
openEyeTrack - A high speed multi-threaded eye
tracker for head-fixed applications

Jorge (Paolo) Casas Chandramouli Chandrasekaran

11 July 2019

Department of Biomedical Engineering, Boston University, 02215

Department of Anatomy and Neurobiology, Boston University, 02118

Department of Psychological and Brain Sciences, Boston University, 02215

Statement of Need

When faced with a decision, an organism uses information gathered by their
senses in order to determine the best course of action. Vision is one of the
primary senses and tracking eye gaze can offer insight into the cues that affect
decision making behavior. Thus, to study decision-making and other cogni-
tive processes it is fundamentally necessary to accurately track eye position.
However, they are often very expensive and incorporate their own proprietary
software to detect the movement of the eye, which limits the researcher’s abil-
ity to be fully informed regarding the ongoing processes within their experiment
and incorporate modifications tailored to their needs. Here, we present our soft-
ware solution, “openEyeTrack”, a low cost, high speed, low latency, open-source
video-based eye tracker (Casas and Chandrasekaran 2019).

Software and Hardware components

openEyeTrack takes advantage of OpenCV (Bradski 2000), a low cost high speed
infrared camera and Gige-V APIs for Linux provided by Teledyne DALSA (Tele-
dyne DALSA 2018), and the graphical user interface toolkit QT5 (The Qt Com-
pany Ltd. 2013), all of which can be downloaded for free. The only costs are
from the hardware components such as the camera (Genie Nano M640 NIR,
Teledyne DALSA, ~$450, ~730 frames per second) and infrared light source,
an articulated arm to position the camera (Manfrotto: $130), a computer with
one or more gigabit network interface cards, and a power over ethernet switch
to power and receive data from the camera. By using the Gige-V Framework

1

to capture the frames from the DALSA camera and the OpenCV simple blob
detector, “openEyeTrack” is able to accurately calculate the position and area
of the pupil. Pupil size has been linked to arousal levels and can offer insight
to the emotions of the subject. Video based eye trackers can perform nearly
as well as classical scleral search coil based methods and can be used for most
applications (Kimmel, Mammo, and Newsome 2012).

Multithreading provides improvements over existing open source so-
lutions

openEyeTrack is based on other open-source eye trackers currently available such
as “Oculomatic” (Zimmermann et al. 2016). However, most of these programs
are single threaded: the frames are captured, processed, and displayed sequen-
tially, only executing the next stage once the previous stage has been completed.
Although single threaded methods have become more effective over the years,
these stages are time consuming and can limit the overall performance. In or-
der to increase performance “openEyeTrack” was developed as a multithreaded
application. The capture, display, data transmission, and most importantly,
processing components all happen within their own separate threads. By incor-
porating multiple threads, the processing speed of the frames is able to match
the frame capture rate of the camera, allowing for lossless processing of data.

Algorithm

As depicted in Figure 1 below, as frames transition between the captured,
processed, and display processes, they are stored in queues which enable the
different processes to run independently and allow for asynchronous capture,
detection, and display. Once the camera grabs a new frame, it is very briefly
stored in the Genicam memory buffers before being extracted and packaged
by the “capture thread” into a struct and stores in a queue. This approach
allows for the sequence of acquisition frames to be preserved and the frame
acquisition process to take place without being slowed down by processing or
displaying. The frames in the “capture queue” are popped off by the “n” (user
specified) processing thread(s). Each processing thread takes the data from the
“capture queue,” converts it into an OpenCV Mat object, applies the OpenCV
blob detection algorithm, notes the key features, and outputs the position of the
blob as text on the frame and draws a circle around the blob. This process is very
time consuming, which is why initializing multiple threads are recommended for
higher performance. Once the final, processed images are ready, the processing
threads store them into a display queue that the display thread will grab from to
show the images. The processing threads also packages the frame and keypoints
information into a struct object which is then stored in a “network queue”. The
“network thread” reads from this queue and sends out data over a UDP socket
for downstream applications.

