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Abstract The main mathematical work of this paper is to establish a theoretical framework based on a
unique basic principle or axiom, so that the major components of theoretical physics can be constructed,
and finally the redundant principles and postulates of traditional fundamental physics, as well as artificially
introduced equations, can all be turned into theorems which hold automatically in the theory of this paper.

The key ideas are as following. (1)Improve the expression form of Erlangen program, and then generalize
Riemannian manifold to geometric manifold. On geometric manifold, bring Riemannian geometry into the
geometric framework of improved Erlangen program. (2)Strictly define the general concept of reference-
system and generalize the concept of intrinsic geometry, so that the traditional intrinsic geometry based on
the first fundamental form becomes a subgeometry of the intrinsic geometry of this paper. (3)Define the
concept of simple connection and use it to describe those bending properties that cannot be described by
Levi-Civita connection.

Other important ideas are as following. (1)Time metric is defined as the total metric of space. (2)Actual
evolution direction is defined as the gradient direction of geometric quantity. (3)Gauge potential is defined
as simple connection. (4)Gauge transformation is defined as the transformation of general reference-systems.
(5)Energy-momentum of general charge is defined as the absolute derivative of charge tensor, and canonical
energy-momentum is defined as the normal derivative. (6)Feynmann propagator and wave function are
expressed as the distribution density of actual evolution direction field, which are defined as functions related
to measure and become probability after normalization.

The idea of symmetry emphasized in traditional theoretical physics is more convenient to be expressed
in the viewpoint of geometry. Concretely, (1)the traditional theory starts from a very large symmetry group,
and reduces symmetries in the way of some kind of breaking to approach the target geometry; (2)the theory
of this paper starts from the smallest symmetry group {e}, and adds symmetries in the way of some kind of
symmetry conditions to approach the target geometry. These two ways must lead to the same destination.
They both go towards the same specific geometry. The way of this paper has more advantages.

Based on these ideas, the concepts of charged lepton, neutrino, down-type color charge, up-type color
charge and various gauge potentials are all distinguished by constructive definitions, so that the asymmetric
characteristic of chirality of weak interaction, the MNS mixing of leptons and the CKM mixing of color
charges hold automatically. There is no need to artificially set up these postulates like the standard model.
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0 Introduction

The purpose of Hilbert’s 6th problem is to axiomatize the physics. Theoretical physics at the most basic
level is an important aspect about it. The unity of the physical world has always been a belief held by many
people. The history of theoretical physics is a process that the unity expands step by step.

In the 17th century, the establishment of Newtonian mechanics completed the unified description of the
motion laws of macro-low-speed mass point system for the first time, which was marked by the publication
of Mathematical Principles of Natural Philosophy by Isaac Newton in 1687.

In the 18th century, Lagrangian mechanics, which describes the evolution of mass point system in con-
figuration space, was discovered on the basis of Newtonian mechanics. This was marked by Joseph-Louis
Lagrange’s publication of Analytical Mechanics in 1788. In 1834, William Rowan Hamilton transformed
the Euler-Lagrange equation into canonical form, thus establishing Hamiltonian mechanics describing the
evolution of mass point system in phase space. Later, Lagrangian mechanics and Hamiltonian mechanics
evolved into two equivalent abstract theoretical frameworks for the evolution of material-motion, which can
be transformed into each other by Legendre transformation.

In the 19th century, the establishment of Maxwell’s electromagnetics completed the unified description of
classical electromagnetic laws. It summarizes more order of the material world presented by electromagnetic
phenomena, which is marked by James Clerk Maxwell’s publication of A Treatise on Electricity and Mag-
netism in 1873. But what is the essential unity between mechanics and electromagnetics? In electrodynamics,
the relationship between mechanics and electromagnetics can only be established by Lorentz force formula
F = ¢(E +v x B) which is obtained from experiments. As for the fundamental origin of Lorentz force, it
was not clear at that time and could not be explained by electrodynamics. Lorentz force formula is regarded
as a principle.

At the beginning of the 20th century, the establishment of special relativity completed the unified de-
scription of the motion laws of macro-low-speed mass point system and macro-high-speed mass point system
in inertial system, and perfectly consistent with electrodynamics. It presents the order of material world in
a more general form, which is marked by Albert Einstein’s On the Electrodynamics of Moving Bodies [15]
published in 1905. One obvious problem with this theory is that Newton’s law of gravitation is incompat-
ible with the mechanics of special relativity. Einstein’s general relativity [16,17], published around 1916,
solved this problem. Based on the equivalence principle, a new equation of gravitational field is introduced

by using Riemannian geometry as a mathematical tool, and a unified description of the mechanical laws of
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macroscopic mass point system and macroscopic electromagnetic field in inertial and non-inertial systems is
developed. Nevertheless, the energy-momentum tensor of electromagnetic field is still based on Lorentz force
formula. Although the energy-momentum tensors of the electromagnetic field and the particle are unified
in form, it does not mean that the particle system and the electromagnetic field have reached the essential
unity. General relativity does not answer the question of the intrinsic relationship between electromagnetic
field and particle, but avoid it. The problem is still concealed in the energy-momentum tensor that unified

in form.

