer exten-
sive processing power that can be used in various computa-
tionally intensive problems including popular electronic design
automation processes. However, the distributed fashion of this
processing power guides towards the development of parallel
methodologies that scale well as the number of cores per chip
are expected to increase beyond a few dozens to hundreds.

Automatic Test Pattern Generation (ATPG), a well-known
NP-hard problem, becomes more demanding as devices under

This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 739551 (KIOS
CoE) and from of the Republic of Cyprus through the Directorate General
for European Programmes, Coordination and Development.

Stavros Hadjitheophanous is with the Electrical and Computer Engineering
Dept., KIOS Research and Innovation Center of Excellence, University of
Cyprus, Nicosia, Cyprus (e-mail: stavros.hadjitheophanous@ucy.ac.cy).

Stelios N. Neophytou is with the Electrical and Computer Engi-
neering Dept., University of Nicosia, Nicosia Cyprus (e-mail: neophy-
tou.s@unic.ac.cy).

Maria K. Michael is with the Electrical and Computer Engineering Dept.,
University of Cyprus and KIOS Research and Innovation Center of Excel-
lence, Nicosia, Cyprus (e-mail: mmichael@ucy.ac.cy).

test are becoming larger and more complicated and as emerg-
ing defects require new fault models of higher complexity.
While previously proposed procedures are very effective, see
[1], [2], among many others, they are inherently non-parallel
and thus, cannot rely on automatic parallelization using sophis-
ticated compilers. Proper problem decomposition, workload
distribution and final test set re-composition are essential to
guarantee the quality of the results while maintaining fault
coverage and other test set characteristics such as test size.
Since, typically, each computing core does not consider the
entire search space, parallel approaches tend to choose local
optimal solutions resulting in test set increase [3], known as
the test inflation problem.

Parallel ATPG has been studied before the on-chip multi-
core era, by either applying bit level parallelism or distribut-
ing ATPG components among multiple processing units, not
physically on the same chip [3], [4] . These approaches were
designed to avoid/minimize communication overhead and were
constrained by the machine’s word size. In current on-chip
multi-core architectures with shared memory, on-chip com-
munication is much faster, significantly reducing the cost of
inter-core communication. Furthermore, high level of memory
coherency is guaranteed and the number of available cores
keeps increasing. These new developments and trends motivate
towards the investigation of parallel ATPG approaches capable
of achieving speed-up scalability as the number of on-chip
cores increases, while overcoming new challenges such as
shared memory contention, as well as efficient workload
distribution of parallel threads.

ATPG parallelization for on-chip multi-core environments
exploit a variety and, often mixture, of parallelism dimensions
such as fault parallelism, structural (circuit) parallelism, and
algorithmic (including search-space) parallelism. Moreover,
the goal of utilizing parallelism often varies. For example, [5]
exploits algorithmic parallelism via SAT solver parallelism for
maximizing fault coverage with limited speed-up with respect
to the corresponding serial process. Similarly, [6] applies bit-
level parallelism to generate multiple test patterns concurrently
that meet different quality metrics to achieve higher physical-
aware coverage. Static fault parallelism is explicitly considered
in [7] using a master-slave architecture to reduce inter-process
communication which achieves sub-linear speed-up up to 8
cores but suffers from increased test set sizes (test inflation).
Furthermore, recent applications of test generation algorithms
in security and reliability of integrated circuits employ parallel
approaches. For example, the recent work of [8] proposes
a side-channel-ware parallel test generation approach which

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 2

aims to statistically increase hardware Trojan sensitivity.
Parallelization speed-up rates and test set inflation for shared

memory architectural models are investigated in [9]–[13].
Shared memory is utilized in [9] as a low latency commu-
nication mean with high capacity to leverage synchronization
and communication of the process with the goal of minimizing
test inflation. Fault coverage is maintained while pattern count
is reduced but at the expense of linearly scalable speed-up. The
work in [10] proposes a low communication circular pipeline
parallel ATPG procedure which emulates the deterministic
execution of a serial ATPG in order to be able to reproduce
the same test set every time the parallel algorithm is executed.
This also leads to limitations in speed-up scalability. The series
of works in [11]–[13] target both parallelization speed-up and
test inflation minimization strategies, incorporated in state-of-
the-art commercial tools. In particular, [11] achieves speed-up
by applying dynamic fault partitioning and depth-first-search
based compaction. [12] extends [11] for distributed multi-
core hybrid architectures, while [13] incorporates a copy-
on-write technique for private data protection in order to
reduce memory locking when the same part of the memory
is used concurrently by more than one cores. Similarly to the
above approaches, the work proposed here is targeted towards
achieving high degree of speed-up, as the number of available
cores increases, and at the same time limiting test set inflation.
A more elaborated comparison with the results of the works
of [9]–[13] can be found in Subsection V-A.

Parallel approaches have also been proposed targeting
Graphic Processing Units (GPUs) based architectures. In con-
trast to the fault simulation problem where the GPU model
can be effective due to its concurrent nature which can directly
adopt the single instruction multiple data (SIMD) approach of
GPUs [14], [15]. ATPG parallel threads often require inter-
thread communication in order to achieve high speed-up rates
and avoid test inflation. This communication can be effectively
facilitated by shared memory, which is however very limited
in GPU-based architectures. Existing approaches for ATPG
using GPUs/GPGPUs suffer from limited speed-ups or high
test inflation rates [16]–[18]. For example, the recent method
in [18] reports overall speed-ups (with respect to a serial ATPG
approach) in the order of 0.71x – 40.7x when using a GPU
with 2880 processing cores.

In this work we propose a parallel ATPG methodology,
for shared memory multi-core systems, geared towards high
speed-up and test inflation containment. The methodology
takes advantage of fast and low cost shared memory commu-
nication, inherent in the underlying architecture, in order to
coordinate the main steps of the ATPG to avoid redundant
work. The approach dynamically allocates workload, while
minimizing memory contention caused by multiple cores
(threads) accessing shared data. A test generation flow is
proposed in which hard-to-detect faults are targeted first,
followed by a parallel fault simulation-based merging process
to maximize fault coverage. This process employs a series of
newly proposed parallelization heuristics to explicitly avoid
simultaneous consideration of the same faults by two or
more cores, in order to minimize extra work and thread idle
time. Any remaining undetected faults are targeted during a

following phase, in a similar manner.
The proposed parallel approach is applicable to fault models

of linear size with respect to the circuit size, where the
faults can be enumerated (if needed), and is demonstrated in
this work using the well known single stuck-at fault model.
Furthermore, we extend the approach to n-detect models which
require n different tests per fault in order to increase the
defect coverage of a test set [19]–[21], at the expense of
an increase in the test set size. In this case, the scalability
and/or the quality of the proposed partitioning-based parallel
approach for single-detect fault models may be impacted as
the fault list partitioning does not result in mutually exclusive
sub-lists. To address this problem, we extend the proposed
parallel ATPG methodology to a clustered-based approach
for n-detect test generation. Specifically, the generation of
the different detections for the same fault is systematically
assigned to different processing cores and test merging for
different faults is performed in a restricted manner in order
to avoid merging multiple detections for the same fault.
Moreover, each generated test for the same fault is optimized
to be highly different, as it is well known that this can increase
the defect coverage of the overall test set [22]–[24]. To the best
of our knowledge, this is the first parallel ATPG approach to
explicitly target high quality n-detect test set generation. The
obtained experimental results demonstrate the effectiveness of
the proposed approach in maintaining scalability of the ATPG
process and provide comparisons with relevant recent work.

The rest of the paper is organized as follows. Subsection II
presents a high level description of the proposed parallel ATPG
while Section III focuses on particular parallel optimizations
used to reduce the test inflation problem and favor speed-
up. Section IV describes the new challenges for n-detect test
sets and proposes a cluster based approach for parallel ATPG.
Section V presents and discusses the experimental results and
Section VI concludes the paper.

