
Global optimization of operand transfer fusion
in heterogeneous computing

Christoph Kessler
Linköping University

christoph.kessler@liu.se

ABSTRACT
We consider the problem of minimizing, for a dataflow graph of
kernel calls, the overall number of operand data transfers, and
thus, the accumulated transfer startup overhead, in heterogeneous
systems with non-shared memory. Our approach analyzes the
kernel-operand dependence graph and reorders the operand arrays
in memory such that transfers and memory allocations of multi-
ple operands adjacent in memory can be merged, saving transfer
startup costs and memory allocation overheads.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid)
systems; • Software and its engineering → Communications
management; Compilers.

KEYWORDS
Heterogeneous computing, data transfer fusion, allocation fusion,
GPU, distributed memory, program optimization, kernel dataflow
graph, memory mapping, Hamiltonian path

1 INTRODUCTION
With Moore’s Law running out of steam, heterogeneous computing
will, together with better optimized software, become even more
significant for exploiting the remaining performance reserves of
CMOS-based hardware technology. Heterogeneous systems com-
bine general-purpose CPUs with GPUs, FPGAs and further types
of accelerators designed for special kinds of computations. It is also
likely that future non-CMOS-based computing technologies will
first become available commercially as accelerators to conventional
computers, much as we use discrete GPUs and FPGAs today. Many
heterogeneous systems, such as most systems with a discrete GPU,
expose a distributed memory structure with separate accelerator
device memory such that operand data needs be transferred (more
or less) explicitly between main memory and device memory.

Figure 1: Local transfer fusion for one call to a ternary
vector-add kernel. Naive code generation (case (a)) allocates
and transfers each operand separately. If we know (or per-
mute the data layout) that the operands are consecutive
in both source and destination memory (case (b)), operand
transfers and also memory allocations can be merged [8].
This work extend the idea to static global transfer fusion for
multi-kernel scenarios.

Executions of performance-hungry applications such as deep
learning are often structured in the form of (sometimes quite com-
plex) kernel data flow graphs, i.e., dependence graphs over kernel
calls, where the kernel calls might execute either on the CPU or
on the accelerator, depending, e.g., on kernel type and operand
size. The graph structure can be leveraged for global program opti-
mizations, both statically in compilers and dynamically in runtime
systems for heterogeneous systems. For example, the skeleton pro-
gramming framework SkePU allows for global tiling of lineages (i.e.,
acyclic kernel-vector graphs) of skeleton-based kernels at runtime
to improve cache hit rates [3].

In this paper, we leverage the global data flow information for an
optimization of the necessary array operand data transfers between
main memory and device memory, by minimizing the number of
transfer messages and, thus, of accumulated transfer startup times.
The main idea is based on reordering operand arrays in memory
to improve the opportunities for transfer fusion. We thereby gen-
eralize over the on-line transfer fusion technique by Li et al. [8]
(see also Figure 1 for an example) which is only applicable to a
single kernel call and ignores other, non-local constraints on the
operands’ memory mapping.

In this work we make the following contributions:

C. Kessler

• We formalize the global static optimization problem of find-
ing a memory mapping for the program’s operands such
that the number of transfer fusions is maximized, as a graph-
based optimization problem, and solve it using heuristic
techniques.
• We provide a generic proof-of-concept prototype implemen-

tation of our approach and show experimentally that it is
effective in eliminating transfer startups and that it has rather
low optimization time.
• While the proposed optimization method is not specific

to GPUs as accelerators, our prototype includes a source
code emitter that generates CUDA source code from a given
dataflow graph and the calculated memory mapping. We per-
form an experimental evaluation on a system with a CUDA
GPU, demonstrating a potential for significant speedups for
transfer-dominated programs with small to medium-sized
array operands.

The remainder of this paper is organized as follows: We begin by
motivating our work in Section 2, which includes an experimental
quantitative analysis of the impact of transfer fusion and memory
allocation fusion on a concrete GPU system. Section 3 formalizes
the problem and Section 4 presents the optimization approach.
Experimental results follow in Section 5. Section 6 discusses related
work, and Section 7 concludes and identifies future work.

2 PERFORMANCE IMPACT OF TRANSFER
AND ALLOCATION FUSION

On most architectures with a physically distributed memory, it
is reasonable to assume that a data transfer of a block of n data
elements takes time an+b, with positive machine-specific constants
a,b > 0, where the transfer startup time b is usually much larger
than the per-element transfer time a. Even for the same machine,
the coefficients a,b can differ for different ranges of message sizes, if
the memory management and communication subsystem internally
switches between different protocols depending on data size. For
example, CUDA transfers using DMA (cudaMemcpy) over PCIe v3,
startup times between 5 and 10 microseconds for short messages are
reported in the literature [4, 11]; and for some GPU types, higher
transfer startups by one order of magnitude have been measured
[11], which we will experimentally confirm for our system and
for larger transfer sizes later in this section. Transfers to USB-
connected external GPUs (e.g., via Intel Thunderbolt) may also
expose longer startup times compared to PCIe3. In contrast, per-
element transfer times a over PCIe v3 are typically around or even
below one nanosecond nowadays. Using remote GPUs over network
connections can further increase startup times. While the transfer
startup time impact is expected to be rather insignificant for large
operand transfers with millions of elements, they are an issue for
small and medium-sized operands. Later in this section we will see
that fusing two operand transfers and thus eliminating one startup
time will have significant impact on overall transfer time as long
as the operand sizes are well below 1M elements, and especially if
transfer fusion is coupled with device memory allocation fusion, it is
still effective for operand sizes around 1 million elements. While we
prototype our transfer fusion optimization in this work for discrete
GPUs, we expect that it may become even more important for future

Table 1: Time Impact of One Transfer Fusion

Vector Transfer Fusion Only
Length Time/Call Saving Saving
[floats] [µs] [µs] [%]

1K 36 6 18.9%
4K 44 8 19.7%
8K 54 4 8.5%
16K 82 2 2.6%
32K 132 15 12.0%
64K 210 17 8.2%
128K 368 13 3.8%
256K 676 70 10.4%
512K 1162 70 6.0%
1M 2313 89 3.9%
4M 9300 88 1.0%

Table 2: Average Time Impact of Allocation Fusion

Vector Transfer Fusion Plus Fusing
Length Three Vector Allocations

Time/Call Saving Saving
[floats] [µs] [µs] [%]

1K 404 27 6.7%
4K 418 35 8.5%
8K 423 35 6.3%
16K 448 15 3.5%
32K 496 22 4.5%
64K 570 23 4.0%
128K 1058 345 32.6%
256K 1699 737 43.4%
512K 2242 756 33.7%
1M 3409 742 21.8%
4M 10317 799 7.8%

accelerator types with fast, multi-operand kernel computations and
distributed memory.