Since the 1920s, the establishment of quantum mechanics [4-6, 10, 11, 55-60] has correctly described
the motion laws of micro-low-speed mass point system in inertial system. Subsequently, the establishment
of relativistic quantum mechanics meant that the motion laws of micro-high-speed mass point system in
inertial system was also taken into account. Prior to this, physical theory was based on mass point as a
model of physical reality. Beginning with relativistic quantum mechanics, there are more and more signs
that something called a ”field”, which reflects the spatial distribution of physical properties, has a greater
advantage as a model of physical reality. For example, the original quantum mechanics cannot explain the
physical process of particle number change, light quantum, and negative energy state. By treating relativistic
wave equation as field equation and wave function as linear operator, these problems can be solved successfully
by acting on more abstract wave function. Combined with renormalization, quantum electrodynamics and
quantum field theory were developed finally. In 1948, Richard Feynman proposed the path integral theory [20],
which revealed the essence of quantum mechanics from a deeper perspective, and finally improved the
quantum field theory. The combination of quantum field theory and Yang-Mills theory [70] proposed by
Chen Ning Yang and Robert Mills in 1954 eventually led to Glashow-Weinberg-Salam’s unified theory of
weak electricity [18,27,36,39-41,43,54,63], quantum chromodynamics [3,7,19, 22,23, 25,29-31,53,62] and
various great unified theories [12,21,24,47-49].

Although quantum field theory is the most successful theory to describe the motion laws of microscopic
material systems in inertial system up to now, it fails to incorporate the motion laws in noninertial system

in a coordinated manner.

In recent years, based on the framework of quantum field theory, Yue-Liang Wu [65-69] described grav-
itational field by the expression of locally flat noncoordinate gravifield spacetime on globally flat Minkowsk:
spacetime of coordinates, according to the local equivalence between noninertial system and gravitational
field. And then the gravitational field is regarded as a quantum field in the globally flat Minkowski spacetime
of coordinates. Thus, the unified description of the motion laws of gravitational field and other quantum
fields in inertial system is developed, and the motion laws in noninertial system are reflected and explained
equivalently, which promotes the development of quantum field theory. What is more noteworthy is that
it already contains some more abundant geometric contents than traditional quantum field theory, and has

the idea of using these geometric contents to achieve a unified field. Although the meaning of geometry in
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these literatures is not clear enough, it contains very positive things, and the gravitational field is quantized,
which is an important breakthrough in quantum field theory.

Nevertheless, quantum field theory still fails to fully describe the unified structure of matter. Specifically,
quantum field theory and the standard model of particle physics can only recognize that particle systems
and interaction fields are so-called "fields”, and distinguish them into "particle fields” and ”gauge fields”,
but fail to go deep into the root of the unity between them. And it has not been fully explained what kind

of inherent relations exist among various particle fields.

Early Kaluza-Klein theory [42,45,46] and later string theory as well as superstring theory attempted
to provide a unified explanation of this problem in high dimensional space. However, Kaluza-Klein theory
transplants the gauge potential forcibly into the metric. It does seems that the gravitational field equation
and the gauge field equation can be obtained in a unified way, but the gauge potential and the metric are
not the same thing after all. It must be inconsistent to force them together. String theory and superstring
theory are also nice attempts, but their representative views [2,13,26,28,32-35,37,38,52,61,64] still cannot
be seen as a success.

The details of the above theories will not be discussed here. What should be emphasized is that high di-
mensional space will be considered in a different way from Kaluza-Klein theory, string theory and superstring
theory. A new approach will be used to describe the essence of the unity of various kinds of matter-motion

and to explain the inherent relations among various particle fields.

In order to achieve the unity of physical theories at the most basic level, this paper will start from a unique
basic principle, and strictly deduce the framework of theoretical physics with constructive mathematical
theory, and at the most basic level turn the redundant principles and postulates, as well as artificially
introduced equations, into theorems.

The main difficulties of researching Hilbert’s 6th problem of theoretical physics at the most basic level
have the following aspects.

1. Ontological reality and epistemological concept are not explicitly divided in traditional

theories of physics.

They usually do not specify clearly whether a terminology refers to an ontological reality or an episte-
mological concept, but offten mix ontological reality and epistemological concept together into the meaning

of a terminology. Such a practice does not make convenience to axiomatization.

In the theory of this paper, ontological reality and epistemological concept will always be distinguished
explicitly, the way of which is very simple, that is, the vast majority of discussions in this paper will just
focus on strictly defined epistemological concepts and carry out strict mathematical deduction. Ontological
realities will just be mentioned in the discussions concerning physical laws and in the intuitive descriptions
connecting with traditional theory of physics.

