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On a system that exposes disjoint memory spaces to the software, a program has to 
address memory consistency issues and perform data transfers so that it always accesses 
valid data. Several approaches exist to ensure the consistency of the memory accessed. 
Here we are interested in the verification of a declarative approach where each component 
of a computation is annotated with an access mode declaring which part of the memory 
is read or written by the component. The programming framework uses the component 
annotations to guarantee the validity of the memory accesses. This is the mechanism used 
in VectorPU, a C++ library for programming CPU-GPU heterogeneous systems. This article 
proves the correctness of the software cache-coherence mechanism used in VectorPU. 
Beyond the scope of VectorPU, this article provides a simple and effective formalization
of memory consistency mechanisms based on the explicit declaration of the effect of 
each component on each memory space. The formalism we propose also takes into 
account arrays for which a single validity status is stored for the whole array; additional 
mechanisms for dealing with overlapping arrays are also studied.

     

1. Introduction

Heterogeneous computer systems, such as traditional CPU-GPU based systems, often expose disjoint memory spaces to 
the programmer, such as main memory and device memory, with the need to explicitly transfer data between these. The 
different memories usually require different memory access operations and different pointer types. Also, encoding memory 
transfers as message passing communications leads to low-level code that is more error-prone. A commonly used software 
technique to abstract away the distributed memory, the explicit message passing, and the asymmetric memory access mech-
anisms consists in providing the programmer with an object-based shared memory emulation. For CPU-GPU systems, this 
can be done in the form of special data-containers, which are generic, STL-like data abstractions such as vector<...> 
that wrap multi-element data structures such as arrays. These data-container objects internally perform transparent, coher-
ent software caching of (subsets of) accessed elements in the different memories so they can be reused (as long as not 
invalidated) in order to avoid unnecessary data transfers. Such data-containers (sometimes also referred to as “smart” con-
tainers as they can transparently perform data transfer and memory allocation optimizations [1]) are provided in a number 
of programming frameworks for heterogeneous systems, such as StarPU [2] and SkePU [3,1]. StarPU is a C-based library 
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Fig. 1. A GPU-based system with distributed address space.

that provides API functions to define multi-variant tasks for dynamic scheduling where the data containers are used for 
modeling the operand data-flow among the dynamically scheduled tasks. SkePU defines device-independent multi-backend 
skeletons like map, reduce, scan, stencil etc. where operands are passed to skeleton calls within data containers.

VectorPU [4] is a recent C++-only open-source programming framework for CPU-GPU heterogeneous systems. VectorPU 
relies on the specification of components, which are functions that contain kernels for execution on either CPU or GPU. 
Programming in VectorPU is thus not restricted to using predefined skeletons like SkePU, but leads to more high-level and 
more concise code than StarPU. Like StarPU, VectorPU requires the programmer to annotate each operand of a component 
with the access mode (read, write, or both) including the accessing unit (CPU, GPU), and uses smart data containers for 
automatic transparent software caching based on this access mode information.

The implementation of VectorPU makes excessive use of static metaprogramming; this provides a light-weight realization 
of the access mode annotations and of the software caching, which only require a standard C++ compiler. Emulating these 
light-weight component and access mode constructs without additional language and compiler support (in contrast to, 
e.g., OpenACC or OpenMP), leads however to some compromises concerning the possibility to perform static analysis. In 
particular, VectorPU has no explicit type system for the access modes, as these are not known to the C++ compiler.

In this paper, we formalize access modes and data transfers in CPU-GPU heterogeneous systems and prove the correctness 
of the software cache coherence mechanism used in VectorPU. The contributions of this paper are:

• A simple effect system modeling the semantics of memory accesses and communication in a CPU-GPU heterogeneous 
system.

• A small calculus expressing different memory accesses and their composition across program traces.
• The interpretation of VectorPU operations as higher-level statements that can be translated into the core calculus.
• A proof that, if all memory accesses are performed through VectorPU operations, the memory cannot reach an incon-

sistent state and all memory accesses succeed.
• The abstraction necessary to take into account arrays, possibly overlapping, in the formalism.

This article is an extended version of [5], with two main additions. First the relationship between the formal results 
and the VectorPU implementation is detailed, illustrating the impact of the proven results on the behavior of the library. 
Second, the theoretical framework is extended to take into account the fact that manipulated arrays may overlap and that 
the consistency mechanism must take this information into account to be correct. While overlapping arrays are not yet 
supported by VectorPU, based on the formal model we develop, we show how a simple extension of the library could 
provide support for overlapping arrays.

This paper is organized as follows: Section 2 reviews VectorPU as far as required for this paper, for further information we 
refer to [4]. Section 3 provides our formalization of VectorPU programs and their semantics, and proves that the coherence 
mechanism used in VectorPU is sound. Section 5 discusses related work, and Section 6 concludes.

2. VectorPU

In heterogeneous systems with separate address spaces, for example in many GPU-based systems, a general-purpose 
processor (CPU) with direct access to main memory is connected by some network (e.g., PCIe bus) to one or several accel-
erators (e.g., GPUs) each having its own device memory, see Fig. 1. Native programming models for such systems such as 
CUDA typically expose the distributed address spaces to the programmer, who has to write explicit code for data transfers 
and device memory management. Often, programs for such systems must be organized in multiple source files as different 
programming models and different toolchains are to be used for different types of execution unit. This enforces a low-level 
programming style. Accordingly, a number of single-source programming approaches have been proposed that abstract away 
the distribution by providing a virtual shared address space. Examples include directive-based language extensions such as 
OpenACC and OpenMP4.5, and C++-only approaches such as the library-based skeleton programming framework SkePU [1]
and the recent macro-based framework VectorPU.
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Table 1
VectorPU access mode annotations for a parameter [4].

Access Mode On Host On Device

Read pointer R GR
Write pointer W GW
Read and Write pointer RW GRW
Read Iterator RI GRI
Read End Iterator REI GREI
Write Iterator WI GWI
Write End Iterator WEI GWEI
Read and Write Iterator RWI GRWI
Read and Write End Iterator RWEI GRWEI
Not Applicable NA NA

VectorPU [4] is an open-source2 lightweight C++-only high-level programming layer for writing single-source heteroge-
neous programs for Nvidia CUDA GPU-based systems. Aggregate operand data structures passed into or out of function calls 
are to be wrapped by special data containers known to VectorPU. VectorPU currently provides one generic data container, 
called vector<...>, with multiple variants that eliminate the overhead of managing heterogeneity and distribution when 
not required (e.g., when no GPU is available). vector<...> inherits functionality from STL vector and from Nvidia 
Thrust vector, and wraps a C++ array allocated in main memory. VectorPU automatically creates on demand copies of 
to-be accessed elements in device memory and keeps all copies coherent using a simple coherence protocol, data transfers 
are only performed when needed.

VectorPU programs are organized as a set of C++ functions, some of which might internally use device-specific program-
ming CUDA constructs3 while others are expected to execute on the host, using one or possibly multiple cores. VectorPU 
components are functions that are supposed to contain (CPU or device) kernel functionality and for which operands are 
passed as VectorPU data container objects. Components and the types of execution units that access their operands are 
declared by annotating the operands of the function, either at a call of the function or for the formal parameters in the 
function’s declaration, with VectorPU access mode specifiers. For example, in contrast, SkePU [3] overloads element access 
and iterator operations so that monitored accesses are also possible on demand in non-componentized (i.e., ordinary C++) 
CPU code. VectorPU only relies on access mode annotations to perform lazy data transfer, not knowing when data is going 
to be accessed inside a component.

