
UNIVERSITY OF UDINE

DEPARTMENT OF MATHEMATICS, COMPUTER AND PHYSICAL SCIENCE

READERSOURCING 2.0:

DOCUMENTATION

MICHAEL SOPRANO AND STEFANO MIZZARO

v1.0.7-alpha

Contents

List of Figures 3

List of Tables 4

1 Introduction 5

2 General Architecture 5

3 RS Server 5

3.1 Implementation and Technology . 6

3.2 Communication Paradigm . 8

3.3 Database . 9

3.4 Class Diagram . 11

3.5 Deploy . 13

3.5.1 1: Manual Way . 14

3.5.1.1 Requirements . 14

3.5.1.2 How To . 14

3.5.1.3 Quick Cheatsheet . 15

3.5.2 2: Manual Way (But Faster) . 15

3.5.2.1 Requirements . 15

3.5.2.2 How To . 15

3.5.3 3: Heroku Deploy . 17

3.5.3.1 Requirements . 17

3.5.3.2 How To . 18

3.5.3.3 Quick Cheatsheet . 18

3.5.4 Environment Variables . 18

3.5.4.1 .env file . 20

3.5.4.2 Heroku App . 20

4 RS PDF 20

4.1 Implementation and Technology . 20

4.2 Package Diagram . 21

4.3 Class Diagram . 22

4.4 Installation . 22

4.4.1 Requirements . 22

4.4.2 Commmand Line Interface . 22

5 RS Rate 25

5.1 Implementation and Technology . 25

5.2 Installation . 25

1

6 RS Py 25

6.1 Implementation and Technology . 26

6.2 Installation . 26

6.3 Usage . 26

References 28

2

List of Figures

1 Architecture of Readersourcing 2.0 (NOT UML). 6

2 Intuitive scheme of the MVC pattern (NOT UML). 7

3 Entity-Relationship schema of the database of RS Server (NOT UML). 11

4 Class diagram of RS Server. 12

5 Representation of the token-based authentication process (NOT UML). . . . 13

6 Package diagram of RS PDF. 21

7 Class diagram of RS PDF. 23

3

List of Tables

1 Subset of the RESTFul interface of RS Server. 10

2 Environment variables of RS Server. 19

3 Command line options of RS PDF. 24

4 Parameters available for the Seeder jupyter notebook. 27

5 Parameter available for the Readersourcing jupyter notebook. 27

4

1 Introduction

The Readersourcing 2.0 ecosystem has been built within a research project co-funded

by SISSA Medialab1 and University of Udine2. It has been presented by Soprano et al. [2]

during the IRCDL 2019 Conference3. The original paper can be found on Zenodo4, while

the code and the related documentation is available on GitHub5.

Initially, a recap of its general architecture is presented and subsequently a brief de-

scription of the role and purpose of each of its components is presented along with some

specific aspects such as the technology used, the internal architecture, the structure of the

database and more. This is done by using different types of diagrams belonging to the UML

standard (unless otherwise specified) which are drew according to the set of style rules for

that standard proposed by Fowler [1].

2 General Architecture

Readersourcing 2.0 is an ecosystem composed of more than one application. Indeed, there

must be one (RS Server [6], presented in Section 3) which acts as a server to gather all the

ratings given by readers and one that acts as a client (RS Rate [5], presented in Section 5) to

allow the readers themselves to effectively rate publications, althought it is possible to carry

out every operation also directly on the web interface provided by RS Server. There is also a

component (RS PDF [3], presented in Section 4) which has the task to annotate files in PDF

format by taking advantage of an ad hoc software library; this component is exploited by

the server-side application. Lastly, there is also an additional component (RS Py, presented

in Section 6) which provides a fully working implementation of the RSM and TRM models

described by Soprano et al. [2]. An overview of the architecture of Readersourcing 2.0 is

shown in Figure 1 and in the following we briefly describe these three components.

3 RS Server

RS Server [6] is the server-side application which has the task to collect and aggregate

the ratings given by readers and to use RSM and TRM models described by Soprano et al.

[2] in order to compute quality scores for readers and publications. An instance of RS Server

is deployed along one of RS PDF. Then, there are up to n different browsers along with their

end-users, which communicate with the server: each of them is characterized by an instance

of RS Rate. Both RS PDF and RS Rate are described in the following.

This setup means that every interaction between readers and server can be carried out

1https://medialab.sissa.it/
2https://www.uniud.it/
3https://ircdl2019.isti.cnr.it/
4https://zenodo.org/record/1446468
5https://github.com/Miccighel/Readersourcing-2.0

5

https://medialab.sissa.it/
https://www.uniud.it/
https://ircdl2019.isti.cnr.it/
https://zenodo.org/record/1446468
https://github.com/Miccighel/Readersourcing-2.0

Figure 1: Architecture of Readersourcing 2.0 (NOT UML).

through clients installed on readers’ browsers or by using the stand-alone web interface

provided by RS Server and these clients have to handle the registration and authentication

of readers, the rating action and the download action of link-annotated publications.

During the design phase of RS Server some strategies have been adopted to ensure its

extensibility and generality. This means that: (i) it is straightforward to add new models,

(ii) each model shares the same input data format, and (iii) if a model needs to save values

locally to the RS Server (i.e., in its database), there is a standard procedure to allow that.

