
Validation and Optimization of an
Open-Source Novel Nonlinear

Froude-Krylov Model for Advanced
Design of Wave Energy Converters

Manual of the Nonlinear Froude-Krylov Matlab demonstration toolbox

GIUSEPPE GIORGI

H2020-MSCA-IF-2018 (832140): OpenWave

Politecnico di Torino, Turin, Italy

October 2019

giuseppe.giorgi@polito.it

Manual of the Nonlinear Froude-Krylov Matlab demonstration
toolbox

Abstract
This document purports to describe in detail the mathematical framework for a computationally
efficient computation of nonlinear Froude-Krylov forces (NLFK) in 6 degrees of freedom (DoFs)
for axisymmetric floating objects. Additionally, this document also acts as a reference manual to
a set of Matlab scripts, forming a demonstration toolbox to show the capabilities of the NLFK
approach and provide an easy, operative, and ready-to-use implementation of the method. The
toolbox is openly available at [1]. This document and the toolbox are licensed with a Creative-
Commons-By-Attribution-Share-Alike (CC-BY-SA) license [2]. Note that this is the first version
of the toolbox, so any feedback and potential corrections are welcome. Moreover, the user is
highly invited to contact the author for any doubt, ideas or suggestions, deeper investigation,
higher-complexity problems, and eventually collaboration. Finally, note that this toolbox is the
precursor of an open source software, coded in a lower-level coding language than Matlab, hence
much faster, which will be virtually shared by mid 2021.

1. Overview

The content of this toolbox and manual has been developed in the context of nonlinear
hydrodynamic modelling for wave energy converters. Therefore, most of the discussion and
considerations are related to the challenges and requirements of this specific area of ocean
engineering. However, the tools herein provided have general validity and broader applicability,
so the user is invited to use them in the most creative way. In fact, this mathematical framework
allows to easily displace an axisymmetric geometry in 6 DoFs and to compute arbitrary surface
integrals on a time-varying portion of the body. In the specific application case of the computation
of NLFK forces, the integrand is the undisturbed pressure field, but any other function could be
integrated using the same mathematical framework.

The rationale behind the development of this methodology is the critical need for a better
compromise of accuracy and computational time with respect to state-of-the-art mathematical
models in wave energy conversion applications. Economic viability is the sine qua non condition
for commercial competitiveness and industrial sustainability of the wave energy conversion sector
and it can be achieved only through substantial reduction of costs and increase in performance.
Both such objectives can be accomplished only through holistic design, control, and optimization
studies, the effectiveness of which strongly depends on the accuracy of mathematical models.
However, a major limiting factor for the feasibility of application of a particular mathematical
model is the computational time.

Exploring the computation/fidelity continuum [3], the NLFK approach aims at medium-high
fidelity at a low computational cost. Considering the power-production region, hence excluding
extreme events and survivability conditions, partially-nonlinear potential-flow-based models have

the potential to realize an appropriate trade-of between computational time and fidelity [4]. In
particular, the dynamic response of point absorbers (device relatively small compared to the
wavelength) is mainly influenced by Froude-Krylov forces, while radiation and diffraction efforts
are normally relatively small and linear [5]. Therefore, NLFK approaches for point absorbers are
particularly accurate, where the undisturbed pressure field is integrated onto the instantaneous
wetted surface. However, mesh-based approaches, necessary for geometry of arbitrary complexity,
are renown to be slow, due to time-consuming re-meshing of the submerged surface [6]. If
the floater is assumed to be axisymmetric (not a restrictive assumptions for point absorbers,
which are normally axisymmetric), a computationally efficient NLFK formulation exist, relying
on the analytical representation of the wetted surface, hence needless of a mesh. If rotations
are negligible, algebraic solutions can be obtained [7], otherwise numerical integration is required
[8, 9]. Although a fair comparison is challenging, due to different coding languages (Fortran
versus Matlab), such numerical solution to the analytically defined NLFK forces for axisymmetric
devices is between one and two orders of magnitude faster than a mesh-based approach [7]. Note
that nonlinearity of the pressure field can also be taken into account [10].

This Matlab demonstration toolbox has the objective of providing the user with a set of
scripts that can quickly and pragmatically shows the capability of this method, without worrying
about the mathematical implementation. The code is completely open-source, modifiable and
reusable. The remainder of the manual is structured as follows: Sect. 2 discusses the content
and the usage of the Matlab demonstration toolbox; Sect. 3 provides few consideration about the
computational time. The detailed theoretical background is provided in the following sections:
Sect. 4 presents the frames of reference used and the transformation from one to the other;
Sect. 5 describes the integration approach and the parametric representation adopted; Sect. 6
show the particular case of NLFK force integrals.

3

Contents

1 Overview 2

2 Matlab demonstration toolbox 5
2.1 RUN defineNLFKgeom . 6

2.1.1 FUN defineNLFKgeom . 6
2.1.2 FUN plot3D . 7
2.1.3 FUN computeBodyProperties and hydrostatic stiffness 7

2.2 RUN checkNLFK . 7

3 Computational time 8

4 Reference frames 9
4.1 World and body-fixed frames . 9
4.2 Translation and rotation . 10
4.3 Intersection . 13

5 Integration 14
5.1 Parametric representations . 15

5.1.1 Cylindrical coordinates . 15
5.1.2 Polar coordinates . 16

5.2 Geometric properties . 17
5.2.1 Surface . 17
5.2.2 Volume . 17
5.2.3 Centre of buoyancy . 18

6 Nonlinear Froude-Krylov force 19
6.1 Validation in linear conditions . 21

6.1.1 Hydrostatic stiffness . 22
6.1.2 Dynamic Froude-Krylov force . 23

4

2. Matlab demonstration toolbox

This section aims at giving a practical and swift guide to the use of the toolbox. Please refer
to Sections from 4 for a detailed description of the theoretical background, necessary for a deeper
understanding of the content of the toolbox and this section.

