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Abstract—We present a model-based performance testing approach using
the MBPeT tool. We use of probabilistic timed automata to model the user
profiles and to generate synthetic workload. The MBPeT generates the load
in a distributed fashion and applies it in real-time to the system under test,
while measuring several key performance indicators, such as response time,
throughput, error rate, etc. At the end of the test session, a detailed test
report is provided. MBPeT has a distributed architecture and supports load
generation distributed over multiple machines. New generation nodes are
allocated dynamically during load generation. In this book chapter, we will
present the MBPeT tool, its architecture, and demonstrate its applicability
with a set of experiments on a case study. We also show that using abstract
models for describing the user profiles allows us quickly experiment different
load mixes and detect worst case scenarios.

Keywords-Performance testing, model-based testing, MBPeT, cloud.

6.1 Introduction

Software testing is the process of identifying incorrect behavior of a system,
also known as revealing defects. Uncovering these defects, typically, consists
of running a batch of software tests (test suite) against the software itself.
In some sense, a second software artefact is built to test the primary one.
This is normally referred to as functional testing. A software test compares
the actual output of the system with the expected output for a particular
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known input. If the actual output is the same as the expected output the
test passes, otherwise a test fails and a defect is found. Software testing
is also the means to assess the quality of a software product. The fewer
the defects found during testing, the higher the quality is of that software
product. However, not all software defects are related to functionality. Some
systems may stop functioning or may prevent other users to access the system
simple because the system is under a heavy workload with which it cannot
cope. Performance testing is the means of detecting such errors.

Performance testing is the process of determining how a software system
performs in terms of responsiveness and stability under a particular workload.
The purpose of the workload is that it should match the expected workload
(the load that normal users put on the system when using it) as closely as
possible. This can be achieved by running a series of tests in parallel, but
instead of focusing on the right output the focus is shifted towards measuring
non-functional aspects, i.e. the time between input and output (response
time) or number of requests processed in a second (throughput).

Traditionally, performance testing has been conducted by running a num-
ber of predefined scenarios (or scripts) in parallel. One drawback to this
approach is that real users do not behave as static scripts. This can also lead
to certain paths in the system being left untested or that certain caching
mechanisms in the system kick in due the repetitiveness of the test scripts.

Software testing can be extremely time consuming and costly. In 2005,
Caper Jones - chief scientist of Software Productivity Research in Mas-
sachusetts - estimated that as much as 60 percent of the software work in
the United States was related to detecting and fixing defects [1]. Another
drawback is that software testing, as well as performance testing, involves
tedious manual work when creating test cases. A software system typically
undergoes a lot of changes during its lifetime. Whenever a piece of code is
changed, a test has to be updated or created to show that the change did
not break any existing functionality or introduce any new defects. This adds
more time and cost to testing. In the case of performance testing this implies
that one has to be able to benchmark quickly and effectively to check if the
performance of the system is affected by the change of the code.

Research effort have be put into solving this dilemma. One of the most
promising techniques is Model-Based Testing (MBT). In MBT, the central
artefact is a system model. The idea is that the model represents the behav-
ior or the use of the system. Tests are then automatically generated form
the model. In MBT the focus has shifted from manually creating tests to
maintaining a model that represents the behavior of the system. Due to the
fact that tests are automatically generated from a model, MBT copes better
with changing requirements and code than traditional testing. Research has
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shown that MBT could reduce the total testing costs with 15 percent [8].
MBT has mostly been targeted towards functional testing, however, there
exist a few tools that utilizes the power of MBT in the domain of perfor-
mance testing. In our research we make use of the advantages of MBT in
our performance testing approach.

MBPeT is a Python-based tool for performance testing. Load is generated
from probabilistic timed automata (PTA) models describing the behavior of
groups of virtual users. The models are then executed in parallel to get a
semi-random workload mix. The abstract PTA models are easy to create and
update, facilitating quick iteration cycles. During the load generation phase,
the tool also monitors different key performance indicators (KPIs) such as
response times, throughput, memory, CPU, disk, etc. The MBPeT tool has a
distributed architecture where one master node controls several slave node or
load generator. This facilitates deployment to a cloud environment. Besides
monitoring, the tool also produces a performance test report at the end of
the test. The report contains information about the monitored KPIs, such as
response times, throughput etc, but also graphs showing how CPU, memory,
disk, network utilization varied during a performance test session.

The rest of the report is structured as follows: we briefly enumerate
several related works in the following section. Then, is Section 6.3, we briefly
describe the load generation process. In Section 6.4, we give an overview of
the architecture of the tool. In Section 6.5, we describe how the workload
models are created and discuss the probabilistic timed automata formalism.
In Section 6.6, we discuss the performance testing process in more detail.
In Section 6.7, we present a auction web service case study and a series of
experiments using our tool. Finally, in Section 6.8 we present our conclusions
and discuss future work.

6.2 Related Work

There exist a plethora of commercial performance testing tools. In the fol-
lowing, we briefly enumerate couple of popular performance testing tools.
FABAN is an open source framework for developing and running multi-tier
server benchmarks [18]. FABAN has a distributed architecture meaning load
can be generated from multiple machines. The tool has three main com-
ponents: A harness - for automating the process of a benchmark run and
providing a container for the benchmark driver code, a Driver framework -
provides an API for people to develop load drivers, and an Analysis tool - to
provide comprehensive analysis of the data gathers for a test. Load is gen-
erated by running multiple scripts in parallel. JMeter [19] is an open source
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Java tool for load testing and measuring performance, with the focus on web
applications. Jmeter can be set up in a distributed fashion and load is gener-
ated from manually created scenarios that are run in parallel. Httperf [6] is
a tool for measuring the performance of web servers. Its aim is to facilitate
the construction of both micro and macro-level benchmarks. Httperf can be
set up to run on multiple machines and load is generated from pre-defined
scripts. LoadRunner [7] is a performance testing tool from Hewlett-Packard
for examining system behavior and performance. The tool can be run in a
distributed fashion and load is generated from pre-recorded scenarios.