II. Proposed High-Level ATPG Framework

Typically, a parallelization procedure consists of three basic
steps: (i) decomposition (domain or functional), (ii) parallel
execution, and (iii) final result assembly. Step (ii) can result
in a significant compromise of the quality of the obtained
results and, at the same time, not offer the expected speed-
up. An efficient parallel algorithm should effectively overcome
challenges such as memory contention and imbalanced work-
load distribution. The proposed ATPG method appropriately
designs all three steps to ensure that these challenges are
treated efficiently. Specifically, two conceptual approaches
are adopted: (i) problem partitioning to avoid executing the
same work concurrently in different cores and (ii) fine-grained
granularity of each step to provide a dynamic distribution of
work. This section presents the test generation flow of the
proposed methodology which is based on these two concepts;
various parallel optimization heuristic based on these concepts
are discussed on Section III.

The proposed methodology relies on an initial test-per-fault
step, for a limited number of faults, to obtain an initial seed
test set over which the algorithm evolves. The many degrees

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 3

Fig. 1: High level flow of the main Test Generation (TG)
processes.

of freedom allowed in a test seed by our single fault ATPG
process, provides the desired granularity that allows mutually
exclusive distribution of work in the different cores. However,
this distribution may result in a large amount of unnecessary
work when not taking advantage of fault dropping. Fault
dropping plays a critical role anyway, as it can significantly
affect test set size. In parallel test generation, inefficient
dropping of faults can also restrict speed-up, although the main
process for identifying faults to be dropped (fault simulation)
can be implemented very efficiently in parallel environments
[14], [15]. A fair trade-off between high granularity and fault
dropping consideration is to develop a methodology based on
distinct test epochs, one targeting hard-to-detect faults and a
following one targeting the remaining undetected faults.

Fig.1 presents the high level description of the proposed
methodology. Firstly, the circuit netlist is analyzed to obtain
a collapsed fault list F for the underlying fault model M.
Consequently, the fault list is sorted in a depth-first-search
(DFS) order (based on their location in the netlist) in an
attempt to implicitly group faults with structural similarities
in F. This fault locality property of the input fault list benefits
fault dropping after F is partitioned to the available cores.
The next step identifies hard-to-detect faults to be targeted
by the first test epoch (Epoch I) of the methodology. We
use random test pattern generation, which is a simple, quick
and acceptable way to classify faults; however, other more
sophisticated methods can be incorporated such as [25], [26].
Hard-to-detect faults are identified using a multiple detection
approach where 10% (set by experimental exploration) of the
faults in F with the fewer detections are considered as hard
and used as the input fault list of test Epoch I (FH). Epoch
I performs explicit test generation for each fault in FH also
considering faults in F−FH during fault simulation to identify
faults detected coincidentally (FC). A test compaction step
follows to produce a set of test patterns (TH) detecting all
faults in FH∪ FC . A second test epoch (Epoch II), similar

… ti=ATPG(fi)

C
o

re
 1

Targeted
FaultListFH F

f∈FH
not marked

?

Yes

No

C
o

re
 m

Fault List F

Circuit

Netlist C

TPF={t1,t2,…,t|FH|} DPF={d1,d2,…,d|FH|}

Test set TH

… Dynamic test

seed merging(tj) C
o

re
 1

Dynamic test

seed merging(tk-1)

C
o

re
 m

-1

D
yn

am
ic

M

e
rg

in
g

C
o

re
 1

di=fsim(ti)

P
ar

al
le

l

fa
u

lt

Si
m

u
la

ti
o

n

C
o

re
 m

dk=fsim(tk) …

Dynamic test

seed merging(tk) C
o

re
 m

tk=ATPG(fk)

Se
e

d
-b

as
e

d

Te
st

 G
e

n
e

ra
ti

o
n

Undetected
Faults FR

Fig. 2: A test epoch targeting hard-to-detect faults (Epoch I).
Same steps are repeated in Epoch II, with input fault list FR

and resulting test set TR.

to the first one, is invoked to target the remaining faults, i.e.
FR = F – (FH∪ FC) producing a set of tests TR such that
T = TH ∪ TR detects all faults in F. Detailed description of
the individual steps taken during a test epoch is provided in
Subsection III-A.

III. ParallelizationMethodology And Optimizations

This section describes in detail how the test generation pro-
cess is partitioned and discusses the decisions taken to address
the main parallelization challenges. Subsection III-A describes
the major steps undertaken during a test epoch, discussing
dynamic fault partitioning and core synchronization, while
Subsection III-B describes a number of optimizations proposed
to overcome parallelization issues.

A. Test-Epoch Parallelization

Fig.2 presents a flowchart illustrating the basic steps of the
parallel methodology followed during a test epoch, namely
seed-based Test Generation (TG) and dynamic test merging.
An epoch explicitly targets only a small subset of the fault list
F (FH for Epoch I and FR for Epoch II), on a fault-by-fault
basis. Note that FC = F – (FH∪ FR) typically constitutes the
overwhelming majority of the faults which are easily/randomly
detectable.

During the first step (seed-based TG in Fig.2), each available
core performs test seed generation (TG with maximal don’t
care bits) for the next undetected fault fi in the list using
a PODEM-based process optimized to identify tests with a
large number of unspecified bits (proven to be beneficial for
a plethora of application e.g., test set compaction [24], low
power testing [27]). The order of the selection of the next
fault(s) is not important here, as the partitioning is designed

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 4

to work in an independent manner and produce standalone
results. The system shared memory holds the updated fault list
(faults not yet targeted) and, therefore, duplication of work is
avoided as each core works on a distinct fault. For each test
seed ti generated, parallel fault simulation is performed and all
faults detected (including those in F -FH) are stored in a list di.
Faults in di are not immediately dropped as this information is
used during the following step. This first step terminates when
all faults in FH have been targeted. TPF contains the test seeds
and DPF contains the corresponding fault simulation results
which are both kept in the shared memory (Fig.2 between the
two steps).

The next step is invoked (dynamic test merging in Fig.2) in
order to merge compatible test seeds and reduce the size of
TPF . Each core selects the test seed from TPF with the larger
detection list di and marks it (core’s primary seed) so that other
cores cannot select it. A detailed description of this selection
is given in Subsection III-B. This merging step is dynamic
due to the efficient communication of the merged tests through
the shared memory. Thus, in each iteration, the number of
candidate tests seeds for merging is reduced at a fast rate.

Algorithm 1 outlines the merging process undertaken by
each core while the shared memory accommodates informa-
tion about faults detected and test seeds discarded. The input to
this merging process is the test seed generated in the previous
step (TPF) and their corresponding faults detected (DPF) as
well as the fault list FH . This process is similar for the two
Epochs of the methodology hence, without loss of generality,
here we describe the method for Epoch I. Each core considers
a distinct subset of the test seed set TPF in order avoid utilizing

Algorithm 1 Dynamic Merging for Core k
Inputs: test seeds TPF , faults detected per seed DPF,
shared fault list F, fault sublist FH
Output: test set Tk

PF

01. Tk
PF = ∅

02. For each seed ti∈ TPF(k:k+1) : di = max{DPF(k:k+1)}
03. FH = FH\di
04. TPF = TPF - ti
05. For h = k,k+1,...,m-1,0,1,...,k-1
06. For each t j , ti ∈ TPF(h:h+1)
07. Pi ← hamming(ti,t j)
08. For each t j , ti ∈ TPF(h:h+1) : (ti,t j)=min{Pi}

09. If (min{Pi} = ∞)
10. break;
11. ti ← merge(ti,t j)
12. TPF = TPF- t j
13. FH = FH\d j
14. For each unspecified bit bzof ti
15. t0

i = ti : bz = 0
16. di

0 = fsim(t0
i ,F-FH)

17. t1
i = ti : bz = 1

18. di
1 = fsim(t1

i ,F-FH)
19. If (di

0,∅ AND |di
0| ≥ |di

1|)
20. ti = ti

0

21. FC = FC ∪ di
0

22. If (di
1,∅ AND |di

0| < |di
1|)

