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Continuous casting

https://www.danieli.com/en/flat_products_43_2.htm
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A caster

Credits: Klimes et al.
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The mold

I Copper plates

I Cooled by water �owing in

channels

Credits: Carl Schreiber GmbH Neunkirchen, Pprime
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Control of the Process

Mold issues:

I Steel sticking to the mold

I Solid skin braking

I Cracks

Credits: Zhou et al.
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Control of the Process

Cooling water

ThermocoupleMold

Steel

Section of the mold

The casting is mainly controlled by

changing the casting speed

Information available:

I Temperature measurements inside

the mold

I Cooling water temperature increase

I Liquid steel level
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Objective

Temperatures measurements

⇓

Computation of heat �ux at the steel-mold interface in

real-time
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Outline

1 Full Order Inverse Problem

Alifanov's Regularization

Levenberg-Marquardt method

2 Reduced Order Inverse Problem
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Mathematical Model
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Mold model

Given k ∈ IR
+, h ∈ IR

+, g ∈ L2(Γin) and

Tf ∈ L2(Γin). Find T such that

−k∆T (x) = 0 on x ∈ Ω,
− k∇T (x) · n = g(x) in x ∈ Γin,

−k∇T (x) · n = 0 in x ∈ Γex ,

−k∇T (x) · n = h(T (x)− Tf (x)) in x ∈ Γsf .

I T - Mold temperature

I Tf - Cooling water temperature

I h - Heat transfer coe�cient

I k - Copper thermal conductivity

I g - Steel-mold heat �ux (unknown)
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Inverse Problem

Temperatures measurements

⇓
Computation of heat �ux at the steel-mold interface

Inverse problem

Given the temperature measurements T̃ (xi ) ∈ IR
+, i = 1, 2, . . . ,M, �nd

g(x) ∈ L2(Γin) which minimizes the functional

J[g ] =
1

2

M∑
i=1

[T [g ](xi )− T̃ (xi )]2,

where T [g ](x) is solution of the direct problem.

Ill-posed problem → Requires regularization
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Regularization

Regularization techniques:

I Alifanov's regularization
� Conjugate gradient method applied to the adjoint problem

I Levenberg-Marquardt method

� Parameterization of the heat �ux g(x) =
∑N

i=1
wiγi (x)
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Alifanov's Regularization

1 Set g0(x);
2 while n ≤ nMax do

3 Solve direct problem;

4 Compute J;

5 if convergence then

6 Stop;

7 Solve adjoint problem → gradient of J, J ′ ;

8 γn =

∫
Γsin

[J′
gn

(x)]2dx∫
Γsin

[J′
gn−1

(x)]2dx
;

9 Search direction, Pn(x) = J ′gn(x) + γnPn−1(x);

10 Solve sensitivity problem ;

11 βn = arg minβ J[gn − βPn] =
∑M

i=1{T [gn](xi )−T̃ (xi )}δT [Pn](xi )∑M
i=1(δT [Pn](xi ))2

;

12 gn+1 = gn − βnPn;

13 n = n + 1;
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Adjoint problem

1

k
∆λ(x) +

M∑
i=1

(T [g ](xi )− T̃ (xi ))δ(x− xi ) = 0, on Ω,

{
1

k
∇λ(x) · n = 0 in Γin ∪ Γex ,

1

k
∇λ(x) · n + 1

k2
hλ(x) = 0 in Γsf .

Sensitivity problem

−k∆δT (x) = 0, on Ω,
− k∇δT (x) · n = Pn(x) in Γin,

−k∇δT (x) · n = 0 in Γex ,

−k∇δT (x) · n = h(δT (x)) in Γsf .
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Numerical Test

g(x) = −x · z · 105 W
m2

⇓
Finite Volume discretization

AT = bg + b

⇓
Temperature measurements, T̃

⇓
Inverse problem solver

⇓
Estimated heat �ux, g(x)

z

x

y

L

h

w

Positions of the thermocouples
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Results

J = 1
2

∑M
i=1[T [g ](xi )− T̃ (xi )]

2 L2 and L∞ norm of the relative error, ε

g(x) = −x · z · 105 Reconstructed heat �ux Relative error, ε
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Regularization

Regularization techniques:

I Alifanov's regularization
� Conjugate gradient method applied to the adjoint problem

I Levenberg-Marquardt method

� Parameterization of the heat �ux g(x) =
∑N

i=1
wiγi (x)
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Levenberg-Marquardt Regularization

Parameterization of heat �ux g(x) =
∑N

i=1 wiγi (x)

