AC loss in the distributed stator winding of a 1 MW motor for aviation

E Pardo, S Li

F Grilli, Y Liu, T Benkel

S Wolfstaedler, E Berberich, T Reis

The European Union wants to reduce emissions Drastic reductions need drastic improvements

Reduction possible by hybrid distributed propulsion

Superconducting motor

Full superconducting motor

Superconducting stator

Superconducting magnets or coils

AC loss in the distributed stator winding of a 1 MW motor for aviation

E Pardo, S Li

F Grilli, Y Liu, T Benkel

S Wolfstaedler, E Berberich, T Reis

Advanced Superconductor Motor Demonstrator (ASuMED)

Horizon 2020 project funded by the European Commission

Distributed winding

Combined numerical method

AC loss results

Novel modelling approach

Combined numerical method

AC loss results

Novel modelling approach

Conventional static Finite Element Method

Current density assumed uniform in coils

$$\nabla \times (\nabla \times \mathbf{A}) = \mu \mathbf{J}$$
$$\mathbf{B} = \nabla \times \mathbf{A}$$

We need another method to calulate AC loss in superconductor

Superconductor resistivity is highly non-linear

Minimum Electro Magnetic Entropy Production (MEMEP)

Funded by the European Commission Grant No 723119

Solving the equations

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi \qquad \nabla \cdot \mathbf{J} = 0$$

is the same as minimizing the functional

Funded by the European Commission Grant No 723119

FEM calculates background vector potential

Assumed uniform **J** in superconductor

MEMEP calculates non-uniform **J** and AC loss

Fast method Ideal to optimize the superconductor windings

Combined model agrees with FEM in TA formulation

T Benkel et al., Wednesday presentation

Combined numerical method

AC loss results Effect of coupling

Temperature and field dependence

Novel modelling approach

Base cross-section: 3-tape conductor

Funded by the European Commission Grant No 723119

Coupled at ends is the same as uncoupled

symmetric magnetic flux density causes self-transposition

Increasing number of tapes in conductor reduces AC loss

10³

tape I_c [A]

Enric Pardo, EUCAS 2019, Glasgow

10²

Combined numerical method

AC loss results

Effect of coupling

Temperature and field dependence

Novel modelling approach

Measured Jc(B,T) dependence

Funded by the European Commission Grant No 723119

J_c(B) measured at several temperatures at KIT We interpolate J_c(B) for intermediate temperatures. 4 mm wide SuperOx tape Enric Pardo, EUCAS 2019, Glasgow

Current density at a particular time step

Narrower tapes decrease AC loss

Narrower tapes

with the same J_c

are very interesting!

Funded by the European Commission Grant No 723119

Combined numerical method

AC loss results

Novel modelling approach

MEMEP also takes ferromagnetic materials into account

We solve

J in the superconductor **M** vector in the magnetic material

No need to solve quantities in the air

Easy to make rotation

All interactions taken into account

Details in HTS modelling workshop 2018 10.5281/zenodo.1477840

Enric Pardo, EUCAS 2019, Glasgow

Funded by the European Commission Grant No 723119

Superconductor

Non-linear eddy currents in superconductor

Enric Pardo, EUCAS 2019, Glasgow

Magnetization in iron and magnets

1.5

1

0.5

0

μ₀ M_r [T]

Angular component: $m_0 M_0$ [T]

Radial component: m₀M_r[T]

Conclusion

We modelled AC loss in a distributed stator winding

Combined model with commercial methods and in-house methods

Also full in-house method: MEMEP

In distributed stator windings you do not need to transpose multi-tape conductors

Narrower tapes of the same J_c decrease AC loss

We can also model

Superconducting rotor made of

Stacks of tapes Bulks Coils

Full superconducting motor

Thank you for your attention!

Would you like to know more?

enric.pardo@savba.sk

Coupled at ends is the same as uncoupled

No need to transpose the cable!

What happens if there are imperfections in the winding?

Funded by the European Commission Grant No 723119

Reason:

symmetric magnetic flux density causes self-transposition

AC loss is not sensitive to stator coil imperfections

We change the bore size of one coil

Up to 1 mm error in bore size does not have impact

Case of 3-tape conductor with no load