For sake of simplicity and flexibility, this demonstration toolbox is coded in order to be able
to describe geometries composed of cylindrical or conical sections only, which cover the vast
majority of application cases. Although other surfaces are compatible with the NLFK framework
(like spherical or toroidal sections), it is preferred to keep the demonstration toolbox simple.
Don’t hesitate to contact the author for further details about the implementation of slightly
more complex geometries.

The toolbox is composed of:
• LICENSE-CC-BY-SA.txt: Creative-Commons-By-Attribution-Share-Alike (CC-BY-SA) li-

cense [2]

• Folder: Floaters: it contains the computed geometries (the folder is created by one of the
scripts)

• Folder: NEMOH : it contains the open-source BEM code Nemoh, developed at Ecole
Centrale Nantes, as well as a Matlab function script (FUN NemohAxi) modified by the
author, and one folder for each geometry simulated

• Folder: SupportingFunctions: it contains utility functions created by the author (setMatlab-
Defaults), or downloaded from the internet (MSS-master and spreadfigures). In particular,
MSS-master is the Marine System Simulator from [11]

• Matlab script RUN defineNLFKgeom: it defines the geometry, plots the displaced floater
in both the WF and BF with the free surface elevation and the intersection with it, and
computes body properties and hydrostatic stiffness.

• Matlab script RUN checkNLFK : it runs Nemoh and compares the dynamic NLFK in linear
conditions against linear results from the BEM code

• Matlab function FUN defineNLFKgeom: it defines the geometry in the NLFK framework

• Matlab function FUN plot3D: it plots the geometry in the WF and BF, as well as the free
surface elevation and its intersection with the floater

• Matlab function FUN computeBodyProperties: it computes total and wetted lateral sur-
face, total and submerged volumes, and centre of buoyancy through numerical integration

• Matlab function FUN NLFK st dy : it computes the static and dynamic NLFK force

• Matlab function FUN NLFK : it computes the total NLFK force separately
All the content is commented in detail so that, having this manual as a reference, it should

be straightforward to interpret the code. However, hereafter a quick guide to a suggested usage
of the toolbox is provided.

5

2.1. RUN defineNLFKgeom
The script RUN defineNLFKgeom is the first one that should be run.
If flag flags.defineNLFKgeometry is equal to 1, the geometry is created, otherwise is loaded.

A set of example predefined geometry is provided, namely a cylinder, a cone, a hollow cylinder,
a hollow cone, and a slightly more complex buoy composed of two cylindrical sections connected
through a conical one. These and other geometries are simply defined by a (2 × Np) matrix,
providing Np couples of x̂ and ẑ describing the profile of revolution f(%).

It follows that Np − 1 sections are defined, each one between two consecutive points. Such
portions are named patches, and they can be either cylinders and cones (implying the use of
cylindrical coordinates) or discs (implying the use of polar coordinates).

The order with which the points are provided is meaningful, since it defines the direction of
the normals. External surfaces (most common case) are defined with points given in descending
or horizontal order. If internal surfaces are present (moonpools of hollow geometries), consecutive
points are given in ascendant order.

2.1.1. FUN defineNLFKgeom
The function RUN defineNLFKgeom defines all useful parameters in the NLFK framework.

Patches requiring cylindrical and polar parametrization are discriminated, as well as patches that
reach the free surface. Note that, for simplicity, it is assumed that the free surface elevation is
fully contained in the patch that intersects the still water level.

In case of cylindrical coordinates (for cylinders or cones), the following parameters are defined:

• %1 and %2, delimiting the patch at the bottom and the top, respectively

• f(%) and f(%)′ = df(%)
d%

, as defined in Fig. 4 and (47)

• n1, n2 and n3, being the three components of (48)

• n4 and n5, being the first two components of (49)

In case of polar coordinates (for discs), the following parameters are computed:

• r1 and r2, delimiting the patch at the inner and outer radii, respectively

• n1, n2 and n3, being the three components of (45)

• n4 and n5, being the first two components of (46)

Furthermore, total and wetted lateral surface, and total and submerged volumes are computed
algebraically and stored for comparison with numerical integrations, as discussed in Sect. 5.2.

Finally, note that the approach of patches and set of Matlab anonymous functions is flexible
and transparent, but computationally inefficient. Once the geometry is defined, a more compu-
tationally convenient solution is to replace all the cross-references in the anonymous functions
by their numerical value.

6

2.1.2. FUN plot3D
Going back to the script RUN defineNLFKgeom, if flag flags.plotFloater is equal to 1, the

function FUN plot3D plots the body in both the WF and the BF, according to a vector of
translational and rotational displacements called states. Translations are expressed in the WF
(xG, yG, zG)′, while rotations are expressed about body-fixed axes, as explained in Sect. 4.2. An
example is shown in Fig. 1. If states ∈ ∅6×1, the rest position is shown, and the profile provided
by the user is also plotted in the WF.

Figure 1: Example of the plot of a buoy, the free surface elevation and their intersection in the world-frame and
the body-fixed frame.

