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Abstract The underground disposal of high-level nuclear waste is a pressing issue for several
countries. In Switzerland, the Opalinus Clay formation is a shale with favorable barrier properties.
However, small-to-large faults intersecting the formation bring the long-term integrity of the future
repositories into question. Here we present the first systematic laboratory study on the frictional strength,
stability, dilatancy, and permeability of simulated Opalinus Clay gouge under typical repository conditions.
Wet gouges exhibit an extremely low coefficient of friction (ug~0.16), velocity-strengthening behavior,

and shear-enhanced dilatancy at the onset of slip, and permeability increase. Conversely, dry gouges remain
weak (ug~0.36) but exhibit a transition from unstable to stable sliding with increasing sliding velocity. Thus,
we infer that faults hosted in Opalinus Clay could be easily reactivated via aseismic creep, possibly acting
as poor fluid conduits. However, if temporarily dried, the faults become potentially unstable, at least, at low
sliding velocities (<~10 um/s).

Plain Language Summary In Switzerland, the Opalinus Clay formation is a shale under study as
a host-rock for deep underground nuclear waste storage. The Opalinus Clay formation has favorable barrier
properties, yet small-to-large faults intersecting the formations bring the long-term integrity of the future
repositories into question. In particular, induced seismicity and the creation of preferential fluid paths are of
concern. Here we present the first systematic laboratory study addressing those issues. Experiments show
that under representative conditions for deep nuclear waste storage, faults exhibit extremely low frictional
strength and they show stable fault slip behavior. Moreover, at the onset of slip, dilatancy and permeability
increase are observed. Hence, we infer that faults hosted in Opalinus Clay formation could be easily
reactivated without generating earthquakes, but possibly acting as weak fluid conduits. However, if faults
temporarily dried, they could become potentially unstable, a scenario that anyway will not produce

large earthquakes.

1. Introduction

Deep geological repositories (DGR) are the most promising solution for the long-term confinement and iso-
lation of high-level nuclear waste (Tsang et al., 2015). In Switzerland, the concept for DGR is developed at
the Mont Terri Laboratory (MTL), an underground research facility that runs site characterization and test-
ing activities in the Opalinus Clay (OPA) formation (Nussbaum et al., 2011). The OPA formation corre-
sponds to an indurated, hydromechanically anisotropic shale that has favorable transport (e.g., low
permeability) and geochemical barrier properties for the retention of radionuclides (Bossart et al., 2017).

At the MTL, small-to-large tectonic fault systems intersect the OPA formation. For instance, the “Main
Fault” (MF), a 1.0- to 4.2-m-thick thrust fault, crosscuts the MTL at a depth of ~300 m (Figure 1a). Within
the limits of the MF, various structural elements are recognizable such as fractures, secondary shear planes,
scaly clays, and fault gouge (Nussbaum et al., 2011). While there will not be any disposal of radioactive waste
at the MTL, the presence of faults within the OPA formation poses questions about the final site regions.
Indeed, faults have the potential to damage the underground infrastructure (e.g., via sudden fault slip
events) and to allow the migration of stored radionuclides (e.g., as permeable drainage paths; Tsang et al.,
2015; Wang et al., 2001; Figure 1b).

Recent in situ fluid-injection experiments at the MTL activated the MF, resulting in limited displacement
accompanied by a sequence of seismic events within the fault zone (Guglielmi et al., 2017; Jeanne et al.,
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Figure 1. (a) Cross section of the OPA formation showing the location of the MTL and the MF crosscutting the laboratory. Inlet shows the site of the MTL in the
northern part of Switzerland. (b) A schematic representation of DGR risks (modified from Rutqvist et al. (2014)) including potential seismicity and creation of

permeable drainage paths.

2017, 2018). Moreover, permeability measurements coupled with fault displacement in the same
experiments revealed a permeability increase associated with shear-enhanced dilatancy.

Furthermore, during the operation of the DGR, heating generated from high-level nuclear waste can affect
the host-rock and adjacent fault systems. Indeed, temperature can exceed 50-70 °C for long periods of times
(~10,000 years) in the surroundings (~10 m) of the heating source (Heierli & Genoni, 2017; Yang & Yeh,
2009), leading to temperature gradients and dehydration processes (Buscheck et al., 2002), which will tend
to dry the rock, create pore overpressures, and change the natural permeability of the host-rock (Tsang
et al., 2012).