Recently several authors have focused on using models for performance
analysis and estimation, as well as for load generation. Barna et al., [2]
present a model-based testing approach to test the performance of a trans-
actional system. The authors make use of an iterative approach to find
the workload stress vectors of a system. An adaptive framework will then
drive the system along these stress vectors until a performance stress goal
is reached. They use a system model, represented as a two-layered queuing
network, and they use analytical techniques to find a workload mix that will
saturate a specific system resource. Their approach differs from ours in the
sense that they use a model of the system instead of testing against a real
implementation of a system.

Other related approaches can be found in [16] and [15]. In the former, the
authors have focused on generating valid traces or a synthetic workload for
inter-dependent requests typically found in sessions when using web appli-
cations. They describe an application model that captures the dependencies
for such systems by using Extended Finite State Machines (EFSMs). Com-
bined with a workload model that describes session inter-arrival rates and
parameter distributions, their tool SWAT outputs valid session traces that
are executed using a modified version of httperf [12]. The main use of the
tool is to perform a sensitivity analysis on the system when different param-
eters in the workload are changed, e.g., session length, distribution, think
time, etc. In the latter, the authors suggest a tool that generates represen-
tative user behavior traces from a set of Customer Behavior Model Graphs
(CBMG). The CBMG are obtained from execution logs of the system and
they use a modified version of the hitperf utility to generate the traffic from
their traces. The methods differ from our approach in the sense they both
focus on the trace generation and let other tools take care of generating the
load/traffic for the system, while we do on-the-fly load generation from our
models.

Denaro [4] proposes an approach for early performance testing of dis-
tributed software when the software is built using middleware components
technologies, such as J2EE or CORBA. Most of the overall performance of
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such a system is determined by the use and configuration of the middleware
(e.g. databases). They also note that the coupling between the middleware
and the application architecture determines the actual performance. Based
on architectural designs of an application the authors can derive application-
specific performance tests that can be executed on the early available mid-
dleware platform that is used to build the application with. This approach
differs from ours in that the authors mainly target distributed systems and
testing of the performance of middleware components.

6.3 The Performance Testing Process

In this section we are briefly going to describe the steps of the performance
testing process. A more detailed description is given in Section 6.6.

6.3.1 Model Creation

Before we start generation load for the system we first have to create a
load profile or a load model that describe the behavior of the users. Since
we can not have a model for each individual user we have to create one or
several models that represent the behavior for a larger group of users. These
models describe how a groups of virtual users (VUs) behave and they are
simplified models of how a real users would behave. Section 6.5 gives more
details of how the models are constructed. Essentially, we use probabilistic
timed automata (PTA) to specify user behavior which describe in an abstract
way the sequence of actions a VU can execute against the system and their
probabilistic distribution.

6.3.2 Model Validation

Once the models have been created they are checked for consistency and cor-
rectness. For instance, we check that the models have a start and end point,
that there are no syntactical errors in the models, and that the probabilities
and actions have been defined correctly. Once the models have been checked
by the MBPeT tool we start generating load for the system under test (SUT).

6.3.3 Test Setup

Before we can actually start generating load we need to set up everything
correctly so that the MBPeT can connect to the SUT and generate the ap-
propriate amount of load. To do that one have to fill in a settings file. This
file contains e.g., the IP-address of the SUT, what load models to use, how
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many parallel virtual users to simulate, ramp up period, and the duration of
the performance test. The MBPeT tool needs this information in order to
be able to generate the right amount of load.

The tester also needs to implement an adapter for the tool. Every SUT
will have its own adapter implementation. The purpose of the adapter is
to translate the abstract actions found in the model into concrete actions
understandable by the SUT. In case of a web page, a browse action would
need to be translated into a HTTP GET request.

6.3.4 Load Generation

Once everything is set up, load generation begins. The MBPeT tool generates
load from the models by starting a new process for every simulated user.
Inside that process load is generated by executing the PTA model. For more
details please see Section 6.6.2. Please see Section 6.5.2 for more information

on PTAs.

6.3.5 Monitoring

During the load testing phase the MBPeT tool monitors the traffic sent on
the network to the SUT. The tool monitors the throughput and response
time for every action sent to the system. If there is a possibility to connect
to the SUT remotely, the MBPeT tool can also monitor the utilization of the
CPU, memory, network, disk, etc. This information can be very useful when
trying to identify potential bottlenecks in the system. Once the test run is
complete and all information is gathered, the tool will create a test report.

6.3.6 Test Reporting

The test report contains information about the parameters monitored during
the performance test. It gives statistical values of the mean and max response
time for individual actions and displays graphs that show how the repones
time varied over time when the load increases. If the tool can be connected
remotely to the SUT, the test report will also show how the CPU, memory,
and disk was utilized over time when the load was applied to the SUT. Both of
these sources of information can be helpful when trying to pin the a potential
bottleneck in the system.
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6.4 MBPeT Tool Architecture

MBPeT has a distributed architecture. It consists of two types of nodes: a
master node and slave nodes. A single master node is responsible of initiating
and controlling multiple remote slave nodes, as shown in Figure 6.1. Slave
nodes are designed to be identical and generic, in a sense that they do not
have prior knowledge of the SUT, its interfaces, or the workload models. That
is why for each test session, the master gathers and parses all the required
information regarding the SUT and the configuration for each test session
and sends that information to all the slave nodes. Once all slaves have been
initialized, the master begins the load generation process by starting a single
slave while rest of the slaves are idling.