Table 1 summarizes the access mode annotations currently defined for VectorPU. The access mode specifiers, such as R
(read on CPU), W (write on CPU), RW (update, i.e., both read and write, on CPU), GR (read on GPU) and so forth, are avail-
able both as annotations of function signatures and as C++ preprocessor macros that expand at compilation into (possibly, 
device-specific) C++ pointer expressions and side effects that allow to generate device specific access code and use device-
specific pointer types for the chosen execution unit. For instance, GW(x) expands to a GPU pointer to the GPU device copy 
of x, which might be dereferenced for GPU writing accesses to x, such as the GPU code: *( GW(x) + 2 ) = 3.14.
GWI(x) evaluates to a Thrust-compatible iterator onto the GPU device copy of x, and WEI(x) to an iterator-end reference 
to the last element of x on CPU side. The current VectorPU prototype implementation does not (yet) check access-mode 
annotations in signatures of externally defined functions. It is also possible to specify partial access of a vector instead of 
the entire vector data structure. The current VectorPU implementation does not (yet) support coherence for overlapping
intervals of elements resulting from multiple (partial) accesses some of which (may) access the same element. A solution 
for this problem has been described for SkePU smart containers by Dastgeer [1]. Section 4 details a solution for handling 
overlapping arrays in VectorPU.

The following example (adapted from [4]) of a CUDA kernel wrapped in an annotated function bar shows the use of 
VectorPU access mode annotations at function declaration:

// Example (annotations at function declaration):
__global__
void bar ( const float *x [[GR]], float *y [[GW]],

float *z [[GRW]], int size )
{ ... CUDA kernel code ... }

Here, the operand array pointed to by x may be read (only) by the GPU within bar, operand array y must be written 
(only) by the GPU, and operand array z may be read and/or written by the GPU. When calling bar, the first three operands 
are passed as VectorPU vector container objects. The size formal parameter is a scalar (not a data container), so it will 
be available on GPU on a copy-in basis but no coherence will be provided for it by VectorPU.

2 http://www.ida .liu .se /labs /pelab /vectorpu, https://github .com /lilu09 /vectorpu.
3 VectorPU allows to directly annotate a CUDA kernel function, in addition to annotating its C++ wrapper function.

http://www.ida.liu.se/labs/pelab/vectorpu
https://github.com/lilu09/vectorpu
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struct my_set {
template <class T>
__host__ __device__

void operator() (T &x) { x+=101; }
};
vectorpu::vector<int> vx(10); // the mother vector
vectorpu::pvector<int> vy(x, vx.begin(), vx.begin()+2);
vectorpu::for_each<int>( GWI(vy), GWEI(vy), my_set() );
vectorpu::for_each<int>( GWI(vy), GWEI(vy), my_set() );
SR( vy ); // explicit coherence management
vectorpu::for_each<int>( RI(vx), REI(vx), [](auto x) {cout<<x<<" ";} );

Fig. 2. Example of using a partial vector (pvector) and the SR macro for explicit coherence management. (Note: pvector is a short form and actually 
called parco_vector in the VectorPU API.)

It is also possible to put the annotations into a call, and hence characterize a function as a VectorPU component:

// declare a CPU function:
void foo ( const float *x, float *y, float *z, int size );

// declare three vectors:
vectorpu::vector<float> vx(100), vy(100), vz(100);

// call to VectorPU annotated function foo:
foo ( R( vx ), W( vy ), RW( vz ), size ) ;

Here, the access mode specifiers and the resulting coherence policy only apply to that particular invocation of foo, while 
other invocations of foo might use different access mode specifiers.

The following example shows how to use iterators:

vectorpu::vector<My_Type> vx(N);
std::generate( WI(vx), WEI(vx), RandomNumber );
thrust::sort( GRWI(vx), GRWEI(vx));
std::copy( RI(vx), REI(vx), ostream_iterator<My_Type>(cout, ""));

where std::generate is a CPU function filling a section between two addresses with values (here, random numbers), 
and thrust::sort denotes the GPU sorting functionality provided by the Nvidia Thrust library.

2.1. Partial vectors

Using iterators, it is possible in VectorPU to define references to contiguous subranges of a vector, called partial vectors
(pvectors), which can be passed as vector-compatible operands to a function instead of an entire vector. In this way, 
it is possible to pass several (disjoint or even overlapping) pvector objects as seemingly different vector arguments that 
however are just windows onto a common vector container variable. In contrast to vectors without pvectors, where 
coherence is managed automatically by VectorPU, the coherence management in the presence of pvectors is exposed to 
the programmer.

A partial vector can be initialized by two iterators to a normal VectorPU vector (we call it mother vector). No new 
memory is allocated for this partial vector, only the two iterators are stored, and the coherence state for its range in the 
mother vector. When a partial vector is declared, it automatically inherits the coherence state information from its mother 
vector.

The aliasing introduced by pvectors can lead to coherence problems. One such scenario could be that the programmer 
intends to operate on the previous vector again after some part of it was updated via a pvector, hence the whole
vector would be in an inconsistent state. In such cases, VectorPU expects the programmer to use a macro SX (Synchronize 
for access mode X , such as SR for synchronized read) just before the programmer operates on the whole vector again. It 
may be inefficient for a pvector to perform the SX synchronization automatically, because multiple operations can be 
performed on the same pvector before accessing the whole vector again, and because the pvector has no knowledge 
about when the operations on itself will be finished, hence keeping them coherent each time is not necessary and thus a 
waste of performance.

Fig. 2 shows an example of using a pvector and the SX macro. It initializes a mother vector vx and a pvector vy
on it. The following two lines change part of vy’s value multiple times. The SR macro explicitly restores coherence for vy
before the following read access, resulting in a write-back of vy elements in GPU device memory to their locations in vx, 
thus also vx as a whole becomes coherent again and line 6 is safe to operate on the whole vx.
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void coherent_on_cpu_r(){
if( !cpu_coherent_unit ){

download();
cpu_coherent_unit=true;

}
}
void coherent_on_cpu_w(){

cpu_coherent_unit=true;
gpu_coherent_unit=false;

}
void coherent_on_cpu_rw(){

if( !cpu_coherent_unit ){
download();
cpu_coherent_unit=true;

}
gpu_coherent_unit=false;

}

void coherent_on_gpu_r(){
if( !gpu_coherent_unit ){

upload();
gpu_coherent_unit=true;

}
}
void coherent_on_gpu_w(){

gpu_coherent_unit=true;
cpu_coherent_unit=false;

}
void coherent_on_gpu_rw(){

if( !gpu_coherent_unit ){
upload();
gpu_coherent_unit=true;

}
cpu_coherent_unit=false;

}

Fig. 3. Coherence control code, here for simple vectors, in vectorpu.h. Functions download and upload are implemented using CUDA thrust::copy. 
Validity of copies on CPU and GPU is indicated by the flags cpu_coherent_unit and gpu_coherent_unit respectively; both are initialized to true
in code allocating new vectors (not shown).

2.2. Implementation notes

Coherence protocol In the source code of VectorPU, the code relevant for our work is the part of vectorpu.h4 that handles 
coherence. Its implementation for the various variants of vector (see the code excerpt in Fig. 3 for simple vectors) 
follows a simple valid-invalid protocol.