2. The framework of evolution dynamics in traditional theory of physics is abstract and

lacks concrete constructivity.



4 Zhao-Hui Man

There are two approaches to develop mathematical theory, one is the approach of concrete constructivity
based on set theory, the other is the approach of abstract structure based on category theory. Although
the effectiveness of these two research approaches is the same, without either of them, the cognition to this

mathematical intuition is not complete.

For example, consider the concept of real number. From the approach of abstract structure, some conven-
tions as the connotation of abstract structure are combined to form axiomatized definitions of real number
field, i.e. complete archimedean total ordered field. From the approach of concrete constructivity, natural
numbers are constructed from empty set, then integers and rational numbers are constructed, and then irra-
tional numbers are constructed from Dedekind cut to form the real number set. The two concepts defined in
two approaches of abstract structure and concrete constructivity respectively reflect the same mathematical

intuition. Such two theories of real number provide a complete cognition for the concept of real number.

The framework of evolution dynamics in traditional physics has two equivalent forms, which are Hamilton
form and Lagrange form. Based on the above viewpoint, it can be noticed that both Hamiltonian function
and Lagrangian function are abstract objects, and there is no any specific connotation given in the sense of
concrete constructivity in traditional theory. Even if the certain expression of Lagrangian function is written,
the various field functions composing this expression are still abstract. On one hand, the traditional theory
describes gauge field with abstract concept of connection on a fibre bundle, without defining the concrete
content of the connection. On the other hand, the spinor field, which is composed of several complex-valued
functions, is sometimes used to refer to a charged lepton field, and sometimes a neutrino field. It is not
clear in traditional theory that how to distinguish field functions by concrete constructivity between charged
lepton field and neutrino field, both of which equally satisfy Dirac equation. Therefore, the concepts of such
field functions are indeed abstract. So the evolution dynamics of traditional theory is not complete in theory

and lacks content of concrete constructivity.

This paper will give a way of concrete constructivity to distinguish concepts such as charged lepton and

neutrino, so as to supplement the achievements of traditional theory.

3. The understanding and application of the concept of geometry in traditional theory of

physics are not enough.

(1) In 1872, Felix Klein proposed the famous Erlangen program. Based on the idea of Erlangen program,
starting from the second half of the 20th century, theoretical physics began to emphasize the notion of
symmetry and research it with the concept of group extensively. It is right, but easy to cause a kind of

misunderstanding, that is, symmetry and group are regarded as equivalent things.

In fact, the essential idea of symmetry is the invariance under transformations, rather than the relationship
between transformations. The former is a geometric property, and the latter is an algebraic property. The
properties of group just exactly belong to the latter. Geometric property and algebraic property are two
opposite and unified aspects about the concept of transformation. Therefore, symmetry and group should

not be confused.
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The essential connotation of symmetry is geometric property, however traditional theory does not clarify
it completely and clearly. In order to solve this problem, the expression form of Erlangen program will be
improved in this paper.

(2) In 19th century, Friedrich Gauss and Bernhard Riemann developed intrinsic geometry, which is a
great achievement . This theory of intrinsic geometry researches the geometric properties determined by
the first fundamental form on manifold. However, in the development process of general relativity, there are
indications that such a theory of intrinsic geometry is still not complete.

The traditional intrinsic geometry will be generalized in this paper, based on the improved Erlangen
program. This is an indispensable step for researching Hilbert’s 6th problem of theoretical physics at the
most basic level.

In order to understand the concept to be defined in this paper more conveniently, the intuition of intrinsic

geometry must be concisely explained here in another way.

S

Fig. 1 The intuition of intrinsic geometry of curve

First, consider the case of one-dimension, that is, the intuition of intrinsic geometry of curve. As shown
in Figure 1. Select a curve L in the plane rectangular coordinate system. Project the coordinates of the y
axis onto the curve L continuously and uniformly, and then onto the = axis.

In this way, the original continuous and uniform coordinate distribution becomes a continuous and ununi-
form distribution through the medium of curve L, forming an interval S with some continuous and ununiform
distribution shown in the right figure of Figure 1. This is actually the intuition of intrinsic geometry of curve
L. Tt can be said that curve S is curve L in intrinsic geometry.

This intuition of intrinsic geometry can be described strictly in the following way.

Let S be a one-dimensional manifold, which is homeomorphic to an Euclidean straight line. Take two
coordinate cards (S, z) and (S, y) on S to satisfy the coordinate relation y = y ().