Furthermore, is flags.plotEta is equal to 1, also the free surface elevation is plotted, in both
frames. Moreover, the intersection between the floater and the free surface elevation is computed
using the three approaches discussed in Sect. 4.3, namely the exact intersection, the linear
approximation and the flat approximation. The author suggests to use the linear approximation,
which is almost as fast to compute as the flat approximation, while being almost as accurate as
the exact solution for usual operational waves.

2.1.3. FUN computeBodyProperties and hydrostatic stiffness
Going back to the script RUN defineNLFKgeom, if flag flags.computeGeometricProperties is

equal to 1, total and wetted lateral surface, total and submerged volumes, and centre of buoyancy
are computed through numerical integration, as discussed in Sect. 5.2.

If flag flags.computeHydrostaticStiffness is equal to 1, the linear hydrostatic stiffness is com-
puted algebraically, as discussed in Sect. 6.1.1. Moreover, Kh is computed using the NLFK
framework, by assuming no incoming wave and an infinitesimal displacement. The function
FUN NLFK st dy is used, which integrates the static and dynamic pressure separately.

2.2. RUN checkNLFK
This script implements what discussed in Sect. 6.1.2, namely a comparison between BEM

results and NLFK computation in linear conditions. If flags.runNemoh is equal to 1, a BEM
7

simulation is performed in order to obtain hydrodynamic coefficients for the specified buoy. Oth-
erwise, previously computed parameters are uploaded. Note that the accuracy of the solution
and the computational time depend on the refinement of the mesh-discretization, which is de-
fined by Npan (target number of panels of the mesh) and n ang (number of points for angular
discretisation).

If flags.computeNLFK is equal to 1, nonlinear dynamic FK coefficients are computed under
linear conditions, i.e. zero displacement and very small wave amplitude. Otherwise, previously
computed coefficients are uploaded.

Finally, if flags.plotComparison is equal to 1, linear and nonlinear FK parameters are compared,
both in amplitude and phase. Normally, if the mesh-discretization of Nemoh and the absolute
and relative tolerances of the numerical integration are adequate, the two curves should perfectly
overlap, as shown in Fig. 7. However, note that Nemoh may have some issues in exactly compute
the hydrodynamic curves in presence of moonpools [12], so some small differences may be noticed.

3. Computational time

This sections provides some considerations about the computational time of the functions
provided in this toolbox and, more in general, about the NLFK approach.

As already mentioned in Sect. 2.1.1, this toolbox favours flexibility, simplicity, and trans-
parency over computational efficiency. The set of Matlab anonymous functions with internal
cross-references are slow when saved in a .mat file. A much faster solution, once the geometry
is known, is to save the anonymous functions defined by explicit numerical values. Additionally,
all components of equations from (45) to (49) are considered, and the respective integrals com-
puted, even though some of the terms may be zero (the heave component of the lateral surface
of cylinders).

As a general rule, the computational time is mainly proportional to the number of numerical
integrals computed, namely one for each DoF and for each patch: considering, for example, the
buoy in Fig. 1, there are 3 patches with cylindrical coordinates (top cylinder, cone, and bottom
cylinder, each requiring 5 integrals) and one patch with polar coordinates (bottom disc), hence
18 integrals in total. If static and dynamic FK forces were computed separately, the number of
integrals would double, reaching 36 in the example. Overall, the computational time is closely
related to the complexity of the floater.

Future work will investigate the possibility of using alternative solutions to describe the entire
surface, ideally having only one function, as opposed to many different patches. More efficient
and tailor-made numerical integration schemes will also be studied. Note that, with the current
algorithm, the accuracy and computational time of the results depend on the user-set absolute
and relative tolerances of the integration algorithm. Finally, as a part of the current fellowship,
an open-source software will be written in a lower-level coding language, which is expected to be
one order of magnitude faster than the current Matlab implementation.

The user is highly invited to contact the author with any ideas or thoughts on
how to improve the computationally efficiency of this model, both on the mathe-
matical framework, the geometry representation, the integration algorithm, the code
implementation, or any other aspect discussed in this manual.

8

4. Reference frames

4.1. World and body-fixed frames
Two right-handed frames of reference are used hereafter:

• World-frame (WF): (x, y, z)′

• Body-fixed frame (BF): (x̂, ŷ, ẑ)′

A given position point p in the three-dimensional (3D) space can be expressed (decomposed)
in either the WF or the BF, and denoted by the notation pWF or pBF, respectively.

The world-frame of reference (x, y, z)′ is inertial, with the origin at the still water level (SWL),
the x-axis positive in the direction of propagation of the wave, and the z-axis positive upwards,
as shown in Fig. 2. The body-fixed frame of reference (x̂, ŷ, ẑ)′ is not inertial, with the origin
fixed at the centre of gravity (CoG) of the body, with the z-axis pointing upwards along the axis
of the axisymmetric body, as shown in Fig. 3 for a generic axisymmetric body.

Figure 2: Inertial world-frame (WF)

The lateral surface of a generic axisymmetric geometry can be described by means of cylin-
drical coordinates. Note that the whole wetted surface of a floating axisymmetric buoy may
also need discs, which are more conveniently represented with polar coordinates. Please refer to
Sect. 5.1 for further details.

Using cylindrical coordinates, the axisymmetric geometry is defined by the revolution of a
generic function f(%), between %1 and %2, as shown in Fig. 4. Note that f(%) must be defined
so that the origin of the BF (i.e. the CoG) is at ẑ = % = 0.