In the following, we assume for simplicity of presentation that
the same constants a and b apply for both upload and download
transfers; our approach can be easily generalized for asymmetric
communication costs.

Table 1 shows the saving of a single transfer fusion in a single
binary-add kernel for different numbers of vector elements (floats),
measured on a high-end laptop with an Intel Core(TM) i7-4710MQ
running at 2.5GHz and a Nvidia K2100M (Kepler) GPU running
CUDA 8 (driver version 390.87). For the same platform, Table 2
shows the times including cudaMalloc and cudaFree calls and the
achieved savings due to also fusing the three operand memory allo-
cations in addition to the transfers, for operands that are adjacent
in memory. For both tables, the times are averaged over 200 repeti-
tions, and the very time-consuming first CUDA memory allocation
call is performed in a dummy allocation before the measured code
fragment in order not to affect the measurement results.

We observe that, in both tables, savings in absolute times vary
over the range of vector length and assume that this comes from
CUDA internally switching between different memory allocation
strategies and transfer protocols for small and larger vectors. The
relative performance impact of transfer fusion is most significant

Table 3: Average Time Impact of One Kernel Fusion

Vector No Kernel Fusion Kernel Fusion
Length Time Per Call Saving Saving
[floats] [µs] [µs] [%]

1K 35 5 16.4%
4K 43 6 15.7%
16K 80 8 10.0%
64K 204 9 4.6%
256K 664 22 3.7%
1M 2276 54 2.4%
4M 9236 140 1.5%

for short vectors with a few thousand elements and approaches
20% at 4K elements on our machine. For large vectors, the transfer
fusion savings are one order of magnitude larger (70 to 90µs) than
for short vectors (6 to 8µs), but their relative impact on overall
performance is of course lower.

The saved memory allocation overhead (for both host and de-
vice memory allocations that are replaced by pointer arithmetic)
is consistently positive for groups of three1 or more consecutive
vectors, where the saving is also consistently higher than the trans-
fer fusion saving alone. The relative impact of allocation fusion is
more significant at the larger vector sizes, up to 1 million elements,
and decreases again for 4 million elements.

Interestingly, the literature almost only discusses kernel fusion,
ignoring the additional optimization potential of transfer (and allo-
cation) fusion. For comparison, we measured for a pair of binary
vector-add kernels the performance impact of (parallel) kernel fu-
sion alone (i.e., one kernel startup less), see Table 3. Comparing
these figures with Table 1, we find that the kernel startup saving is,
on our machine, about the same order of magnitude as the saving of
one transfer fusion (not including memory allocation fusion). Tak-
ing memory allocation fusion into account, the impact of transfer
fusion is higher than that of parallel kernel fusion.

3 PROBLEM FORMULATION
Machine model. We are given a heterogeneous computer system

consisting of a general-purpose CPU and an accelerator (e.g., a GPU)
with separate memory. Input operands of a kernel call executed
on the accelerator need to be transferred from main memory to
accelerator memory before kernel execution and output operands of
such a kernel need to be transferred back from accelerator memory
to main memory after the kernel has finished execution.

Program model. We are given a straightline-control kernel pro-
gram2 consisting of N kernel call executions (for brevity: “kernels”
from now on) on a system with CPU and accelerator. We assume
that the resource assignment for the kernels is known; each kernel

1For our CUDA GPU, we also observed an anomaly for memory allocation fusion, in
the case of fusing exactly two vector allocations for some (mostly, the smaller) vector
sizes, where two separate CUDA memory allocations of size N actually perform faster
than one allocation of 2N elements. However, this effect disappears when fusing three
(as in Table 2) or more vector allocations. We can only speculate that this anomaly
might be caused by some stateful optimization within the CUDA memory allocator,
and it might also be specific to our GPU, CUDA and driver version.
2Straightline control holds for use with lazy execution [3] and for branch-free regions
in a kernel-level compiler IR.

i = 0, ...,N − 1 is executed either on the CPU (device di = 0) or on
the accelerator (di = 1).

Each kernel operand is a data array stored contiguously in mem-
ory, managed by a generic data container object called vector. For
simplicity, we assume for now that accelerator memory is always
large enough to accommodate all operand data to be temporarily
stored there. A generalization of our model to consider finite device
memory capacity is left to future work, nevertheless we already
prepare our method for such an extension by a more space-aware
strategy.

The given straightline-control kernel program over vectors is
assumed to be in static single assignment form, i.e., each vector is
written at most once. Programs not fulfilling this property due to
the reuse of the same vector for storing different values during
program execution can be converted into single-assignment form
by variable renaming.

The dependences among kernels and vectors form a dataflow
graph, which we model by a directed acyclic bipartite graph, the
kernel-vector graph G = (K ,V ,E), where K = {0, ...,N − 1} is the
(index) set of N kernels and V = {0, ...,M − 1} is the (index) set of
M vectors, where Vinit = {0, ...,Minit − 1} and where Minit < M
denotes the vectors live on entry to the program, while the vectors
inV −Vinit are computed by kernels in the program. An edge (v,i)
exists in E iff vector v is an input operand3 of kernel i , and an edge
(i,w) exists in E iff vector w is an output operand of kernel i .