As shown in the figure above, near every point on S, it shows a kind of intuition reflecting the degree of

slackness and tightness of coordinate distribution of y axis in z axis. This degree of slackness and tightness



6 Zhao-Hui Man

can be strictly described by %. Then the one-dimensional manifold S given the degree of slackness and

tightness % is the curve L defined in the way of intrinsic geometry.
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Fig. 2 The intuition of intrinsic geometry of surface

The case of two-dimensional surface is similar. The intuition of intrinsic geometry of the surface in the
left figure of Figure 2 can be shown by the degree of slackness and tightness of coordinate network (ul, u2) in

coordinate system (:El, m2) at each point in the right figure of Figure 2. This degree of slackness and tightness

can be strictly described by %’;IZ (i,k = 1,2). It can be said that the degree of slackness and tightness g;f of

the right figure defines the surface of the left figure in the way of intrinsic geometry.

This is an intuitive description of the two simple cases about one and two dimensions, emphasizing the

ou”
ozt

central role of the degree of slackness and tightness determined by two coordinate systems in reflecting
the intuition of intrinsic geometry. In this way, the general concept of intrinsic geometry will be defined
strictly in this paper.

The above discussions summarize some important problems existing in traditional theories, and at the

same time introduce some viewpoints, thoughts and basic principles of constructing theories to be adopted

by the theory described in this paper.

In the following sections, the improved expression of Erlangen program, the mathematical foundation
of theoretical physics and the various forms of matter-motion will be discussed strictly. They will form a

layer-by-layer dependent and inseparable whole.

1 Improved expression of Erlangen program

The purpose of this paper is to establish the mathematical foundation of theoretical physics at the most
basic level by constructivity method. For this purpose, the expression form of Erlangen program [44] must

be improved firstly.
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The original idea of this improvement has been referred to in literatures [14, 50], but they have not
expressed this idea as a strict definition of the general concept of geometry in an explicit form. Such a

definition is given below.

Definition 1.1. Let C be a set and ~ a relation of equivalence. The classification C/ ~ is called a
geometry about ~ on C'. If any subset of the relation of equivalence ~ constitutes a transformation, it is
called an equivalent transformation. The whole of all equivalent transformations about ~ on C'is called

an equivalent transformation set about ~ on C.

The equivalent transformation set T and the relation of equivalence ~ are mutually determined. In fact for
any relation of equivalence ~, T 2 {f|(f C~) A (f is a transformation)}, whereas VT C {f|(f: C — C)A(f
is a transformation)} the relation of equivalence can be defined as ~: Vf € T, (a,b) € f < a ~ b. So the

geometry about ~ on C can be called the geometry about T on C, and C/ ~ can be denoted by C/T.

Each equivalence class [¢] in geometry C/T is called a geometric object about the equivalent transfor-
mation set T. Each element in equivalence class [] is called a geometric instance of the geometric object
[c]. Denote S = |J ¢, each element in S is called a point, each subset of S is called a geometric figure,

ceC
and (S,T) is called a kind of geometric theory.

Let H be a set. If the mapping h : C — H satisfies Veq,c0 € C, ¢1 ~ ca < h(c1) = h(ca), h is called
a geometric property of the geometric instances on C'. The mapping h:C / ~— H, [c] = h(c) induced
by h about ~ is called a geometric property of the geometric object on C. Each of h and h is called a

geometric property on C. The image of h and h in H is called the value of geometric property.

Suppose there are two relations of equivalence ~, and ~; on C. If ~,C~y, the relation of equivalence ~,
is called stronger than ~j, and ~; weaker than ~,. In this case it must be true that V[c] € C/ ~,, 3[d] €
C/ ~y, such that [¢] C [d]. Thus, the classification C/ ~, is called more exquisite than C/ ~;, and the
classification C/ ~, more rough than C/ ~,. The geometry C/ ~, is called larger than C/ ~y, and the

geometry C/ ~p, smaller than C/ ~,. More conveniently C/ ~j is called a subgeometry of C/ ~,.
Remark 1.1.

(1) The above definition is equivalent to the traditional expression of Erlangen program. Fundamentally,
the significance of geometry is that it can characterize the specific essence at a specific level. The geometric
property is the property reflecting the fundamental difference between one class and another by different

values.

(2) The above definition does not follow the traditional form of Erlangen program. Concretely, it adopts

relation of equivalence, rather than group, to characterize geometry.

Why a new definition should be adopted? It is because that in the case where some group is difficult
to expressed in an explicit form due to its complicated or uncertain structure, it is very inconvenient to
describe geometry in the traditional form of Erlangen program. But the above definition in this paper is

more convenient for the later application in such cases.
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In the past, Erlangen program was used to deal with groups with simple structure. The corresponding
geometry was confined to either local of the manifold or homogeneous manifold such as constant curvature
manifold. The Riemannian geometry was not brought into the framework of Erlangen program in traditional
way. However, based on the expression form in this paper, the definition of geometry can bring Riemannian
geometry into the framework of improved Erlangen program completely, and is more convenient for building

the foundation of theoretical physics later. It is further discussed in section 2.2.1.3 .
To say the least, if the group structure has to be emphasized, the following additional definition is needed.