Slave
Node1l

Adapter

Slave
Node 2

Adapter

Master
Node

Adapter

SUT

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Slave
NodeN

Adapter

Figure 6.1: Distributed architecture of MBPeT tool

6.4.1 The Master Node

The internal architecture of the master node is shown in Figure 6.2. It
contains the following components:

Core Module

The core module of the master node controls the activities of other modules
as well as the flow of information among them. It initiates the different
modules when their services are required. The core module takes as input
the following information and distributes it among all the slave nodes:
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Figure 6.2: Master Node

User-
Resource
Data Base

User DB

1. User Models: PTA models are employed to mimic the dynamic behav-
ior of the users. Each case-study can have multiple models to represent
different types of users. User models are expressed in DOT language

[5].

2. Test Configuration: It is a collection of different parameters, that are
defined in a Settings file, which is a case-study specific. A Settings
file specifies the necessary information about the case-study and this
information is later used by the tool to run the experiment. There
are some mandatory parameters in the Settings file, which have been
listed below with the brief description. These parameters can also be
provided as command-line arguments to the master node.

(a) Test duration: It defines the duration of a test session in seconds.

(b) Number of users: It specifies the maximum number of concurrent
users for a test session.

(¢) Ramp: The ramp period is specified for all types of users. It can
be defined in two ways. One way is to specify it as a percentage
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Figure 6.3: Example ramp function

of the total test duration. For example, if the objective of the
experiment is to achieve the given number of concurrent users
within the 80% of total test duration, then the ramp value would
be equal to 0.8. Then, the tool would increase the number of
users at a constant rate, in order to achieve the given number of
concurrent users within the ramp period.

The ramp period can also be defined as an array of tuples. For
instance the ramp function depicted in Figure 6.3, as illustrated in
the Listing 6.1. A pair value is referred to as a milestone. The first
integer in a milestone describes the time duration in seconds since
the experiment started and the second integer states the target
number of concurrent users at that moment. For example, the
fourth milestone in the Listing 6.1, that is (400, 30), indicates that
at 400 seconds the number of concurrent users should be 400, and
thus starting from the previous milestone (100, 30) the number
of concurrent users should drop linearly in the interval 250-400
seconds. Further, a ramp period may consist of several milestones
depending upon the experiment design. The benefit of defining
the ramp period in this way is that the number of concurrent
users could increase and decrease during the test session.

Listing 6.1: Ramp section of Settings file

p————— Ramp Period
ramp_list = [(0, 0), (100, 100), (250, 100),
(400, 30),(480, 30), (580, 150), ... ]
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(d) Monitoring interval: It specifies how often a slave node should
check and report its own local resource utilization level for satu-
ration.

(e) Resource utilization threshold: It is a percentage value which de-
fines the upper limit of local resource load at the slave node. A
slave node is considered to be saturated if the limit is exceeded.

(f) Models folder: A path to a folder which contains all the user
models.

(g) Test report folder: The tool will save the test report at this given
path.

In addition to mandatory parameters, the Settings file can contain
other parameters, which are related to a particular case-study only.
For example, if a SUT is a web server then the IP address of the web
server would be an additional parameter in the Settings file.

3. Adapter: This is a case-study specific module which is used to commu-
nicate with SUT. This module translates each action interpreted from
the PTA model into a form that is understandable by the SUT, for
instance a HTTP request. It also parses the response from the SUT
and measures the response time.

4. Number of Slaves: This number tells the master node how many slave
nodes that are participating in the test session.

Two test databases are used by MBPeT: a user database and a user
resource database. The user database contains all the information regarding
users such as usernames, passwords or name spaces. In certain cases, the
current state of the SUT must be captured, in order to be able to address
at load generation time data dependencies between successive requests. As
such, the user resource database is used to store references to the resources
(e.g. files) available on the SUT for different users. The core module of the
master node uses an instance of the test adapter to query the SUT and save
that data in the user resource database.

Further, the core module remotely controls the Dstat! tool on SUT via
SSH protocol. Dstat is a tool that provides detailed information about the
system resource utilization in real-time. It logs the system resources utiliza-
tion information after every specific time interval, one second by default. The
delay between each update is specified in the command along with the names
of resources to be monitored. This tool creates a log file in which it appends

Thttp://dag. wieers.com/home-made/dstat/
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a row of information for each resource column after every update. The log
file generated by the Dstat tool is used as basis for generating the test report,
including graphs on how SUT’s KPIs vary during the test session.

Model Validation Module

The Model Validator module validates the load models. It performs different
numbers of syntactic checks on all models and generates a report.This report
gives error descriptions and the location in model where the error occurred.
A model with syntax anomalies could lead to inconclusive results. Therefore
it is important to ensure that the all given models are well-formed and no
syntax mistakes have been made in implementing the models. Examples of
couple of validation rules are:

e Each model should have an initial and a final state
e All transitions have either probabilities or actions
e The sum of probabilities of transitions originating from a location is 1.

e All locations are statically reachable

Slave Controller Module

For each slave node there is an instance of SlaveController module in the
master node. The purpose of the SlaveController module is to act as a bridge
between slave nodes and the core master process and to control the slave
nodes until the end of the test. The benefit of this architecture is to keep the
master core process light and active, and more scalable. The SlaveController
communicates with master core process only in few special cases, so that the
core process could perform other tasks instead of communicating with slave
nodes. Moreover, it also increases the parallelism in our architecture, all the
SlaveControllers and the master’s core processes could execute in parallel on
different processor cores. Owning to the efficient usage of available resources,
the master can perform more tasks in less period of time. A similar approach
has been employed at the slave node, where each user is simulated as an
independent process for the performance gain.

Test Report Creation Module

This module performs two tasks: Data Aggregation and Report Creation. In
the first task, it combines the test results data from all slaves into an internal
representation. Further, it retrieves the log file generated by the Dstat tool
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from the SUT via Secure File Transfer Protocol (SFTP). The second task of
this module is to calculate different statistical indicators and render a test
report based on the aggregated data.