The graph is acyclic due to the single-assignment property, and
each vector has at most one producer. Consequently, each vector
used as an input operand of a kernel on the accelerator is also
uploaded at most once and a vector used as an output operand on
the accelerator is downloaded at most once.

The schedule among the kernels is given as a fixed permutation
of the kernels in a topological order, i.e., the kernel call executions
are totally ordered, and for simplicity of presentation we number
the kernels in schedule order.

Operand transfers. The baseline code generation strategy is that
immediately before each kernel call i to be executed on the accelera-
tor (di = 1), we transfer (upload) each of its indeg(i) input operands
to the accelerator, if they are not already present. Likewise, we need
to transfer (download) each of its outdeg(i) output operands from
the accelerator memory if it will not be further used (as input of a
later kernel call) on the accelerator, and do this otherwise immedi-
ately after the last kernel call using it; thereafter we can free the
output operand’s space in accelerator memory.

The transfer fusion problem. Two operand transfers in the same
direction can be merged if not prevented by data dependences and if
the operands are adjacent in memory.4 Our goal is to find a memory
mapping of V , i.e., a permutation p : V → {0, ...,M − 1} such that
the M vectors are consecutively placed in memory in the order
given by p and the total number of transfer startups is minimized.

3We abstract from the relative order of the input and output operands of a kernel as it
could also be adapted by creating a clone of the kernel with a modified operand order.
4Transfer fusion could still have benefits if there is a small gap in between, see Li and
Kessler [8]. However, we assume here for simplicity that all operands are sufficiently
large so we can ignore this aspect for now.

C. Kessler

Figure 2: The kernel-vector de-
pendence graph for a straight-
line control kernel program
with N = 5 kernels (ovals)
and M = 13 (Minit = 3)
operand vectors (boxes). Vec-
tors 0, 1, 2... are named by up-
percase letters; vectors A, B,
and C are live on entry (black
frame), D, G, I, L, M, J and
K are live on exit (red frame).
The kernel colors indicate the
execution unit: yellow = CPU
(di = 0), blue = accelerator
(di = 1). Vectors in yellow need
to be allocated on the CPU
(main memory) only, vectors
in green are allocated on both
the CPU and accelerator, and
vectors in cyanblue are allo-
cated on the accelerator only.

4 APPROACH
Given the kernel-vector dependence graph G = (K ,V ,E) with a
fixed resource mapping d and a fixed schedule, we first derive the
following properties of each vectorv ∈ V used as an input or output
operand of any kernel on the accelerator:

• up_earliest (v): The earliest relative point in time (derived
from the schedule of kernels) when vectorv can be uploaded.
For v ∈ Vinit , up_earliest (v) = 0, for other vectors produced
on CPU but used on the accelerator it is the time step after
the producer kernel.
• up_latest (v): The latest relative point in time when vector
v can be uploaded. This is the time of the first accelerator
kernel using v .
• dn_earliest (v): The earliest relative point in time when vector
v can be downloaded. This is the time of the accelerator
kernel producing v .
• dn_latest (v): The latest relative point in time when vector v

can be downloaded. This is the time slot just before the first
CPU consumer kernel of v .

Note that some vectors are both uploaded and downloaded, some
are only uploaded, some are only downloaded, and some are only
accessed by the CPU and need not be transferred at all.

Next, we determine the affinity graph, a weighted undirected
graphA = (V ,EA,a) with EA ⊆ V ×V and edge weights a({v,w }) ≥
0 that indicate how much two vectors v,w ∈ V are expected to ben-
efit transfer fusion from being placed consecutively in memory. For

Figure 3: The affinity graph for the example of Figure 2. The
edge thickness visualizes the weight (affinity). Edges shown
in red belong to the best Hamiltonian paths found by our
heuristic.

that purpose, we calculate, for all vectors v , w ∈ V to be uploaded,
the overlap in time between their earliest-latest intervals

[up_earliest (v):up_latest (v)] ∩ [up_earliest (w):up_latest (w)]
and, for all vectors v,w ∈ V to be downloaded, the time overlap

[dn_earliest (v):dn_latest (v)] ∩ [dn_earliest (w):dn_latest (w)].
For each such nonempty intersection encountered between any
two vectors v and w , we increment the weight a({v,w }) of affinity
edge {v,w } by 1. (For reasons explained later, we add another ϵ > 0
to the weight if v and w occur as operands in the same kernel).

For the example kernel program in Figure 2, the following diag-
nostic output shows the earliest-latest intervals and their overlaps
in time for the uploads (left) and downloads (right):
0: A B C
1: . . C
2: . . C . . F
3:
4:

0: . . . D E
1: . . . D
2: . . . D I
3: . . . D I J K . .
4: . . . D I J K L M

where the relative time slots (0, 1, ...) represent the kernel calls,
and letters represent the vector names and possible transfer times.
A dot indicates that a transfer is either not necessary or outside
the earliest-latest interval. In the example, vector C could either
be uploaded together with A and B at relative time 0, or instead
together with F at time 2. In both cases, 2 startups could be saved,
though the latter upload of C will result in lower device memory
pressure between times 0 and 2, hence we give a small affinity
bonus for the edge {C,F }.

Finally we remove all edges with weight 0. Figure 3 shows the
resulting affinity graph for the example of Figure 2.

Next, we calculate the connected components of the affinity
graph. For example, the affinity graph in Figure 3 has 4 connected
components, one consisting of uploaded vectors A, B, C and F,
one consisting of downloaded vectors D, E, I, J, K, L and M, and
two singleton components containing vectors G (CPU-only) and H
(accelerator-only), respectively.5

5Obviously, for any nontrivial scenario, at least two disjoint connected components
must exist: at least one for uploaded vectors and at least one for downloaded vectors.