The elements in equivalent transformation set T about ~ on C' naturally imply a group structure about
composite operation of mappings. The group T is called the tranformation group of geometry C/T,
and C/T is called the geometry of group T. Therefore, the group structure exists on the equivalent
transformation set naturally, and it is not necessary to make explicit requirements in the definition of

geometry as the traditional form of Erlangen program.

Suppose transformation group 73 acting on S7 and transformation group 75 acting on So are isomorphic.
(S1,T1) and (S3,T5) are called the same kind of geometric theory. If T} is a proper subgroup of Ty, T}
is called smaller than 75, and T3 larger than T3. Obviously, the smaller the group, the larger the geometry;

conversely, the larger the group, the smaller the geometry.
Now, define another useful concept.

Definition 1.2. On any set C, there must be a special geometry, which has only one equivalence class,
that is C itself. This geometry is called a universal geometry. The set C' is the only geometric object in
universal geometry, and it is called a universal geometric object. Each geometric property in universal
geometry is called a universal geometric property, and also called a geometric invariance on C. Each

universal geometric property with its unique value is called a geometric identity on C.

2 Construction of mathematical foundation of theoretical physics

2.1 Axiom for Hilbert’s 6th problem

In this paper, physical contents at the most basic level are attributed to a unique physical principle.

Except this, the vast majority of the following discussions are mathematical deductions.

The basic principle of theoretical physics: physical reality in ontology is cognized by using

the concept of reference-system in epistemology.

This can also be regarded as the unique axiom for Hilbert’s 6th problem about theoretical physics at
the most basic level.The following section will start discussions from the strict definition of the concept of

reference-system.
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2.2 Reference-system and geometric manifold

2.2.1 Definition of reference-system

Definition 2.2.1.1. Let M be a D-dimensional connected orientable smooth real manifold. Vp € M, let
U be a neighborhood of p. For any two C°°-compatible coordinate charts (V, ¢y ) and (W, pw ) containing U,
each of the homeomorphic mappings ¢y : V — R® and oy : W — R? is called a coordinate mapping on
the coordinate chart. If ¢y |y = w|u, then by this condition, a relation of equivalence ¢y ~ ¢y between
coordinate mappings can be defined. The equivalence class ¢y determined by this relation of equivalence is
called a coordinate frame on neighborhood U of point p.

For convenience, Vg € U, denote ¢r(q) = ov|v(9), ¢y (2) £ oviy' (2).

For any two coordinate frames ¢y and ¢y on neighborhood U of point p, if f, = <p51 oy is a smooth
homeomorphism between nonvoid open sets ¢y (U) and ¢y (U) in R®, f, is called a (local) reference-
system on neighborhood U of point p, where 9y is the basis coordinate frame of the reference-system
fp, and ¢y is called the performance coordinate frame of the reference-system f,,.

For any reference-systems f, and g, at point p, if the coordinate frames of f,, and the coordinate frames
of g, are C*°-compatible, the reference-systems f, and g, are called C*°-compatible. The whole of the
reference-systems that are C°°-compatible on neighborhood U of point p is called a reference-system
space on neighborhood U of point p, and denoted by REF,(U) or REF,. The whole of all the reference-
systems with ¢y as the basis coordinate frame is denoted by REF, (U, ¢y ).

Denote REF £ |J REF,, where Vp,q € M the elements in REF,, and REF, are C*-compatible.
peM

If the mapping f : M — REF, p+— f(p) € REF, satisfies that the slack-tights B4, and C4! in definition
2.2.8.1 are all smooth real functions on manifold M, the mapping f is called a reference-system on

manifold M. The whole of all reference-systems on manifold M is denoted by REF),.

Definition 2.2.1.2. Let there be two reference-systems f and g on manifold M, if Vp € M, the reference-
systems f(p) £ gpl_]l o9y and g(p) £ @51 o py on neighborhood U of point p have the same performance
coordinate frame ¢y, namely it can be intuitively expressed as chart ¢y (U) 0 oy (U) o), pu(U), we
say reference-systems f and g on manifold M motion relatively and interact mutually.

Remark 2.2.1.1. According to the definition above, it is obvious that f and g are motioning relatively
and interacting mutually if and only if g and f are motioning relatively and interacting mutually. In the

reference-system of classical spacetime defined in section 5.2.1 , according to section 1.2 , it can naturally

induce a generalized Newton’s third law.

Definition 2.2.1.3. Vp € M, on neighborhood U of point p, any w,}l o py € REF,(U) can induce a
transformation Fw[—llopU : REF,(U, %) — REF,(U,pv), 5" ovu = (¢p' ovu) o (¥g' o pr) = ¢p' o pu.
F¢EIOPU is called the reference-system transformation from <p[;1 oy to gpgl o py induced by reference-
system 1/151 o py on neighborhood U of point p.
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Vf € REFy, Vp € M, let Fy,) be a reference-system transformation induced by reference-system
f(p) on neighborhood U of point p. The mapping Fy : p — Fy(p) £ Fy(,) is called a reference-system

transformation on manifold M.