23. ti = ti
1

24. FC = FC ∪ di
1

25. Tk
PF = T

k
PF+ti

26. F = F\FC

the same seed for merging in more than one cores. Core k
(out of the m available) considers only |TPF |

m seeds for primary
selection in the range k × |TPF |

m , . . . , (k + 1) × |TPF |

m − 1, denoted
here as TPF(k : k + 1). Once a seed ti in this range is selected
(line 02) as a primary seed to be merged, all the detected
faults are immediately dropped from the globally maintained
fault list FH (line 03) and the seed is removed from the
given seed test TPF (line 04). Then, the hamming distance
between each of the remaining seeds in the considered range
(i.e., TPF(k : k + 1)) and ti is calculated and saved in list Pi

(lines 06-07). Observe that, in subsequent iterations, this range
changes for the secondary seeds (line 05) so that all seeds in
TPF are considered for merging with the primary ti. Then, the
seed with the minimum hamming distance is selected (line 08)
and merged (line 11) with ti. The merged seed is removed from
TPF (line 12) and its detected faults are dropped from further
consideration (line 13). When no more seeds in the range can
be merged with ti, the algorithm continues to the next range
of |TPF |

m seeds (lines 09-10). Lines 14 to 24 are invoked when
all the secondary seeds are considered and, hence, no more
merging is possible, in order to identify detections of faults
not in FH (i.e., in F−FH). Lines 14 to 24 are skipped in Epoch
II since all the remaining faults are placed in the given sublist
FR. First, a bit still with unspecified value in ti is randomly
selected (line 14), fixed to 0 (line 15) and simulated for faults
not in FH (line 16). Then, in lines 17 and 18 bit fixing and
fault simulation are repeated for value 1. Based on which bit
fixing detects more faults, ti is updated accordingly (lines 19-
20 for 0, lines 22-23 for 1) and a list of faults FC accumulates
all the coincidentally detected faults (line 21 for 0 and 24 for
1). All these faults will be dropped from the global fault list
F at the end of this process (line 26). Finally, the obtained
test ti is inserted in a test set for core k (line 25) that contains
tests to be placed in the output test set of the Epoch i.e.,
TH =

⋃
k=0:m−1 T k

PF .

Fig. 3 presents the dynamic test merging procedure with an
example. First, t3 is selected since it detects the most faults
(11) among the other seeds in TPF (left top table in Fig. 3).
Next, the hamming distances between t3 and all other seeds in
TPF are calculated as the sum of the bit-wise distances per bit
pair indicated in Column 3 of the bottom tables. For example,
the hamming distance between t3 and t5 is 1 + 0 + 0 + 1 +∞+

0 + ∞ + 1 + 0 + 0 = ∞ indicating that no merging between
them is possible. The hamming distances between t3 and all
other seeds in TPF are saved in Pi (shown under Pi column of
1st iteration in top table). These values indicate that the best
seed to be merged with t3 is either t1 or t2 with the former
selected. Merging of t3 and t1 is shown in the TPF column
under 1st iteration (changed bits are shown in red) and follows
the rules on bottom tables of Fig.3. During the 2nd iteration,
the hamming distances are recalculated in Pi. Observe that t2
and t6 are now incompatible with t3 after its merging with t1.
Seed t4 is selected to be merged with the current seed. The
resulting seed has no compatibility with the remaining seeds
and hence, no further merging is possible. During Epoch I,
bit fixing together with fault simulation follows the process
shown here to detect coincidental faults. When all unspecified

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 5

Dynamic merging based on pair-wise hamming distance

ti TPF di

1st iteration 2nd iteration

TK
PF Pi TPF Pi TPF

t1 XX1X001XXX 6
Hamming Distance

-
Hamming Distance

- -

t2 1X0XXX1X0X 2 1X0XXX1X0X 1X0XXX1X0X 1X0XXX1X0X

t3 XXXX0X1X0X 11 t1 t2 t3 t4 t5 t6 t7

3 3 - 4 ∞ 5 5

merge(t3, t1) =
XX1X001X0X

t1 t2 t3 t4 t5 t6 t7

- ∞ - 6 ∞ ∞ 7

merge(t3, t4) =
001X001X00 001X001X00

t4 00XX0X1XX0 10 00XX0X1XX0 - -

t5 1XX11X010X 3 1XX11X010X 1XX11X010X 1XX11X010X

t6 0X1X01XXXX 9 0X1X01XXXX 0X1X01XXXX 0X1X01XXXX

t7 11XXXXX10X 4 11XXXXX10X 11XXXXX10X 11XXXXX10X

 Bit-wise hamming distance calculation and merging rules

 ith bit of hamming
distance

ith bit of
merge(ti,tj)

 ith bit of hamming
distance

ith bit of
merge(ti,tj) ti tj ti tj

0 0 +0 0 1 X +1 1

0 1 +∞ conflict X 0 +1 0

0 X +1 0 X 1 +1 1

1 0 +∞ conflict X X +0 X

1 1 +0 1

Fig. 3: Dynamic Merging Example.

bits have been fixed and fault simulated, the test is advanced to
the output test set T k

PF and all the corresponding faults detected
are dropped from the global fault list.

B. Parallelization Optimizations

Detection-Based Primary Test Selection. In the merging
step of Algorithm 1, test selection is very important for the
efficient evolution of merging since it sets the constraints
for the consequent merging iterations, and fault simulation.
Practice in ATPG suggests that early fault dropping plays
a more important role than having fewer constraints (more
unspecified bits) in the test seed. For this reason, the primary
test ti during dynamic merging (merging seed) is selected
based on its number of detected faults in di. Recall that the
fault simulation process performed at the end of the first step
of the test epoch (Fig.2) does not drop faults; instead, it is
used as a metric for this selection during the second step.
Tests to be merged (with the primary test) are then selected
based on their Hamming distance to the primary test. In the
(often common) case where more than one tests have the same
Hamming distance to the primary test, their fault detection
metric (number of coincidentally detected faults) is used to
decide which test will be merged. This optimization greatly
assists in dynamic workload balancing and minimization of
unnecessary work since early fault dropping reduces the faults
for which explicit test generation is needed.

Balanced Workload Distribution. Distribution of work-
load to the available cores can significantly impact the speed-
up of a parallel methodology. Test generation and fault sim-
ulation processes have unpredictable execution times due to
the nature of the problems and fault dropping. Core idle
time is minimized by dynamically selecting: (i) the next fault
to be targeted in seed-based test generation in each epoch
(Fig.2), (ii) the next test to be used as primary in test merging

(Fig.2), and (iii) the tests to be merged with the primary test
seed (Algorithm 1). Since the fault list and the test seeds
are stored in shared memory, they are easily accessible by
all cores, and can provide a punctual way of determining
how the workload will be selected at each step and by each
optimization mechanism of the approach.

Scalable Parallel Fault Simulation. Fault simulation is
used in many cases in the proposed methodology and, thus,
its performance significantly affects the overall performance.
Specifically, fault simulation is used on two separate occasions
in each Epoch:

(i) To find the number of detected faults per test seed with-
out fault dropping. This information is given as input to the
merging procedure in order to avoid unnecessary simulations
after each merging.

(ii) At the end of the merging step in order to detect as
many coincidental faults as possible and, hence, minimize the
test set size.
In case (i) the fault simulation is performed after test seeds
have been generated for all faults. Since generation in the
various cores is executed independently, the cores finish this
step at different times, resulting in idle cores. These cores
can be utilized for fault simulation in a parallel fashion. The
challenge here is that the number of idle cores is changing
(increasing) as more cores finish and, hence, the simulation
should utilize them as well. To take full advantage of the idle
cores we have fully incorporated the highly scalable parallel
fault simulation of [28]. This fault simulator has been shown to
provide linear speed-up as the number of cores increases and
can be dynamically adjusted to the number of available cores.
In case (ii) the fault simulation should proceed within one core
since, after the merging step, the obtained test is simulated to
identify co-incidental fault detections (see Fig. 2). Recall, that
in this step the test seeds are dynamically acquired by cores

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 6

from the shared fault list and merged with other seeds until
no more merging is possible. Hence, fault simulation cannot
run in parallel to get maximum benefit. Nevertheless, the fault
simulations exploit bit-parallel simulation principles presented
in [28] where many faults are simulated with a single circuit
traversal. This results in a considerable speed-up of this step.