3.1 Implementation and Technology

RS Server is developed in Ruby on Rails,6 which is a framework that allows to build

applications strongly based on the Model-View-Controller (MVC) architectural pattern. The

technology used to develop RS Server is an open-source web application framework called

Ruby on Rails (it is also called RoR or Rails only; more specifically, Rails is the framework

built above Ruby, the actual programming language). It allows to build applications strongly

based on the Model-View-Controller (MVC) architectural pattern.

The MVC pattern allows to separate the control logic of the program from data presen-

tation and business logic. Thefore, it allows to obtain an effective architecture since the first

moments of its design phase. An intuitive representation of the structure that this pattern

6https://rubyonrails.org/

6

https://rubyonrails.org/

Figure 2: Intuitive scheme of the MVC pattern (NOT UML).

allows to obtain is shown in Figure 2. This structure consists of three distinct entities, called

Controller, Model and View. These entities have the task of, respectively, managing control

logic, encapsulating business logic and implementing data presentation.

The Controller has direct access to the Model and to the View; from the latter, generally,

it receives the user input and on its basis the Controller itself updates the internal state of

the Model using its methods. Finally, the Controller sends the updated Model to the View,

which is then exploited by the View itself to obtain and display the results of the processing.

A generic software can have more than one Controller, where each of them can manage

more than one Model instances. In MVC frameworks dedicated to the development of web

applications such as Rails, in fact, it is common practice to have a number of Controllers

equal to the number of entities modeled within the application domain. Furthermore, there

may be more than one View implementation to present the internal state of a specific type

of Model.

The use of MVC pattern is not the only founding principle of Rails. One of the most

important principles on which Rails itself is based for the developement of quality applica-

tions is “Convention Over Configuration”. In other words, the framework tries to minimize

the decisions that the developer must take during the construction of its application by

adopting standard conventions that he can modify if he needs more flexibility. The founding

principles of Rails can be deepened by reading the Rails Doctrine7.

As a last note, Rails is a continuously developing framework and is used industrially by

several well-known industry players such as GitHub, SoundCloud, Airbnb and others. It is,

therefore, a widespread and appreciated technology, for which there is an active community

and a lot of learning material.

7https://rubyonrails.org/doctrine/

7

https://rubyonrails.org/doctrine/

3.2 Communication Paradigm

A modern MVC framework such as Rails allows to develop various kind of web appli-

cations. One of the possibilities is to create a Web Service, which is a software component

capable of carrying out various operations made remotely available through the exchange of

messages encoded in a standard interchange format such as JSON, all thanks to a transport

layer built above the basic Internet protocols like HTTP. All this, however, must be carried

out according to a paradigm that defines precisely what are the functionalities (resources

and operations) actually available and which messages must be received in order to access

them.

One of the possible communication paradigms for Web Services is RESTful (REpresen-

tational State Transfer). Within this paradigm, the functionalities of a Web Service are

represented by resources identified by different URIs and the type of HTTP message sent

establishes the operation to be performed. The result of the operation initiated by the

message received from the Web Service is a new message encoded according to same inter-

change format of the one which has been sent and it is the client’s responsibility to correctly

interpret and use the response of the Web Service itself.

RS Server is a Web Service (Server API-Only, according to Rails terminology) based

on a communication paradigm composed of RESTful (REpresentational State Transfer)

interfaces and on the exchange of messages encoded in JSON format through the transport

layer provided by the HTTP protocol.

The communication interface of RS Server is constantly evolving and, for this reason, it

makes no sense to fully include it in this document. However, it is possible to consult it

freely and to see examples of requests that can be made by visiting the URL below.

https://documenter.getpostman.com/view/4632696/RWTiwfV4?version=

latest

To provide an example, a subset of the RESTFul interface of RS Server is shown in Table

1. These operations are all those available to handle one of the entities of the application

domain, namely the publications. Let’s then suppose that a user triggers a show operation

for a publications characterized by an identifier equal to 1 by visiting the corresponding

endpoint. The JSON-encoded response of RS Server would be something like the one below.

1 {
2 "id": 1,

3 "doi": "10.1140/epjc/s10052-018-6047-y",

4 "title": "Uncertainties in WIMP dark matter scattering revisited",

5 "author": "John Ellis",

6 "creator": "Springer",

7 "producer": null,

8 "...": ...,

8

https://documenter.getpostman.com/view/4632696/RWTiwfV4?version=latest
https://documenter.getpostman.com/view/4632696/RWTiwfV4?version=latest

9 "created_at": "2018-08-02T13:27:46.988Z",

10 "updated_at": "2018-08-02T13:27:49.135Z",

11 "...": ...,

12 }

3.3 Database

To implement the storage of link-annotated publications, user authentication and the

other functionalities it is necessary to define a database schema, which is shown in Figure

3. There are three main entities modeled within the application domain of Readersourcing

2.0:

• Users: models the users of the system itself, which are characterized by their personal

data, an optional ORCID and a boolean used to check if the user wants to receive

emails or not. There are also some attributes used to store various kind of tokens to

allow operations like password reset;

• Ratings: models the ratings given by readers of publications which are characterized

by a numerical score. Also, there is a boolean to check if a rating is anonymous or not

and another one to check if it has been edited at a later time;

• Publications: models the publications rated by their readers which are characterized

by an optional DOI, by various metadata and by a whole series of attributes used to

manage the paths on the server filesystem in order to guarantee the storage of the

original and link-annotated files encoded in PDF format.