Therefore, the parametrization of the axisymmetric geometry, in the BF, is shown in equa-
tion (1).


x̂(%, ϑ) = f(%) cosϑ
ŷ(%, ϑ) = f(%) sinϑ
ẑ(%, ϑ) = %

, ϑ ∈ [−π, π) ∧ % ∈ [%1, %2] (1)

The displacement of the CoG in WF coordinates is denoted by (xG, yG, zG)′WF. At rest, e.i.
(xG = 0, yG = 0, zG = 0)′WF, the relative position between the WF and the BF is shown in Fig. 5:

9

Figure 3: Non-inertial body-fixed frame (BF) for a generic axisymmetric body.

Figure 4: Generic profile of revolution in the BF.

the CoG (which is the origin of the BF) is, in the WF coordinates, at (0, 0, zCoG)′WF. It follows
that, at rest, a generic point in the BF coordinate is computed as:

At rest: pBF = pWF − (0, 0, zCoG)′ (2)

4.2. Translation and rotation
Figure 6 shows the body after a displacement (xG, yG, zG)′WF and a rotation (φ, θ, ψ)′. Note

that such rotations are considered about the three body-fixed axes and about the CoG. The 3-2-1
Euler rotation sequence is applied, commonplace in ocean engineering [11], with φ being the roll
angle around the x̂-axis, θ the pitch angle around the ŷ-axis, and ψ the yaw angle around the
ẑ-axis.

10

Figure 5: Relative position between frames WF and BF at rest.

Figure 6: Relative position between frames after displacement.

The 3-2-1 rotation matrix Rot is defined as follows:

Rot =

cψ −sψ 0
sψ cψ 0
0 0 1


 cθ 0 sθ

0 1 0
−sθ 0 cθ


1 0 0

0 cφ −sφ
0 sφ cφ

 (3)

Where c and s stand for cosine and sine, respectively. Note that Rot−1 = Rot′, where Rot−1

11

denotes the inverse of Rot.
Since rotations are defined around the CoG and about the body-fixed axes, the rotation matrix

Rot in (3) pre-multiplies the BF-position vector (x̂, ŷ, ẑ)′, applying a rotation around the origin
of the BF, which is also the CoG of the body. After the rotation, the axes of the two frames
are aligned, and the translation C = (xG, yG, zG + zCoG)′WF can be applied. Note that C is the
position of the CoG, in the WF coordinates, after displacement, hence also the relative position
of the two frames.

In the R3 space, rotation and translation are applied sequentially. Conversely, it is more
convenient to expand the space to R4, in order to apply rotation and translation with just one
matrix R:

R =


Rot C

0 0 0 1


(4)

It follows that the transformation from BF to WF is given by:


x
y
z
1

 = R


x̂
ŷ
ẑ
1

 (5)

Conversely, the transformation from WF to BF is given by:


x̂
ŷ
ẑ
1

 = R−1


x
y
z
1

 (6)

As a remark, note that, thanks to the particular structure or R, R−1 can be computed using
the block matrix inversion theorem, so that

R−1 =


Rot′ −Rot′C

0 0 0 1


(7)

12

Finally, note that the coordinates of one point are defined in a column vector. Consequently,
an array of n points can be formed by stacking n position vectors, hence defining a matrix
∈ R4×n. The whole array can be rotated by pre-multiplying the matrix R.

4.3. Intersection
The main advantage of the approach described in this manual is the ability to analytically

represent the instantaneous wetted surface, which implies the analytical definition of the inter-
section between the body-surface and an arbitrary function describing the free surface elevation
(η). In general, a 2D-wave is defined in the WF as a function of x and time (t), usually as a
superposition of harmonics (irregular wave):

η(x, t) =
Nω∑
i=1

ai cos (ωit+ ϕi − kix) (8)

where ai, ωi, ϕi, and ki are the wave amplitudes, frequencies, phases, and wave numbers,
respectively. Evidently, a regular wave is obtained in the limit case of Nω = 1. Note that
geometric considerations take place at a constant time instant t = t0; therefore, the explicit
time-dependence of η will be omitted hereafter.

As further discussed in Sect. 6, it is convenient to define the NLFK integrals in the BF, hence
requiring a mapping of the free surface elevation from the WF onto the BF (η̂). Therefore, with
reference to the cylindrical coordinates (%, ϑ), shown in (1), finding the intersection translates
into finding % = η̂(ϑ), i.e. a parametric representation of the free surface in the BF.

Let us define η and η̂ the free surface elevation in WF and BF, respectively. The wave surface
is defined, in 4D and in the WF, as:

Γ =


x
y

η(x)
1

 (9)

Consequently, according to (6), equation (9) in the BF becomes

Γ̂ = R−1Γ (10)

The intersection is found by equating % to the third line of Γ̂, i.e. % = (0, 0, 1, 0)R−1Γ.
However, Γ must be expressed as a function of the parametric variables % and ϑ, i.e. using
x = (1, 0, 0, 0)R(f(%) cosϑ, f(%) sinϑ, %, 1)′, and y = (0, 1, 0, 0)R(f(%) cosϑ, f(%) sinϑ, %, 1)′.
Finally, the intersection is the solution of the following equation:

% = (0, 0, 1, 0)R−1


(1, 0, 0, 0)R(f(%) cosϑ, f(%) sinϑ, %, 1)′
(0, 1, 0, 0)R(f(%) cosϑ, f(%) sinϑ, %, 1)′

η ((1, 0, 0, 0)R(f(%) cosϑ, f(%) sinϑ, %, 1)′)
1

 (11)

13

Using the properties of R, see (7), and using the notation R(i, j) = Rij, (11) simplifies to:

f(%) (cosϑ(R11R13 +R21R23) + sinϑ(R12R13 +R22R23)) +
%(R2

13 +R2
23 − 1) +R33(η(ϑ, %)− C(3))) = 0

(12)

The zeros of (11) represent the exact solution of the intersection between the body and the
free surface elevation, but a numerical solution to such a nonlinear problem is required.