A (max-weight) Hamiltonian path in an (un)directed weighted
graph is a path of M−1 edges ⟨vp (0) , ...,vp (M−1)⟩ that contains each
node exactly once and maximizes the sum of weights over all edges
on the path. The problem of finding Hamiltonian paths is closely
related to the Traveling Salesperson Problem and is NP-complete.

For each connected component of the affinity graph with more
than one vector, a maximum weight Hamiltonian path will give us
a favorable linear ordering of the vectors that we can use either in
forward or backward order for their memory mapping. Figure 3
shows the Hamiltonian paths for the two nontrivial connected
components in red. In our prototype implementation, we use a very
simple randomized heuristic6 for computing Hamiltonian paths,
based on a fixed number of affinity-biased randomized depth-first
search runs generating multiple candidates among which we pick
the best one to derive the memory mapping p.

Finally, we emit the resulting code. In particular, this requires
going once more through the upload and download candidates (now
in memory order) and deciding the relative time for each upload
and download (where the earliest-latest interval is longer than 1).
Where there exist multiple options, we need to break ties.

In our running example, there are two possible points in time
for uploading C that lead to a minimum number of startups, either
together with A and B at time 0 or together with F at time 2. Here,
we either make a greedy choice (the earliest possible upload time
maximizing the number of upload fusions at that time) or for a
tight choice that gives preference to a late upload time which is still
locally optimal within the earliest-latest interval of the considered
vector but possibly leads to a globally worse solution. Choosing
a later time (time 2 in our example) tends to reduce the memory
pressure on accelerator device memory as life times on the device
are shortened. We expose this choice as a switch to control the time-
space trade-off between transfer startup saving and device memory
pressure, which should be relevant in a future generalization of
our approach that must respect a given device memory limit. The
affinity bonus ϵ for siblings mentioned above is also intended to
bias the derived mappings for the tight choice.

For our running example, the following pseudocode7 is emitted:

before 0: upload B from location 0
before 0: upload A from location 1
before 0: upload C from location 2
Kernel0 (R(B), R(A), W(D), W(E))
after 0: download E to location 4
after 0: download D to location 5
Kernel1 (R(E), R(B), W(F), W(G))
before 2: upload F from location 3
Kernel2 (R(C), R(F), W(H), W(I))
Kernel3 (R(F), R(H), W(J), W(K))
Kernel4 (R(H), R(E), W(L), W(M))
after 4: download I to location 6
after 4: download J to location 7
after 4: download K to location 8
after 4: download L to location 9
after 4: download M to location 10

6Future work could investigate the cost-quality trade-offs of using more advanced
methods for computing Hamiltonians.
7Our prototype implementation also emits concrete CUDA source code.

Overall, this results in a saving of 7 transfer startups (4 of which
are due to the bulk download after kernel 4) compared to the base-
line strategy that transfers all vector operands separately.

With the tight strategy, we obtain instead the following solution:

before 0: upload B from location 0
before 0: upload A from location 1
Kernel0 (R(B), R(A), W(D), W(E))
after 0: download E to location 4
after 0: download D to location 5
Kernel1 (R(E), R(B), W(F), W(G))
before 2: upload C from location 2
before 2: upload F from location 3
... (remainder as above)

which happens to have the same saving of 7 transfer startups. Note
that the upload of C now occurs later, at time 2. Note also that the
download of D is not done later by the tight choice, because E is,
with the given schedule, already needed at time 1 and not fusing
the transfers of D and E would thus reduce the overall saving by
one startup.

5 EVALUATION
5.1 Optimization Time
We evaluate our approach with randomly generated dataflow graphs,
with dataflow graphs modeling special topologies such as trees, and
with dataflow graphs modeling the dependence structure of (parts
of) real-world applications.

Our generator for random dataflow graphs can be configured
with the number N of kernels, the number Minit of live-on-entry
vectors, and the minimum and maximum indegree and minimum
and maximum outdegree of each kernel. Kernel indegrees and out-
degrees are randomly chosen within these intervals with equal
probability. The overall number of vectors depends on the number
of kernel outputs, i.e., is roughly linear in N . The resource assign-
ment is also randomly chosen, with the probability for executing a
kernel on accelerator (di = 1) set to 50%.

The improvement over the baseline code generation that trans-
fers each operand in a separate message can be seen in Table 4.
The first entry is the example of Figure 2. We can observe that the
number of saved transfer startup times correlates with the number
of vectors (which in turn is linear in the number of kernels).

Table 4 also shows the optimization times (median of 11 runs
on a low-end Linux client with Intel Core i5-4250U dual-core CPU
running at 2.3 GHz and having 3MB L3 cache). For the small exam-
ples with N ≤ 24 our prototype implementation needs generally
less than 1ms, and even for the largest example with 98 kernels
it only needs 5.7ms. The randomized heuristic for Hamiltonians
works already well in many cases, picking the best result out of only
4 attempts; increasing to 400 attempts improves the results only
in a few cases (figures in parentheses) by a few more saved star-
tups, but increases optimization time considerably. A breakdown
of the optimization times for the larger test cases shows that the
time for computing the Hamiltonian even with only 4 randomized
DFS attempts dominates (with ca. 65%) all other steps (calculating
earliest-latest, calculating the Affinity graph, and scheduling the
uploads and downloads when preparing for emitting code.