Moreover, each of these entities is characterized by further attributes (steadiness, infor-

mativeness, . . .) which represent the scores/parameters computed by the Readersourcing

models.

Figure 3 shows also two relationships (gives and related to) which exist between these

three entities. These relationships allow to “tie together” the entities to which they refer

and to ensure compliance with the referential integrity constraint.

In particular, the gives relation establishes that a user can give [0, . . . , n] different ratings,

while a single rating can be expressed at most by a user. At first glance, the multiplicity equal

to 0 shown in Figure 3 regarding users may look strange. The meaning of this constraint is

to allow the expression of anonymous ratings. Likewise, the relation related to establishes

that a rating is relative to a certain publication, while a publication can be characterized

by [1, . . . , n] different ratings. Moreover, this structure allows to comply in a “natural” way

with other constraints, such as the fact that if at least at least one publication does not

exist, no ratings have to exist.

9

Endpoint
HTTP

Message
Operation Description

/publications.json GET Index Fetches the entire collection of

Publications.

/publications/list GET List Fetches the entire collection of

Publications (server-side view).

/publications/1.json GET Show Returns the Publication with

identifier equal to 1.

/publications/lookup.json POST Lookup Searches for a Publication; if it

doesn’t exists, it is fetched from

the given URL.

/publications/random.json GET Random Returns a random Publication.

/publications/1/is rated.json GET Is Rated Checks if the Publication with

identifier equal to 1 has been

rated by at least one reader.

/publications/1/is saved for later.json GET
Is Saved For

Later
Checks if the Publication with

identifier equal to 1 has been

saved for later by the current

user.

/publications.json POST Create Creates a new Publication.

/publications/is fetchable.json POST Is Fetchable Checks if the provided URL con-

tains a fetchable Publication.

/publications/extract.json POST Extract Extract the rating url from a

link-annotated Publication.

/publications/fetch.json POST Fetch Fetches a Publication from the

given URL.

/publications/1/refresh.json GET Refresh Fetches again the Publication

with identifier equal to 1.

/publications/1.json PUT Update Updates the Publication with

identifier equal to 1.

/publications/1.json DELETE Delete Deletes the Publication with

identifier equal to 1.

.

Table 1: Subset of the RESTFul interface of RS Server.

10

Figure 3: Entity-Relationship schema of the database of RS Server (NOT UML).

3.4 Class Diagram

Figure 4 shows a diagram of the main classes of RS Server. As one can see, the con-

vention for which there is an MVC triple for each of the entities modeled in the application

domain is followed, althought Views are not shown in the diagram because in this case

they are just simple methods. The Controller methods represent actions that a user can

perform on individual entities or on collections of them, thus mapping the endpoints of the

communication protocol used in order to allow the communication between RS Server and

the instances of RS Rate. As for the Models, their attributes represent the characteristics

of the reference entity, while their methods encapsulate the business logic.

Furthermore, there are two additional Controllers8 responsible for managing user au-

thentication. RS Server, as specified previously, is a Web Service; this means that the user

interface is presented directly on the instances of RS Rate and, therefore, those instances

send messages to which RS Server responds once the necessary processing has been com-

pleted, according to the RESTful communication paradigm. Because of this design choice,

it is not possible to use the “classic” server-side approach to user authentication accord-

ing to which some information relative to the logged user are saved in the session data,

since RESTful paradigm is stateless. To be able to authenticate himself, therefore, the user

client must attach to each request a token that identifies its user as valid within the system.

Therefore, a token-based authentication approach has been implemented.

When a user performs the first request to RS Server since some time, he must fill in the

login form. If these inserted credentials exist in the database they are encrypted (a payload

is obtained) and used together with a unique signature to create an alphanumeric JSON

8Application Controller and AuthenticationController.

11

Figure 4: Class diagram of RS Server.

12

Figure 5: Representation of the token-based authentication process (NOT UML).

string, i.e. the actual token. This token thus generated is sent to the RS Rate instance of the

user itself which stores it in a secure cookie characterized by an expiration date after which

the procedure must be repeated. At each subsequent request to RS Server, the instance of

RS Rate attaches9 the previously obtained token in order to demonstrate that its user has

successfully completed the authentication procedure. As for RS Server, if a token is present

it is extracted and decoded and if it corresponds to one of those saved in the database,

then the user identified by the payload is authorized to proceed. An intuitive scheme of the

process procedure is shown in Figure 5.

Finally, there is an additional set of classes which are used for different purposes than

representing MVC triples for the entitities of the application domain. In particular, they are

exploited internally by the model containing the business logic to manage the given ratings

and have the task of implementing the Readersourcing models. The structure of these classes

follows a design pattern called10 Strategy because this pattern allows to integrate new models

at a later time without having to make radical changes in the structure of RS Server.

3.5 Deploy

There are three main modalities that can be exploited to deploy a working instance of

RS Server in development or production environment. The former environment must be

used if there is the need to add custom Readersourcing model, to extend/modify the current

implementation of RS Server or simply to test it in a safe way and it is allowed only by deploy

modalities 1 and 2, while the latter must be used if RS Server is about to be made available

9In the Authorization header of the HTTP payload.
10Readersourcing, ReadersourcingStrategy, RSMStrategy e TRMStrategy.