Expansion of macro annotations to device-specific pointers For function parameters, the macro annotations expand into appro-
priate C code to fit their function call context. For illustration, we show the simplified code after a function parameter’s 
expansion (−→) for four typical annotations, where vx refers to a VectorPU vector instance:

• R(vx) −→ set_coherence_state();
return this->std::vector<T>::data();
//casted as const in return value• W(vx) −→ set_coherence_state();
return this->std::vector<T>::data();• GR(vx) −→ set_coherence_state();
return thrust::raw_pointer_cast(
& (* thrust::device_vector<T>::begin() ) );

//casted as const in return value• GW(vx) −→ set_coherence_state();
return thrust::raw_pointer_cast(
& (* thrust::device_vector<T>::begin() ) );

Hence, each annotated parameter is expanded to some code snippet.5 In all scenarios the expanded macros first update 
the coherence state according to the annotation’s semantics. Then, for the CPU cases, a pointer to a std::vector is 
returned, and for the GPU cases, a pointer to a Thrust pointer (which is a pointer to GPU memory space) is returned. For 
read-only cases, the return value is casted to const to ensure type safety in its function invocation. For write-only cases, 
no such const cast happens.

Partial vector implementation and memory management For implementing the pvectors atop vectors, VectorPU uses the 
simplistic approach of allocating memory for the entire vector on the device even if the pvector(s) might only access 
a minor part of it. This may waste device memory space but makes local address calculations easy, and anyway only the 
accessed elements (the pvector range) will be transferred. As we will see later, it also simplifies coherence management 
for overlapping pvector accesses, which was not really foreseen in the original VectorPU design.

2.3. Efficiency

Using only available C++(11) language features, VectorPU provides a flexible unified memory view where all data transfer 
and device memory management is abstracted away from the programmer. Nevertheless, its efficiency is on par with that of 

4 The VectorPU source code can be found at https://github .com /lilu09 /vectorpu.
5 One can think of those code snippets as anonymous functions or lambda functions. In the real scenarios these code snippets are encapsulated within a 

function, and each macro as shown above expands to a call to its function.

https://github.com/lilu09/vectorpu
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handwritten CUDA code containing explicit data movement and memory management code [4]. In particular, the VectorPU 
prototype was shown to achieve 1.4× to 13.29× speedup over good quality code using Nvidia’s Unified Memory API on 
several machines ranging from laptops to supercomputer nodes, with Kepler and Maxwell GPUs. For a further discussion of 
VectorPU features, such as specialized versions of vector, for descriptions of how to use VectorPU together with lambda 
expressions e.g. to express skeleton computations, and for further experimental results we refer to [4].

3. A formalization for reasoning on consistency in VectorPU

In this section we provide a minimal calculus to reason on the memory operations that can exist in a framework that 
deals with memory consistency like VectorPU. We first define a set of effects that operations can have on the consistency 
of the memory. Then we define a small calculus expressing different memory accesses and their composition into complex 
procedures. Finally, we express VectorPU operations as higher-level statements that can be translated into the core calculus, 
and show that if all memory accesses are annotated correctly through VectorPU annotations the program cannot try to 
access an invalid data and the memory spaces are put in coherence when needed. We also show that VectorPU tracks 
the validity status of the memory adequately. In this section we abstract away the values stored in memory and we do 
not deal with any form of aliasing. A more precise analysis of aliasing is out of the scope of this paper, it could be for 
example inspired from [6] or from our extension to overlapping array (Section 4). We place ourself in a simplified setting 
where each variable is hosted in exactly two memory locations, e.g. a CPU (main) memory and a GPU memory location; our 
results could be extended to multiple memory locations without any major difficulty.

3.1. An effect system for consistency between memory locations

We start from a simple effect system, it expresses the effect of writing or reading a memory location on the consistency 
status of the memory. Each location is either in valid state when it holds a usable data or invalid state when the value at the 
location is not valid anymore. We express five operations: reading, writing, Push for uploading the local memory location 
into the other one, and Pull for the contrary. Noop does nothing.

E ::= Push | Pull | r | w | Noop

These operations involve a single memory location. We express below the semantics of each of the operations on the 
consistency status of the concerned memory location. The memory status of a variable is a pair of the status of its locations, 
where each status is either V for valid or I for invalid. The first element is the status of the local memory, and the second 
one is the status of the remote memory. For example, for a program running on a CPU while the remote memory is a GPU, 
a status (V , I) means that the memory is valid and can be read on the CPU, but is invalid on the GPU and should be trans-
ferred before being usable there. Each operation has a signature in the sense that it may require a certain memory status 
and will produce another memory status. The signature of each operation is expressed below and is called its effect. We use 
variables – X , Y – that are considered universally quantified in each rule. They can be instantiated with either V or I .

Push : (V , X) �→ (V , V ) Pull : (X, V ) �→ (V , V ) r : (V , X) �→ (V , X)

w : (X, Y ) �→ (V , I) Noop : (X, Y ) �→ (X, Y )

These signatures are effects expressing that r is a reading operation requiring validity of data and ensuring not to 
modify it, the distant status is unchanged; w is a writing operation that modifies data locally but do not require validity, 
it invalidates the remote memory. Push uploads the local memory and thus makes valid the distant memory; it requires 
that the data is locally valid, and Pull is the symmetrical operation. Applying these signature consists in trying to unify the 
current memory status with the effect of the variable, potentially instantiating X and Y appropriately. No unification is 
possible if the status and the effect cannot be made identical by instantiating variables.

Example: An operation r can be applied on a validity status (V , V ), leading to the validity status (V , V ) because (V , V ) can 
be unified with (V , X) by instantiating X with V . However r can not be applied on a validity status (I, V ) because (V , X)

cannot be unified with (I, V ): I and V are different.

An additional operation could be defined: an rw operation would represent a read and/or write access, it would both 
require data validity and invalidate remote status: (V , X) �→ (V , I). This operation is however not needed here but we will 
have a similar one at the annotation level, see below.

3.2. A language for modeling consistency and effects

We now create a core calculus to reason on programs involving sequences of effects on different memory locations. 
x, y range over variables and we introduce statements manipulating variables. We use sequence and simple loops and 
conditionals. Operations with effects now apply to a variable: E x denotes some operation E on variable x; rem(E x) is a 
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valid

σ(x) = (V , X)

�isValid x�σ = True

invalid

σ(x) = (I, X)

�isValid x�σ = False

rem-valid

σ(x) = (X, V )

�remIsValid x�σ = True

rem-invalid

σ(x) = (X, I)

�remIsValid x�σ = False

Effect

σ(x) = (X, Y ) E : (X, Y ) �→ (Z , T )

(E x; S,σ ) → (S,σ [x �→ (Z , T )])
Remote Effect

σ(x) = (X, Y ) E : (Y , X) �→ (Z , T )

(rem(E x); S,σ ) → (S,σ [x �→ (T , Z)])
While-True

�cond�σ

(While(cond)S;S ′,σ )→(S;While(cond)S; S ′,σ )

While-False

¬�cond�σ

(While(cond)S;S ′,σ )→(S ′,σ )

IF-True

�cond�σ

((if (cond) S else S ′);S ′′,σ )→(S;S ′′,σ )

IF-False

¬�cond�σ

((if (cond) S else S ′);S ′′,σ )→(S ′;S ′′,σ )

Fig. 4. Operational semantics of validity status.

remote operation on the remote memory. We also have a Noop operation that has no effect and can be considered as a 
neutral element for the sequence. Statements S are defined as:

S ::= E x | rem(E x) | S; S ′ | While(cond)S | if (cond) S else S ′ | Noop

Example: A GPU procedure writing x and reading y would correspond to the pseudo-code: rem(w x); rem(r y).

We are interested in conditionals dealing with the validity status of the variables. Other conditionals are expressed as a 
generic binary operator ⊕ but operators with different arities could be added as well:

cond ::= isValid x | remIsValid x | x ⊕ y

where isValid x, resp. remIsValid x, denote checks of the validity status flag of the local, resp. remote, location of x.
We now define a small step operational semantics for our core calculus. It relies on the validity status of variables, 

recorded in a store σ mapping variable names to validity pairs. Semantics is written as a transition relation between pairs 
consisting of a statement and a store: (S, σ). The sequencing operator ; is associative with Noop as a neutral element. 
Consequently each non-empty sequence of instruction can be rewritten as S; S ′ where S is neither a sequence nor Noop. 
σ [x �→ (X, Y )] is the update operation on maps.