6.4.2 The Slave Node

Slave nodes are started with one argument, the IP-address of the master
node. The Core module opens the socket and connects to the master node
at the given IP-address with the default port number. After connecting with
the master node successfully, it invokes the Load Initiator module.

| Slave Node |
Master node Resource
Monitor
Core
LIS
Master Reporter
Node

| Load Generator |—| UserSimulator |

| Adapter I

Figure 6.4: Slave Node

Load Initiation Module

The Load Initiator module is responsible for initializing the test setup at
the slave node as well as storing the case-study and model files in a proper
directory structure. It receives all the information from the master node at
initialization time.
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Model Parser Module

The Model Parser module reads the PTA model into an internal structure.
It is a helper module that facilitates the UserSimulator module to perform
different operations on the PTA model.

Load Generation Module

The purpose of this module is to generate load for the SUT at the desired
rate, by creating and maintaining the desired number of concurrent virtual
users. It uses the UserSimulator module to simulate virtual users where each
instance of UserSimulator presents a separate user with unique user ID and
session. The UserSimultor utilizes the Model Parser module to get the user’s
action from the user model and uses the Adapter module to perform the
action. Then it waits for a specified period of time (i.e. the user think time)
before performing the next action, which is chosen based on the probabilistic
distribution.

Resource Monitoring Module

The Resource Monitor module runs as a separate thread and wakes up regu-
larly after a specified time period. It performs two tasks every time it wakes
up: 1) checks the local resource utilization level and saves the readings, 2) cal-
culates the average of resource utilizations over a certain number of previous
consecutive readings. The value obtained from the second task is compared
with resource utilization threshold value, defined in the test configuration.
If the calculated average is above a set threshold value of 80 percent, then
it means that the slave node is about to saturate and the master will be
notified. When a slave is getting saturated, its current number of generated
users is kept constant, and additional slaves will be delegated to generate the
more load.

Reporter Module

All the data that has been gathered during the load generation is dumped
into files. The Load Generator creates a separate data file for each user;
it means that the total number of simulation data files would be equal to
the total number of concurrent users. In order to reduce the communication
delay, all these data files are packed into a zip file, and sent to the master at
the end of the test session.



204 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

®® & MBPeT

Ei;'tﬂ;slerl Start Load Ge'we'at\ml Settings | Quit |AV§‘ Response Time: 0.15
Project folder fIBPET branch 2/MBPeT/case studies/ Browse | 57
Test duration [100 (seconds) Number of slaves: [1 =

Number of users: [ 10

Master Log:

validating user models ...

Master is listening for 1 slave(s}..

Master is waiting for all slaves to be initialized ...
Slave 0 is initialized.

All slaves are initialized.

Slave 0 starts load generation

Figure 6.5: Main window of the GUI

6.4.3 Graphical User Interface

The MBPeT tool can be run both in command line and via a graphical user
interface (GUI) as shown in Figure 6.5. Feature-wise the GUI is almost
identical to the command-line version except for two features:

e The GUI implements the number of users as a slider function. This
implies that the number of parallel user can be increased and decreased
in real time using the slider, as an alternative to predefining a ramp
function at beginning of the test session;

e The average response observed by all slave nodes is plotted in real-
time. The response time graphs can be configured to display either
one average response time plot for all actions (as currently depicted in
Figure 6.5) or one average response time plot for each individual action
type.

Additionally, from the GUI, one can specify basically all the test session
settings previously described in Section 6.4.1

6.5 Model Creation

In this section we will introduce the load models used for generating load
and describe how they are constructed. We will also in theory describe how
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load is generated from these models.

6.5.1 Workload Characterization

Traditionally, performance analysis starts first with identifying key perfor-
mance scenarios, based on the idea that certain scenarios are more frequent
than others or certain scenarios impact more on the performance of the sys-
tem than other scenarios. A performance scenario is a sequence of actions
performed by an identified group of users [13]. In some cases, key perfor-
mance scenarios can consist of only one action, for example ”browse”, in the
case of a web-based system. In the case of Amazon online store, examples
of key performance scenarios could be: searching for a product, then adding
one or more products into the shopping cart and finally pay for them. In the
first example, only one action is sent to the system, namely ”browse”. In
the second example, several actions would have to be sent to the server, e.g.
"login”, "search”,”add-to-cart”,” checkout”, etc.

In order to build the workload model, we start by looking and analyzing
the requirements and the system specifications, respectively. During this
phase we try to get an understanding of how the system is used, what are
the different types of users, and what are the key performance scenarios
that will impact most on the performance of the system. A user type is
characterized by the distribution and the types of actions if performs.

The main sources of information for workload characterization are: Ser-
vice Level Agreements (SLAs), system specifications and standards, and
server execution logs [11]. By studying these sources we identify the inputs of
the system with respect to types of transactions (actions), transferred files,
file sizes, arrival rates, etc. following the generic guidelines discussed in [3]. In
addition, we extract information regarding the KPIs, such as the number of
concurrent users the system should support, expected throughput, response
times, expected resource utilization demands etc. for different actions under
a given load.

We use the following steps in analyzing the workload:

1. Identify the actions that can be executed against the system.

(a) Analyze what are the required input data and output data for each
action. For instance, what is the request type, its parameters, etc.

(b) Identify dependencies between actions. For example, a user can
not execute a logout action before a login action.

2. Identify what classes (types) of users execute each action
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3. Identify the most relevant user types.
4. Define the distribution of actions that is performed by each user type.
5. Define an average think time per action for each user type.

Table 6.1 shows an example of a user type specification, its actions, action
dependencies, and think time ordered in a tabular format. Based on this
information we build a workload model described as a probabilistic timed
automata or PTA.