Remark 2.2.1.2. Suppose there is a reference-system f on manifold M. Construct reference-system e
in the following way: Vp € M, on neighborhood U of point p, take the basis coordinate frame of f as the
basis coordinate frame of e(p), and take the same basis coordinate frame of f as the performance coordinate
frame of e(p). Reference-system e is defined as completely stationary reference-system in section 2.5.2.8 .
Thus, reference-system transformation Fy transforms e to f just right. For convenience, it always means

reference-system transformation Fy when saying reference-system transformation f.

Definition 2.2.1.4. A differential manifold M with a reference-system f is called a geometric manifold

given shape by f, and denoted by (M, f).

Remark 2.2.1.3. The geometry determined by general concept of differential homeomorphism is some-
how rough on the intuition. There is only intuition of differential topological structure on general differential
manifold, and is no any intuition of concrete shape. When giving a reference-system, the differential manifold
would obtain a kind of concrete shape. The curve in Figure 1 and the surface in Figure 2 of introduction
section are two simple and visualizable examples of geometric manifold. The shape of geometric manifold
is completely determined by reference-system. The following will define the geometry concerning concrete

shape.

2.2.2 Intrinsic geometry

Definition 2.2.2.1. Inherent geometry of reference-system.
(1) Inherent geometry of local reference-system.

Vfp, 9p € REF,(U), let slack-tights (see Definition 2.2.8.1) of f, and g, be (bf)f/[ and (bg)ﬁ respectively.

~

Define a relation of equivalence = of reference-systems on REF,(U), such that f, = g, if and only if
(bf)AM = (bg)ﬁ are all true at each point of the neighborhood U of point p. Thus, the geometry REF,(U)/ =
is called the inherent geometry on the reference-system space REF,(U). The geometric object [f,] in the
inherent geometry REF,(U)/ = is called the inherence of reference-system f;,.

(2) Inherent geometry of reference-system on manifold.

Vf,g € REF)y, let slack-tights (see Definition 2.2.8.1 ) of f and g be (Bf)]‘ef and (Bg);} respectively.

Define a relation of equivalence = on REF), such that f = g if and only if f(q) = g(q) is true on the
neighborhood of each point ¢ on manifold M. Thus, the geometry REF);/ = is called the strict inherent
geometry on reference-system space REFyy.

Define a relation of equivalence = on REF), such that f = g if and only if (Bf);} = (Bg)AA4 are all true
at each point of manifold M. Thus, the geometry REF);/ = is called the inherent geometry on reference-

system space REF);. The geometric object [f] in the inherent geometry REF);/ = is called the inherence
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of reference-system f. Because of the one to one correspondence between mappings [f] £ [p — f(p)] and

p+— [f(p)], the inherence of f can also be expressed as [f]: p — [f(p)].

(3) Each geometric property on inherent geometry is called an inherent geometric property. Slack-

tight is the most basic inherent geometric property on the reference-system space.
Definition 2.2.2.2. Intrinsic geometry on geometric manifold.

The whole of all the geometric manifolds on differential manifold M is denoted by M(M). The relation
of equivalence = of reference-systems induces a relation of equivalence of geometric manifolds, such that
(M, f) = (M,g) if and only if f = g. The classification C(M) £ M(M)/ = determined by this relation
of equivalence on M(M) is called the intrinsic geometry on geometric manifolds. Each equivalence class

(M, [f]) is called an intrinsic geometric manifold given shape by [f].

Each geometric property on intrinsic geometry is called an intrinsic geometric property on geometric
manifolds. According to Definition .1, the value of each intrinsic geometric property completely depends on

the inherence of reference-system, and thereby depends on the slack-tight B4, or C4 of reference-system.
Discussion 2.2.2.1. Geometric manifold is a more basic expression than Riemannian manifold.

According to the viewpoint of Riemannian geometry, the ultimate origin of its geometric property is
metric. According to the viewpoint of geometric manifold, the geometric property has more basic origin,

which ultimately boils down to reference-system and its slack-tight B4, or C2.

(1) In history, the slack-tight is called a semimetric in traditional theory of Riemannian geometry. Physi-
cists noticed long ago that when researching interactions between gravitational field and elementary particles,
especially problems about spinor field, it can only be described by adopting semimetric representation, and
it does not work by using metric representation. However, they did not realize that it means the connotation

of traditional intrinsic geometry needs to be generalized.

(2) On connotation. On one hand, it can be seen from Definition 2.2.8.4 that the slack-tight on geometric
manifold determines the metric on Riemannian manifold. On the other hand, even if the coefficients of metric
tensors of two geometric manifolds are completely the same, their slack-tights are not necessary to be the
same. These two aspects indicate that the theory of intrinsic geometry on geometric manifold has richer

geometric properties than the traditional theory of intrinsic geometry on Riemannian manifold.