Despite recent efforts, how the evolution of fault slip on preexisting faults in the OPA formation (seismic or
aseismic) and how fault permeability changes during shear deformation (enhancement or destruction) still
are not well understood, yet they are crucial to the long-term integrity of the repositories. Thus, further
investigations of the frictional properties, shear-enhanced dilatancy, and the couplings governing slip
stability in OPA fault arrays are still needed.

Frictional properties of OPA have been recently studied (Fang et al., 2017, 2018; Orellana et al., 2018b) in the
context of rate-and-state theory (Dieterich, 1978; Ruina, 1983). However, these laboratory studies were run
in partially saturated conditions or with limited normal stress range. Nevertheless, they have shown a signif-
icant frictional weakness relative to framework silicates and carbonates (Byerlee, 1978) and, at slip velocities
(<1 mm/s), velocity-strengthening behavior, that is, aseismic, similar to other clay-rich rocks (e.g., Behnsen
& Faulkner, 2012; Ikari et al., 2009; Saffer & Marone, 2003).

Laboratory tests have shown that once fault slip on preexisting faults in shales occurs, fault permeability can
be either depleted or enhanced. Permeability might decrease thank to shear-enhanced compaction
(Crawford et al., 2008), swelling of clays (Cuss et al., 2011; Fang et al., 2017, 2018), and clay-fabric develop-
ment (Ikari et al., 2009). Conversely, permeability might increase due to deformation-induced dilatancy
when sheared at low to moderate effective stresses (Im et al., 2018; Lefevre et al., 2016; Wu et al., 2017;
Zhang & Cox, 2000).

The strategy of this study includes frictional sliding experiments in a triaxial saw-cut configuration at differ-
ent effective normal stresses which are representative of future in situ conditions. We have run tests at
sliding velocities and saturation conditions (dry and wet) that have not been previously tested. Dry and
wet conditions represent end-member environments of the operation of DGR. Further, we examine
dilatancy and compaction behavior via volumetric pore fluid changes in the gouge layer, and we measure
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permeability before and after shearing. Here we attempt to quantify the frictional strength, stability,
dilatancy, and permeability variations of the OPA formation and its implications for the DGR concept in
clay-rich formations.

2. Methods

We have used simulated fault gouge samples that were prepared from nondeformed OPA. Samples were
crushed and then sieved to ensure average and maximum grain sizes of 7.0 and 125 um, respectively.
The mineral composition of the simulated OPA fault gouge consists of phyllosilicates (~51%), quartz
(~23%), and calcite (~14%). Among the phyllosilicates, kaolinite, mica, and chlorite are the main compo-
nents comprising ~28%, ~10%, and ~9% of the total weight content, respectively (Table 1a in the supporting
information). Both composition and grain sizes are representative of natural fault gouge (Orellana
et al., 2018b).

We performed frictional tests using a triaxial deformation apparatus with a servo-controlled axial system,
and fluid pressure pumps. The tests were conducted on an ~1.0-mm-thick gouge layer using a saw-cut con-
figuration. The experimental assembly consists of two cylindrical stainless-steel pistons of 38 mm in dia-
meter cut along a plane inclined 30° to the cylindrical axis with a surface roughness of 12.5 um. At each
end of the piston assembly, a high-permeability (10~'* m?) sintered porous stainless-steel filter of 3.8 mm
in diameter was placed to allow fluid flow through the sample (Figure 2a).

Samples were first dried for 48 hr at 50°. In this way, while some small fraction of water could still be present,
in this study 1), we replicate dry conditions similar to those expected during the operation of the nuclear
waste repository (Heierli & Genoni, 2017; Yang & Yeh, 2009) and 2) we have ensured that any thermal
damage to the mineral grains was avoided (Rutter & Mecklenburgh, 2018). For wet experiments, 5 g of dried
powdered OPA was mixed with ~2.5 mL of deionized water to make a paste (Lockner et al., 2011; Tembe
et al., 2010). The sample was then spread onto the saw-cut surface of the lower piston and sandwiched by
the upper stainless-steel piston. The assembly could sit for at least 48 hr, as pore volumes and pressures equi-
librated to ensure fully saturated conditions.