13

for everyone as it is and it is allowed by every deploy modality. In the following these three

deploy modalities are described, along with their requirements. It is strongly suggested to

read also the sections dedicated to the environment variables (3.5.4.1 and 3.5.4.2), since if

they are not set RS Server will not work properly.

3.5.1 1: Manual Way

This deploy modality allows to manually downwload and start RS Server locally to a

machine chosen as a server. This is the most demanding modality regarding is requirements

since it assumes that you have a full and working installation of Ruby, JRE (Java Runtime

Environment) and PostgreSQL and everything must be set up manually, but it allows more

flexibility if a particular setup is required for any reason.

3.5.1.1 Requirements

• Ruby >= 2.5.3;

• JRE (Java Runtime Environment) >= 1.8.0;

• PostgreSQL >= 11.2.

3.5.1.2 How To

Clone RS Server repository 11 and move inside its main directory using a command line

prompt (with an ls or dir command you should see app, bin, config, etc. folders) and

type gem install bundler. This gem (dependency) will provides a consistent environment

for Ruby projects (like RS Server) by tracking and installing the exact gems (dependencies)

and versions that are needed.

To fetch all those required by RS Server type bundle install and wait for the pro-

cess to complete. The next two commands are required only before the first startup of

RS Server because they will create and set up the database, so please be sure that the

PostgreSQL service is started up and ready to accept connections on port 5432. Type

rake db:create to create the database and rake db:migrate to create the required ta-

bles inside it. Now, create a .env file as explained in section 3.5.4.1 and set the required

environment variables. After that, everything is ready to launch RS Server in development

or production mode. To do that, just type cd bin to move inside bin directory and then

rails server -b 127.0.0.1 -p 3000 -e development with the proper values for -b, -p

and -e options. If the previous values are used, RS Server will be started and bound on

127.0.0.1 ip address with port 3000 and development environment. Every request, there-

fore, must be sent to https://127.0.0.1:3000 address.

11https://github.com/Miccighel/Readersourcing-2.0-RS_Server

14

https://127.0.0.1:3000
https://github.com/Miccighel/Readersourcing-2.0-RS_Server

3.5.1.3 Quick Cheatsheet

1. cd to main directory;

2. gem install bundler;

3. bundle install;

4. rake db:create (only before first startup);

5. rake db:migrate (only before first startup);

6. create .env file and set environment variables;

7. cd bin;

8. rails server -b x.x.x.x -p x -e development or

rails server -b x.x.x.x -p x -e production.

3.5.2 2: Manual Way (But Faster)

This deploy modality allows to download and start RS Server locally to a machine chosen

as a server similarly to the modality described in section 3.5.1, but in a way which is faster

and less frustrating, despite being less flexible. Moreover, this deploy modality has less de-

manding requirements, since only a working installation of Docker Desktop CE (Community

Edition) is required.

Docker is a project which allows to automate the deployment phase by distributing an

image of an application inside a container. A container is a standard unit of software that

packages up code and all its dependencies so the application runs quickly and reliably from

one computing environment to another. A Docker container image is a lightweight, stan-

dalone, executable package of software that includes everything needed to run an application:

code, runtime, system tools, system libraries and settings. This means that there is no need

to manually install the runtimes/libraries/dependencies needed to run an application since

the Docker Engine will automatically fetch, install and setup them.

3.5.2.1 Requirements

• Docker Desktop CE (Community Edition);

3.5.2.2 How To

Clone RS Server repository 12 and move inside its main directory using a command line

prompt. Now, type ls or dir; you should see a docker-compose.yml file and a Dockerfile.

If you do not see them, please be sure to be in the main directory of the cloned repository.

12https://github.com/Miccighel/Readersourcing-2.0-RS_Server

15

https://github.com/Miccighel/Readersourcing-2.0-RS_Server

Before proceeding, be sure that your Docker Engine has been started up, otherwise the fol-

lowing commands will not work. At this point two different scenarions could happen, which

are outlined in the following.

Scenario 1: Deploy With Remote Images If there is no need to edit the source

code of RS Server the Docker Engine can simply fetch the dependencies required in the

docker-compose.yml file and set up the application. To do this, open the docker-compose.yml

file and uncomment the section between the

----------- SCENARIO 1: DEPLOY WITH REMOTE IMAGES ----------

and

----------- END OF SCENARIO 1: DEPLOY WITH REMOTE IMAGES ----------

comments and comment back the remaining lines of code. Now, create a .env file as ex-

plained in section 3.5.4.1 and set the required environment variables. After that, from

the command line prompt type docker-compose up and wait for the processing to finish.

Note that it may take different minutes. Once the Docker Engine completes the process,

the container with a working instance of RS Server will be started up. If the first startup

of the application is being done type also docker-compose run rake db:create to create

the database and docker-compose run rake db:migrate to create the required tables in-

side it. RS Server will be started and bound on 127.0.0.1 ip address with port 3000 and

production environment. Every request, therefore, must be sent to https://127.0.0.1:3000

address. As it can be seem, there is no need to start the server by specifing its ip address,

port and environment, since the Docker Engine will take care of that. If you want to set

a custom ip address or port or switch to the development environent, edit the command

key inside docker-compose.yml file. To shutdown and undeploy the container, simply type

docker-compose down.