(3) In addition, the expression form of geometric manifold is more convenient for deducing the funder-
mental framework of theoretical physics with a uniform foundation. For example, the concept in Definition
2.2.1.2 and various concepts of typical gauge fields defined later can be elegantly expressed with the form
of geometric manifold theory, but it is difficult to do so with the form of Riemannian manifold theory. In

Discussion 2.2.2.3 , the two expressions of intrinsic geometry are compared further more.

In view of the above reasons, in the following text, the essence of Riemannian geometry will always be

expressed based on the viewpoint of geometric manifold.

Definition 2.2.2.3. Inherent transformation of reference-systems.
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(1) Inherent transformation of local reference-systems. Let f,, be a reference-system at point p on manifold
M. The inherence [f,] of f, induces an equivalence class [Fy, ] of reference-system transformation Fy, . [F, ]

is called an inherent transformation of reference-systems at point p.

(2) Inherent transformation of reference-systems on manifold. Let f : p — f(p) and h : p — h(p)
be two reference-systems on manifold M. The inherence [f] of f induces an inherent transformation of
reference-systems [Fy, | : h(p) +— ho fn(p) in each local of manifold M, where f, € [f] and f, has the
same basis coordinate frame with h at any point p. Denote h o f;, with h o [f], there exists a transformation
[Fp)] : h(p) = ho [f](p).

Thus on the manifold there exists a transformation [F¢] : h + h o [f]. Further more, there exists a

transformation Fig : [k] — [h] o [f] £ [k o [f]].

Fiy is called an inherent transformation of reference-systems on M, or an intrinsic transformation
of geometric manifolds, or a transformation of general gauge fields. Correspondingly, any inherence [h]

can also be called a general gauge field.
Discussion 2.2.2.2. Transformation group of reference-systems.

(1) Locally, on the neighborhood of any point p on manifold M, the slack-tights B3}, or CA! of a reference-
system constitute a D-order invertible square matrix. The inherent geometry REF,(U)/ 2 is isomorphic to

the general linear group GL(D,R).

(2) On manifold M, an inherent transformation tansforms an intrinsic geometric manifold to another in-

trinsic geometric manifold. The group structure of the inherent geometry REFy;/ = is GL(M) £ @ GL(D,R),.
peEM

Suppose S is a subgroup of GL(M). The group structure of S is generally complicated and its description
must be cumbersome, it is because transformation groups at various points are generally different from each
other. This is an important reason why at the beginning Riemannian geometry was not brought into the
framework of Erlangen program. According to the original form of Erlangen program, geometry depends on

group, that is to say, if group structure does not described clearly, geometry could not be established.

However, that is easy to be described if it is based on the concept of geometry of this paper. Just like
Definition 2.2.2.1 and Definition 2.2.2.2 , in order to research a geometry on manifold, it just needs to
construct a kind of relation of equivalence about reference-systems, or take some constraints for slack-tights,
and it is not necessary to specify detail informations of transformation group. This will bring convenience

for the research of the following sections. There is a further discussion in Remark 7.2.2 .

Specially, for the case that the transformation groups at different points of manifold are isomorphic to

each other, the following definition is needed.

Definition 2.2.2.4. The general linear group GL(D,R) is also called the intrinsic transformation

group, or transformation group of general gauge fields.

Let f be a reference-system on manifold M, and let S be a subgroup of GL(®D,R). In the sense of

isomorphism of groups, for any reference-system f, if the following two conditions are satisfied: (1) Vp €
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M, [f(p)] € S; (2) for any subgroup T of S, 3¢ € M, [f(q)] ¢ T; then objects determined by f, such as f,
(M, [f]), Fip, etc., are all called generated by group S.

As the equivalent transformation set, the whole of all intrinsic geometric transformations generated by
group S is used to define the relation of equivalence ~g, so as to define the geometry M(M)/ ~g, which is

called the geometry generated by group S, also denoted by M(M)/S.
Discussion 2.2.2.3. Some important viewpoints must be emphasized:
(1) The comparison of two expressions of intrinsic geometry.

Consider Definition 2.2.8.4 , let G 4p be the metric tensor coefficients about basis coordinate frames on
manifold M. It is because of the fixed conditions Gap = Asp about basis coordinate frames, that the
metric tensor coefficients Gyny = Ga BBJ‘(}B}\'}, about performance coordinate frames can describe intrinsic

geometric properties.

This is like fixing the coordinate of the first endpoint of a segment to zero on the real axis, and the
coordinate of the other endpoint can describe the length of the segment. The coordinate of the fixed endpoint
has no decisive influence on the length of the segment. Even if the coordinate origin of real axis is moved
away from the first endpoint, the length of the segment remains unchanged, except that the coordinate
expression of the length changes from the coordinate value of the other endpoint to the difference between

the coordinate values of the two endpoints.

