Characterization of the activity-dependent development of IPSC-derived neurons from Fragile X patients
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1. Generation of cortical neurons from IPSCs 2. IPSC-derived forebrain spheroids
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Figure 1- Generation and characterization of iPSC-derived cortical neurons. (A) Experimental workflow for differentiation of Figure 2. Forebrain organoids generated from human iPSCs. (A) Experimental workflow for forebrain organoid

cortical neurons from multipotent neural progenitor cells (NPCs) generated from control iPSCs. Images show the generation of I N T RO D U ( :TI O N generation using control human iPSCs. (B) Brightfield images of human embryoid bodies (B) and cortical spheroids
neuronal progenitors using human iPSCs. Brightfield image of (B) control human iPSCs that were cultivated in neural induction after 13, 40 and 60 days in culture (C-E). Size of spheroids from two different control cell lines and one FXS line was

media for fourteen days to obtain (C) neuronal rosettes and (D) neuronal progenitor cells (NPCs) at the end of 21 days of measured for 40 days (F). (G) Confocal images of neuronal markers in 60 days-old showing corticogenesis in

induction. Immunostaining of NPC cultures confirming expression of neuronal progenitor markers Nestin and SOX (E). (F- Fra ||e X s ndrome IS a form Of S ndromic autism Whose enetic causes have been relativel We” uncovered_ It is : . o : , :

G) Cortical neurons after 7 and 14 days of differentiation. Confocal images demonstrate the expression of neuronal markers & y y . . , 5 y ventricular-like zones delimited by dashed circles in white.
Tujl and MAP2. (H) The presence of monoglutamylated (GT antibody in green) and polyglutamylated (PolyE antibody in red) was aCtua”y malnly caused by a CGG trlplet expansion in the 5" UTR sequence of FMR1 gene, affECtlng mOStly men. FMR1
encodes a mRNA binding protein which is involved in the regulation of local translation at the synaptic level. The

mechanisms leading from such gene mutations to a neurodevelopmental disorder still need to be investigated. While

assessed by confocal microscopy and showed that microtubules in human cortical neurons are highly modified. gPCR analysis to
access expression of neural progenitors (J-L) and (M-0) neuronal genes.

several studies have shown that the neuronal development is driven by cellular activity and connectivity, we aim to
further investigate the effect of FMR1 repression on the neuronal activity taking advantage of IPSC-derived neurons

3_ SpOntan eous aCtiVity Of COrtiCaI from patient’s cells. IPSC-derived neurons will be investigated through calcium imaging to characterized their pattern 5 NMDA response Of dissociated cu Itu res

_ of spontaneous activities, as well as their capability to respond to neurotransmitter through extra-synaptic receptors. _
progenitors from controls and FXS A multielectrode array approach is going to be used to analyse the overall network activities. Those studies should from 3D Spher()|ds_

pa“ ents provide further information on the impairment of activity-dependent neuronal development in Fragile X syndrome.
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Figure 4-NMDA Response in 2D cultures of cortical progenitors and neurons from controls and FXS patients. Data acquisition and treatment

Figure 3- Spontaneous activity of cortical progenitors from controls and FXS patients. Calcium flux was visualized by FLUO4 live staining. . . .

quuisitionpwas made for 5 m\i,nutes with 4%0515 intervals between frames. Dafc)a were expressed as AF/FO where AF »ils, for each region gf were performed as in Figure 3. NMDA was applied at the timepoint 120 (black arrow). (A-B) Manual segmentation of the regions of interests ° Obse rvations were co nfl 'm ed IN 3 D mOdeI .

interest and after background subtraction, the difference between the averaged pixel value at a specific time minus the smallest pixel value before and after NMDA application. (C) Graphical representation of the averaged relative activity, expressed as AF/FO during the time of the . . . . .

(FO) across all the timepoints. (A-B) Automatic segmentation of regions of interests of neural progenitor cells and of D7 cortical neurons.(C-D) acquisition. In control condition, an important increase of AF/FO ratio following the NMDA application is observed whereas smaller variation are ¢ Ch d nge IN CAd |C| um ﬂ ux an d N N M DA'd e pe N d ent s |gna | | | ng m ay
Graphical representation of the averaged spontaneous activity expressed as AF/FO across all the regions of interest for each timeframe. (E-F). observed in the FXS line at both stages Those data suggest a decrease of NMDA response in Fragile X lines compared to controls. Scale bar: 10uM . . .

Dot plot of the maximum AF/FO observed for each region of interest over all the timeframe of the acquisition. We observed an increase in affeCt the neu I’Of'la| matu rat|0n prOCESSES N the bra N frOm FX
AF/FOmax ratio in FXS NPCs compared to controls, which reflects an increase of calcium flux in the cells. At day 7, a decreased AF/FOmax ratio .

is observed. ***:p<0.001. Scale bar: 10uM pat| ents.
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