However, it is reasonable to assume the free surface elevation to be either locally constant, or
with a linear dependence on x. In fact, in normal applications, the wave steepness is relatively low,
and the wavelength λ = 2π/k is much longer than the characteristic dimensions of the geometry.
If η is assumed constant, η(xG) can be used as a reasonable approximation. Alternatively, a linear
regression can be considered instead. Selecting an approximate range of x where the buoy is
located, a polynomial fit can be performed, so that the η ' p0x+p1. The solution for a constant
η is obtained for p0 = 0 and p1 = η(xG).

In order to algebraically compute an approximated intersection, it is also assumed that f(%)
is either constant or linear, resulting in a cylinder or a cone, respectively. Hereafter, the more
general solution for a cone is given, with f(%) = m% + q, which simplify in a cylinder when
m = 0. A solution with other f(%) may be achieved, but they are not common application cases,
since the vast majority of buoys, if not the totality, is composed of cones and cylinders.

Therefore, solving (12) with η ' p0x+p1 and f(%) = m%+q, it is found that the intersection
is given by:

% = R33(C(3)− p1 − p0C(1))− qh(ϑ)
R2

13 +R2
23 − 1 + p0R13R33 +mh(ϑ) (13)

where

h = cosϑ (R11 (R13 + p0R33) +R21R23) +
sinϑ (R12 (R13 + p0R33) +R22R23)

(14)

5. Integration

While Sect. 4 provides tools for transforming WF-coordinates to BF-coordinates, and vice
versa, this section provides the mathematical framework to compute 3D-surface integrals by
means of simpler 2D-integrals, taking advantage of the representation of the surface in a conve-
nient parametric space. As further discussed in Sect. 6, it is convenient to define integrals in the
BF.

A generic axisymmetric geometry with vertical axis is composed of a lateral surface and up
to two circular lids, one at the bottom and one at the top. The lateral surface can be described
through cylindrical coordinates, as in Sect. 5.1.1, while the lids through polar coordinates, as in
Sect. 5.1.2.

14

The geometry is described in the BF (x̂, ŷ, ẑ) ∈ R3, then parametrized in R2, either (%, ϑ)
or (r, ϑ), for cylindrical or polar coordinates, respectively. Let us assume a generic change of
coordinates R3 7→ R2 : (x̂, ŷ, ẑ) 7→ (u, v). Assume to have an integral I of a generic function
g(x̂, ŷ, ẑ) over a surface S:

I =
∫∫
S

g(x̂, ŷ, ẑ)dS (15)

In order to apply the change of coordinates (x̂, ŷ, ẑ) 7→ (u, v), ‖eu × ev‖ must be included:

I =
∫
u

∫
v

g(u, v)‖eu × ev‖ du dv (16)

where eu and ev are the unity vectors in the u and v direction, respectively:

eu =



∂x̂
∂u

∂ŷ
∂u

∂ẑ
∂u

 (17)

ev =



∂x̂
∂v

∂ŷ
∂v

∂ẑ
∂v

 (18)

5.1. Parametric representations
In the following subsections, cylindrical and polar coordinates are shown, along with their

unity vectors and the normal unity vector n, which is useful for some of the following integrals
in Sect. 5.2 and 6.

5.1.1. Cylindrical coordinates


x̂(%, ϑ) = f(%) cosϑ
ŷ(%, ϑ) = f(%) sinϑ
ẑ(%, ϑ) = %

, ϑ ∈ [−π, π) ∧ % ∈ [%1, %2] (19)

e% =

f(%)′ cosϑ
f(%)′ sinϑ

1

 (20)

15

eϑ =

−f(%) sinϑ
f(%) cosϑ

0

 (21)

e% × eϑ = f(%)

− cosϑ
− sinϑ
f(%)′

 (22)

‖e% × eϑ‖ = f(%)
√

1 + f(%)′2 (23)

Where f(%)′ = df(%)
d%

. Note that for a cone and a cylinder, f(%)′ is extremely simple, being
either constant or zero, respectively. Finally, using (20) to (23), it is also possible to compute
the unity vector normal to the surface, pointing inwards, as

n = e% × eϑ
‖e% × eϑ‖

= 1

���f(%)
√

1 + f(%)′2�
��f(%)

− cosϑ
− sinϑ
f(%)′

 = 1√
1 + f(%)′2

− cosϑ
− sinϑ
f(%)′

 (24)

From equations (15), (16), (23), and (24), it follows that:
∫∫
S

ndS =
∫
ϑ

∫
%

������‖e% × eϑ‖
e% × eϑ

������‖e% × eϑ‖
d% dϑ (25)

5.1.2. Polar coordinates


x̂(r, ϑ) = r cosϑ
ŷ(r, ϑ) = r sinϑ
ẑ(r, ϑ) = ẑ0

, ϑ ∈ [−π, π) ∧ r ∈ [0, R] , ẑ0 = const (26)

er × eϑ =

cosϑ
sinϑ

0

×
−r sinϑ
r cosϑ

0

 = r

0
0
1

 (27)

‖er × eϑ‖ = r (28)

n =

0
0
1

 (29)

Note that n should point inwards. In case of bottom and top discs, the top one will have the

opposite normal, i.e. nbot =

0
0
1

 and ntop =

 0
0
−1

.

16

5.2. Geometric properties
Representative integrals for some geometric properties of the body are hereafter proposed.

Most of the following quantities can be easily computed with common analytical solutions, which
are used in the toolbox as benchmarking to verify the correctness of the numerical implementation.