Test Set Private Consideration. The search for the best
candidate tests to be merged involves high interaction of
each core with the shared memory. Specifically, selecting the
primary test, as well as computing the pair-wise compatibilities
with the remaining tests in TPF , inherently involves memory
contention since all cores are searching TPF . This issue is
addressed by dynamically partitioning TPF in m private subsets
(m being the number of available cores), one for each core.
Each core can only select tests from its own private subset
of TPF (and the corresponding DPF) which can be safely
moved to its own private cache. This implicitly minimizes
concurrent memory access requests from different cores that
can result in inefficient memory utilization due to memory
contention. Moreover, it implicitly minimizes duplication of
work as each core considers a distinct part in TPF . When a
core finishes with the merging process within its private part
of TPF , it is allowed to work on the entire set in order to
ensure workload balancing. At this point, concurrent memory
accesses can occur, however, their impact is minimal as the
bulk of the merging process has already occurred during the
private consideration, and, hence, the size of TPF is by this
point significantly reduced.

Test Provisional Marking. During compatibility merging,
the list Pi which holds pair-wise compatibilities between
tests, requires updating after each merging. This updating is
highly demanding in processing resources as it is of cubic
complexity in the worst case. To avoid this issue the proposed
methodology calculates and ranks compatibilities only once
for each test ti. If a test t j is selected to be merged with ti, it is
provisionally marked in TPF so that it is not merged in another
core, explicitly avoiding imposing unnecessary constraints
in another thread that performs merging. If compatibility
between ti and a test t j in Pi is invalidated by a previous
merging, merging between ti and t j is not completed and the
provisional marking is cleared. Otherwise, provisional marking
indicates permanent discarding of t j from TPF .

Shared Memory Contention Avoidance. Access to the
shared memory must be efficient and well-targeted in order
to avoid memory contentions. The proposed method accesses
the share resources thoughtfully using the following ways:
(i) During Seed-based Test Generation and fault simulation
phases shared memory access is avoided since cores work
independently on a test seed basis. However, during Dynamic
merging phase shared memory access can affect the efficiency
and the quality of the test generation method. Appropriate
bookkeeping with shared fault list F ensures that no test is
simulated twice for the same fault and that faults will be
dropped immediately after they are detected. (ii) Due to the
dynamic nature of the proposed method, the best candidate test
seeds would be attractive by many cores. During the merging
phase, cores are initially working independently on their own
private space for seeds assigned to them (TPF) and updating

of the shared memory is only done at the end (Test Set Private
Consideration). (iii) During the Dynamic merging phase, pair-
wise compatibilities between tests seeds are calculated once
per test seed for TPF (stored in Pi). In this case, shared memory
access is not necessary since all TPF belong to the private
memory space of the cores. Shared memory is only accessed
towards the end of processing Pi, when very few tests are left
to be considered.

IV. n-detect ParallelizationMethodology

The proposed methodology can be easily extended to
consider any linear fault model. In this section, we extend
the parallel framework to generate test sets with multiple
detections for each fault, known as n-detect test sets.

The main challenge here is to ensure the n-detect prop-
erty. The challenge applies both to seed generation and seed
merging processes. Test seed generation should guarantee the
generation of n different seeds per fault in the given fault list
(FH in Epoch I and FR in Epoch II). Furthermore, in order to
ensure high quality of the resulting test set, test seeds should
have significant difference since this was shown to detect
more defects [16], [21]–[23]. In addition, the merging process
should be constrained in order to guarantee that the seeds
generated for the same fault are not merged in the same final
test, and, hence, reduce the number of detections for that fault.
In Subsection IV-A we propose a test generation technique
that satisfies these requirements and can be incorporated in the
framework presented in Section II. Subsection IV-B describes
a technique for partitioning test seeds that ensures the n-
detect property and maintains speed-up increase as the number
of cores increases. The steps of the 2-epochs methodology
proposed in Sections II and III remain the same.

A. Multiple Test Seed Generation

The PODEM based test generation of Section III-A is
extended to produce multiple (n) test seeds per considered
fault. The method rolls back in the decision tree of the
algorithm altering taken decisions to ensure n incompatible test
seeds are generated. Procedure 1 shows the four-step process
invoked for each fault.

Hence, following the test generation of the first test seed
for a fault (step (i)), the process looks back at the various
decisions made during this initial seed generation (step (ii)).
A decision here refers to alternative circuit path segments
that the algorithm selects in order to generate the seeds. For
example, in the circuit of Fig.4 test generation for fault fx Sa0
is presented. In order to enforce value 1 to fx (activate fault),

Procedure 1 Multiple Test Seed Generation
i. Generate one test seed using a PODEM-based process (as

in single detect TG).
ii. Roll back on the decision tree; alter decisions to produce

more distinct seeds.
iii. Discard any seed compatible with other seeds.
iv. If necessary fix unspecified bits to obtain n incompatible

test seeds.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 7

a

b

c
X
fx

i1

i2

i3

i4

i5

i6

i7

i8

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(3,2)

Sa0

(3,2)

(3,2)

(3,4)

(3,4)

(4,7)

(2,6)

(2,4)

(9,5)

Fig. 4: Decision changes for multiple test seed generation.
Numbers inside parentheses denote 0 and 1 controlability
values, respectively.

fx X
 Sa0

i6=0
i7=0

 b=1
i1=1
i2=0
i3=0

a=1

i8=1

c=1

i6=1 i7=1

i4=1

i5=1

Fig. 5: Fault activation decision tree for fx Sa0 in Fig.4.

we need at least a 1 at any of the OR gate inputs (i.e, a, b,
c). For the first seed, the algorithm assigns value 1 at input
c and justifies it with a backward traversal on the circuit. For
the second seed, the algorithm takes the alternative decision
assigning 1 at line a instead of c. Similar decisions are taken
for the propagation of the fault effect to a primary output.
The closer the decision to be altered is to the fault site, the
higher the difference will be between the seeds. In step (ii)
a decision tree is progressively constructed to record all the
taken decisions and their alternatives. Fig.5 shows the decision
tree for the activation of the Sa0 fault at line fx. The different
paths of the tree indicate the different decision combinations
for the primary test seed and for the alternative (n) seeds for
the specific fault under investigation.

In step (iii) each generated seed is checked for compatibility
with previously generated seeds (compatible seeds have no
conflicting bits). For each pair of compatible seeds only one
is kept, that with the fewer number of specified bits allowing
more room for merging. Discarding compatible seeds ensures
the n-detect property of the final test set throughout the
merging process of the methodology. Specifically, it prevents
the generation of the same final test two or more times
reducing the number of detections for some faults below n.

Step (iv) of Procedure 1 is invoked only when all the
decision combinations for a fault have been exhausted and only
when fewer than n seeds have been generated. In this step, the
seeds with the fewer specified bits are modified by specifying

bits to conflicting values, to derive two or more incompatible
seeds. The output of this process is n different sets of seeds
TPF1 ,TPF2 , ...TPFn each containing one seed generated per fault
together with the corresponding number of faults detected by
each seed saved in DPF1 ,DPF2 , ...DPFn . These sets consist the
input to the following part of the methodology.