We ran the experiments at room temperature, and at different constant effective normal stress ranging
from 4 to 20 MPa. Pore pressure, if present, was fixed to 10 MPa. Each experiment followed a common
displacement history (Figure 2b). The initial axial loading rate for the first 2.0 mm was 1 pum/s, that is,
a sliding velocity of 1.14 um/s and a strain rate of y ~ 0.001 s™* along the fault. After 2.0 mm of axial
displacement, the samples were subjected to a sequence of increasing axial velocity steps: 0.01-0.1,
0.1-1, and 1-10 um/s for 0.2 mm each. These rates were slow enough to ensure controlled pore fluid pres-
sures (Faulkner et al., 2018; Morrow et al., 2017). However, localization within clay-rich shear planes dur-
ing deformation and the inherent low permeability of the material can generate very local fluid
overpressures and nondrained conditions in the surroundings of the shear planes that are impossible
to control.

Friction (u) was calculated as

T T
’u_cn’_crn—Pp

@

where 7 corresponds to the shear strength parallel to the fault, o, is the normal stress, Pp is the pore pressure,
and o, is the effective normal stress. Shear strength (7) was corrected for the decreasing contact area with
slip. Friction (u) values were obtained at 2 mm of axial displacement, before velocity steps started
(Figure 2b). At low gy, friction is overestimated if the inherent shear strength or equivalent cohesion (S,)
is not considered (Jaeger et al., 2007). Thus, we have calculated the coefficient of friction (i) and S, as the
best fit to the tangent of the T — g, curve as

-5, =S,
= -0 2
M o onPp @)

The values of u and uyare related as
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Figure 2. Experimental setup, frictional tests, and quantification of frictional properties. (a) Saw-cut and pore pressure
pump configuration. (b) Typical shear curves for wet and dry tests. Run-in velocity is of 1 um/s. (c) Model inversion of
the experimental data with slip law resulting in rate-and-state values of a and b. (d) Stress drop and recurrence time of the
stick-slip events.
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To understand fault stability, we modeled each velocity step using the empirical Ruina's slip-dependent
evolution law (Ruina, 1983), through a least squares numerical fitting routine (Noda & Shimamoto, 2009).
The frictional rate parameters a and b describe the dependence of friction on sliding velocity as

Apgs
In (VLJ

where Aug is the change in the steady state friction upon an immediate change in sliding velocity from V,,
to V (Scholz, 2002). When (a — b) > 0 fault slip occurs in a stable manner, that is, velocity-strengthening
behavior. If (a — b) < 0 fault slip will potentially develop in an unstable fashion, that is, velocity-weakening
behavior (Jaeger et al., 2007; Figure 2c). When necessary, we removed the long-term strain hardening
reflected in linear strengthening, assuming that the strengthening is independent of the velocity depen-
dence of friction (Samuelson et al., 2009). When stick-slip behavior occurs, magnitudes of (a — b) cannot
be directly computed. Thus, we have inferred velocity-weakening and calculated average stress drops (Ar;
Figure 2d).

a—b=

“4)

We carried out fault-parallel permeability measurements before (k; ,/) and after (k;, ,,) shearing using the
pore pressure oscillation method (Bernabé et al., 2006; Faulkner & Rutter, 2000). We also monitored the evo-
lution of pore volumes while keeping Pp constant to evaluate potential shear-enhanced compaction or dila-
tancy of the samples (Behnsen & Faulkner, 2012; French et al., 2015). For more details on the experimental
methods, please refer to the supporting information.

3. Results

At 1.14-pum/s sliding velocity, our results show u values ranging from 0.18 to 0.32 for wet samples, and 0.33 to
0.45 for dry samples (Figure 3a). Wet and dry friction decreases with increasing o’,, (Figure 3a). Cohesion is
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Figure 3. Frictional results. (a) Friction at 2-mm axial displacement and (b) shear stress versus effective normal stress
for wet and dry samples. For comparison, we have included the Byerlee's law and previous results of frictional experi-
ments carried out at 100% room humidity condition (Orellana et al., 2018b). Frictional parameter versus axial velocity for
(c) wet and (d) dry samples. (e) Stress drops for selected experiments (t015, t005, t018, t023).

then estimated, giving ur = 0.16 and S,= 0.67 MPa for wet samples, and u; = 0.36 and S,= 0.22 for dry
samples (Figure 3b).