Note that for a cone and a cylinder, f(%)′ is extremely simple, being either constant or zero,
respectively. However, following equations are shown for the most general case. Hereafter, a
sample geometry with one lateral surface and two discs, one at the bottom and one at the top,
is considered.

5.2.1. Surface
The total surface S is composed of the lateral surface SL plus the bottom (Sbot) and top

(Stop) discs. Lets assume the R1 and R2 the radius of the bottom and top discs, respectively.
Note that R1 = f(ρ1) and R2 = f(ρ2). The area of the discs is just the area or a circle. In fact,
for the bottom disc, for example:

Sbot =
∫∫
Sbot

dS =
∫
ϑ

∫
r

‖eϑ × er‖ dϑ dr =
π∫
−π

R1∫
0

r dϑ dr = πR2
1 (30)

For the lateral surface, only the cylindrical part is considered.

SL =
∫∫
SL

dS =
∫
ϑ

∫
%

‖eϑ × e%‖ dϑ d% =
∫
ϑ

∫
%

f(%)
√

1 + f(%)′2 dϑ d% (31)

5.2.2. Volume
For computing the volume enclosed by S, the integral must be split into SL, Sbot and Stop.

The volume equivalently can be computed along three directions, i.e. V = Vx̂ = Vŷ = Vẑ:

V = −
∫∫
S

n1x̂ dS = −
∫∫
S

n2ŷ dS = −
∫∫
S

n3ẑ dS (32)

where n =

n1
n2
n3

.

For the discs, as shown in (29), n1 and n2 are null, while in the vertical direction nẑ,bot = 1,
and nẑ,top = −1. It follows that, according to (25):

Vx̂ = Vx̂,L + Vx̂,bot + Vx̂,top = Vx̂,L + 0 + 0 (33a)

Vx̂,L = −
∫
ϑ

∫
%

(eϑ × e%)x̂ x̂(%, ϑ) d% dϑ = −
π∫
−π

%2∫
%1

−f(%)2 cos2 ϑ d% dϑ (33b)

17

Similarly,

Vŷ = Vŷ,L = −
π∫
−π

%2∫
%1

−f(%)2 sin2 ϑ d% dϑ (34)

Finally,

Vẑ = Vẑ,L + Vẑ,bot + Vẑ,top (35a)

Vẑ,L = −
π∫
−π

%2∫
%1

%f(%)f(%)′ d% dϑ (35b)

Vẑ,bot = −
π∫
−π

R1∫
0

r%1 dr dϑ = −πR2
1%1 (35c)

Vẑ,top = −
π∫
−π

R2∫
0

−r%2 dr dϑ = πR2
2%2 (35d)

5.2.3. Centre of buoyancy
The centre of buoyancy CoB = (x̂B, ŷB, ẑB) is the centre of gravity of the displaced mass of

fluid. Therefore, only the submerged part of the body is considered. In particular, the integration
limits for the centre of buoyancy are [%1, %0], assuming %0 as the body-frame vertical coordinate
of the still water level.

Similar to Sect. 5.2.2, the geometry must be decomposed in lateral, bottom, and top surfaces.
The integral to solve are similar to (32):

x̂G = − 1
2V

∫∫
S

n1x̂
2 dS (36a)

ŷG = − 1
2V

∫∫
S

n2ŷ
2 dS (36b)

ẑG = − 1
2V

∫∫
S

n3ẑ
2 dS (36c)

Since the body is axisymmetric, x̂G and ŷG are null. The resulting integral for ẑG is:

ẑG = − 1
2V

 π∫
−π

%0∫
%1

%2f(%)f(%)′ d% dϑ+ πR2
1%

2
1 − πR2

2%
2
0

 (37)

18

6. Nonlinear Froude-Krylov force

The mathematical framework developed in Sect. 4 and 5 is now used to compute NLKF
forces in 6-DoFs, which are the result of the gravity force and the integral of the undisturbed
pressure field (static and dynamic) over the instantaneous wetted surface. The pressure field (p)
is defined, in the WF, according to Airy’s theory, with the application of Wheeler stretching [10],
as:

p(x, z, t) = pst + pdy = −ρgz + ρga cos (ωt− kx) cosh (k (z′ + h))
cosh(kh) (38)

where

• t is the time

• (x, y, z) is the inertial world frame coordinates, with the origin at the still water level, z
pointing upwards, x pointing in the direction of wave propagation

• pst and pdy are the static and dynamic pressure, respectively

• ρ is the sea water density

• g is the acceleration of gravity

• a is the wave amplitude

• ω = 2π
T

is the wave frequency, and T the wave amplitude

• k = 2π
λ

is the wave number, and λ the wave length

• h is the water depth

• z′ is the change of coordinates required by Wheeler stretching in order to eliminate the
free surface boundary condition error: z′ = h z+h

η+h − h, where η is an approximation of the
free surface, computed at the centre of gravity (xG).

Note that z′ + h = h z+h
η+h , so that cosh(k(z′+h))

cosh(kh) = cosh(kh z+h
η+h)

cosh(kh) .
In infinite water depth conditions, z′ → (z − η), and cosh(k(z′+h))

cosh(kh) → exp(k(z − η)).
The static FK force is then defined as:

FFKst = Fg +
∫∫
Sw

pstn dS (39)

where Fg = (0, 0,−mg)′ is the gravity force, with m the mass of the body, Sw the instanta-
neous wetted surface, and n the unity vector normal to the surface.