We explain this modified seed generation with a compre-
hensive example summarized in Fig. 6. Consider again the
circuit of Fig.4 and assume seed generation for fault fx stuck-
at-0. The values inside parenthesis denote the controllability
values for 0 and 1, respectively [29]. The generation algorithm
selects the line with the smaller controllability metric for logic
value 1 i.e., line c to get value 1. In order to justify c = 1, the
algorithm performs another decision i.e., i6 = 1 while directly
implying that i8 = 1. In the decision tree of Fig.5, all direct
implications for each decision are shown in a dashed outline
next to the decision node. Hence, the seed XXXXX1X1 is
generated by taking the leftmost path of the tree in Fig.5 (step
(i) of Procedure 1). This step is shown in row 1 of Fig.6. Next,
the decision closest to the fault is altered and the input with
the next smaller controllability is selected, i.e., a = 1. This
decision’s direct implications (i1 = 1, i2 = i3 = 0) generates
seed 100XXXXX (step (ii) of Procedure 1) which, however,
is discarded since it is compatible with the previous one (step
(iii) of Procedure 1) shown in row 2 of Fig.6. In the same
way, the next decision is taken and a new seed XXX1X001
(seed #2) is generated which is not discarded as it contains a
conflicting bit with seed #1 (row 3 in Fig.6). The process goes
on until n different seeds are generated or until all decision
combinations have been examined. For the specific example
and for n = 5, steps (i) - (iii) have produced only 2 different
seeds and, hence, step (iv) is necessary. After selecting the
seed with the fewer specified bits, seed #1 is replaced by two
other seeds one setting its 7th bit (chosen randomly) to value
0 and one setting the same bit to value 1 (indicated with green
and red in column 5 in Fig.6). This process is repeated two
more times to generate two more tests (columns 7 and 9 in
Fig.6) i.e., until 5 different seeds are generated. Step (iv) of
Procedure 1 guarantees to produce distinguished seeds, since
from previous steps no compatible seeds are allowed to reach
step (iv) and the bit fixing process ensures conflicting bits in
the obtained seeds. Each of this bit will be placed in a different
seed set TPFi .

The proposed multiple-seed generation process drastically
simplifies the merging process, since it needs to consider much
fewer constraints among seeds. The procedure is also efficient
since the n different seeds are generated in an incremental test
generation process which is much faster than n independent
seed generations. This is the reason why the multiple seeds
generation for the same fault is not chosen to be executed in
parallel in the proposed method.

B. Clustered Dynamic Seed Merging

When n seeds are generated per modeled fault, the method-
ology proceeds to the dynamic merging phase (as in Fig.2).
Since the n-detect property is preserved by the seed generation
process (at least one conflicting bit between seeds of the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 8

 steps (i), (ii) and (iii) of Procedure 1 step (iv) of Procedure 1
seed

 decisions

taken

implications

ti

 # Sp
bits

ti'

Sp bits

ti'

Sp bits

ti'

1 c=1, i6=1 i8=1 XXXXX1X1 2 XXXXX101 3 XXX1X101 4 XXX1X101

2 a=1 i1=1, i2=0, i3=0 100XXXXX - - - - -

2 b=1, i4=1 i6=0, i7=0 XXX1X00X 3 XXX1X00X 3 XXX1X00X 3 XXX1X000

3 c=1, i7=1 i8=1 XXXXXX11 - - - - -

3 b=1, i5=1 i6=0, i7=0 XXXX100X - - - - -

3 none none - - XXXXX111 3 XXX1X111 4 XXX1X111

4 none none - - - - XXX0X101 4 XXX0X101

5 none none - - - - - - XXX1X001

Fig. 6: Example of Procedure 1 n-detect test seed generation. n=5, number of PIs=8

same fault), the main challenge in this step is to ensure that
the merging will not affect the speed-up scalability of the
methodology. Leaving the merging process identical to the one
presented in Algorithm 1, results in a significant reduction
in the obtained speed-up by 10%-25%. These observations
have been made by employing corresponding experimentation
which are not presented here due to space limitations.

To mitigate the speed-up reduction, the parallel framework
has been extended to a cluster-based approach where the avail-
able cores are partitioned into n clusters. Cluster i explicitly
targets dynamic merging for a subset of seeds (i.e., TPFi)
obtained from the seed generation of Subsection IV-A. Fig.7
presents the main components of the cluster-based dynamic
merging procedure. Inside each cluster, the dynamic merging
procedure is identical to that described with Algorithm 1; yet
the number of calculations is significantly smaller than the
non-clustered merging as there are fewer seeds to pairwise
compare with. While each cluster operates on its own TPFi ,
fault dropping is performed via the global fault list located
in the shared memory. Hence, any fault detection due to seed
merging or identified during the subsequent fault simulation
(lines 13, 21 and 24 of Algorithm 1) updates the global
fault list, reducing the number of desired detections by 1 per
obtained test. When this number becomes 0 the corresponding
fault is completely dropped from further consideration. This
n-detect aware global fault dropping makes sure that merging
will not continue to consider seeds corresponding to dropped
faults.

n-detect test

seeds TPF 1 & DPF

1

Cluster 1

n-detect test

seeds TPF 2 & DPF

2

n-detect test

seeds TPF n & DPF

n

…

Cluster 2

Cluster n

Undetected

Faults FR

test merging

(tj_1)

C
o
re

 c
1

1

… test merging

(tk_1)

C
o

re
 c

1
m

/n

test merging

(tj_2)

C
o
re

 c
2

1

… test merging

(tk_2)

C
o

re
 c

2
m

/n

test merging
(tj_n)

C
o
re

 c
n

1

… test merging

(tk_n)

C
o

re
 c

n
m

/n

…

n-detect test

set TH

Cluster-based

Dynamic Merging

 delete

duplicates

multiple test seed generation

TPF

ss

Fig. 7: Cluster-based Dynamic Merging.

The clustered-based dynamic merging produces n indepen-
dent test sets with complete coverage of the given faults. These
n sets are combined into a unified test set by eliminating
duplicate tests to provide the final n-detect test set as shown
in the right part of Fig.7. This elimination does not affect the
n-detect property of the obtained set since, by construction the
methodology prevents the generation of the same test two or
more times explicitly targeting the same fault. In other words,
if two tests are identical (each coming from a separate cluster)
they have been generated by merging seeds corresponding to
different faults. This occurs since seeds for the same faults are
generated to contain at least one conflicting bit.

V. Experimental Results

The proposed method was implemented using C++ lan-
guage and run on a 20-cores (x2 threads) Intel Xeon CPU
E5-2670v2 with 98GBs of RAM, running Linux. OpenMP
parallel programming framework was used for parallelization.
We present results for the larger full-scan versions of the
circuits in the IWLS’05 benchmarks suite. The method can
be applied to any linear fault model; here we present results
for the stuck-at fault model.

A. Single Detection Parallel Test Generation

Table I presents the obtained speed-up and test set sizes (as
increase %) of the proposed parallel ATPG method compared
to a serial version of the algorithm. The speed-up measure
allows for the evaluation of the scalability of the approach
under different execution set-ups, as well as for a fair com-
parison with other works considering the same architecture
but with different characteristics such as CPU clock and total
memory. Results from experimental set-ups with 8, 12, 16, 20,
and 40 cores are reported. 40 cores are obtained by enabling
hyperthreading in the 20 physical core system used. After the
circuit name and the number of inputs (Col. 1-2), the size
of the circuit and number of faults in the collapsed fault list
(Col. 3-4) are presented. Col. 5-6 report the number of aborted
faults (indicating the achieved fault coverage) and the test set
size obtained by a serial version of the proposed methodology,
respectively. The number of aborted faults in the multi-core
execution set-ups is always smaller than the one reported in
Col. 5 (hence, fault coverage is at least as high) and is not
reported here due to space limitations. Col. 7, 9, 11, 13, and
15 list the test set size increase as a percentage of the one

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 9

TABLE I: Speed-up and Test set Increase Results for the proposed method using 8, 12, 16, 20 and 40 cores.
Serial 8 cores 12 cores 16 cores 20 cores 40 cores