Regarding fault stability, wet experiments show a consistent velocity-strengthening behavior with values
of (a — b) between 0.002 and 0.013 at all up-step velocities (Figure 3c). Dry experiments undergo a tran-
sition from unstable behavior, that is, stick-slip, to stable behavior above slip rates of 10 um/s, with
(a — b) values between 0.001 and 0.008 (Figure 3d). When stick-slip occur, we record more than 50
events, with recurrence times up to 145 s and average At ranging from 0.05 to 0.56 MPa (Figure 3e).
At low o, and slow sliding velocities, stick-slip events have systematically smaller At and are less regular
than their higher o,, counterparts. For example, at the same axial velocity of 0.01 um/s, the average At is
0.20 at 0’,, = 4 MPa, while 0.33 at 20 MPa. Finally, At amplitudes decrease when increasing velocity for
all tests.

In our tests, permeability increases from k; ;= 2.02 X 107 to kf, ;;=271%x 10~%° when samples are sheared
at o', = 4 MPa, and from 6.15 x 10™** to 1.78 x 10~2° when ¢’,, = 20 MPa (Figure 4a). These measurements
indicate that after shearing, permeability increases by a factor of ~3 and reaches values of ~10"%° m?. The
pore volume evolution during shearing suggests dilatancy during the first ~1.0-1.5 mm of axial displacement
followed by a slight compaction and/or a steady state porosity until 2 mm of axial displacement is reached
(Figure 4b). Once the velocity step sequence starts, dilatancy or compaction occurs depending on the velocity
history and o’,,.
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4. Discussion
4.1. Frictional Strength

Clays exert a remarkably strong control in reducing the frictional strength of fault rocks in particular
when the clay content is higher than ~15-30% (Logan & Rauenzahn, 1987; Morrow et al., 2017; Saffer
& Marone, 2003). The presence of large amounts of clays in our samples (~50%) is sufficient to explain
the overall strength reduction of the simulated fault gouge with respect to the Byerlee's law (4 = 0.85;
Byerlee, 1978), and is also consistent with previous studies on clay-rich materials (uy = 0.2 — 0.6; e.g.,
Behnsen & Faulkner, 2012; Ikari et al., 2007, 2009; Kohli & Zoback, 2013; Morrow et al., 2000; Saffer &
Marone, 2003; Scuderi & Collettini, 2018).

The frictional strength (1) of OPA (equations (2) and (3) and Figure 3a) appears strongly dependent on
whether the sample is dry or wet for the full range of ¢’,, tested (Ikari et al., 2007; Morrow et al., 2017).
We show that dry samples are weak ( uy~ 0.36) and are weaker (us~ 0.16) when wet. The strong weakening
enhanced by the presence of water may be, in addition to realignment of clay minerals and shear localization
(Logan & Chester, 1987; Numelin et al., 2007; Saffer et al., 2001), to the lubrication effect of water films
within the clay-rich shear planes, as inferred by previous studies (e.g., Ikari et al., 2007; Moore & Lockner,
2004, 2007; Morrow et al., 2000).

Previous frictional experiments performed on OPA gouge at 100% relative humidity, that is, partially satu-
rated condition (Orellana et al., 2018b), exhibited uy values between the results of this study (Figure 3b),
which were higher than our values of wet friction, that is, (s we: < Uy, rRE100% < M7, dr- Taken together, our
results highlight the strong effect of water on the frictional weakness of faults hosting OPA, suggesting that
small pore fluid or stress field perturbations could result in their activation.