Scenario 2: Deploy With Local Build If the source code of RS Server has been edited

the application must be built locally by the Docker Engine according to the structure spec-

ified in the Dockerfile. After this build phase the Docker Engine itself can simply fetch

the required dependencies outlined in the docker-compose.yml file and set RS Server up.

To do this, open the docker-compose.yml file and uncomment the section between the

----------- SCENARIO 2: DEPLOY WITH LOCAL BUILD ----------

and

----------- END OF SCENARIO 2: DEPLOY WITH LOCAL BUILD -----------

comments and comment back the remaining lines of code. Now, create a .env file as ex-

plained in section 3.5.4.1 and set the required environment variables. After that, from the

command line prompt type docker-compose up and wait for the process to finish. Note that

16

it may take different minutes. Once the Docker Engine completes the process, the container

with a working instance of RS Server will be ready. If the first startup of the application

is being done type also docker-compose run rake db:create to create the database and

docker-compose run rake db:migrate to create the required tables inside it. RS Server

will be started and bound on 127.0.0.1 ip address with port 3000 and production environ-

ment. Therefore, every request must be sent to https://127.0.0.1:3000 address. As it can

be seen, there is no need to start the server by specifing its ip address, port and environment,

since the Docker Engine will take care of that. If you want to set a custom ip address or port

or switch to the development environent, edit the command key inside docker-compose.yml

file. To shutdown and undeploy the container, simply type docker-compose down.

Quick Cheatsheet

• cd to main directory;

• create .env file and set environment variables;

• docker-compose up;

• docker-compose run rake db:create (only at first startup);

• docker-compose run rake db:migrate (only at first startup);

• docker-compose down (to shutdown and undeploy).

3.5.3 3: Heroku Deploy

This deploy modality allows to exploit the container registry of Heroku to perform a

docker-based production-ready deploy of RS Server through a working installation of the

Heroku Command Line Interface (CLI). Note that this modality can be used only if you

choose to use RS Server in production environment.

Heroku is Platform-as-a-Service (PaaS) that enables developers to build, run, and operate

applications entirely in the cloud. Regarding the requirements of this modality, an app

on Heroku must be created and provisioned with two addons, namely PostgreSQL for the

database and SendGrid for the mailing functionalities. Follow Heroku tutorials if you do not

know it and its concepts. Also, a working installation of Docker Desktop CE (Community

Edition) on the machine used to perform the deploy is required.

3.5.3.1 Requirements

• Heroku account;

• Heroku application (PostgreSQL + SendGrid Addons);

• Heroku CLI;

• Docker Desktop CE (Community Edition);

17

3.5.3.2 How To

Clone RS Server repository 13 and move inside the main directory using a command line

prompt. Now, type ls or dir; you should see a Dockerfile. If you do not see it, please be

sure to be in the main directory of the cloned repository. Before proceeding, be sure that

your Docker Engine has been started up, otherwise the following commands will not work.

Log in to your Heroku account by typing heroku login and insert your credentials. Next,

log in to Heroku container registry by typing heroku container:login. To build and up-

load your instance of RS Server type heroku container:push web --app your-app-name

and when the process terminates type heroku container:release web to make it publicy

accessible. Optionally, you can type heroku open to open the browser and be redirected

on the homepage of your_app_name application. To create and set up the database type

heroku run rake db:create and heroku run rake db:migrate. As it can be seen, there

is no need to start the server by specifing its ip address, port and environment, since Heroku

(through the Docker Engine) will take care of that. Now, remember to set the required

environment variables on your Heroku app as explained in section 3.5.4.2.

3.5.3.3 Quick Cheatsheet

• cd to main directory;

• heroku login;

• heroku container:login;

• heroku container:push web --app your-app-name;

• heroku container:release web --app your-app-name;

• heroku open --app your-app-name (optional);

• heroku run rake db:migrate -e production --app your-app-name (optional);

• heroku run rake db:seed -e production --app your-app-name (optional);

• set environment variables on your Heroku app.

3.5.4 Environment Variables

Regardless of the chosen deploy modality, there is the need to set some environment

variables which cannot be checked into a repository as a safety measure. In Table 2 each of

these environment variables is described along with an explanation of where to set them on

the basis of the chosen deploy modality/environment.

13https://github.com/Miccighel/Readersourcing-2.0-RS_Server

18

https://github.com/Miccighel/Readersourcing-2.0-RS_Server

Env. Variable Description Deploy Modality Env. Where

SECRET_DEV_KEY Private key used

to encrypt some

strings

1 - 2 (Scenario 1,

Scenario 2)

development .env file

SECRET_PROD_KEY Private key used

to encrypt some

strings

1 - 2 (Scenario 1,

Scenario 2) - 3

production .env file,

Heroku App

SENDGRID_USERNAME Username of your

SendGrid account

1 - 2 (Scenario 1,

Scenario 2) - 3

development,

production

.env file,

Heroku App

SENDGRID_PASSWORD Password of your

SendGrid account

1 - 2 (Scenario 1,

Scenario 2) - 3

development,

production

.env file,

Heroku App

SENDGRID_API_KEY API key of your

SendGrid account

1 - 2 (Scenario 1,

Scenario 2) - 3

development,

production

.env file,

Heroku App

SENDGRID_DOMAIN A domain regis-

tered within your

SendGrid account

1 - 2 (Scenario 1,

Scenario 2) - 3

development,

production

.env file,

Heroku App

BUG_REPORT_MAIL An email address to

receive bug reports

1 - 2 (Scenario 1,

Scenario 2) - 3

development,

production

.env file,

Heroku App

CONTACT_MAIL An email address

to receive general

questions

1 - 2 (Scenario 1,

Scenario 2) - 3

development,

production

.env file,

Heroku App

RAILS_LOG_TO_STD If set to true, Rails

writes its logs to

the standard out-

put. Useful for de-

bugging purposes.