Circuit # PIs # Nodes # Faults Aborted |T| |T| incr. (%) Speed-up (x) |T| incr. (%) Speed-up (x) |T| incr. (%) Speed-up (x) |T| incr. (%) Speed-up (x) |T| incr. (%) Speed-up (x)
c1355 41 1355 1410 0 84 0 5.61 1.19 7.43 1.19 9.21 1.19 10.38 0.0 20.30
c1908 33 1908 2056 0 111 7.21 4.18 2.70 5.85 6.31 5.02 2.70 7.00 1.80 12.09
c2670 233 2670 2954 0 66 1.52 9.65 -3.03 13.17 -1.52 15.27 1.52 18.40 3.03 28.12
c3540 50 3540 3742 0 103 1.94 8.24 9.71 8.87 2.91 10.56 2.91 11.74 2.91 22.54
c5315 178 5315 6016 0 66 6.06 8.85 9.09 11.35 12.12 14.79 15.15 15.02 21.21 22.54
c6288 32 6288 7744 0 26 7.69 6.58 15.39 7.87 11.54 9.32 11.54 11.57 11.54 24.90
c7552 207 7552 8080 0 101 4.95 6.48 2.97 9.52 5.94 12.25 5.94 15.14 9.90 28.64
s9234.1 247 9234 6781 0 141 7.09 4.91 14.18 7.48 12.06 9.22 15.60 11.67 18.44 18.56
s13207 700 13207 10456 0 255 4.31 5.92 6.67 9.01 7.06 10.72 7.45 13.54 9.02 21.09
s15850.1 611 15850 12150 0 125 8.00 4.97 10.40 8.29 12.8 9.77 14.40 11.44 18.40 23.70
s38417 1664 38417 32320 0 117 1.71 7.61 4.27 10.38 7.69 14.09 9.40 16.50 15.38 24.06
s38584.1 1464 38584 38358 0 131 3.05 6.93 6.11 10.07 7.63 13.99 9.16 16.97 13.74 26.32
s35932 1763 35932 39094 0 20 5.00 6.22 15.00 9.37 20.00 11.00 25.00 11.69 25.00 14.42
b14 277 21680 23716 0 751 1.33 7.34 1.20 11.20 0.80 14.71 1.07 17.50 0.67 30.71
b15 485 20186 23498 192 461 0 7.86 0.87 11.40 0.87 14.93 1.30 19.20 2.17 28.64
b17 1449 61044 75498 0 826 0.36 7.32 0.85 11.33 1.57 15.04 2.78 18.54 4.96 30.63
b18 3307 179967 223352 8 1030 0.78 7.52 1.46 10.57 2.04 13.92 2.33 15.34 4.17 29.22
b19 6666 479800 534144 991 3245 0.80 7.16 6.01 10.05 5.76 12.18 6.29 14.03 6.72 24.69
b20 522 31258 34528 0 519 2.70 7.78 3.28 11.75 2.31 15.04 5.97 17.91 8.67 31.99
b21 522 31157 34331 0 561 2.67 7.66 1.78 11.45 3.03 14.76 1.43 19.48 1.78 31.23
b22 735 39385 48812 0 561 -1.07 7.58 1.426 11.59 0.36 14.34 3.21 17.99 4.99 34.56
ac97 ctrl 2283 39485 39226 0 62 3.23 5.98 6.45 7.67 11.29 10.26 12.90 11.98 19.35 21.03
ucb funct 1874 40479 42214 0 113 7.96 6.18 13.27 9.18 14.16 11.12 15.04 14.46 18.58 22.98
tv80 373 24357 24810 0 554 0.61 8.08 0.61 11.71 0.20 15.19 1.01 17.06 1.44 26.77
systemcaes 930 30015 29256 0 143 0.70 6.77 6.29 9.06 5.59 12.43 8.39 13.99 10.49 22.73
mem ctrl 1198 37904 39882 0 485 1.86 6.91 3.09 10.52 0.82 13.91 2.89 17.25 6.80 32.40
ethernet 10640 223959 221628 5 1421 1.27 7.05 1.97 9.70 2.18 12.50 3.03 14.33 4.64 28.91

Average 3.03 6.94 5.30 9.85 5.80 12.43 7.02 14.82 9.10 25.16
Average Memory Increase (x) 2.11 2.59 3.02 3.27 3.77

TABLE II: Speed-up, Test Set Size and Memory Increase Comparison with the works in [10], [11] and [13].

Comparison with [10] - 12 cores Comparison with [11] and [13] - 16 cores
Speed-up (x) Test set increase (%) MemoryIncrease (x) Speed-up (x) Test set increase (%) MemoryIncrease (x)

Circuit [10] prop. [10] prop. [10] prop. [11] [13] prop. [11] [13] prop. [11] [13] prop.
D1 8.20 - -1.50 - - - - - - - - - - - -
D2 7.70 - 19.00 - - - - - - - - - - - -
D3 7.50 - 16.00 - - - - - - - - - - - -
D4 7.30 - 1.40 - - - - - - - - - - - -
D5 - - - - - - 7.38 9.99 - 10.64 0.41 - 4.33 3.02 -
D6 - - - - - - 9.37 10.00 - 2.54 12.17 - 4.89 3.22 -
D7 - - - - - - 8.88 9.28 - 1.37 2.14 - 3.94 2.78 -
s38417 7.50 9.99 40.00 4.27 - 2.18 - - 14.09 - - 7.69 - - 2.98
s38584.1 7.30 9.89 12.00 6.11 - 2.03 - - 13.99 - - 7.63 - - 2.35
s35932 7.40 8.64 10.00 15.00 - 2.75 - - 9.34 - - 20.00 - - 3.15
b15 7.80 11.40 18.00 0.87 - 2.92 - - 14.93 - - 0.87 - - 3.01
b17 8.30 11.33 5.00 0.85 - 3.09 - - 15.04 - - 1.57 - - 3.27
b18 - 10.57 - 1.46 - 3.80 - - 13.92 - - 2.04 - - 4.09
b19 - 10.05 - 6.01 - 3.11 - - 12.18 - - 5.76 - - 3.78
ethernet - 9.70 - 1.97 - 3.59 - - 12.50 - - 2.18 - - 4.19
Average 7.67 10.20 13.32 4.58 - 2.93 8.54 9.76 13.25 4.85 4.91 5.97 4.39 3.01 3.35

TABLE III: Test set size, test set increase % and speed-up for 5-detect parallel ATPG method using 1, 20, 30, 40 cores

5-detect |T | |T | increase (%) Speed-up (x)
Circuit serial 20 cores 30 cores 40 cores 20 cores 30 cores 40 cores

s9234 696 6.75 9.34 12.07 12.96 20.46 28.21
c6288 133 7.52 9.02 11.28 16.72 24.31 36.44
c7552 500 3.60 6.20 9.40 17.27 25.82 36.56
s13207 1279 3.67 6.49 8.99 14.96 22.32 31.72
s15851 624 2.88 6.25 10.74 17.44 23.91 31.54
tv 80 2782 4.06 6.00 8.38 18.69 28.36 37.94
b15 2316 5.35 6.13 8.51 19.00 28.23 38.72
b14 3734 1.47 3.91 5.17 19.57 28.55 37.58
systemcaes 691 1.45 3.91 4.63 18.45 28.77 36.52
s38417 580 8.28 9.83 10.69 18.19 25.92 32.26
b21 2775 5.12 7.64 8.58 17.86 23.93 28.90
b20 2616 3.71 5.73 7.38 17.81 24.33 30.17
s35932 98 4.08 7.14 13.27 17.38 24.95 37.91
s38584 654 11.62 11.93 13.91 16.60 19.87 33.83
ac97 controler 319 2.51 3.76 4.84 19.18 29.15 36.99
ucb funct 544 7.90 11.95 14.34 17.99 28.81 39.61
mem ctrl 2387 2.09 8.38 10.64 18.58 29.45 36.45
b22 2833 4.24 6.57 8.72 17.53 26.17 33.54
b17 4098 7.49 9.86 11.35 19.45 28.60 34.76
ethernet 7052 6.83 8.61 9.25 18.74 29.30 38.76
b18 5130 1.34 2.71 3.33 18.69 27.84 38.75
b19 16051 1.30 2.98 3.50 19.03 28.95 36.87

Average 5.03 7.43 9.77 17.72 26.06 34.92

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 10

(x)

Fig. 8: Speed-up comparison with [9] and [13] for an 8-core
set-up.

obtained by the serial execution and Col. 8, 10, 12, 14, and
16 report the speed-up achieved, when 8, 12, 16, 20, and 40
cores are employed.