Action | Dependency User Type 1 User Type 2
Think time | Frequency | Think Time | Frequency

ax ty fi ta fa
as a t3 I3

as ay ta fa
ay as ts fs

as o 123 fe tr fz
ag as ts fs

Table 6.1: Example of user types and their actions

6.5.2 Workload Modeling Using PTA

The results of the workload characterization are aggregated in a workload
model similar to the one in Figure 6.6, which mimics the real workload un-
der study. One such workload model is created for each identified user type.
Basically, the model will depict the sequence of actions a user type can per-
form and their arrival rate, as a combination of the probability that an action
is executed and the think time of the user for that action. In addition, we
also identify the user types and their probabilistic distribution. A concrete
example will be given in Section 6.7.

All the information that is extracted from the previous phase is aggre-
gated in a workload model which is describes as a probabilistic timed au-
tomaton (PTA). A PTA is similar to a state machine in the sense that a
PTA consists of a set of locations connected with each other via a set of
transitions. However, a PTA also include the notion of time and probabil-
ities. Time is modeled as an invariant clock constraint on transitions and
increase at the same rate as real time.

A probabilistic timed automaton (PTA) is defined [9] as T = (L,C,inv,
Act, E, 0) where:

e q set of locations L;
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e a finite set of clocks C;

e an invariant condition inv : L — Z;

e  finite set of actions Act;

e an action enabledness function F : L x Act — Z;

e q transition probability function § : (L x Act) — D(2¢ x L).

In the above definitions, Z is a set of clock zones. A clock zone is a set
of clock values, which is a union of a set of clock regions. A is a proba-
bilistic transition function. Informally, the behavior of a probabilistic timed
automaton is as follows: In a certain location I, an action a can be chosen
when a clock variable reaches its value with a certain probability if the action
is enabled in that location [. If the action a is chosen, then the probability of
moving to a new location !’ is given by 0[L,a](C’,I), where C’ is a particular
set of clocks to be reset upon firing of the transitions. Figure 6.6 gives an
example of a probabilistic timed automata.

The syntax of the automata is as follows: Every transition has an initial
location and an end location. Each location is transitively connected from the
initial location. The transitions can be labeled with three different values: a
probability value, an action, and a clock. The probability indicates the chance
of that transition being taken. The action describes what action to take when
the transition is used, and the clock indicates how long to wait before firing
the transition. Every automaton has an end location, depicted with a double
circle, that will eventually be reached. It is possible to specify loops in the
automaton. It is important to notice that the sum of the probabilities on all
outgoing transitions from a given location must be equal to 1. For example,
consider location 2 in Figure 6.6: for the PTA to be complete the following
must apply: pl + p2 +p3 =pd +pdH = 1.

6.6 Performance Testing Process

In this section we describe the performance testing process. Figure 6.7 shows
the three steps involved in the process. In the following, we will discuss the
three steps in more detail.

6.6.1 Test Setup

Every test run starts with a test setup. In each test setup, there is one master
node that carries out the entire test session and generates a report. The
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Figure 6.6: Example of a probabilistic timed automaton.
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user only interacts with the master node by initializing it with the required
parameters (mentioned in the Section 6.4.1) and getting the test report at
the end of the test run. The parameter given to the master is the project
folder. This folder contains all the files needed for load generation, such as
the adapter code, the settings file (if command line mode is used) and other
user specific files.

The adapter file and the settings file are the most important. The adapter
files explains how the abstract actions found in the load models are translated
to concrete actions. The settings file contain information about the test
session, such as the location of the load models, IP-address to the SUT, the
ramp function, test duration, etc. The same information can also be set from
the GUI via the Settings button, see Figure 6.8. In here, the user is required
to enter the same information as given in the settings file. Additionally, the
path to the adapter file and the load models have to be given.

As one may notice in Figure 6.8, the user has the option of defining an
average think time for the models and its standard deviation. If these options
are used, the individual think time specified in the models for each action
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Figure 6.7: MBPeT tool activity diagram

will be ignored and the one specified in the GUI will be used.

Once the required information has been given, the master node sets up the
test environment. After that, it invokes the Model Validator. This module
validates the syntax of user models. If the validation fails, it gives the user
a choice whether the user wants to continue or not to load generation. If
the user decides to continue or the validation was successful, then the master
enters into the next phase.

6.6.2 Load Generation

Load is generated for the models based on the same principles as described in
section 6.5.2. The load generation is based on a deterministic choice with a
probabilistic policy. This introduces certain randomness into the test process



210 F. Abbors, T. Ahmad, D. Truscan, and I. Porres
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Figure 6.8: Settings window of the GUI

and that can be useful for uncovering certain sequences of actions which may
have a negative impact of the performance. Such sequences would be difficult
or maybe impossible to discover if static test scripts are used, where a fixed
order of the actions is specified, and repeated over and over again. Every
PTA has an ezit location which will eventually be reached. By modifying
the probability for the ezit action, it is possible to adjust the length of the
test.

The attributes of PTA models make them a good candidate for modeling
the behavior of VUs, which imitate the dynamic behavior of real users. Ac-
tions in the PTA model corresponds to an action which a user can send to
the SUT and the clocks present the user think time. In our case, the PTA
formalism is implemented using the DOT notation.

Load is generated from these models by executing an instance of the model
for every simulated VU. Whenever a transition with an action is fired, that
action is translated by the MBPeT tool and sent to the SUT. This process is
repeated and run in parallel for every simulated user throughout the whole
test session. During load generation, the MBPeT tool monitors the SUT the
whole time.



Performance Testing in the Cloud Using MBPeT 211

6.6.3 Test Reporting

After each test run the MBPeT tool generates a test report based on the
monitored data. It is the slave nodes that are responsible for the monitoring
and they report the values back to the master node which later creates the
report.

Every slave node will monitor the communication with the SUT and
collecting the data needed for test report. The slave node will start a timer
every time and action is sent to the system. When a response is received,
the timer is stopped and the response code together with the action name
and response time is stored. This data is later sent to the master node which
will aggregate the data and produce a report.