C. Kessler

Table 4: Savings in Transfer Startups and Optimization
Times

N Minit Indegree Outdegree Saving, Saving, Opt.
min/max min/max Greedy Tight Time

5 3 2...2 2...2 7 7 0.1ms
8 12 2...3 1...1 7 (9) 7 (8) 0.2ms

10 5 2...4 1...2 11 11 0.2ms
16 12 1...4 1...2 14 14 0.3ms
16 16 2...3 1...2 19 17 0.3ms
18 8 1...2 1...2 12 12 0.2ms
18 8 2...2 1...2 16 15 0.4ms
20 8 1...1 1...1 11 11 0.2ms
20 8 1...3 1...2 18 17 0.2ms
24 10 2...3 2...2 28 26 0.6ms
48 10 2...2 1...2 41 (42) 38 (41) 0.9ms
60 10 1...2 1...2 40 37 2.0ms
98 12 2...2 1...2 75 70 5.7ms
20 1 Linear chain 0 0 0.1ms
15 1 Out-bound bin. tree, all GPU 15 15 0.2ms
15 1 Dto., random device 50% 14 14 0.2ms
15 16 In-bound bin. tree, all GPU 15 8 0.2ms
15 16 Dto., random device 50% 14 11 0.2ms
31 32 In-bound bin. tree, all GPU 31 16 0.5ms
31 32 Dto., random device 50% 27 17 0.5ms
20 12 Horner’s rule polynom. eval. 11 11 0.3ms
20 4 4x4 blocks Cholesky factoriz. 14 14 0.2ms
20 4 Dto., SYRK calls also on CPU 9 8 0.2ms
12 8 2x2 blocks Matrix multiply 11 11 0.1ms
7 2 Conj. Grad. loop, steady st. 2 2 0.1ms

We also tested some special dataflow graph topologies such as
chains and trees, shown in the middle part in Table 4. For a linear
chain graph with a single input vector, where every subsequent
kernel depends on the preceding one, there is no transfer fusion
opportunity at all, as none of the upload and download intervals
overlap and hence the affinity graph contains no edges at all. For
out-bound binary trees of GPU-only kernel calls starting from a
single input vector only the N +1 downloads of live-on-exit vectors
can be fused.

Finally, we consider dataflow graphs taken from real applications.
For degree-N polynomial evaluation using Horner’s algorithm, the
resulting long narrow dataflow graph shows good optimization
potential for transfer fusion that is more sensitive to the quality
of the calculated Hamiltonian path than for the random graphs.
The first Cholesky dataflow graph (see Figure 4) is taken from a
4×4 blocks left-looking Cholesky factorization in PLASMA [10],
where we map the POTRF calls to CPU and the calls to LAPACK
functions TRSM, SYRK and GEMM to GPU. In total, our algorithm
saves 14 startups. Obviously, the opportunities for saving startups
depend on the overall amount of necessary communication, and
thus, on the mapping. For instance, if we choose, just for the sake
of comparison, to run the SYRK calls on CPU instead, the saving is
somewhat lower.

Likewise, we obtain relatively high startup savings for the dataflow
graph of 2× 2 block matrix-matrix multiply with the 8 GEMM calls
mapped to GPU and 4 MADD calls to CPU, both with and without

Figure 4: Dataflow graph of 4×4 blocks left-looking
Cholesky factorization

manually enforcing (by increasing the corresponding affinities) that
the four quarter submatrices of each input operand matrix be stored
consecutively in memory.

For the same dataflow graph, different mappings lead to different
optimization opportunities. For example, for the dataflow graph of
the steady state of the main iterative loop in the Conjugate Gradient
algorithm, with the sparse matrix-vector product call mapped to
CPU and the rest to GPU, the saving is two startups.

For all considered dataflow graphs of real computations, the
optimization times are low, in most cases around or below 200µs .

5.2 Overall Speedup Results
Table 5 shows, for different vector lengths, the execution times and
speedups achieved by transfer fusion for CUDA source codes with
synthetic kernels that were generated from the dataflow graphs in
Table 4. Measurements are taken on the computer already used for
the experiments in Section 2, with an Intel Core(TM) i7-4710MQ
running at 2.5GHz and an Nvidia K2100M (Kepler) GPU using
Ubuntu Linux 18.04 and CUDA 8. In order to reduce the impact of

time variation, each code version is executed 100 times in a loop and
the median time of 5 such executions is used to calculate the average
time per dataflow graph code execution. Both the baseline CUDA
code (No Transfer Fusion) and the CUDA code produced by our
optimizer (Transfer Fusion) transfer each operand vector at most
once. Allocation times are not included in these measurements, the
achieved speedup is thus due to eliminated message startups only.
The observed variation of execution times is very stable for small
vector lengths and within a few percent for the largest vector length
(4M elements). Note that our prototype implementation only works
on dataflow graphs, i.e., is not a full compiler. The generated CUDA
codes either use synthetic linear-work kernels or non-optimized
CPU and GPU kernels for specific computations of non-linear work,
such as GEMM. In all cases, the dependence structure and mapping
of calls to GPU and CPU follows the given dataflow graph structure.

As was expected from Table 1, the measured speedups, which
are due to transfer fusion alone (not allocation fusion), are largest
for small vector lengths (4K and 16K floats) and decrease towards
the large vector lengths. The speedup correlates with the number
of saved transfer startups (see Table 4); it is largest for the random
dataflow graph with 24 kernels (28 startups saved), with at best
170% speedup for vectors of 4K floats.

The results for Horner’s rule polynomial evaluation, for which
still 11 startups were saved, are lower because fewer vectors need
be communicated in comparison, hence it is less I/O bound than
the synthetic case with N = 24.

The benefits of transfer fusion clearly depend on the amount
of work per operand element, i.e., on the arithmetic intensity of
the kernels: For 4x4 Cholesky Factorization with the GEMM kernel
replaced by an artificial linear-work kernel (thus simulating the
case of an extremely sparse matrix), we obtain moderate speedup
by transfer fusion. However, for dense matrices and GEMM calls
using a cubic-work implementation, the speedup quickly drops
as operand sizes increase. Likewise, Block Dense Matrix-matrix
multiply is very compute-bound and does not really benefit from
transfer fusion: Only if artificial linear-work kernels are used (which
is the case shown in the table), there is decent potential for speedup,
but if using cubic-work GEMM kernels the transfer fusion speedup
drops to 0% for all sizes except the 4K element operands, for which
time is reduced from 640 to 552µs (speedup 15.9%).

There is only modest speedup for the Conjugate gradient exam-
ple because only two transfer startups could be eliminated.