3 production .env file,

Heroku App

Table 2: Environment variables of RS Server.

19

3.5.4.1 .env file

To set an environment variable in a local .env file, create it inside the main directory

of RS Server and populate it in a key=value fashion; Listing 1 shows the content of a valid

.env file.

Listing 1 A valid .env file.

1: SECRET DEV KEY=your secret dev key

2: SENDGRID USERNAME=your sendgrid username

3: SENDGRID PASSWORD=your sendgrid password

4: SENDGRID DOMAIN=your sendgrid domain

5: SENDGRID API KEY=your sendgrid secret api key

6: BUG REPORT MAIL=your bug report mail

7: CONTACT MAIL=your contact mail

3.5.4.2 Heroku App

To set an environment variable in an Heroku app, simply follow the guide provided by

the platform.14 In Heroku terminology environment variables are called config vars.

4 RS PDF

RS PDF [3] is the software library which is exploited by RS Server to actually edit the

PDF files to add the URL required when a reader requests to save for later the publication

that he is reading. It is a software characterized by a command line interface and this means

that RS Server can use it directly since they are deployed one along the other, without using

complex communication channels and paradigms.

4.1 Implementation and Technology

The technology used to develop RS PDF is the Kotlin object-oriented programming

language, whose main feature is to be fully compatible with the Java Virtual Machine. This

feature is of great importance because it allows a developer to exploit code contained in

any other software published in jar format and, more generally, to import any Java class,

interacting with them through the syntax of Kotlin itself.

This programming language has been chosen because it has many modern features (it has

been created just three years ago) and it is supported rather intensively; furthermore, there

are openings to other platforms that have greatly expanded its use possibilities. The most

important reason, however, is that the underlying tool used to actually edit files encoded in

PDF format is PDFBox,15 which is a software library developed with Java and proposed as

14https://devcenter.heroku.com/articles/config-vars
15https://pdfbox.apache.org/

20

https://devcenter.heroku.com/articles/config-vars
https://pdfbox.apache.org/

Figure 6: Package diagram of RS PDF.

a complete toolkit to edit files in that specific format. So, RS PDF is a wrapper for PDFBox

that adds the needed links inside the PDFs requested by readers.

Kotlin has been created by JetBrains16 which, in the first half of 2017, signed an agree-

ment with Google to let Kotlin become a first-class language for development on the Android

platform17. In the same year, moreover, Jetbrains announced the possibility to compile pro-

grams written in Kotlin directly into machine language, thus avoiding the use of the JVM.

On the web is possible to find different pages with comparisons between Kotlin and other

languages, including the official one18 made by JetBrains with Java, and several articles19

of developers enthusiastic about this programming language.

4.2 Package Diagram

Figure 6 shows a diagram of the packages in which RS PDF is divided. This is a useful

diagram since it provides a high-level overview of the internal architecture of a software.

In particular, the interaction with RS Server takes place within the package program.

The server-side component itself can use the functionalities of RS PDF by executing it on

the JVM, with a special set of command line options. Within this package, therefore, the

parsing of the values received for each of these options and the management of the execution

flow on the basis of these values take place.

The package utils has the task of providing useful tools to the remaining components

of RS PDF. Inside it there are shared constants and methods that allow to access to the

logging functionality. As it can be seen by looking at the diagram shown in Figure 6, the

other packages depend on it, in particular for some of the values of its constants.

16https://www.jetbrains.com/
17https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
18https://kotlinlang.org/docs/reference/comparison-to-java.html
19https://medium.com/@octskyward/why-kotlin-is-my-next-programming-language-c25c001e26e3

21

https://www.jetbrains.com/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://kotlinlang.org/docs/reference/comparison-to-java.html
https://medium.com/@octskyward/why-kotlin-is-my-next-programming-language-c25c001e26e3

The package publications contains the business logic to handle files encoded in PDF

format that must be edited. Its classes follow the logic of the MVC pattern, although its

exploiting is not bound by the used technology as in the case of an application developed with

Rails. There is, therefore, a Controller which takes into account the execution parameters

analyzed in the package program and updates the internal state of one or more instances of

the Model which will be as many as the files encoded in PDF format that must be annotated.

This operation involves loading the input files and adding a link to RS Server on a new page,

taking advantage of the functionalities of PDFBox. As a last note, a View is not necessary

because RS PDF simply stores the changes in a new PDF file and, then, ends its execution.

4.3 Class Diagram

Figure 7 shows a diagram of the main classes of RS PDF which details the internal

structure of the architectural elements outlined into the diagram shown in Figure 6. The

classes contained within the package publications are structured in a way which is similar

to what Rails forces in RS Server and most of the processing carried out by RS Rate takes

place within them. The Model contains the connections with PDFBox and its methods

exploit these connections to actually edit files encoded in PDF format.