The semantics is presented in Fig. 4. Like in the previous section, we use validity variables X , Y , Z , T that are universally 
quantified in each rule. The first four rules present the evaluation of conditional statements, we assume additional rules exist 
for evaluating ⊕.6 The next rule applies an effect of the operation E on a variable x updating the validity store, and the
Remote Effect rule applies an operation occurring on the distant memory, it applies the symmetric of the effect of the 
operation to the variable: validity values are switched compared to the non-remote effect. Note that Push is the symmetric of Pull
and we could have removed one of those two operations without loss of generality: Pull is the same as rem(Push). The last 
rules are standard ones for if and while statements.
Initial state: To evaluate a sequence of statements S using the variables vars(S), we create an initial configuration with a 
store where data is hosted on the CPU and all variables are mapped to (V , I): σ0 = (x �→ (V , I))x∈vars(S) .

A configuration is reachable if it is possible to obtain this configuration starting from the initial configuration and applying 
any number of reductions: (S, σ) is reachable if (S, σ0) →∗ (S ′, σ) where →∗ is the reflexive transitive closure of →. We 
write (S, σ) �→ and say that the configuration is stuck if no reduction rule can be applied on (S, σ).

Property 1 (Progress). A configuration is stuck if the validity status of the accessed variable is incompatible with the effect to be applied:

(S,σ ) �→ ⇐⇒ S = E x; S ′ ∧ σ(x) = (X, Y ) ∧ E : (X ′, Y ′) �→ (Z , T )

∧ there is no unification between (X, Y ) and (X ′, Y ′)
∨S =rem(E x); S ′ ∧ σ(x)=(X, Y ) ∧ E : (X ′, Y ′) �→(Z , T )

∧ there is no unification between (X, Y ) and (Y ′, X ′)
∨S = Noop

Note that this supposes that ⊕ always succeeds.

6 We suppose that evaluation of ⊕ always succeeds, and in particular variables accessed by the operation are specified as a r operation preceding the 
condition.
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Proof. Recall each non-empty sequence of instruction, here S , can be rewritten as S ′; S ′′ where S is neither a sequence nor 
Noop. If the sequence is empty, S = Noop, and the execution is finished, it corresponds to the last case of the rule.

By case analysis on the first statement of S ′ , there is always one rule applicable provided the premises of the rule can 
be evaluated.

In case the statement is an if or a while, it corresponds to the last four rules this requires the evaluation of cond. If ⊕
always succeeds then cond can always be evaluated to either True or False and consequently one of the rule can always 
be applied.

The only cases remaining for S are E x and rem(E x). The applicable rules are Effect and Remote Effect. These rules 
can always be applied except if there is no unification possible between the effect of an operation and the current validity 
status of the affected variable, i.e. there is no instantiation of X and Y such that both σ(x) = (X, Y ) and E : (X, Y ) → (Z , T )

in the case of Effect. This corresponds to the two first cases expressed in the theorem (one for Effect and one for Remote 
Effect). �
Property 2 (Safety). A state is said to be unsafe if at least one variable is mapped to (I, I). It is impossible to reach an unsafe state from 
the initial state.

Proof. The principle is that unsafe states are avoided because of the effects of operations. Indeed only the two effect rules 
(Effect and Remote Effect) modify the store and no effect can reach (I, I), except Noop x starting from σ(x) = (I, I). This 
is sufficient to conclude, by recursion, as the initial state is not (I, I). �
Example: The sequence w x; rem(r x) can never be fully evaluated and will lead to a stuck configuration. Indeed, 
(wx; rem(r x), (x �→ (V , I))) → (rem(r x), (x �→ (V , I))), but rem(r x) requires that x is mapped to (X, V ) for some X which 
is not the case.

However if we add a Push operation to ensure the validity of the accessed memory the program w x; Push x; rem(r x)
can be reduced as follows:

(wx; rem(r x), (x �→ (V , I)))
→ (Push x; rem(r x), (x �→ (V , I)))
→ (rem(r x), (x �→ (V , V ))) → (Noop, (x �→ (V , V )))

3.3. Declaring access modes and adding an abstraction layer

The calculus defined above only considers simple memory locations and directly manipulates them. But VectorPU and 
similar libraries manipulate structures representing the memory. For example, VectorPU vectors act as an abstract represen-
tation of a set of memory locations. In this section, we add a declaration and abstraction layer to the calculus to represent 
the access mode declarations that will trigger data transfers according to the consistency mechanism. This abstraction layer 
is also a necessary first step to the modeling of array structures that we will present in Section 3.5. Indeed, in array struc-
tures, the validity status of the array is abstracted away by a single validity status pair. Then a dynamic abstraction of the 
consistency status of the memory can be used. Abstract variables are not part of the applicative code but can be used in 
the access mode declarations.

Consider for example an array x. As it is not desirable to store the information of the validity status of all the elements of 
the array, we will create for this array and abstract variable x# that will represent all the elements of the array – x[i] – from 
the validity status point of view. If the representation was precise, a value (V , I) for x# would mean that all the elements of 
the array are valid locally and invalid remotely. In practice we need to authorize some approximation of the validity status, 
at least because most operations only act on some of the elements of the array. Consequently, some information is lost in 
the abstract representation: if σ(x#) = (V , I) then each element of the array x must be locally valid, the remote elements 
may be valid or invalid. Like with non-abstract variables, having σ(x#) = (I, I) is not desirable as the coherence protocol 
would be unable to know where are the valid elements of the array – even if for all i, x[i] = (V , I) or x[i] = (I, V ). In the 
case of arrays and usual data-structures, the mapping between abstract and concrete elements is quite trivial: one abstract 
variable represents a whole data structure. Other mappings (one variables for several structures or splitting a data structure) 
could be defined but their definition might be too complex to be usable in practice.

The abstraction and declaration layer relies on two principles:

• Each variable x has an abstract variable x# that represents it. In this section there is a single variable for each represen-
tative, but when we deal with arrays we will have a single representative for the whole array.

• It is safe to “forget” that one memory space holds a valid copy of the data if the other memory space has a valid one. 
In other words, (V , I) (resp. (I, V )) is a safe abstraction of (V , V ) and we have (V , I) ≤(V , V ) (resp. (I, V ) ≤(V , V )). 
Also for any X and Y we have (X, Y ) ≤(X, Y ).
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� R x# � = (if (isValid x#) Noop else (Pull x; Pull x#))

�rem(R x#)� = (if (remIsValid x#) Noop else (Push x; Push x#))

� RW x# � = (if (isValid x#) Noop else (Pull x; Pull x#)); w x#

�rem(RW x#)� =(if (remIsValid x#) Noop else (Push x; Push x#)); rem(w x#)

�W x# � = w x# �rem(W x#)� = rem(w x#)

�M1{S1}; M2{S2}; . . .� = �M1 �; S1; �M2 �; S2; . . .

Fig. 5. Semantics of access modes and programs.

Syntax We now define access mode declarations:

M ::= R x# | W x# | RW x# | rem(R x#) | rem(W x#) | rem(RW x#) |
M∧M′ (where variables in M and M′ are disjoint)

These access modes declare the kind of access (read R , write W , or read and/or write RW ) that can be performed on 
the variable x represented by x#. In a set of access mode declarations the same variable cannot appear twice.7 There exist 
declared access modes for local accesses and for the remote memory space.