The obtained results demonstrate almost linear speed-up
increase while at the same time the test set size increase is
very limited for most of the circuits. In the worst-case test set
increase is no more than ∼20% whereas in the average case
it is only 9.10%, for 40 cores. Circuit s35932 is an exception
(with 25% increase) due to the very small test set size of
the serial version with 20 tests, which becomes 25 tests for
40 cores. The proposed method also exhibits small memory
increase, an objective often targeted by parallel methods. The
last row of Table I summarizes the average memory increase
among all circuits. For the 20-cores run, the required memory
is only 3.27x more than the serial version, while the 40
cores runs increase the memory by 3.77x on the average.
These numbers indicate that the memory increase does not
grow proportionally with the number of cores; rather, it grows
with a decreasing rate as the number of cores increase. This
is attributed to the dynamic manner in which the proposed
algorithm performs fault dropping, alleviating the following
steps from unnecessary calculations.

The rest of this section compares the proposed method-
ology with the most relevant and recent parallel approaches
considering the shared memory multi-core architecture model,
such as [9]–[11], [13]. Where available, results are compared
directly for the common benchmarks. Moreover, results on ad-
ditional benchmarks for each technique are listed and average
trends for each methodology are analyzed. For the proposed
methodology, the larger (in terms of # nodes) circuits (b18,
b19 and ethernet) are listed, on top of the common ones. The
number of execution cores in each case was determined by the
results reported in these works. Col. 2-7 of Table II provides a
comparison with [10] for the set-up of 12 cores. Similarly, Col.
8-16 of Table II compare the proposed methodology with the
approaches of [11] and [13], for the 16-cores setup reported
in these works. A “–” indicates no available results for the
corresponding work. Average trends are reported in the last
row of Table II.

The proposed methodology reports higher speed-up on all
circuits with an average 10.2x compared to the average speed-

up of 7.67x reported in [10]. At the same time the proposed
methodology reports lower test set increase than [10] in all cir-
cuits except s35932. For the largest common circuits reported
(b15 and b17) the proposed methodology reports a negligible
test set increase (less than 1%) and considerable speed-up
(>11x) while [10] reports speed-up around 8x and much higher
test set increase (18% and 15%, respectively). Col. 7 reports
the memory increase factor for the proposed method, although
this is not reported in [10], for completeness. For the case
of the works in [11] and [13], the comparison is performed
solely on average trends, as none of the industrial circuits
D1-D7 are available to us. Clearly, the proposed methodology
exhibits higher average speed-up than both approaches (13.25x
vs 8.54x and 9.76x) with a small additional overhead on
average test set size increase in the order of ∼1% (5.97%
vs 4.85% and 4.91%). The memory increase factor of the
proposed method is on the average smaller than that of [11]
and slightly higher than the one of [13] which explicitly targets
memory utilization.

An 8-core system is considered in [9] and compared with
an implementation of [13]. Fig.8 compares the speed-up of the
proposed methodology with that of [9] and [13], as reported
in [9]. The proposed methodology achieves on average ∼7x
speed-up, outperforming both existing methods for the 4 com-
mon circuits. This is achieved mainly due to the optimizations
(discussed in Section III), which minimize redundant work by
immediate updating of the fault status. Comparison regarding
the test set size reduction is not possible with [9] as absolute
values for test set sizes as well as corresponding fault coverage
are not provided.

B. Parallel n-detect Test Generation

A comprehensive picture of the linear performance of the
proposed n-detect test generation extension for n=5 is pre-
sented in Fig. 9 and Fig. 10. The scalability of the technique
is illustrated in Fig. 9 compared to a serial execution of the
algorithm. The achieved speed-up is reported in y-axis for
different number of cores utilized (shown in x-axis). For all
circuits examined, the proposed methodology scales linearly
as the number of cores used for its computation increases.
Moreover, observe that for larger circuits the obtained speed-
up is higher due to the increased workload that allows smaller
percentage of core idle times. As with the single-detect case
the results imply that the scalability of the proposed method
will continue to scale well as the number of cores is increased.
In fact, while the speed-up trends are similar to that of the
single-detect in absolute values, the speed-up is higher in n-
detect and in some cases close to the theoretical maximum
(number of utilized cores). For example, two of the largest
circuits considered b18 and ethernet achieve ∼19x speed-up
for 20 cores, ∼28x speed-up for 30 cores and ∼39x speed-
up when 40 cores are utilized. The corresponding numbers
for single-detect are ∼15x, ∼22x and ∼29x. This is mainly at-
tributed to the cluster-based approach that dramatically reduces
the number of pairwise condition checks during merging. The
checks are restricted only inside the cluster where the seed to
be merged was assigned. This possibility cannot be exploited

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 11

 (x)

Fig. 9: Scalability of the proposed parallel n-detect test gen-
eration with respect to a serial execution, for n=5.

in a serial approach in a straightforward manner, without
significant effect either at the performance or the final test
set size.

Similarly to the results presented in Subsection V-A, the
parallelization procedure affects the final test set size. More-
over, for the n-detect approach, due to the clustered-based
merging, the solution is obtained from a reduced search space.
Hence, it is expected, in many cases, to provide a sub-optimal
solution that returns test detecting fewer faults. When fewer
faults are detected per test, it is inevitable that the final test
set will be larger (test set inflation). Fig. 10 shows the test
set size increase as the number of cores used is increased for
the examined benchmark circuits. The increase is reported as
a percentage of the test set size obtained by a serial execution
of the same algorithm. Unexpectedly, the test inflation for
the n-detect method is not significant. In particular, for the
5-detect test generation the test inflation is on average 5% for
20 cores, 7.5% for 30 cores, and 9.5% for 40 cores whereas
the corresponding numbers for the single-detect case are 7%,
8.5% and 9%.

Table III provides the exact data for the test set size and
speed-up achieved by the proposed parallel n-detect test gen-
eration method for n=5 when 20, 30, 40 cores are employed.
All test sets provide 100% 5-detect fault detection efficiency,
i.e., all modeled faults are detected at least 5 times. The test
set sizes are presented as % increase over the serial version
of the same algorithm (shown in column 2). 5-detect fault
coverage is achieved due to the multiple test seed generation
procedure which enforces the generation of 5 different tests
seeds. Columns 3, 4 and 5 show the % test set size increase
for 20, 30 and 40 cores, respectively. Columns 6, 7 and
8 report the achieved speed-up when 20, 30 and 40 cores
are utilized. The obtained results demonstrate that the linear
speed-up increase as well as the small test set size increase
achieved in the single-detect method are maintained. The
achieved speed-up when 20, 30 and 40 cores are employed
is on the average higher in the n-detect method. Specifically,
it is 17.72x, 26.06x, and 34.92x for 20, 30 and 40 cores
compared to 14.82x, 19.96x and 25.16x, respectively, for the
single-detect method.

(%)

Fig. 10: 5-detect test set size (|T |) augmentation % compared
to serial execution of the proposed method.

VI. Conclusions

We propose a parallel test pattern methodology for shared
memory multi-core environments. A number of newly pro-
posed heuristics attempt to avoid assigning the same work-
load to multiple cores, while the distribution of work in the
available resources aims to minimize the core idle time. The
methodology is also extended to generate multiple-detect (n-
detect) test sets, previously proven to provide higher defect
coverage. A new technique for the efficient generation of test
seeds followed by a clustered-based dynamic merging proce-
dure have been presented. Experimental results demonstrate
high speed-up rates that keep increasing as the number of the
available cores increases. Test set size increase is limited and
comparable to other state-of-the-art parallel approaches. For
the n-detect method, the results retain all the good properties
of the basic methodology in a more beneficial extent.

References

[1] K. Scheibler, D. Erb, and B. Becker, “Improving test pattern generation
in presence of unknown values beyond restricted symbolic logic,” in
Test Symposium (ETS), 2015 20th IEEE European. IEEE, 2015, pp.
1–6.

[2] S. Eggersglub, K. Schmitz, R. Krenz-Baath, and R. Drechsler,
“Optimization-based multiple target test generation for highly compacted
test sets,” in Test Symposium (ETS), 2014 19th IEEE European. IEEE,
2014, pp. 1–6.

[3] S. Patil and P. Banerjee, “Fault partitioning issues in an integrated par-
allel test generation/fault simulation environment,” in Test Conference,
1989. Proceedings. Meeting the Tests of Time., International. IEEE,
1989, pp. 718–726.