A single exception to this structure is the use of the Parameters class; in particular, it

is only a data class, i.e. a class whose sole purpose is to store data of various kinds. This

instance, once created, is sent to the Model by the Controller through the interfaces of the

Model itself. If it is necessary to send further data, the only thing to do consists in adding

them to the data class, thus avoiding modifying the signatures of the methods of the Model.

Regarding the contents of the program and utils packages, there is not much else to add

with respect to what was said during the description of the diagram shown in figure 6.

4.4 Installation

RS PDF comes bundled with RS Server, so when the latter is deployed there is no need

to manually install the former. Nevertheless, it is possible to use it independently; it is

sufficient to download the published .jar files from the release section of its repository20

and place it somewhere on the filesystem.

4.4.1 Requirements

• JRE (Java Runtime Environment) >= 1.8.0;

4.4.2 Commmand Line Interface

The behavior of RS PDF is configured during its startup phase by RS Server through

a set of special command-line options. For this reason, it is useful to provide a list of all

the options that can be used if it is necessary to use RS PDF in other contexts, modify

20https://github.com/Miccighel/Readersourcing-2.0-RS_PDF

22

https://github.com/Miccighel/Readersourcing-2.0-RS_PDF

Figure 7: Class diagram of RS PDF.

23

Short Long Description Values Req. Deps.

--pIn --pathIn Path on the filesys-

tem from which to

load the PDF files

to be edited. It can

be a file or a folder.

String representing

a relative path.

No --pOut

--pOut --pathOut Path on the filesys-

tem in which to

save the edited

PDF files. It must

be a folder.

String representing

a relative path.

No --pIn

--c --caption Caption of the link

to add.

Any string. Yes No

--u --url Url to add. A valid URL. Yes No

--a --authToken Authentication to-

ken received from

RS Server.

A valid authentica-

tion token received

RS Server.

No --pOut

--pIn

--pId

--pId --publicationId Identifier for a pub-

lication present on

RS Server.

A valid publication

identifier received

from RS Server.

No --pOut

--pIn

--a

Table 3: Command line options of RS PDF.

its implementation or for any other reason. However, it is designed to work with a default

configuration if no options are provided. This list of command line options in shown in Table

3. To provide an execution example, let’s assume a scenario in which there is the need of

edit some files encoded in PDF format with the following prerequisites:

• there is a folder containing n files to edit at path C:\data;

• the edited files must be saved inside a folder at path C:\out;

• the file in JAR format containing the library is called RS_PDF-v1.0-alpha.jar;

• the JAR file containing RS PDF is located inside the folder at path C:\lib;

• the authentication token received from RS Server is

eyJhbGciOiJIUzI1NiJ9....XpC9PMXOjtjRd4NBCtB1a4SfBEi6ndgqsE3k_cEI6Wo;

• the publication identifier received from RS Server is 1.

The execution of RS PDF is started with the following command:

java -jar C:\lib\RS_PDF-v1.0-alpha.jar -pIn C:\data -pOut C:\out -a

eyJhbGciOiJIUzI1NiJ9....XpC9PMXOjtjRd4NBCtB1a4SfBEi6ndgqsE3k_cEI6Wo -pId 1

24

5 RS Rate

RS Rate [5] is an extension for Google Chrome21 available on its store. It is a client for

Readersourcing 2.0 that can be used by readers of publications to rate them directly from

the browser without the need of using this web interface. We intend to generalize RS Rate

by providing an implementation for each of the major browsers (i.e., Firefox, Safari, . . .).

5.1 Implementation and Technology

RS Rate is an extension for Google Chrome; those extensions are developed using stan-

dard web technologies such as HTML, CSS and Javascript. Therefore, they are simple

“collections” of files packaged in a CRX archive. This particular format is nothing more

than a modified version of a ZIP archive with the addition of some special headers exploited

by Google Chrome.

As for the Javascript component, RS Rate does not actually uses the “pure” language

but instead uses jQuery, a library developed with the aim of simplifying the selection, ma-

nipulation, management of events and the animation of DOM elements in HTML pages, as

well as implementing AJAX features. These AJAX features are widely used by RS Rate to

improve the user experience during its use.

5.2 Installation

RS Rate is freely available on the main browsers webstores. To use it, simply take

advantage of the following links and install the version for your favourite browser.

• Google Chrome version available at: https://chrome.google.com/webstore/det

ail/readersourcing-20-rsrate/hlkdlngpijhdkbdlhmgeemffaoacjagg?hl=it;

• Firefox version available at: currently disabled, will be available at a later time.

6 RS Py

RS Py [4] is an additional component of the Readersourcing 2.0 ecosystem which provides

a fully-working implementation of the models presented by Soprano et al. [2] which are

incapsulated by the server-side application of Readersourcing 2.0 described in Section 3.

Developers with a background in Python programming language can take advantage of

RS Py to generate and test new simulations of ratings given by readers to a set of publications

and they are allowed to alter the internal logic of the models to test new approaches without

the need to fork and edit the full implementation of Readersourcing 2.0.

21https://www.google.com/chrome/

25

https://chrome.google.com/webstore/detail/readersourcing-20-rsrate/hlkdlngpijhdkbdlhmgeemffaoacjagg?hl=it
https://chrome.google.com/webstore/detail/readersourcing-20-rsrate/hlkdlngpijhdkbdlhmgeemffaoacjagg?hl=it
https://www.google.com/chrome/

6.1 Implementation and Technology

RS Py is a collection of Jupyter Notebooks. Jupyter22 is a Python-powered23 open-source

web application that allows to create and share documents that contain live code, equations,

visualizations and narrative text. Notebooks can be shared with others and are made of

cells that can be run indepently of each other which provide a step-by-step overview to the

implemented computations.