The slave node will also monitor its own resources so it does not get
saturated and becomes the bottleneck during load generation. The slave
node monitors is own CPU, memory, and disk utilization and sends the
information to the master node. The master node the data is plotted in
graphs and included in the test report.

It is the test report creation module of the master node that is responsible
for creating test report. This module performs two tasks: aggregating data
received from the slave nodes and creating a test report. Data aggregation
consists of combining data received from the slave nodes together into and
internal representation. Based on the received data, different kinds of statis-
tical values are computer, e.g. mean and max response times, throughput,
etc. Values such as response time and throughput plotted as graphs so the
tester can see how the different values varies over time. Figures of the test
report will later be shown throughout Section 6.7.

The final task of the test report creation module is to render all the values
and graphs into a report. The final report is rendered as a HTML document.

6.7 Experiments

In this section we will describe a set of experiments carried out with the
MBPeT tool on a case study. The system tested in the case study is an
HTTP based auction web service.

6.7.1 YAAS

YAAS is a web application and a web service for creating and participating
in auctions. An auction site is a good example of a service offered as a web
application. It facilitates a community of users interested in buying or selling
diverse items, where any user including guest user can view all the auctions
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and all authenticated users, except seller of an item, can bid on the auction
against other users.

The web application is implemented in Python language using the
Django? web-framework. In addition to HTML pages, YAAS also has a
RESTful [10] web service interface. The web service interface has various
APIs to support different operations, including:

Browse API It returns the list of all active auctions.
Search API It allows to search auctions by title.
Get Auction This API returns an auction against the given Auction-ID.

Bids It is used to the get the list of all the bids have been made to a
particular auction.

Make Bid Allows and authenticated user to place a bid on a particular
auction.

6.7.2 Test Architecture

A setup of the test architecture can be seen in Figure 6.9. The server runs an
instance of the YAAS application on top of an Apache web server. All nodes
(master, slaves, and the server) feature an 8-core CPU, 16GB of memory,
1Gb Ethernet, 7200 rpm hard drive, and Fedora 16 operating system. The
nodes were connected via a 1Gb ethernet over which the data were sent.

A populator script is used to generate input data (i.e., populate the test
databases) on both the client and server side, before each test session. This
ensures that the test data on either sides is consistent and easy to rebuild
after each test session.

6.7.3 Load Models

The test database of the application is configured with a script to have 1000
users. Each user has exactly one auction and each auction has one starting
bid.

In order to identify the different type of users for the YAAS application,
we have used the AWStats® tool. This tool analyzes the Apache server access
logs to generate a report on the YAAS application usage. Based on that
report, we discovered three types of users; aggressive, passive and non-bidder.

2https:/ /www.djangoproject.com/
3http://awstats.sourceforge.net
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Figure 6.9: A caption of the test architecture
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Figure 6.10: Aggressive User type model

X=3/ exit() / X:=0

Figure 6.11: Passive User type model
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Action Dependency Aggressive User Passive User Non-Bidder User
Think time | Frequency | Think Time | Frequency | Think Time | Frequency

search() 4 0,40 4 0,40 4 0,40
browse() 3 0,60 3 0,60 3 0,60
browse() browse(),search() 5 0,10 3 0,10 3 0,10
get_auction() | browse(),search() 5 0,87 5 0,87 5 0,87
exit() browse(),search() 3 0,03 3 0,03 3 0,03
browse() get_auction() 5 0,05 5 0,05 5 0,05
get_bids() get_auction() 3 0,75 3 0,75 3 0,75
exit() get_auction() 3 0,20 3 0,20 3 0,20
browse() get_bids() 5 0,20 5 0,20 5 0,60
bid() get_bids() 3 0,50 3 0,30

exit() get_bids() 3 0,30 3 0,50 3 0,40
get_bids() bid() 3 0,30 3 0,45

browse() bid() 4 0,20 4 0,25

exit() bid() 3 0,50 3 0,30

Table 6.2: Think time and distribution values extracted from the AWStats
report

X=3 / exit() / X:=0

X=3/ exit() / X:=0

Figure 6.12: Non-bidder User type model

Table 6.2 shows the think time and distribution of actions for the three
different types of users.

For each user type, a load model was created as describe in section 6.5.
The aggressive type (Figure 6.10) of users describes those users, who make
bids more frequently as compared to other types of users. The passive users
(Figure 6.11) are less frequent in making bids, see for instance the locations
14 or 18 in the referred figures. The third type of users are only interested
in browsing and searching for auctions instead of making any bids and are
known as non-bidders (Figure 6.12). The root model of the YAAS applica-
tion, shown in Figure 6.13, describes the distribution of different user types.
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Based on the AWStats analysis, we determined that the almost 30% of total
users who visited the YAAS, were very frequently in making bids, whereas
rest of 50% users made bids occasionally. The rest of the users were not
interested in making bids at all. This distribution is depicted by the model
in Figure 6.13.

0.2/ non-bidder_user  [0.3/ aggressive_user Y).5/ passive_user

Figure 6.13: YAAS Root model

The models of all these user types were provided to the MBPeT tool to
simulate them as virtual users. For example, the model of an aggressive user
type, shown in Figure 6.10, shows that the user will start from the location
1, and from this location the user will select either browse or search action
based on a probabilistic choice. Before performing the action, the slave will
wait for the think time corresponding to the selected action. Eventually, the
user will reach the final location (i.e. location 20) by performing the exit
action and terminate the current user session. Similarly, the other models of
passive and non-bidder user type have the same structure but with different
probabilities and distribution of actions.

6.7.4 Experiment 1

The goal of this experiment was to set the target response time for each
action and observe at what point the average response time of the action
exceed the target value. The experiment ran for 20 minutes. The maximum
number of concurrent users was set to 300 and the ramp up value was 0.9
that the tool would increase the number of concurrent users with the passage
of time to achieve the value of 300 concurrent users when the 90% of test
duration time has been passed.