19

The dynamic FK force is similarly defined as:

FFKdy =
∫∫
Sw

pdyn dS (40)

Static and dynamic FK torques are defined as:

TFKst = rg × Fg +
∫∫
Sw

pst (r× n) dS (41)

TFKdy =
∫∫
Sw

pdy (r× n) dS (42)

where r is the generic position vector, and rg is the position vector of the centre of gravity.
Since it is advisable to write the equation of motion in the body-fixed frame (in order to have

a constant inertial matrix), the NLFK forces are computed in the BF too. On the other hand,
the free surface elevation and the pressure field are defined with respect to the WF. Therefore,
two alternative options are available:

a) compute the integrals in the WF, then rotate the forces in the BF;

b) map η and p onto the BF and compute the integrals directly in the BF.

[7] shows that option b) is both simpler and computationally more efficient. The pressure
field is mapped onto the body frame, by means of the 4D rotation matrix R, as shown in (5):


x
y
z
1

 = R


x̂(%, ϑ)
ŷ(%, ϑ)
ẑ(%, ϑ)

1

 (43)

Finally, the upper limit of integration (%2) should be computed as explained in Sect. 4.3.
Recalling the results provided in Sect. 5, here there are ndS and (r× n) dS, after the change

or coordinate transformation, in polar and cylindrical coordinates:

X Polar

•

r =


x̂(r, ϑ) = r cosϑ
ŷ(r, ϑ) = r sinϑ
ẑ(r, ϑ) = ẑ0

, ϑ ∈ [−π, π) ∧ r ∈ [0, R] , ẑ0 = const (44)

20

•

ndS = er × eϑ = r

0
0
1

 (45)

•

(r× n) dS = r× (er × eϑ) = r2

 sinϑ
− cosϑ

0

 (46)

X Cylindrical

•

r =


x̂(%, ϑ) = f(%) cosϑ
ŷ(%, ϑ) = f(%) sinϑ
ẑ(%, ϑ) = %

, ϑ ∈ [−π, π) ∧ % ∈ [%1, %2] (47)

•

ndS = e% × eϑ = f(%)

− cosϑ
− sinϑ
f(%)′

 (48)

•

(r× n) dS = r× (e% × eϑ) =

 f(%) sinϑ (f(%)f(%)′ + %)
−f(%) cosϑ (f(%)f(%)′ + %)

0

 (49)

6.1. Validation in linear conditions
As in Sect. 5.2, it is convenient to use a known benchmark to validate the modelling approach

and verify the correctness of implementation. One easy and reliable approach is to compute
NLFK forces in linear conditions and compare the results with linear solutions. Extremely linear
conditions can be used to ensure the linearity of the solution:

• linear conditions for FFKst and TFKst : very small displacements and no incoming wave.

• linear conditions for FFKdy and TFKdy : zero displacement and very small incoming wave.

21

6.1.1. Hydrostatic stiffness
An infinitesimal displacement δd causes a change in the static FK force and torque δf .

The linear hydrostatic stiffness is defined as the ratio between δf and δd. NLFK forces can be
computed before and after δd, so that the linear hydrostatic stiffness coefficient can be computed
and compared to the known algebraic solutions.

The hydrostatic stiffness Kh is a 6x6 matrix; for vertical axisymmetric geometries, the centre
of buoyancy and the centre of gravity is on the axis, so that off-diagonal terms of the Kh are
zeros. Finally, the only non-zero elements are Kh(3, 3), Kh(4, 4), and Kh(5, 5).

Let ρ and g be the sea water density and the acceleration of gravity, respectively. Assuming
the geometry in equilibrium, the mass m of the body is equal to the mass of the displaced volume
of fluid, i.e. m = ρVsub.

Algebraic results for axisymmetric devices are available [11]:
• Kh(3, 3) = ρgAWP

• Kh(4, 4) = Kh(5, 5) = ρg
(
IWP − VsubBG

)
where AWP is the water plane area, IWP is the geometric moment of inertia of the water

plane area, and BG is the distance between the centres of gravity and buoyancy.
The coefficients of Kh can also be computed through integration [11]:
• The heave stiffness is computed as:

Kh(3, 3) = ρg
∫∫
Sw

n3 dS = ρg

π∫
−π

%0∫
%1

f(%)f(%)′ d% dϑ+ ρgπR2
1 (50)

Note that (50) is equivalent to ρgπR2
0 = ρgAWP .

• Let us verify that Kh(3, 4) = 0:

Kh(3, 4) =ρg
∫∫
Sw

ŷn3 dS =

ρg

π∫
−π

%0∫
%1

f(%)2f(%)′ sinϑ d% dϑ+ ρg

π∫
−π

R1∫
0

r2 sinϑ dr dϑ = 0 + 0
(51)

Likewise, K(3, 5) = −ρg
∫∫

Sw
x̂n3 dS = 0.