6.2 Installation

To use RS Py notebooks it is sufficient to clone its repository24 and place it somewhere

on the filesystem. Be sure to install the required Python packages by taking advantage of a

distribution like Anaconda25. If a lightweight installation is preferred, an instance of Python

3.7.3 is needed to install the required packages like Jupyter, Pandas and others.

6.3 Usage

RS Py is organized into five main folders on the filesystem:

• the data folder is used to store the dataset exploited to test the models presented by

Soprano et al. [2];

• the models folder is used to store the output of such models;

• the notebooks folder contains the jupyter notebooks used to generate new datasets

and to implement the models presented by Soprano et al. [2];

• the scripts folder contains implementations of the jupyter notebooks as pure Python

scripts;

• the src folder contains a Python scripts which converts jupyter notebooks into pure

Python scripts.

Within the notebooks folder there are three jupyter notebooks. Readersourcing.ipynb

provides an implementation of the RSM model presented by Soprano et al. [2] while TrueReview.ipynb

provides an implementation of the TRM one. Lastly, the Seeder.ipynb notebook allows to

generate new datasets, which will be stored inside the data folder. Inside the src folder the

Convert.py script allows to convert the notebooks in Python scripts which are then stored

inside the scripts folder.

The behavior of Seeder.ipynb and Readersourcing.ipynb notebooks can be edited by

taking advantage of the parameter setting section which is located in the first rows of both

22https://jupyter.org/
23https://www.python.org/
24https://github.com/Miccighel/Readersourcing-2.0-RS_Py
25https://www.anaconda.com/distribution/

26

https://jupyter.org/
https://www.python.org/
https://github.com/Miccighel/Readersourcing-2.0-RS_Py
https://www.anaconda.com/distribution/

Parameter Description Values

dataset_name Name of the dataset to simulate String

papers_number Number of papers to simulate Positive integer

readers_number Number of readers to simulate Positive integer

authors_number Number of authors to simulate Positive integer

months_number Number of months of activity to simulate Positive integer

paper_frequencies Amount of papers rated by each reader group Array of positive

integers

readers_percent Percentual of readers to assign to a single

group

Positive integer

Table 4: Parameters available for the Seeder jupyter notebook.

Parameter Description Values

dataset_name Name of the dataset to simulate String

day_serialization Activate serialization of data on a

per day basis

True, False

day_serialization_threshold Serialize data every X days Positive integer

days_number Amount of days simulated in the in-

put dataset

Positive integer

Table 5: Parameter available for the Readersourcing jupyter notebook.

notebooks. Table 4 shows the parameters available for the former, while Table 5 shows the

parameters available for the latter.

To run and use the jupyter notebooks move inside the main directory of RS Py using a

command line prompt (with an ls or dir command you should see data, models, notebooks,

etc. folders) and type jupyter notebook26. This command will start the Jupyter server

and you will be able to take advantage of the Notebook Dashboard within your browser at

the url of the web application (by default, http://localhost:8888).

26https://jupyter.readthedocs.io/en/latest/running.html#running

27

https://jupyter.readthedocs.io/en/latest/running.html#running

References

[1] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage. 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

isbn: 0321193687.

[2] M. Soprano and S. Mizzaro. Crowdsourcing Peer Review: As We May Do. In: Commu-

nications in Computer and Information Science 988 (2019), pp. 259–273.

[3] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS PDF. doi: 10.5281/

zenodo.1442598. url: https://doi.org/10.5281/zenodo.1442597.

[4] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Py. doi: 10.5281/

zenodo.3245208. url: https://doi.org/10.5281/zenodo.3245208.

[5] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Rate. doi: 10.5281/

zenodo.1442599. url: https://doi.org/10.5281/zenodo.1442599.

[6] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Server. doi: 10.5281/

zenodo.1442630. url: https://doi.org/10.5281/zenodo.1442630.

28

https://doi.org/10.5281/zenodo.1442598
https://doi.org/10.5281/zenodo.1442598
https://doi.org/10.5281/zenodo.1442597
https://doi.org/10.5281/zenodo.3245208
https://doi.org/10.5281/zenodo.3245208
https://doi.org/10.5281/zenodo.3245208
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442630
https://doi.org/10.5281/zenodo.1442630
https://doi.org/10.5281/zenodo.1442630

	List of Figures
	List of Tables
	Introduction
	General Architecture
	RS_Server
	Implementation and Technology
	Communication Paradigm
	Database
	Class Diagram
	Deploy
	1: Manual Way
	Requirements
	How To
	Quick Cheatsheet

	2: Manual Way (But Faster)
	Requirements
	How To

	3: Heroku Deploy
	Requirements
	How To
	Quick Cheatsheet

	Environment Variables
	.env file
	Heroku App

	RS_PDF
	Implementation and Technology
	Package Diagram
	Class Diagram
	Installation
	Requirements
	Commmand Line Interface

	RS_Rate
	Implementation and Technology
	Installation

	RS_Py
	Implementation and Technology
	Installation
	Usage

	References