Inverse problem

Given the temperature measurements T̃ (xi ) ∈ IR
+, i = 1, 2, . . . ,M, �nd w ∈ IR

N

which minimizes the functional

J[g ] =
1

2

M∑
i=1

[T [g ](xi )− T̃ (xi )]2,

where T [g ](x) is solution of

−k∆T (x) = 0 on x ∈ Ω,
− k∇T (x) · n =

∑N

i=1
wiγi (x) in x ∈ Γin,

−k∇T (x) · n = 0 in x ∈ Γex ,

−k∇T (x) · n = h(T (x)− Tf (x)) in x ∈ Γsf .
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Levenberg-Marquardt Algorithm

1 Set w0;

2 while n ≤ nMax do

3 Solve direct problem;

4 Compute J;

5 if convergence then

6 Stop;

7 Compute the Jacobian, J ;

8 Solve [(J n)TJ n − snI ]δwn = −(J n)TRn ;

9 Update weights wn+1 = wn + δwn ;

10 n = n + 1;

I Jij = ∂Ti [w]
∂wj

I s - Regularization factor
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Numerical Test

Basis functions γi (x) are Gaussian

Radial Basis Functions centered at

the projection of the thermocouples

on the boundary Γin

γi (x) = e−α
2ri (x)2 z

x

y

L

h

w

Positions of the thermocouples
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Results

g(x) = −x · z · 105 Reconstructed heat �ux

Relative error, ε
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Real Time Computation

I Approx. 40 seconds required for the solution

I For real time computation the we have to reduce the computation

time to less than 1 second

I We use Reduced Basis Method to reduced the cost of solving the direct

problem
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Outline

1 Full Order Inverse Problem

Alifanov's Regularization

Levenberg-Marquardt method

2 Reduced Order Inverse Problem
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Reduced Basis

Parameterized PDE

Direct problem

−k∆T (x) = 0 on x ∈ Ω,
− k∇T (x) · n =

∑N

i=1
wiγi (x) in x ∈ Γin,

−k∇T (x) · n = 0 in x ∈ Γex ,

−k∇T (x) · n = h(T (x)− Tf (x)) in x ∈ Γsf .

The parameters are the weights w

POD-Galerkin approach

⇓
we have to sample the parameter space

⇓
Reduction of the parameter space, i.e. the dimension of w
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POD for Heat Flux Basis

Experimental measurements from a real mold, T̃i , i = 1, 2, . . . ,M
⇓

Solve inverse problem, obtain g(x) for each set of measurements

⇓
Perform a Proper Orthogonal Decomposition (POD) on the obtained set of

heat �ux, g(x)
⇓

Use the �rst few modes, γr (x), r = 1, 2, . . . ,R , as basis for the heat �ux,
g(x) =

∑R
r=1 wrγr (x)
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Heat Flux POD Modes
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Reduced Basis for Direct Problem

� Having reduced the number of parameters, we can sample the parameter

space and obtain a set of solutions of the direct problem (snapshots)

VT = span(TTT 1,TTT 2, . . . ,TTT S)

� POD on solution space to obtain orthonormal basis φφφ

VT = span(φφφ1,φφφ2, . . . ,φφφS),

� Select the �rst few modes to have a reduced basis spaces VTRB

VTRB
= span(φφφ1,φφφ2, . . . ,φφφNr ),Nr << Nh

� Approximation of full order �elds by linear combinations of the modes

T ≈
Nr∑
i=1

Triφi
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Reduced Basis for Direct Problem

� Galerkin projection of the full order model on the reduced basis

L :=

 | |
φφφ1 . . . φφφNr

| |

 ∈ IR
Nh×Nr ,T = LTr

Full order, Nh unknowns

ATTT = bbbg + bbb

⇓
LTALTTT r = LTbbbg + LTbbbT

⇓
Reduced order, Nr unknowns

ArTTT r = LTGwww + bbbr = GRwww + bbbr
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Reduced Order Levenberg-Marquardt Regularization

O�ine

I Solve full order inverse problem

with meaningful set of

experimental measurements

I Perform POD on heat �ux samples

I Compute snapshot for direct

problem

I POD on snapshot set

I Assemble Ar ,Gr ,br

Online
I Use Levenberg-Marquardt

Regularization
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Numerical Test

Full order Reduced order

Error

Computational cost of the online

phase

≈ 2 seconds
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Conclusions

Conclusions

� Implemented full order methodology

� Developed reduced method for inverse problem

Future Work

� Error estimate

� Move to Bayesian approach

� Study noise on input
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Thank you
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