A program is a sequence of calls to functions or components (i.e., statements accessing only real variables) each protected 
by an access mode declaration (on abstract variables representing the real variables):

P ::= M1{S1};M2{S2}; . . .
We write S ∈ S ′ if S is one statement inside S ′ (i.e. S is a sub-term of S ′).

We define below the semantics of these programs and specify well-declared program by comparing the statements 
they contain with the declared access modes. The semantics relies on the translation of the access mode declarations into 
consistency mechanisms with checks and data transfers triggered before each function execution.

Extension of statements to abstract variables When evaluating a program, the store contains both real and abstract variables, 
and the existing statements have the same effect on the abstract variables as on the real ones. However one should notice 
that even if the effect is the same, the meaning of a statement acting on a real variable or on its representative is different: 
in our calculus, the effect on a variable is an abstraction of the real effect that involves side effects and data transfers. On 
the contrary, only the validity status of abstract variables is stored by the library: the effect triggered by an operation on an 
abstract variable is exactly what happens when VectorPU updates the validity status of its internal structures.

For example, a Pull operation on a real variable consists in transferring data from a remote memory space to the local 
one. We abstracted it by changing the local validity status. A Pull operation on an abstract variable only changes the validity 
status, no data transfer has to be done because abstract variables only need to be stored in one memory space. The validity 
status is stored in the CPU address space in VectorPU. Comparing the validity status of real memory and their representative 
allow us to reason formally on the correctness of the validity tracking performed by VectorPU.

As no data is accessed by the effects on abstract variables, they cannot create stuck configuration. Consequently, r x# has 
no effect as it does not change the validity status of variables. The statement that should get stuck in case of a read access 
is the read of the real variable that cannot access a valid data.

Semantics Fig. 5 defines the semantics of programs with access modes as a translation into the core calculus of Section 3.2. 
This translation ensures that the validity status is correct and records the effect of the function on the abstract variable 
before running the function call that may read and write data (on the real variables). Similarly to the VectorPU library, the 
protected accesses can be considered as macros and the programs can be translated into the core syntax.

This encoding corresponds to the macros as they are implemented in VectorPU. It is indeed easy to check that VectorPU 
tracks the effects in the same way as our effect system does in the translation rules. These translation rules perform Push
or Pull operations in order to ensure that the memory is in a correct validity status for the read or write operation to be 
performed. The validity conditions are checked on the abstract value, which corresponds to the fact that VectorPU only 
check the status of the coherency flag stored with the vector structure; push/pull operations are performed twice: once for 
representing the data-transfer, and once for representing the validity status update. Finally, status is updated when writing 
operations are declared. When evaluating a program we create a store where the validity status of real and abstract variables 
are (V , I), corresponding to the fact that data is initially placed in one memory location; typically, in VectorPU, in the CPU 
memory space.

7 This restriction simplifies the formal definition and the reasoning. Extending the results to the same variable appearing twice with the same access 
mode is trivial (if the same parameter is passed twice to the same function). Having the same memory location declared twice with different access modes 
is not safe in the general case but Section 4 will study more precisely the case of overlapping arrays.
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3.4. Well-declared programs and their properties

We now define formally what it means for an access mode declaration to be correct, i.e. to adequately specify the 
effect of a function. The principle is that each operation on a memory location must be declared on its representative. It is 
however possible to declare more read or RW accesses that what is done in practice, and one can declare a read and/or 
write access if only read or write is performed. Additionally, the annotation W denotes an obligation to write which allows 
the consistency mechanism to avoid any validity check and any transfer before running the function that will overwrite the 
data. To represent this concept, we need a first definition that states that an operation will be performed in all execution 
paths of a (bigger) statement. This definition formalizes a classical static analysis concept that states that all branches of 
conditionals necessarily execute a given statement. It considers executions that run to completion and states that a given 
statement is necessarily evaluated in this execution.

Definition 1 (Occurs in all execution paths). We state that a statement S occurs in all execution paths of S0 if, for any correct 
initial store σ0, for all full reductions (S0, σ0) → (S1, σ1) → . . . → (Noop, σn), there is an intermediate state (Si, σi) such 
that Si = S; S ′′ for some S ′′ .

Notice that an operation S can only appear in some of the execution paths of S ′ if S ∈ S ′: if S is an operation, i.e. a 
single statement, then (S0, σ0) →∗ (S; S ′, σ) then S ∈ S0.

Definition 2 (Well-declared program). A program P is well-declared if for all M{S} in P we have:

• Push x /∈ S and Pull x /∈ S (for any x),
• w x ∈ S =⇒ (W x# ∈M ∨ RW x# ∈M),
• r x ∈ S =⇒ (R x# ∈M ∨ RW x# ∈M),
• W x#∈M =⇒ w x occurs in all execution paths of S ,
• Plus the same rules for remote operations.

Note that a well-declared program does not perform synchronization operations (Push or Pull) manually, these operations 
are only performed when evaluating the access mode declarations. Also each variable accessed by a well-declared function 
has an abstract representative in the corresponding declaration block.

A direct consequence of the definition above is that a well-declared program cannot access, in the same function, the 
same variable in both address spaces. This is in accordance with VectorPU where each function is entirely executed either 
on a CPU or on a GPU, the formalization is a bit more generic on this aspect. This is expressed by the following property.

Property 3 (Localized access). Consider a well-declared program containing M{S}, for any x, we cannot have rem(E x) ∈ S and 
E ′ x ∈ S.

Proof. This is a consequence of the uniqueness of abstract variables in access mode declarations. Indeed, if E ′ x ∈ S and the 
program is well-declared, then there must be R x# or W x# or RW x# in M. Similarly, as rem(E x) ∈ S , if the program is 
well-declared rem(R x#) or rem(W x#) or rem(RW x#) in M, it is impossible to have two different entries for the same 
variable and thus we cannot have rem(E x) ∈ S and E ′ x ∈ S . �

We now state and prove the two major properties ensured by our formalization. The first property ensures that the 
abstraction is correct relatively to the execution. This corresponds to the fact that VectorPU tracks adequately the validity 
status of the memory. This is expressed as a theorem that is similar to subject-reduction in type systems, it states that if 
the status of the abstract variables represent correctly the validity status of the real variables, then the abstraction is also 
correct after the execution of a well-declared function. We first define the correctness of the representation of the validity 
status.

Definition 3 (Correct abstraction of the memory state). We have a correct abstraction of the memory state if for each real memory 
location, the abstract representative of this location has a validity status that is an approximation, in the sense of ≤, of the 
validity status of the real memory. More formally, σ stores a correct abstraction of the memory state if (recall x# stores the 
validity information for x):

∀x ∈ dom(σ ).σ (x#) ≤ σ(x)

The theorem below states that the execution of a well-declared function maintains the correctness of the memory state 
abstraction.
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Theorem 1 (Subject reduction). Suppose M{S} is well-declared, we have:

∀x ∈ dom(σ ).σ (x#) ≤ σ(x) ∧ (�M{S}�,σ ) →∗ (Noop,σ ′)
=⇒ ∀x ∈ dom(σ ′). σ ′(x#) ≤ σ ′(x)

This property is extended by a trivial induction to the execution of a well-declared program P in an initial store σ0 = (x �→
(V , I))x∈vars(P) .