The resulting test report has various sections, where each section presents
the different perspective of the results. The first section, shown in Figure
6.14, contains the information about the test session including, test started
time, test duration, target number of concurrent of users, etc. The Total
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HHHHHHHHHEHHE Master Stats #HEHHHHHHT

This test was executed at: 2013-07-01 16:54:47
Duration of the test: 20 min

Target number of concurrent users: 300

Total number of generated users: 27536

Measured Request rate (MRR): 27.68 req/s
Number of NON-BIDDER_USER: 6296 (23.0)%
Number of AGGRESSIVE_USER: 9087 (33.0)%
Number of PASSIVE_USER: 12153 (44.0)%
Average number of action per user: 91 actions

Figure 6.14: Test Report 1 - Section 1: General information

i AVERAGE/MAX RESPONSE TIME per METHOD CALL #####HHH###

NON-BIDDER_USER (23.0 %)|[PASSIVE_USER (44.0 %)|(AGGRESSIVE_USER (33.0 %)
Method Call Average (sec) Max (sec) || Average (sec) || Max (sec) Average (sec) Max (sec)
GET_AUCTION(ID) 3.04 23.95 2.85 23.67 2.93 24.71
BROWSE() 5.44 21.25 5.66 21.7 5.68 21.29
GET_BIDS(ID) 3.59 27.37 3.63 25.8 3.65 24.87
BID(ID,PRICE,USERNAME,PASSWORD)|(0.0 0.0 8.26 33.44 8.11 36.84
SEARCH(STRING) 3.36 12.86 3.26 15.84 3.47 15.79

Figure 6.15: Test Report 1 - Section 2: Average and Maximum response time
of SUT per action or method call

number of generated users in the report describes that the tool had simulated
27536 numbers of virtual users. The Measured Request Rate (MRR) depicts
the average number of requests per second which were made to the SUT
during the load generation process. Moreover, it also shows the distribution
of total number of user generated which is very close to what we have defined
in the root model (Figure 6.13). This section is useful to see the summarized
view of the entire test session.

In the second section of the test report, we could observe the SUT perfor-
mance for each action separately, and identify which actions have responded
with more delay than the others, and which actions should be optimized to
increase the performance of the SUT. As from the table in Figure 6.15, it
appears that the action BID(ID, PRICE, USERNAME, PASSWORD) has
larger average and maximum response time than the other actions. The non-
bidder users do not perform the BID action that is why we have zero response
time in the column of NON-BIDDER USER against the BID action.

Section three (shown in Figure 6.16) of the test report presents a com-
parison of the SUTs desired performance against the measured performance.
As we had defined the target response time for each action in the test config-
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##### AVERAGE/MAX RESPONSE TIME THRESHOLD BREACH per METHOD CALL #####

Action Target Response TimeNON-BIDDER_USER|[PASSIVE_USER AGGRESSIVE_USER |Verdict H
Average Max || Average Max Average Max Average Max e
(secs) (secs) |[users (secs)|| users (secs) |[users (secs)||users (secs)|[users (secs) | users (secs) Pass/Fail
GET_AUCTION(ID) 2.0 4.0 70 251) |[84(299.0) [70 251) |05 (341.0) |[70 250) ][05 (341.0) |[Failed
BROWSE() [4.0 8.0 34(299) |07 (345.0) [[84 (299) [[113 (403.0)|[84 (299) |[113 (403.0) |[Failed
GET_BIDS(ID) 3.0 6.0 34(298) |[112(402.0)[[83 (296) |[112 (402.0)[[96 (344) |[112 (401.0) |[Failed
BID(ID,PRICE, USERNAME,PASSWORD)||5.0 10 Passed Passed 97 (346) |[113 (405.0)|[112 (402) |[135 (483.0) |[Failed
SEARCH(STRING) 3.0 6 95 341)  [[134 479.0)|[06 (342)  [[112 402.0)[[83 (296) [[133 (476.0) [Failed

Figure 6.16: Test Report 1 - Section 3: Average and Maximum response time
of SUT per action or method call

uration, in this section we could actually observe how many concurrent users
were active when the target response time was breached. The table in this
section allows us to estimate the performance of current system’s implementa-
tion. For instance, the target average response time for the GET_AUCTION
action was breached at 250 seconds for the aggressive type of users, when
the number of concurrent users was 70. Further, this section demonstrates
that the SUT can only support up to 84 concurrent users before it breaches
the threshold value of 3 seconds for GET_BIDS action for the passive type
of users. In summary, all the actions in Figure 6.16 have breached the tar-
get response time except the BID action in NON-BIDDER _USER column
because non-bidder users do not bid.

Figures 6.17 and 6.18 display the resource load at the SUT during load
generation. These graphs are very useful to identify which resources are
being utilized more than the others and limiting the performance of SUT.
For instance, it can be seen from Figure 6.17 that after 400 seconds the CPU
utilization was almost equal to 100% for the rest of the test session, it means
that the target web application is CPU-intensive, and it might be the reason
of large response time.

Figure 6.19 illustrate that the response time of each action for the aggres-
sive user type increases proportionally to the number of concurrent users.
The figure also points out which actions response time is increasing much
faster than the other actions and require optimization. Similar patterns was
observed for the two other user types: passive users and non-bidder, respec-
tively.

For example the response time of action BID(ID, PRICE, USERNAME,
PASSWORD) for aggressive and passive user types increases more rapidly
than the other actions. It might be because the BID action involves a write
operation and in order to perform a write operation on the database file, the
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Figure 6.17: Test Report 1 - SUT CPU and memory utilization
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Figure 6.18: Test Report 1 - SUT network and disk utilization

SQLite* database has to deny the all new access requests to the database
and wait until all previous operations (including read and write operations)

have been completed.