• The roll stiffness is computed as:

Kh(4, 4) =ρg
∫∫
Sw

ŷ2n3 dS + ρgVsubẑB −mgẑG =

ρg

π∫
−π

%0∫
%1

f(%)3f(%)′ sin2 ϑ d% dϑ+ ρgπ
R4

1
4 + ρgVsubẑB −mgẑG

(52)

22

• Likewise, the pitch stiffness, which for an axisymmetric geometry is the same as the roll
stiffness, is computed as:

Kh(5, 5) =ρg
∫∫
Sw

x̂2n3 dS + ρgVsubẑB −mgẑG =

ρg

π∫
−π

%0∫
%1

f(%)3f(%)′ cos2 ϑ d% dϑ+ ρgπ
R4

1
4 + ρgVsubẑB −mgẑG

(53)

• The coupled roll-pitch stiffness, is computed as:

Kh(4, 5) =ρg
∫∫
Sw

x̂ŷn3 dS =

ρg

π∫
−π

%0∫
%1

f(%)3f(%)′ sinϑ cosϑ d% dϑ+ ρg

π∫
−π

R1∫
0

r3 sinϑ cosϑ dr dϑ = 0 + 0

(54)

6.1.2. Dynamic Froude-Krylov force
Forcing zero displacement of the floater, a set of regular waves can be sent, and the relative

amplitude and phase difference with respect to the incoming wave can be computed. If the waves
are very small, the results must overlap with the output from any Boundary Element Method
(BEM) software, like Nemoh. Figure 7 shows an example of validation of computation of NLFK
in surge for a cylinder of 2m radius, 5m radius, using waves of 0.006m amplitude.

Acknowledgement

This work has received funding from the European Research Council under the Horizon 2020
Programme (H2020-MSCA-IF-2018)/ grant agreement no 832140.

References
[1] G. Giorgi, Nonlinear Froude-Krylov Matlab demonstration toolbox, doi:10.5281/zenodo.3517130, 2019.
[2] C. Commons, CCBYSA, URL https://creativecommons.org/licenses/by-sa/4.0/legalcode, 2019.
[3] G. Giorgi, J. V. Ringwood, Nonlinear Froude-Krylov and viscous drag representations for wave energy convert-

ers in the computation/fidelity continuum, Ocean Engineering 141 (April) (2017) 164–175, ISSN 00298018,
doi:10.1016/j.oceaneng.2017.06.030.

[4] M. Penalba, G. Giorgi, J. V. Ringwood, Mathematical modelling of wave energy converters: a review of
nonlinear approaches, Renewable and Sustainable Energy Reviews 78 (2017) 1188–1207, doi:10.1016/j.rser.
2016.11.137.

[5] G. Giorgi, J. V. Ringwood, Comparing nonlinear hydrodynamic forces in heaving point absorbers and os-
cillating wave surge converters, Journal of Ocean Engineering and Marine Energy 4 (1) (2018) 25–35,
doi:https://doi.org/10.1007/s40722-017-0098-2.

23

http://dx.doi.org/10.5281/zenodo.3517130
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://dx.doi.org/10.1016/j.oceaneng.2017.06.030
http://dx.doi.org/10.1016/j.rser.2016.11.137
http://dx.doi.org/10.1016/j.rser.2016.11.137
http://dx.doi.org/https://doi.org/10.1007/s40722-017-0098-2

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
·105

ω[rad/s]

|F
F
K
|[N

]

Surge

Nemoh
NLFK

0 1 2 3 4 5 6 7 8
−100

−50

0

50

100

ω[rad/s]

6
F
F
K
[◦
]

Figure 7: Example of validation of nonlinear Froude-Krylov force in surge for a cylinder.

[6] J.-C. Gilloteaux, Simulation de mouvements de grande amplitude. Application {à} la r{é}cup{é}ration de
l’{é}nergie des vagues. .

[7] G. Giorgi, J. V. Ringwood, Analytical representation of nonlinear Froude-Krylov forces for 3-DoF point
absorbing wave energy devices, Ocean Engineering 164 (2018) (2018) 749–759, doi:10.1016/j.oceaneng.
2018.07.020.

[8] G. Giorgi, J. V. Ringwood, A Compact 6-DoF Nonlinear Wave Energy Device Model for Power Assessment
and Control Investigations, IEEE Transactions on Sustainable Energy doi:10.1109/TSTE.2018.2826578.

[9] G. Giorgi, J. V. Ringwood, Articulating parametric resonance for an OWC spar buoy in regular and irregular
waves, Journal of Ocean Engineering and Marine Energy 4 (4) (2018) 311–322, ISSN 21986452, doi:
10.1007/s40722-018-0124-z.

[10] G. Giorgi, J. V. Ringwood, Relevance of pressure field accuracy for nonlinear Froude–Krylov force calculations
for wave energy devices, Journal of Ocean Engineering and Marine Energy 4 (1) (2018) 57–71, ISSN
21986452, doi:10.1007/s40722-017-0107-5.

[11] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control, John Wiley & Sons, 2011.
[12] M. Penalba, T. E. Kelly, J. V. Ringwood, Using NEMOH for Modelling Wave Energy Converters : A

Comparative Study with WAMIT, Proceedings of the 12th European Wave and Tidal Energy Conference .

24

http://dx.doi.org/10.1016/j.oceaneng.2018.07.020
http://dx.doi.org/10.1016/j.oceaneng.2018.07.020
http://dx.doi.org/10.1109/TSTE.2018.2826578
http://dx.doi.org/10.1007/s40722-018-0124-z
http://dx.doi.org/10.1007/s40722-018-0124-z
http://dx.doi.org/10.1007/s40722-017-0107-5

	Overview
	Matlab demonstration toolbox
	RUN_defineNLFKgeom
	FUN_defineNLFKgeom
	FUN_plot3D
	FUN_computeBodyProperties and hydrostatic stiffness

	RUN_checkNLFK

	Computational time
	Reference frames
	World and body-fixed frames
	Translation and rotation
	Intersection

	Integration
	Parametric representations
	Cylindrical coordinates
	Polar coordinates

	Geometric properties
	Surface
	Volume
	Centre of buoyancy

	Nonlinear Froude-Krylov force
	Validation in linear conditions
	Hydrostatic stiffness
	Dynamic Froude-Krylov force