Proof. Notice that dom(σ ′) = dom(σ ), and if σ(x) = (V , I) or σ(x) = (I, V ) then σ(x) = σ(x#), else σ(x) = (V , V ). We 
reason on the read and write access that occur in the considered reduction. Each variable x is either read or written or not 
accessed (or read and written). For each case we compare the status of abstract and local variable, and in particular we 
consider the status of the reduction after executing the synchronization code �M{S}� and call σs the corresponding store 
(note that σs(x#) = σ ′(x#)). We detail operations on the local address space, cases for remote operations are similar:

• If x is written, we have: (�M{S}�, σ) →∗ (w x; S ′, σ ′′) →∗ (Noop, σ ′). Whatever the initial value of σ(x), we have 
σ ′(x) = (V , I). Two cases are possible:
(1) W x# ∈M then the value cannot be read and we have σs(x#) = (V , I). σ ′(x#) = σ ′(x).
(2) RW x# ∈ M then a data-transfer (Pull) may occur. Knowing that σ(x#) ≤ σ(x), by a case analysis on σ(x) and 

σ(x#) we have: σs(x#) = (V , I) and σs(x) = (V , I) or (V , V ). Whether x is read or not we have σ ′(x#) = σ ′(x).
• If x is read but not written, its validity status is not changed.

(1) R x# ∈ M. By a case analysis on σ(x) and σ(x#) we have: σs(x) =(V , I) and σs(x#) =(V , I), or σs(x) =(V , V ) and 
σs(x#) =(V , I) or (V , V ). Reading has no effect on validity status and in all cases we have σ ′(x#) ≤ σ ′(x) = σs(x).

(2) RW x# ∈ M then similarly to the case (2) above we have σs(x#) = (V , I), additionally σ ′(x) = σs(x) = (V , I) or 
(V , V ). In all cases σ ′(x#) ≤ σ ′(x).

• If x is not accessed but is in the declaration, the reasoning is the same as if it was only read. Note that a variable that 
is not accessed cannot be declared in write mode, W x# ∈M, by Definition 2. �

Finally, a well-declared program always runs to completion: it never tries to access an invalid memory location.

Theorem 2 (Progress for well-declared programs). If a program P is well-declared, then its execution cannot reach a stuck configura-
tion.

Proof. By Property 1, it is sufficient to prove that unification on the validity status is always possible. We consider a 
reduction (�M{S}�, σ) →∗ (S, σs) →∗ . . . similarly to the proof above.

By definition of well-declared programs and because of the signature of effects (w x cannot be stuck), only four cases 
have to be analyzed for the local operations:

• Pull operations (on x and x#) in the translation of R x# or RW x#. Unification requires that σ(x) = (X, V ) and σ(x#) =
(Y , V ).

• r x operation in the evaluation of S . Unification requires that σ ′(x) = (V , X) where σ ′ is the store in which the read 
access is to be evaluated.

• Push x, Push x#, and rem(r x) that are similar to the cases above, they require the symmetric validity status in similar 
conditions (not detailed below).

Indeed, access mode declarations do not generate reading operations, and by definition function statements contain no Push
or Pull.

Concerning the first case, because of Theorem 1, we have σ(x#) ≤ σ(x), and because of Property 2 none of them is (I, I). 
By case analysis on the possible values of σ(x#) and σ(x), it is easy to show that σ(x) = (X, V ) and σ(x#) = (Y , V ) if we 
reach the two Pull statements that perform data transfers before the execution of the function.

Concerning read access, they should be verified by an induction on the reduction steps following the state (S, σs) show-
ing that, for any variable x that is declared R or RW , in all states we have σ ′(x) = (V , X). Indeed, by the same analysis as 
in the proof of Theorem 1 we know that σ ′(x) = (V , X). Because of Property 3 no remote operation is possible on x and 
thus only r x and w x operations are possible on x, both maintain the invariant σ ′(x) = (V , X) for some X . �
Example: Consider the example above of a variable written on the CPU, and then read on the GPU, a well-declared program 
encoding this behavior would be:

RW x#{w x};
rem(R x#){rem(r x)}

This code automatically generates the Push instruction that prevents the program from being stuck, indeed the RW anno-
tation ensures that after executing the first line, the validity status pf x# is: (V , I), the encoding of for rem(R x#) checks 
whether the remote status is valid, as it is not the statements: Push x; Push x#; are executed.
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3.5. Effects and access mode declarations for arrays

In array structures, the validity status of the whole array is abstracted away by a single validity status pair. We extend the 
syntax for arrays as follows, x[i] denotes the indexed access to an element of the array. More precisely the new operations 
on arrays and their elements are (we still have the previous operations on non-array and abstract variables):

S ::= ... | r x[i] | w x[i]
Synchronization operations (Push and Pull) exist for arrays but the whole array is synchronized, and we write Push x and 

Pull x as above. All the elements of the array are represented by a single abstract variable: x# represents a safe abstraction 
of the validity status of all x[i]. In other words, as soon as one element of the array x is invalid locally (resp. remotely) the 
validity status of x# can only be (I, V ) (resp. (V , I)).

The semantics of access mode declarations and programs is unchanged because synchronization operations and access 
mode declarations do not concern array elements. The concept of well-protected programs must be adapted to the case of 
array structures, and more precisely to the fact that several memory locations are represented by a single abstract variable.

Definition 4 (Well-declared program with array access). A program P is well-declared if for all M{S} in P , additionally to the 
rules of Definition 2, we have8:

• w x[i] ∈ S =⇒ (W x# ∈M ∨ RW x# ∈M),
• r x[i] ∈ S =⇒ (R x# ∈M ∨ RW x# ∈M),
• W x#∈M =⇒ ∀i ∈index(x). w x[i] occurs in all execution paths of S ,
• Plus the same rules for remote operations.

Example: Consider the function body rem(w x[3]), corresponding to a function made of the C++ statement x[3] = 0 executed 
on a GPU. The only safe access mode declaration for it is rem(RW x#) indeed, some of the elements of the array are written 
but not all. At the end of the function execution the valid copy of the array is on the GPU.

The other definitions and properties are expressed similarly for arrays, compared to standard variables, and both subject-
reduction, Theorem 1, and progress, Theorem 2, are still valid. The only change is the “correct abstraction of the memory 
state” criteria – see Definition 3 – that becomes

∀x ∈ vars(S). σ (x#) ≤ σ(x) if x is not an array
∀i ∈ index(x). σ (x#) ≤ σ(x[i]) if x is an array

Theorem 3. If a program using arrays is well-declared according to Definition 4 then its execution verifies both the subject-reduction 
and the progress property.

Proof sketch. The proofs are similar to the non-array case except in the case of W x declarations where the fact that all 
elements of the array must be written is necessary to ensure that no element is in the status (I, V ) (which could not 
be safely represented by (V , I)) at the end of the function execution. If we focus on the proof of Theorem 1, case “x is 
written, sub-case (1) we have σ ′(x#) = (V , I) which is a safe abstraction because all elements have been written, and thus 
σ ′(x[i]) = (V , I) for all i. If one element j was not written, we could have had σ ′(x[i]) = (I, V ) which would invalidate the 
theorem. Overall, only arguments about correctness of the abstractions need to be adapted. �
3.6. Discussion: Similarities and differences relatively to VectorPU

Let us compare the formal definition of the coherence protocol, Fig. 5 (valid for simple memory locations or arrays), with 
the VectorPU implementation of the protocol for simple arrays, Fig. 3. Except the order of operations and minor changes, 
the code is similar. The main difference is that there is no view of abstract vs. concrete variables, however, if we consider 
that transfer operations on abstract variables have no effect, and that validity status of concrete variables can be abstracted 
away, the code is the same as the formalization.

Taking a more global point of view, no verification is performed by the VectorPU framework and thus, the property 
of “well-declared programs” is not checked currently by the framework. In the current state of the library, the property 
“well-declared programs” must be ensured by the programmer. The implementation of VectorPU relies on the hypothesis 
that the function declarations are correct, because of this the current formalization is a significant step forward as it allows 
us to express precisely what assumption is made by the library on the programmer’s code.