Section four of the test report provides miscellaneous information about

4http://www.sqlite.org/
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Figure 6.19: Test Report 1 - Response time of aggressive user type per action

the test session. For example, the first erroneous response was recorded
at 520 seconds (according to Figure 6.20) and at that time the tool was
generating load at the maximum rate, that is 1600 actions/seconds, shown
in Figure 6.21. Similarly, Figure 6.20 displays that there was no error until
the number of consecutive users exceeded 150, after this point errors began
to appear and increased steeply proportional to the number of consecutive
users.

A further deep analysis of the test report showed that the database could
be the bottleneck. Owning to the fact a sqlite database has been used for
this experiment, the application has to block the entire database before some-
thing can be written to it. It could explain the larger response time of BID
actions compared to other actions. This is because the web application had
to perform a write operation to the database in order to execute the BID
action. Further, before each write operation, sqlite creates a rollback jour-
nal file, an exact copy of original database file, to preserve the integrity of
database [17]. This could also delay the processing of a write operation and
thus cause a larger response time.

6.7.5 Experiment 2

In the second experiment, we wanted to verify the hypothesis, which we
proposed in the previous experiment: database could be the performance bot-
tleneck. We ran the second experiment for 20 minutes with the same test
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Figure 6.21: Test Report 1 - Average number of actions

configuration of the previous experiment. However, we did make one mod-
ification in the architecture. In the previous experiment, the SQLite 3.7
was used as database server, but in this experiment, it was replaced by the
PostgreSQL 9.1 °. The main motivating factor of using the PostgreSQL

Shttp://www.postgresql.org
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HAHHRHHHHHHHEHHE Master Stats #HHHHHHHHHHHEH

This test was executed at: 2013-07-01 17:37:38
Duration of the test: 20 min

Target number of concurrent users: 300

Total number of generated users: 35851

Measured Request rate (MRR): 39.21 req/s
Number of AGGRESSIVE_USER: 11950 (33.0)%
Number of NON-BIDDER_USER: 7697 (21.0)%
Number of PASSIVE_USER: 16204 (45.0)%
Average number of action per user: 119 actions

Figure 6.22: Test Report 2 - Section 1: global information
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Figure 6.23: Test Report 2 - Error rate

database is that it supports the better concurrent access to the data than
the SQLite. The PostgreSQL database uses the Multiversion Concurrency
Control (MVCC) model instead of simple locking. In MVCC, different locks
are acquired for the read and write operations, it means that the both oper-
ations can be performed simultaneously without blocking each other [14].

In the section 1 of Test report 2 (Figure 6.22) shows that the Measured
Request Rate (MRR) increased by 42%. Additionally, each user performed
averagely 30% more actions in this experiment.

Similarly in the second section (Figure 6.24), the average and maximum
response time of all action decreased by almost 47%. Moreover, the error
rate section (Figure 6.23) depicts that there was no error until the number
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#i###HH# AVERAGE/MAX RESPONSE TIME per METHOD CALL ######H###

AGGRESSIVE_USER (33.0 %)|[PASSIVE_USER (45.0 %) NON-BIDDER_USER (21.0 %)
Method Call Average (sec) Max (sec) || Average (sec) || Max (sec) Average (sec) Max (sec)
\GET_AUCTION(ID) 1.18 | 15.58 1.1 15.95 125 15.8
IBROWSE() 4.99 23.61 5.13 23.47 5.23 23.6
\GET_BIDS(ID) 1.51 15.25 1.54 15.56 1.63 15.02
BID(ID,PRICE,USERNAME,PASSWORD)|(3.25 18.65 3.25 18.37 0.0 0.0
SEARCH(STRING) 1.48 14.66 1.54 14.83 1.43 15.43

Figure 6.24: Test Report 2 - Section 2: Average and Maximum response time
of SUT per action or method call

— ramp function — browse() —— bid(id,price,username, password) — searchistring)
— get_auction(id) — get_bidsiid)

10

300

250

200

number of concurrent users
response time (sec)

50

12(?0

o 200 400 600 800 1000
test duration (sec)

Figure 6.25: Test Report 2 - Response time of aggressive user type per action

of concurrent users was below 182, that is 21% more users than the last
experiment.

Figure 6.25 shows that the response time of aggressive type of users is
decreased by 50% approximately in comparison with the previous experi-
ment in Figure 6.19. In summary, all of these indicators suggest significant
improvement in the performance of SUT.

6.8 Conclusions

In this chapter, we have presented a tool-supported approach for model-based
performance testing. Our approach uses PTA models to specify the prob-
abilistic distribution of user types and of actions that are executed against
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the system.

The approach is supported by the MBPeT tool, which has a distributed
scalable architecture, targeted to cloud-based environments allowing it to
generate load at high rates. The tool generates load in online mode and
monitors different KPIs including the resource utilization of the SUT. It can
be run both in command line and in GUI mode, respectively. The former
facilitates the integration of the tool in automated test frameworks, whereas
the latter allows the user to interact with the SUT and visualize in real-time
its performance depending on the number of concurrent users.

Using our modeling approach, the effort necessary to create and update
the user profiles is reduced. The adapter required to interface with the SUT
has to be implemented only once and then it can be reused. As shown in the
experiments, the tool allows quick exploration of the performance space by
trying out different load mixes. In addition, preliminary experiments have
shown that the synthetic load generated from probabilistic models has in
general a stronger impact on the SUT compared to static scripts.

We have also showed that the tool us sufficient enough in finding per-
formance bottlenecks and that the tool can handle large amounts of parallel
virtual users. The tool benefits from its distributed architecture in the sense
that it can easily be integrated in a cloud environment where thousands of
concurrent virtual users need to be simulated.

Future work will be targeted towards improving the methods for creating
the user profiles from historic data and providing more detailed analysis of
the test results. So far, the MBPeT tool has been used for testing web
services however, we plan also to address also web applications, as well as
other types of communicating systems.
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