4.2. Frictional Stability

Previous work on OPA gouge samples has shown velocity-strengthening behavior (Fang et al., 2017, 2018;
Orellana et al., 2018b). Our wet sample data are consistent with those studies, and also with others on
clay-rich samples (e.g., Ikari et al., 2009; Morrow et al., 2017; Tembe et al., 2010). Interestingly, within the
same range of low ¢’,, our dry gouges exhibit stick slips behavior (inferred to be a manifestation of
velocity-weakening friction) at slow velocities (<10 um/s) and shift to velocity-strengthening when increas-
ing sliding velocity (>10 um/s). Few examples in the literature indicate that clay-rich materials are velocity-
weakening at slow velocities (<20 um/s). Unstable slip behavior has been observed (1) when clay content is
less than 30% (Kohli & Zoback, 2013), (2) under dry conditions and low ¢’,, in smectite (Ferri et al., 2011;
Saffer et al., 2001; Saffer & Marone, 2003) and montmorillonite-bearing samples (Ikari et al., 2007; Logan
& Rauenzahn, 1987), and (3) due to preexisting clay-fabric (Orellana et al., 2018a).

In our tests, velocity-strengthening behavior dominates in wet samples. Stick-slip events are observed only
in dry gouges at slow sliding velocities. Then, the transition between unstable and stable frictional behavior
can be explained in terms of deformation and frictional healing processes that occur depending upon the
absence or presence of pore fluids.
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First, in clays, the reorientation and preferential alignment of clay minerals along shear planes with shearing
result in shear localization and foliation development (Logan & Chester, 1987; Numelin et al., 2007). Under
dry conditions, cataclastic deformation mechanisms, including frictional sliding at grain contacts, distribu-
ted and chaotic granular flow, and grain fracturing, are dominant processes (Moore & Lockner, 2007). Thus,
the dry samples possibly deform in a distributed manner, resulting in relatively higher friction (Figures 3a
and 3b). Conversely, the presence of pore fluids in clays facilitates a lubricating effect between grains pro-
moting shear localization of strain along well-defined clay-rich planes (Morrow et al., 2000; Shimamoto &
Logan, 1981; Tembe et al., 2010) resulting in lower friction and velocity-strengthening behavior as observed
in our wet gouges (Figures 3a-3c). Unfortunately, we were not able to analyze microstructures to test
this hypothesis.

Then, in dry samples, frictional healing processes can partially explain the transition from unstable to stable
sliding that occurs at velocities smaller than a reference cutoff velocity v« (i.e., v < v« & 10 um/s). We infer
that these stick slips would be expected due to the potential aging of contacts, that is, fault restrengthening,
associated with frictional healing processes with slip, such as ploughing, shear-enhanced indentation,
shear-enhanced compaction, or a combination of the above (Marone & Saffer, 2015). When v > vx, fric-
tional healing is possibly negligible because it is not effective at high sliding velocities, as the time needed
for appreciable healing is longer than the time over which contacts are continuously renewed at higher
sliding velocities (Bar-sinai et al., 2014; Kuwano et al., 2013). This observation is also supported by
frictional healing rates (8) previously measured in the same OPA gouge samples during slide-hold-slide
tests (Orellana et al., 2018b). This study shows higher values of 8 for dry samples than for partially
saturated samples, that is, Siporr < Bar- In our wet samples, we expect even smaller values of 5, that
is, Bwer < B1oo % re < Bary» and therefore null frictional re-strengthening over time, in agreement with
the velocity-strengthening behavior observed in our tests (Figure 3c). Furthermore, our results show that
the magnitude of the At increases with increasing o, (Figure 3e). This effect is a consequence of the
interplay between the increase in fault stiffness with o, and the constant machine stiffness, as the
rate-and-state friction theory predicts (Baumberger & Berthoud, 1999; Leeman et al., 2016; see
supporting information).

The stick-slip behavior shown by dry samples, though characterized by small stress drops
(At £ 0.35 MPa, A1/t < 5%), are manifestations of fault instability (Brace & Byerlee, 1966). However, the
conditions for instability do not persist as slip velocity increases, as indicated by the transition to velocity-
strengthening when increasing velocity.

Finally, and based on these observations, we infer that faults within the OPA formation under water-
saturated conditions will tend to slip stably via aseismic creep. Nonetheless, our results illustrate the key role
played by water in stabilizing fault slip, at least at slow velocities.