[4] J. M. Wolf, L. M. Kaufman, R. H. Klenke, J. H. Aylor, and R. Waxman,
“An analysis of fault partitioned parallel test generation,” IEEE trans-
actions on computer-aided design of integrated circuits and systems,
vol. 15, no. 5, pp. 517–534, 1996.

[5] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. M. Reddy, and B. Becker,
“Tiguan: Thread-parallel integrated test pattern generator utilizing satis-
fiability analysis,” in VLSI Design, 2009 22nd International Conference
on. IEEE, 2009, pp. 227–232.

[6] K.-Y. Liao, C.-Y. Chang, and J. C.-M. Li, “A parallel test pattern gener-
ation algorithm to meet multiple quality objectives,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 11, pp. 1767–1772, 2011.

[7] K.-W. Yeh, M.-F. Wu, and J.-L. Huang, “A low communication overhead
and load balanced parallel ATPG with improved static fault partition
method,” in International Conference on Algorithms and Architectures
for Parallel Processing. Springer, 2009, pp. 362–371.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. XX, XXXXXXX XXXX 12

[8] Y. Huang, S. Bhunia, and P. Mishra, “Scalable test generation for
trojan detection using side channel analysis,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 11, pp. 2746–2760,
2018.

[9] J. C. Ku, R. H. Huang, L. Y. Lin, and C. H. Wen, “Suppressing test
inflation in shared-memory parallel automatic test pattern generation,” in
Design Automation Conference (ASP-DAC), 2014 19th Asia and South
Pacific. IEEE, 2014, pp. 664–669.

[10] K.-W. Yeh, J.-L. Huang, H.-J. Chao, and L.-T. Wang, “A circular pipeline
processing based deterministic parallel test pattern generator,” in Test
Conference (ITC), 2013 IEEE International. IEEE, 2013, pp. 1–8.

[11] X. Cai, P. Wohl, J. A. Waicukauski, and P. Notiyath, “Highly efficient
parallel ATPG based on shared memory,” in Test Conference (ITC), 2010
IEEE International. IEEE, 2010, pp. 1–7.

[12] X. Cai and P. Wohl, “A distributed-multicore hybrid ATPG system,” in
Test Conference (ITC), 2013 IEEE International. IEEE, 2013, pp. 1–7.

[13] X. Cai, P. Wohl, and D. Martin, “Fault sharing in a copy-on-write based
ATPG system,” in Test Conference (ITC), 2014 IEEE International.
IEEE, 2014, pp. 1–8.

[14] E. Schneider, S. Holst, M. A. Kochte, X. Wen, and H.-J. Wunderlich,
“Gpu-accelerated small delay fault simulation,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition.
EDA Consortium, 2015, pp. 1174–1179.

[15] M. Li and M. S. Hsiao, “3-d parallel fault simulation with gpgpu,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 10, pp. 1545–1555, 2011.

[16] K.-Y. Liao, S.-C. Hsu, and J. C.-M. Li, “Gpu-based n-detect transition
fault ATPG,” in Proceedings of the 50th Annual Design Automation
Conference. ACM, 2013, p. 28.

[17] K.-Y. Liao, P.-J. Chen, A.-F. Lin, J. C.-M. Li, M. S. Hsiao, and L.-T.
Wang, “Gpu-based timing-aware test generation for small delay defects,”
in Test Symposium (ETS), 2014 19th IEEE European. IEEE, 2014, pp.
1–2.

[18] M. Osama, L. Gaber, A. I. Hussein, and H. Mahmoud, “An efficient
sat-based test generation algorithm with gpu accelerator,” Journal of
Electronic Testing, vol. 34, no. 5, pp. 511–527, 2018.

[19] E. J. McCluskey and C.-W. Tseng, “Stuck-fault tests vs. actual defects,”
in Test Conference, 2000. Proceedings. International. IEEE, 2000, pp.
336–342.

[20] C.-W. Tseng and E. J. McCluskey, “Multiple-output propagation tran-
sition fault test,” in Test Conference, 2001. Proceedings. International.
IEEE, 2001, pp. 358–366.

[21] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke,
“Embedded multi-detect ATPG and its effect on the detection of unmod-
eled defects,” in Test Conference, 2007. ITC 2007. IEEE International.
IEEE, 2007, pp. 1–10.

[22] S. N. Neophytou and M. K. Michael, “Test pattern generation of relaxed
n-detect test sets,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 3, pp. 410–423, 2012.

[23] Y.-T. Lin, O. Poku, N. K. Bhatti, R. S. Blanton, P. Nigh, P. Lloyd,
and V. Iyengar, “Physically-aware n-detect test,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 2, pp. 308–321, 2012.

[24] X. Kavousianos and K. Chakrabarty, “Generation of compact test sets
with high defect coverage,” in Proceedings of the Conference on Design,
Automation and Test in Europe. European Design and Automation
Association, 2009, pp. 1130–1135.

[25] M. Venkatasubramanian, “Failure evasion: Statistically solving the np
complete problem of testing difficult-to-detect faults,” Ph.D. thesis,
Auburn University, 2016.

[26] O. Golubeva, “Detection of hard-to-detect stuck-at faults and generation
of their tests based on testability functions,” in 2018 IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR).
IEEE, 2018, pp. 1–5.

[27] P. Girard, N. Nicolici, and X. Wen, Power-aware testing and test
strategies for low power devices. Springer Science & Business Media,
2010.

[28] S. Hadjitheophanous, S. N. Neophytou, and M. K. Michael, “Exploiting
shared-memory to steer scalability of fault simulation using multicore
systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

[29] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

Stavros Hadjitheophanous received his B.Sc. and
Ph.D. degrees in Computer Engineering from the
Electrical and Computer Engineering Department,
University of Cyprus in 2009 and 2018 respectively.
In 2010, he obtained the M.Sc. degree in Advance
Computing Internet Technologies with Security from
the University of Bristol, United Kingdom. Since
2010 Stavros is a researcher at KIOS Research and
Innovation Center of Excellence. His main research
interest include CAD algorithms for VLSI, multi-
core algorithms for high quality testing, reliability,

and embedded applications.

Stelios N. Neophytou is an Associate Professor
at the Department of Engineering, University of
Nicosia, Cyprus. He holds an Engineering Diploma
from the Computer Engineering and Informatics
Department of University of Patras, Greece (2003),
and a PhD degree from the Department of Electrical
and Computer Engineering, University of Cyprus,
Nicosia, Cyprus (2009). His research interests fall
under Electronic Design Automation focusing on al-
gorithm development for integrated circuits’ design
verification and post-manufacturing testing. Specif-

ically, his work involves methodologies for quality enhancement of the
Automatic Test Pattern Generation (ATPG) process related to detection of
non-modeled defects, test size compaction and scaling in multiprocessing
environments. He has also work related to test generation techniques for Built-
In Self-Test architectures as well as graph-theoretic problems considering
Binary Decision Diagrams. He is a senior member of IEEE.

Maria K. Michael is an Associate Professor at the
Department of Electrical and Computer Engineering
at the University of Cyprus. She is also a founding
member and the Director of Education and Training
at the KIOS Research and Innovation Center of
Excellence, also at the University of Cyprus. Maria
has a Ph.D. degree from the ECE Dept. of Southern
Illinois University, Carbondale-USA. Her research
expertise falls in the areas of test and reliability
of digital circuits and chip-level architectures, with
emphasis on embedded and general-purpose multi-

core systems reliability and on-line testing, dynamic/intelligent parallel CAD
algorithms for automatic testing and fault simulation, intelligent methods for
design, test and fault tolerance, delay test and emerging fault models. Recent
research interests expand to design and optimization of embedded systems
and other chip-level architectures, dynamic self-detecting and self-healing
architectures, and dependability and security in the hardware backbone of
cyber-physical systems. She has published numerous papers in high-caliber
refereed journals and international conferences and she serves on steering,
organizing and program committees of several IEEE and ACM conferences
in the areas of test and reliability. She is a co-recipient of a Best Paper Award
of MSE’2009. She is a member of the IEEE and the ACM.