For all examples, the transfer fusion speedups for 4M elements
are within the measurement noise and can be interpreted as 0%.

Although the focus of this paper is on transfer fusion, we also
have an experimental version of our prototype implementation
that measures the cost and impact of memory allocation fusion
guided by transfer fusion decisions. Unfortunately it can not (yet)
work around the anomaly that occurs when fusing two vector
allocations on our GPU system as described in Section 2, and thus
negative speedups can result from allocation fusion in a number of
cases, especially for small vector sizes. However, we can see good
speedups for computations with low arithmetic intensity that spend,
relatively, more time in CUDA memory allocation and deallocation.
For illustration, we show the results of allocation (and transfer)
fusion obtained for one synthetic dataflow graph, for Horner’s
Rule computation and for Conjugate Gradient in Table 6. We leave

Table 5: CUDA Execution Times and Speedups

Vector No Transfer Transfer Speedup
Length Fusion Fusion
[floats] [µs] [µs] [%]

Random Dataflow Graph (N = 5, Minit = 3)
4K 211 141 49.6%

16K 415 327 26.9%
64K 1136 1028 10.5%

256K 4010 3641 10.1%
1M 14455 13907 3.9%
4M 55421 55464 -0.1%

Random Dataflow Graph (N = 24, Minit = 10)
4K 818 302 170.9%

16K 1850 1451 27.5%
64K 5744 5086 12.9%

256K 23188 23000 0.8%
1M 95858 94608 1.3%
4M 368109 374662 -1.7%
Horner’s Rule Polynomial Evaluation (N = 20)

4K 550 492 11.8%
16K 952 873 9.0%
64K 2567 2272 13.0%

256K 8355 7600 9.9%
1M 27836 26989 3.1%
4M 105938 105644 0.3%

4x4 Blocks Cholesky Factorization, Linear-Work Kernels
4K 471 422 11.6%

16K 900 847 6.3%
64K 2583 2498 3.4%

256K 9119 8748 4.2%
1M 33391 33012 1.1%
4M 130660 131693 -0.8%

4x4 Blocks Dense Cholesky Factorization
4K 543 421 29.0%

16K 1757 1586 10.8%
64K 11634 11304 0.3%

256K 85341 84500 0.0%
1M 681376 680848 0.0%
4M 6748217 6752271 -0.0%
2x2 Blocks Matrix Multiply, Linear-Work Kernels
4K 330 256 28.9%

16K 651 572 13.8%
64K 1952 1765 10.6%

256K 7185 6505 10.5%
1M 25401 24930 1.9%
4M 100026 99363 0.7%

Conjugate Gradient loop, steady state, SPMV on CPU
4K 148 141 5.0%

16K 271 271 0.0%
64K 769 753 2.1%

256K 2656 2581 2.9%
1M 9540 9492 0.5%
4M 37607 37411 0.5%

C. Kessler

Table 6: CUDA Execution Times and Speedups, Including Al-
locations

Vector No Allocation Allocation Speedup
Length Fusion Fusion
[floats] [µs] [µs] [%]

Random Dataflow Graph (N = 5, Minit = 3)
4K 645 1165 -44.6%

16K 824 1349 -38.9%
64K 3318 2031 63.4%

256K 11373 4865 133.8%
1M 29229 14889 96.3%
4M 98861 95382 3.6%

Horner’s Rule Polynomial Evaluation (N = 20)
4K 891 1106 -19.4%

16K 2020 1787 13.0%
64K 5756 4738 21.5%

256K 18437 13951 32.2%
1M 28265 23890 18.3%
4M 67899 65024 4.4%

Conjugate Gradient loop, steady state, SPMV on CPU
4K 557 850 -34.5%

16K 649 999 -35.0%
64K 1871 1829 2.3%

256K 6523 5583 16.8%
1M 17224 16455 4.7%
4M 60741 59841 1.5%

the development of further technical improvements and a more
systematic evaluation of allocation fusion to future work.

6 RELATED WORK
6.1 Transfer Fusion
While kernel fusion has been investigated by several papers in
the past decade, there appears to be almost no published work on
transfer fusion and memory allocation fusion for heterogeneous
systems. Li et al. [8] describe a runtime optimization that performs
lazy memory placement of temporary vectors for a single kernel call
to optimize transfer fusion. The general advantage of runtime meth-
ods is that they also work for statically unknown source operands
(e.g. in the case of aliasing).

The global optimization method presented in this paper could,
in principle, be likewise applied as a runtime optimization once
sufficiently large kernel (sub)graphs such as lineages [3] have been
identified at runtime, which in turn is done by lazy execution tech-
niques that are also applied, e.g., in Spark and TensorFlow. However,
in our case the runtime overhead for the optimization might only
pay off if the computed memory placement can be reused, e.g. in
multiple iterations over the kernel program.

6.2 Connection to Kernel Fusion
Kernel fusion is a program transformation for heterogeneous com-
putations that merges multiple kernels and kernel calls into a single
one. The purpose of this coarsening of the granularity of accel-
erator usage is to either improve data locality, or reduce kernel
startup overhead, or improve the overall throughput by combining
memory-bound with arithmetic-bound kernels. Kernel fusion is a

special case of the classical loop fusion transformation, namely, for
the case of parallel loops executing on an accelerator with many
parallel hardware threads, such as a GPU.

There are two main types of kernel fusion, see also Figure 5 for
illustration. With serial fusion, the fused kernel consists in the same
set of accelerator threads executing the computations of the (possi-
bly, dependent) original kernels in series. Parallel fusion refers to
the co-scheduling of the computations of (originally, independent)
kernels within a common kernel, which is executed by the union
of the sets of accelerator threads used for each subkernel; these
branch internally to the different subkernels again.