8 index(x) returns the set of valid indices of the array x.
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Such a check could either be done by runtime verification checking that each function performs exactly the required 
access, or statically by constraints on the program and a static analysis (involving some approximations, meaning some 
correct programs could be rejected). The first solution is not acceptable considering the target application domain because 
of the overhead involved by the dynamic checks. Let us now try to figure out how difficult it would be to ensure that a 
given program verifies the “well-declared” property statically. We focus on the case of arrays that is the most interesting. 
Checking which accesses are performed on an array is a difficult task in general. However for reading access, declaring 
the array of constant type could enforce a reading access and even allow us to infer the R annotation for constant arrays. 
RW is not constraining the access and is always a safe annotation. W however requires all the elements to be written, 
checking this relies on a static analysis that is way beyond the scope of this paper and might be tricky. As already argued, 
the fact that the same variable does not appear twice is more a restriction of the formalization provided the same array is 
always declared with the same access (RW in the worst case), an additional pass could modify the annotations of identical 
variables so that the least restrictive one is chosen. Possible aliasing between variables can be seen as a particular case of 
overlapping array, studied in the next section.

Finally concerning expressiveness, the “well-declared programs” definition is a bit more flexible than what VectorPU 
targets at the moment because it is safe to declare in our framework functions that access some variables on the CPU and 
others on the GPU, and this is not planned in VectorPU, again due to the supported usage scenario.

These differences highlight interesting improvement directions for VectorPU while we can still consider that the current 
article is a faithful formalization of the library. In the next section, we investigate a feature that is not yet supported by 
VectorPU, but exists in SkePU. It concerns the handling of arrays that may overlap; this generalizes the problem of aliasing 
between variables. We can somehow consider the theoretical results below as a specification of a future extension of the 
library.

4. Overlapping arrays

In the preceding section we supposed that arrays were well-separated. The preceding abstraction would also be valid 
for an array that would be split into disjoint entities (such as VectorPU pvectors) and always used either as the disjoint 
sub-arrays or as the whole. In this section we extend the framework to take into account overlapping arrays. Here we still 
consider single dimension arrays for simplicity but multi-dimensional arrays could easily be taken into account.

4.1. Context and objectives

In VectorPU, the first pvector on a vector passed as argument for access on device will (over)allocate space for the 
entire vector, all subsequent pvector accesses to the same vector can skip the allocation. Consequently, two suc-
cessive data transfers of the same memory location will be written to the same memory location, even if the two initial 
locations are accessed through different (overlapping) pvectors. Consequently, on the formal side, if several push or pull 
are performed on overlapping memory locations, the transferred memory has the same overlaps as the source. This is very 
important to ensure that no two copies of the same array element will coexist in the same location.

Problem statement Overlapping arrays raises several difficulties making the approach currently adopted in VectorPU not 
adapted. Indeed a single write operation can change the validity status of a cell that belongs to several arrays. Consequently, 
several access annotations may have to be written for a single operation. As a consequence, some annotations may never 
be correct: a function that is declared to write all the elements of an array x will necessarily write some elements of the 
arrays that have an overlap with x, these overlapping arrays should thus be annotated and transmitted, or another coherence 
protocol should be used.

Approach In this work we take the decision not to change the coherence protocol of VectorPU and instead work at the 
access mode declaration level to ensure the consistency of overlapping arrays.

To take into account overlapping arrays in VectorPU, two approaches could be envisioned. A naive solution consists 
in applying the results for non-overlapping arrays. Indeed, Definition 4 of well-declared programs with array accesses is 
still valid. However, the programmer now has to annotate more variables because each array access operation may involve 
several arrays. Due to the array overlap, the programmer should now know all the arrays that are impacted by a function 
execution, including the overlapping arrays that are not passed as parameter, and the library should be extended to pass 
them as “artificial” parameters. To be more explicit, Definition 4 should be extended as follows (with a symmetrical rule for 
remote writing):

For every y overlapping x, if i is in the range in common between
x and y, we have w x[i] ∈ S =⇒ (W y# ∈ M∨ RW y# ∈ M).

First note that no additional rule is necessary for read operations. Indeed, read operations use the validity status but do 
not modify it, consequently, read operations do not modify the validity status of other arrays and have no consequence on 
overlapping arrays. Note also that the above rule restricts a bit the expressible effects as, for example, W x#; rem(R y#)
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Table 2
Extension of access mode annotations to deal with overlapping arrays.

E x# ∈ M
E x# ∈ O (M)

rem(E x#) ∈ M
rem(E x#) ∈ O (M)

W x# ∈ M W y# /∈ M x and y overlap

RW y# ∈ O (M)

RW x# ∈ M x and y overlap

RW y# ∈ O (M)

rem(W x#) ∈ M rem(W y#) /∈ M x and y overlap

rem(RW y#) ∈ O (M)

rem(RW x#) ∈ M x and y overlap

rem(RW y#) ∈ O (M)

cannot be valid if x and y overlap. Indeed, W x# means that all the cells of x are written and thus the access mode for 
y# must be W or RW . In this case, this is indeed a safe restriction as the array x will be written, and reading y remotely 
might not access a valid value.

4.2. Access mode inference for overlapping arrays

Though very precise, the approach described above does not seem realistic and we additionally develop an inference 
mechanism for access mode declarations in presence of overlapping arrays. The objective is to infer the correct annotations 
on variables that are not passed as parameters. Knowing the access modes for the function parameters, we infer what 
operation must be done on other intersecting arrays to ensure the coherency of the system, and we express these additional 
operations as implicit generated annotations. These additional access mode declarations are inferred, the semantics of these 
added declarations will result in additional data transfers and validation/invalidation operations that make the program 
correct. This is less precise as it takes a pessimistic approach on the operations performed by the declared arrays. For 
example, for any array that is declared RW we will suppose that all the array elements may be read and written, but the 
approach is safe and mostly automatic.

Starting from a given set of access mode annotations, we want to infer other access modes that are consequences of the 
overlaps and the existing annotations. Because we are only aware of an approximation of the effects (for each array variable, 
effect is abstracted by a single global effect), the inferred accesses will be approximate but can be a safe over-approximation 
of the effect of the function. Without knowing the real accesses performed by the function, we deduce from the declared 
access modes, a set of additional “artificial accesses”.

We consider M the set of all access modes declared for a given function and extend it so that the function satisfies the 
well-declared program requirement even with overlapping arrays.

Example: To understand the principle of the approach, consider the case where W x# ∈ M then ∀i ∈ index(x).w x[i] occurs 
in all EXECUTION paths of S , and thus for all arrays y overlapping x we must have (W y# ∈ M ∨ RW y# ∈ M). If we 
have no additional information we will ensure that RW y# is also in the set of access mode declarations, which is always 
safe. The extension O (M) defined below not only contains the original annotations M but also the annotations required 
for coherency of overlapping array. Here if W x# ∈M then both W x# and RW y# are in O (M).

Definition 5 (Extension of access mode declarations for overlapping arrays). Consider a set M of access mode declarations. The 
extension for overlapping arrays of M is the smallest set O (M) defined by the rules in Table 2.

The following theorem states that if the set of function parameters is extended according to the preceding definition, 
then memory consistency is ensured. Note that it means that a set of artificial parameters are to be added to some functions, 
in the sense that data-transfers and validity status modifications have to be performed on vectors that are not among the 
original parameters of the function.

Theorem 4. Consider a program that is well-declared according to Definition 4, not taking into account overlapping arrays. Suppose 
its access mode declarations are extended according to Definition 5 then the execution of the obtained program verifies both subject 
reduction and progress, even in presence of overlapping arrays.

Proof sketch. The principle of the proof is to prove that, provided a set M correctly declares the accesses performed 
syntactically by a function on its parameters, the set O (M) is a correct approximation of the accesses performed by the 
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function on all the arrays of the program, i.e. the parameter arrays and the arrays that overlap the parameter arrays. Then 
Theorem 3 will be sufficient to conclude.