2

Performance

Under the conditions at the time of development, frame acquisition frame rates
of up to 715 fps and display rates of up to 145 fps were available. Although more
threads in theory should speed up the processing, four processing threads were
sufficient to keep up with the camera. We found that performance improved
when we used the gev_nettweak tool provided by Teledyne Dalsa, which adjusts
various features for the network buffers allowing higher throughput transmission
from the camera to the computer. Additionally, the environmental lighting
significantly affects the speed at which the blob detection occurs. The opencv
blob detector by default looks for black blobs and thus more light allows for
easier detection by increasing the contrast between darker and lighter areas
of the image.To facilitate the detection process, the images undergo a binary
thresholding and the user can specify a region of interest for the blob detector
to focus on. For eye tracking, it is necessary to have an infrared IR light source
to increase the contrast between the pupil and the surrounding regions..

Limitations

Our eye tracking solution is not meant to solve all gaze tracking issues which
may be more readily available in commercial solutions.

1. First, our eye tracker cannot be used if the head is freely moving. In our
approach, which only detects the pupil, head motion is confounded with
pupil motion. One future solution is to use both the corneal reflection and
the pupil to allow for head-free eye tracking. This will be implemented in
future versions of openEyeTrack.

2. Second, openEyeTrack does not output signals to analog channels which
is a typical feature of commercial eye trackers. These analog signals were
proxies for the analog signals from scleral search coils used for eye tracking.

3. Third, using openEyeTrack requires knowledge of Linux and some degree
of comfort with the command line to compile and install various compo-
nents and thus it is not as seamless and polished as commercial solutions.
On the other hand it provides open source code for eye-tracking.

openEyeTrack is available on GitHub under https://github.com/mailchand/
openEyeTrack and a more detailed description of usage can be found under
the README.md file located in the repository. Currently, there are plans to
incorporate openEyeTrack in research concerning the nueral dynamics of cogni-
tion, decision-making, and motor-control conducted at the Chand Lab at Boson
University.

3

https://github.com/mailchand/openEyeTrack
https://github.com/mailchand/openEyeTrack

-
Figure 1: A visual depiction of the overall software and hardware architecture
in openEyeTrack.

References

Bradski, G. 2000. The OpenCV Library (version 4.1.0). Dr. Dobb’s Journal of
Software Tools.

Casas, Jorge (Paolo), and Chandramouli Chandrasekaran. 2019. “OpenEyeTrack
- a High Speed Multi-Threaded Eye Tracker for Head-Fixed Applications.”

4

https://github.com/mailchand/openEyeTrack.

Kimmel, Daniel, Dagem Mammo, and William Newsome. 2012. “Tracking the
Eye Non-Invasively: Simultaneous Comparison of the Scleral Search Coil and
Optical Tracking Techniques in the Macaque Monkey.” Frontiers in Behavioral
Neuroscience 6: 49. doi:10.3389/fnbeh.2012.00049.

Teledyne DALSA. 2018. Gige-V Framework for Linux (version 2.10). https://
www.teledynedalsa.com/en/support/downloads-center/software-development-kits/
132/.

The Qt Company Ltd. 2013. Qt (version 5.5.1). https://www.qt.io/.

Zimmermann, Jan, Yuriria Vazquez, Paul W. Glimcher, Bijan Pe-
saran, and Kenway Louie. 2016. “Oculomatic: High Speed, Reli-
able, and Accurate Open-Source Eye Tracking for Humans and Non-
Human Primates.” Journal of Neuroscience Methods 270: 138–46.
doi:https://doi.org/10.1016/j.jneumeth.2016.06.016.

5

https://github.com/mailchand/openEyeTrack
https://doi.org/10.3389/fnbeh.2012.00049
https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/132/
https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/132/
https://www.teledynedalsa.com/en/support/downloads-center/software-development-kits/132/
https://www.qt.io/
https://doi.org/https://doi.org/10.1016/j.jneumeth.2016.06.016

	Statement of Need
	Software and Hardware components
	Multithreading provides improvements over existing open source solutions
	Algorithm
	Performance
	Limitations
	References