Serial fusion of dependent kernels in a producer-consumer de-
pendence chain can be particularly effective where it allows to
internalize the inter-kernel flow of bulk operand data (i.e., interme-
diate (sub-)vectors or -matrices) between producer and consumer
kernels. This reduces the lengths of the live ranges between produc-
tion and consumption for such data elements and allows to allocate
these data elements in registers or in fast on-chip memory instead.
Consequently, it reduces the volume of off-chip memory accesses
and increases the arithmetic intensity of the resulting computation.

In contrast, parallel fusion does not change the arithmetic inten-
sity [16] of the code, but eliminates kernel startup time overhead
(see also our measurements in Table 3). It can also improve the
thread occupancy and thus utilization of the accelerator especially
for kernels with relatively small operands. Moreover, it can lead
to overall improved throughput by co-scheduling memory-bound
with arithmetic-bound kernels [15]. For GPUs, parallel fusion can
be done at the granularity of individual threads or of thread blocks,
the latter of which should give better performance [15].

The special case of parallel fusion for the same kernel (see the
right-hand side scenario in Figure 5) constitutes the combination
of parallel kernel fusion with transfer fusion, as it likewise requires
that all element-wise accessed operands are adjacent in memory.
This optimization is applicable e.g. in deep learning computations
that can benefit from batching multiple BLAS kernel calls on mul-
tiple small operands. For instance, CUBLAS provides batched ver-
sions of BLAS kernels that can be (manually) used in such cases.

A number of automatic static kernel fusion techniques, especially
for GPUs, have been presented in the literature [6, 13, 14]. Filipovic
and Benkner [5] evaluate the effectiveness of parallel kernel fusion
on GPU, Xeon Phi and CPU for linear algebra computations. The
just-in-time compilation approach described in Wen et al. [15] tries
to pair memory-bound with arithmetic-bound kernels in parallel
kernel fusion, in order to speed up execution beyond merely saving
kernel startups. Qiao et al. [12] consider serial kernel fusion for
image processing DSLs.

None of this work explicitly studies the opportunities and effect
of transfer fusion on parallel kernel fusion. In the present paper we
have described a transfer and allocation fusion optimization that is,
basically, independent of parallel kernel fusion. It could, for instance,
be applied after a preceding parallel kernel fusion pass, hence the
kernels in the dataflow graph exposed to our transfer and allocation
fusion optimizer will already be fused where deemed profitable.
Transfer fusion is still applicable in cases where parallel kernel
fusion is not; for instance, some transfers of operands of subsequent
kernels may be fused also in the presence of a data dependence

Figure 5: Left: Serial kernel fusion by sequencing code from (calls to) different kernels in the same parallel loop, preserving
per-element data flow dependences between kernels in the fused code. — Middle: Parallel kernel fusion by co-scheduling two
previously independent calls to different kernels within the same “superkernel”. — Right: A special case of parallel fusion
where both kernel calls are instances of the same kernel. Adapted from Wang et al. [14].

between subsequent kernels, which prevents their parallel kernel
fusion.

6.3 Using Hamiltonians for Optimized Memory
Mapping

Maximum-weight Hamiltonian paths in affinity graphs have also
been used for solving the so-called offset assignment problem in
generating optimized target code for DSP processors with address
generation units, which allow the execution of autoincrement /
autodecrement operations on one or several address register(s) in
parallel with memory accesses. For a given (static) memory access
sequence by the program code, a placement of scalar variables
on the stack is determined that maximizes the number of subse-
quent accesses to variables with neighboring addresses, and hence
minimizes the use of additional processor cycles for calculating
non-neighbored addresses. This problem was first described by
Bartley [1], together with a greedy heuristic algorithm for comput-
ing maximum weight Hamiltonian paths that was later improved
by Liao et al. [9] and Leupers and Marwedel [7]. (Note that we do
not claim that the simple DFS-based Hamiltonian heuristic used in
our proof-of-concept prototype, albeit fast, performs on-par with
these heuristics, and might well complement it by one of these
heuristics in the future to better support optimization quality vs.
speed trade-offs.) The compiler research community has produced
much subsequent work on the offset assignment problem and its
generalizations, see e.g. Liao et al. [9] or Leupers and Marwedel
[7], to name only a few. The integrated solution of the combined
problems of offset assignment and instruction scheduling has also
been investigated, see e.g. Eriksson and Kessler [2].

7 CONCLUSION AND FUTURE WORK
We show that transfer fusion and memory allocation fusion for
small and medium-sized vector operands in multi-kernel programs
can have a significant speedup effect on performance as long as
the program’s execution time is not dominated by kernel execution
times, i.e., for calculations with low operational intensity [16].

We have presented a global operand transfer fusion optimization
technique for straight-line single-assignment kernel programs in
heterogeneous systems. Our approach analyzes the kernel-vector
dependence graph for joint upload/download affinities between
vectors and calculates Hamiltonian paths to derive a reordering
of the vectors in memory in order to maximize the number of
data transfer fusions, and thus, minimize the accumulated transfer
startup costs. Our implementation uses polynomial-time heuristics
for graph analysis and Hamiltonian computation that result in
low optimization times even for kernel programs with about 100
kernels and vectors. For randomly generated synthetic graphs we
have shown that significant amounts of transfer fusions can be
achieved, which, by and large, grow with the number of vectors
(which in turn correlates with the number of kernels).

We also identified a time-space trade-off considering the lengths
of live ranges of operands stored temporarily in accelerator device
memory. By an affinity bonus for joint late uploads (and also for
joint early downloads, which is not implemented yet) and breaking
ties accordingly in emitting the final bulk-transfer code, we allow
to trade shorter live ranges in device memory for a possibly slightly
lower amount of saved transfer startups.

The presented optimization could be integrated in a compiler
for kernel-based programs. It could also be used as a just-in-time
optimization, e.g., in a runtime system for kernel programs, such as
StarPU or OmpSS, especially where the considered kernel program
is part of an iterative loop not affecting the dependence structure,
such that the one-time optimization cost can be amortized over
many iterations while the gains in terms of reduced message star-
tups will pay off in every iteration. For a runtime optimization
scenario, the vector size up to which the optimization of trans-
fer startups remains significant can be determined once for the
target system by microbenchmarking, so that the optimization is
automatically skipped for computations on larger vectors.