Trivially, the first two rules of Table 2 are sufficient to conclude about normal function parameters. We now need to 
ensure that operations on overlapping arrays are well-declared. We focus on non-remote operations and prove that (indirect) 
operations on overlapping arrays are well-declared, according to Definition 4 modified by the additional rule introduced in 
above:

For every y overlapping x, if i is in the range in common between
x and y, we have w x[i] ∈ S =⇒ (W y# ∈ M∨ RW y# ∈ M).

By a simple case analysis on the possible annotations and the possible operations performed on the arrays, we deduce 
that the access modes added by the four last rules of Table 2 are sufficient to ensure the statement above. Finally the 
symmetrical statement for remote writing is ensured in the same way. �
4.3. Towards an implementation in VectorPU

To implement the proposed mechanism that ensure the safety of overlapping vector accesses in a function call f , we 
need to add to VectorPU the two following components:

• A representation rv to retrieve, for any given pvector pv of a vector v , the set of all other valid pvectors of v
that overlap with pv . rv is initialized as empty when declaring a new vector v , queried and/or updated at pvector
creations, deletions, and at calls, and is removed when v is deallocated.

• A mechanism which intercepts the function call f and, for every vector operand (vector or pvector) pv accessed 
as W or RW in f , looks up in the corresponding representation rv all pvectors overlapping with pv . For other 
arguments in f that overlap with pv and have access mode R or W, their access mode is updated to RW, as proposed 
in Table 2. For any other existing pvectors w of v not accessed in f (but possibly in earlier and/or later calls) that do 
overlap with pv , we append shadow arguments RW (w) to f as suggested by Table 2. Finally, the intercept mechanism 
performs, as before, the resulting coherence actions (data transfers, status updates) and delivers the call. For intercepting 
the function call, the function call operator is overloaded.

Example: As a simple example, let us consider the following set of pvectors and call sequence:

v = new vector(10, ...);
pv1 = new pvector( v, [2:5] );
pv2 = new pvector( v, [4:8] );
pv3 = new pvector( v, [7:9] );
pv4 = new pvector( v, [2:3] );
...
f1( ... R(pv1), R(pv2), ... );
f2( ... W(pv3) ... );
f3( ... RW(pv4), R(pv2), ... );

Intercepting the function calls, we maintain rv and update the calls as described above. For the call to f2, we infer from 
W(pv3) and the overlap of pv3 with pv2 by Table 2 that the access mode of pv2 (not accessed in f2) must be upgraded 
to RW, which we do by conceptually appending RW(pv2) as a shadow argument to f2. The call to f2 is thus conceptually 
rewritten9 into

f2( ... W(pv3) ... , RW(pv2) );

hence we make sure that the access to pv2 in the subsequent call to f3 will be handled correctly.

It remains to select an appropriate data structure for rv that allows for efficient dynamic insertion and removal of
pvectors of a vector v , i.e., index intervals, and efficient lookup of all pvectors that overlap with a given query interval. 
For very small numbers of pvectors of a vector v , a simple unordered list of pvectors is sufficient; this is used e.g. 
in the smart-container coherence management in SkePU [1]. For scaling up to larger numbers of pvectors, a segment 
tree [7, Sec. 10.3] could be used. A segment tree storing n intervals can be updated dynamically (insertion, removal) in 
time O (log n) and can retrieve the set of all k intervals overlapping with a query interval in time O (k + log n); the space 
requirements is O (n log n).

9 As all overlapping pvectors had been identified before the rewriting, the rule needs not be applied recursively to the appended shadow arguments, 
here RW(pv2).
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The time and space required to handle overlapping arrays at runtime could be saved with a precise enough static analysis 
that would infer potential overlapping between arrays; choosing a precise enough or static analysis designing a dedicated 
one is outside the scope of this paper.

5. A few related works

Most of the verification works related to memory consistency focus on coherence protocols and/or weak memory mod-
els [8]. Among them, one could cite works on a lazy caching algorithm [9], a formal specification of a caching algorithm, 
and its verification in TLA [10]. These works shows the difficulty to reason on memory coherency, but also that specifi-
cations in these models should rely on a few simple instructions on the type of memory accessed, a bit similarly to this 
proposal. Coherence protocols have also been verified using CCS specifications [11]. These various works are quite different 
from the approach presented in this paper because we rely here on a declarative approach for memory accesses: the pro-
grammer declares the kind of memory accesses performed by a component, and the consistency mechanism ensures that 
each component accesses a valid memory space.

More recently, and adopting a more language oriented approach, Crary and Sullivan [12] designed a calculus for ex-
pressing ordering of memory accesses in weak memory models. We are interested here in a much simpler problem where 
memory access is sequential and clearly identified but the objective is to prove the correctness of simple cache-coherency 
operations. Even an extension of this work for parallel processes would result in a simpler model than the ones that exist 
for weak memory models because of the explicit consistency points introduced in the execution by the start/end of each 
function.

The closest work to ours is probably [13] that defines a memory access calculus similar to ours and proves the cor-
rectness of a generic cache coherence protocol expressed as part of the semantics of the calculus. Compared to this work, 
we are interested in explicit statements on memory accesses and thus the cache consistency is partially ensured by the 
programmer annotations, making the approach and the properties proven significantly different. Some aspects of the ap-
proaches could have been made more similar, e.g. by extending our work to more than two address spaces or adopting a 
different syntax. However our problem and formalization are quite simpler, and we believe easier to read, while sufficient 
for our study. The same authors also designed a formal model written in Maude [14] to better understand the possible 
optimizations and the impact of the memory organization on performance in the context of cache coherent multicore ar-
chitectures. This could be an interesting starting point for future works, especially if we extend our work to better model 
the performance aspects of VectorPU and want to reason formally on the improved performance obtained by the library. 
Also from the same authors [15] extends the results described above with parallel spawned task and could be a source of 
inspiration to extend our work towards parallel function execution.

6. Conclusion and future works

In this article we provided a formal approach to verify the consistency of the memory accesses in heterogeneous com-
puter systems made of two memory spaces. We formalize the operations of memory accesses and memory synchronization
between the two memory spaces and prove that a program adequately annotated with informations on the memory ac-
cesses always access valid memory spaces and tracks correctly which of the memory space contains the up-to-date data.

The practical result is that we can verify the coherency mechanism used by the VectorPU library and ensure that, 
additionally to the significant performance benefits of the approach, the VectorPU mechanisms is correct and ensures the 
consistency of the memory accesses.

We also extended our model for studying the effect of operations made on overlapping arrays. The current implementa-
tion of VectorPU supposes that the (pvector) array operands always represent disjoint memory locations, it does not take 
into account overlapping arrays. Based on the solution developed in our model, we described an extension of the VectorPU 
library that could deal safely with overlapping array accesses by overlapping pvector arguments.

We envision several extensions to this work. The current article only deals with two memory spaces; the extension 
to many memory spaces (as supported e.g. in SkePU) seems relatively simple but the mechanism dealing with memory 
transfers between several memory locations becomes a bit more complex; its formalization should be similar.

Moreover, we are interested in the application of our approach to the verification of other frameworks. Indeed VectorPU 
uses the most primitive cache coherence protocol, the VI-protocol. More elaborated coherence protocols like MSI or MESI (as 
used e.g. in SkePU [1]) introduce additional states where the number of readers has to be tracked for example. Also, SkePU 
uses a more space-efficient management of partial vector accesses, the coherence protocol itself involves explicit intersection 
tests with existing copies. Verifying such framework would require a modification of our abstract state representation and 
a modification of the access mode translational semantics.
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