4.3. Permeability Evolution and Shear-Enhanced Dilation

Values of k; ;;and k;, / (107%* — 107%) are in the same range as values previously reported for nondeformed
rock (Senger et al., 2018; Yu et al., 2017). Our data suggest a shear-enhanced fault-parallel permeability at
slow sliding velocities (<1 um/s) and at low o', in agreement with previous tests on clay-rich samples
(Wu et al., 2017; Zhang & Cox, 2000). This increase suggests that the during slip events a fault within the
OPA formation could act as a poor conduit with respect to the surrounding nondeformed rock.

Consistent with the permeability increase upon shear deformation, the evolution of pore volumes during
shearing suggests a predominant shear-enhanced dilatancy, at least for the first 2 mm of displacement
(Figure 4b). When the sliding velocity suddenly decreases to 0.01 um/s at the beginning of the velocity-step
sequence, shear-enhanced compaction occurs under quasi-stationary contact for ~5.5 hr, indicating a rear-
rangement of the pore structure. The velocity- and stress-dependent dilation or compaction observed during
the velocity sequences implies a competition between continuous creation and destruction of dilatant
regions within the gouge sample related to its velocity history, which in turn will create and destroy fluid-
flow pathways that affect permeability. In our tests, the initial dilatancy during the first 2 mm of displace-
ment along with the measured permeability increase after shearing suggests that the shear deformation of
the gouge results in the development of poor fluid pathways. More experiments are needed to understand
the micromechanisms governing this competition fully.
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5. Conclusions and Implications for Nuclear Waste Repositories

While it is most likely that DGR will be placed far from fault systems, the identification of these faults
remains challenging in shale formations. Therefore, risks associated to fault reactivation and induced seis-
micity cannot be neglected (Cappa et al., 2018) and may result, not only from well-known fault arrays but
also from preexisting faults that were undetected during the site characterization stage (Husen et al.,
2012; Mazzoldi et al., 2012).

Our frictional tests were designed to understand the frictional and transport properties of fault arrays within
the OPA formation under conditions relevant to DGR. This study expands upon previous work by exploring
saturation conditions, and permeability and dilatancy evolution during shearing. In this way, we have con-
strained conditions for fault weakness, unstable behavior, and shear dilatancy in the OPA formation. Our
results are also consistent with earlier studies about the effects of water on both strength and frictional sta-
bility on different clay-rich fault gouges (e.g., Ikari et al., 2007; Morrow et al., 2017; Saffer & Marone, 2003).

Tests on dry gouges show a weak (uy~ 0.36) and unstable behavior at slow sliding velocities that evolves to a
stable behavior as soon as a threshold sliding velocity is overcome (v« > 10 um/s). Natural clay-rich faults in
the Earth are rarely dry. However, during the operation of the DGR, the heat-generating nuclear waste will
significantly change the thermal environment. This will cause near-field drying processes (e.g., temperature
and pore pressure gradients) and the surrounding host-rock will tend to dry. Despite this scenario, our
results suggest that velocity-weakening behavior in dry clay-rich faults does not persist at high sliding velo-
cities, and therefore, nucleation of large earthquakes is unlikely to occur.

In this study, we have shown that the frictional properties of wet OPA fault gouge are different from the dry
counterpart. The wet OPA gouges are weaker (4~ 0.16) and exhibit a stable, velocity-strengthening beha-
vior at all the o, that are of interest to DGR. This low friction suggests that fault activation may easily occur
within the repository; however, fault gouges will slide in an aseismic, stable fashion. Thus, our results may
help explain the induced in situ fault reactivation at the MTL; yet they cannot explain the swarm of triggered
seismic events (Guglielmi et al., 2017; Jeanne et al., 2018). Because natural faults are complex structures rela-
tive to experimental-sized faults, the previously mentioned field observations need to be integrated to addi-
tional laboratory work.

Finally, pore volume changes during shearing indicate a dominant shear-enhanced dilation at the onset of
fault sliding, in agreement with field-scale experiments at the MT (Guglielmi et al., 2017; Jeanne et al., 2018).
However, in our test small permeability increases are within the same range as nondeformed rock values
(1072° m?). These observations suggest that OPA fault arrays can potentially act as poor fluid conduits.
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