Future work could extend the experimental evaluation by in-
cluding further GPU types (and possibly other accelerators), by
also fully evaluating the effect of memory allocation fusion beyond

C. Kessler

transfer fusion, and by including more kernel dataflow graphs from
real-world programs e.g. from deep learning. The current prototype
implementation can certainly be improved; beyond the ongoing
extension of the CUDA source code generator, the simplistic DFS-
based Hamiltonian heuristic could be replaced by more elaborated
Hamiltonian heuristics from the literature.

Future work can extend and generalize the problem setting and
its solution in various ways. The combination of transfer fusion
with kernel fusion seems natural and needs be studied in more
detail; in particular, possible interferences and trade-offs need to be
investigated. The combination of the vector reordering in memory
with a rescheduling of the kernels (as far as permitted by the data de-
pendences inG) will increase flexibility, which can permit additional
optimization opportunities but is also expected to increase the opti-
mization time. Also the resource mapping could be co-optimized
with transfer fusion because there is a cyclic interdependence, too—
the transfer problem depends on the resource mapping, but the
cost model for the mapping problem should, where significant, also
take the fusion effects into account. Another possible extension is a
space-aware optimization performing device memory assignment
and keeping a given device memory limit. Also, a pre-placement of
some of the vectors could be given, e.g., for live-on-entry vectors.
Finally, for the use as a static optimization in compilers, we could
work towards relaxing the straightline-control constraint.

ACKNOWLEDGMENTS
This work has been partly supported by EU H2020 project EXA2PRO
(801015).

The author thanks August Ernstsson and Lu Li for discussions
about technical aspects of this work.

We also thank the anonymous reviewers for their constructive
feedback, which helped to improve this paper.

REFERENCES
[1] David H. Bartley. 1992. Optimizing stack frame accesses for processors with

restricted addressing modes. Softw. Pract. Exp. 22, 2 (1992), 101–110.
[2] Mattias Eriksson and Christoph Kessler. 2011. Integrated Offset Assignment. In

Proc. 9th Workshop on Optimizations for DSP and Embedded Systems (ODES-9),
George Cai and Tom van der Aa (Eds.). Chamonix, France, 47–54.

[3] August Ernstsson and Christoph Kessler. 2018. Extending smart containers
for data locality-aware skeleton programming. Concurrency and Computation:
Practice and Experience (2018). (to appear).

[4] Yusuke Fujii et al. 2013. Data transfer matters for GPU computing. In Proc.
ICPADS’13.

[5] Jiri Filipovic and Siegfried Benkner. 2015. OpenCL kernel fusion for GPU, Xeon
Phi and CPU. In Proc. 27th Int. Symposium on Computer Architecture and High-
Performance Computing (SBAC-PAD’15). IEEE, 98–105. https://doi.org/10.1109/
SAC-PAD.2015.29

[6] Jiri Filipovic, Matus Madzin, Jan Fousek, and Ludek Matyska. 2015. Optimizing
CUDA code by kernel fusion: application on BLAS. The Journal of Supercomputing
71 (2015), 3934–3957. https://doi.org/10.1007/s11227-015-1483-z

[7] Rainer Leupers and Peter Marwedel. 1996. Algorithms for address assignment
in DSP code generation. In Proc. IEEE/ACM Int. Conf. on Computer-Aided Design
(ICCAD’96). IEEE Computer Society, Washington, DC, USA, 109–112.

[8] Lu Li and Christoph Kessler. 2018. Lazy Allocation and Transfer Fusion Optimiza-
tion for GPU-based Heterogeneous Systems. In Proc. PDP’18 conference. IEEE,
Cambridge, UK, 311–315. https://doi.org/10.1109/PDP2018.2018.00054

[9] Stan Liao, Srinivas Devadas, Kurt Keutzer, Steven Tjiang, and Albert Wang. 1996.
Storage assignment to decrease code size. ACM Trans. on Progr. Lang. and Syst.
18, 3 (1996), 235–253.

[10] Hatem Ltaief, Stanimire Tomov, Rajib Nath, Peng Du, and Jack Dongarra. 2010.
A scalable high performant Cholesky factorization for multicore with GPU accel-
erators. In Proc. 9th international conference on High performance computing for
computational science (VECPAR’10). Springer, 93–101.

[11] Daniel Lustig and Margaret Martonosi. 2013. Reducing GPU Offload Latency via
Fine-Grained CPU-GPU Synchronization. In Proc. HPCA’13.

[12] Bo Qiao, Oliver Reiche, Frank Hannig, and Jürgen Teich. 2018. Automatic kernel
fusion for image processing DSLs. In Proc. 21th Int. Workshop on Software and
Compilers for Embedded Systems (SCOPES’18). ACM. https://doi.org/10.1145/
3207719.3207723

[13] Mohaned Wahib and Naoya Maruyama. 2014. Scalable kernel fusion for memory-
bound GPU applications. In Proc. Int. Conf. for High-Performance Computing,
Networking, Storage and Analysis (SC’14). IEEE, 191–202. https://doi.org/10.1109/
SC.2014.21

[14] Guibin Wang, YiSong Lin, and Wei Yi. 2010. Kernel fusion: an effective method
for better power efficiency on multithreaded GPU. In Proc. IEEE/ACM Int. Conf. on
Green Computing and Communications and Int. Conf. on Cyber, Physical and Social
Computing. 344–350. https://doi.org/10.1109/GreenCom-CPSCom.2010.102

[15] Yuan Wen, Michael F.P. O’Boyle, and Christian Fensch. 2018. MaxPair: Enhance
OpenCL concurrent kernel execution by weighted maximum matching. In Proc.
GPGPU-11. ACM. https://doi.org/10.1145/3180270.3180272

[16] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (April 2009), 65–76.