In the same way, when the slack-tights Bj(} of reference-system remain unchanged, if the base metric
G ap does not be selected as the fixing A, the expressions of metrics G 4 and Gy may have changes,

but there is no influence on intrinsic geometry at all.

In the case of fixing the base endpoint, it is certainly correct and feasible to define the length of the
segment by the ONE coordinate value of the other endpoint, but it fits in more precisely with the essence
of geometric property to define the length of the segment by the difference between the coordinate values of

the TWO endpoints.

In this sense, it is certainly correct and feasible to define the intrinsic geometry by the first fundamental
form about ONE coordinate frame on Riemannian manifold, but it fits in more precisely with the essence of
geometric property to define the intrinsic geometry by reference-system reflecting the relative relationship

of TWO coordinate frames on geometric manifold, and the connotation is more comprehensive.
(2) The selection of torsion connection and torsion-free connection.

When describing intrinsic geometry, what is really significant is the relative relationship between the
basis coordinate frame and the performance coordinate frame which are determined by reference-system on
manifold, and has no essential relationship with the absolute values of affine connection coefficients on some
one coordinate frame. So there is completely no difference in sense of intrinsic geometry between selecting
torsion connection and selecting torsion-free connection. In other words, the torsion is not important at all

for intrinsic geometry.
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In Riemannian geometry usually only considering the torsion-free connection when researching intrinsic

geometric properties, the rationality and effectiveness of which are guaranteed by the reason above.
(3) Re-examine the necessity of complex-valued expression.

In early years, H.-Weyl re-examined the fundamentality of metric, established the concept of affine con-
nection independent with metric, and proposed the research idea of gauge transformation in field of real
numbers. However, due to some problems related to quantum measurement, physicists brought the research
to complex field. Thus, to a certain extent, the fact is concealed that invariances under gauge transformation
reflect intrinsic geometric properties. In fact, complex-valued expressions are necessary only for convenience
of discussing problems associated with quantum measurements. The research for gauge transformation does
not depend on complex field, but on intrinsic geometry, because all geometries that gauge transformation

theory concerned can be regarded as subgeometries of intrinsic geometry.

Therefore, in order to highlight the essence of each concept more precisely, in section 4.3.1 and so on,
complex-valued expressions will be deliberately avoided in the further discussion of gauge transformation.
Complex-valued expressions will only be used for convenience when discussing problems associated with

quantum measurements.
(4) The intrinsic geometric essence and expression forms of gauge field theory.

The intrinsic geometry on manifold is completely determined by reference-system. It has nothing to do
with the selection of affine connections on tangent bundle, and also with the selection of arbitrary connections
on arbitrary vector bundle. The common transformation groups in traditional gauge field theory are usually
compact topological groups such as unitary group U(n), special unitary group SU(n) and special orthogonal
group SO(n), which are all subgroups of general linear group. The concept of slack-tight of intrinsic geometry
can be used to generally deal with an arbitrary symmetry of general linear group, so it surely can be used

to deal with the symmetries of such typical subgroups.

Therefore, when the transformation group is a subgroup of the general linear group, there are only
differences in expression form between the tansformation of abstract connection on abstract fibre bundle
and the tansformation of affine connection on tangent bundle. The essences they reflect are both intrinsic
geometry’s subgeometry associated with the transformation group, and have nothing to do with what kind
of connection is adopted. In other words, the research content of traditional gauge field theory is nothing
more than intrinsic geometric property, which is the fundamental reason of the rationality and effectiveness
of the fact that the abstract connection on abstract fibre bundle can be used to research the matter-motion.

In order to unify all kinds of theories, this viewpoint is indispensable.

In a word, the intrinsic geometry problems which can be researched in traditional gauge field theory by
using abstract connection can also be researched by using affine connection. Moreover, in content, affine
connection can be more concrete, and in form, it has a natural unity with the gravitational theory expressed
in spacetime coordinates. Therefore, in the following text, affine connection will be adopted to re-express the

traditional gauge field theory, so as to achieve the unification of various theoretical forms.
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2.2.3 Kernal geometry

Definition 2.2.3.1. Let k be a reference-system on manifold M. Its slack-tights B3, (see Definition
2.2.8.1 ) are constants independent of position on manifold. The inherent transformation Fj induced by
k is called a flat transformation of reference-systems. If det[Bj;] = 1 is satisfied as well, F}j) is called a

unimodular flat transformation of reference-systems, or a global gauge transformation.

Definition 2.2.3.2. Let there be intrinsic geometric manifolds (M, [f]) and (M, [g]). Define relation of
equivalence ~, such that [f] ~ [¢g] and (M, [f]) =~ (M,[g]) if and only if there exists a flat transformation
Fly such that Fig([f]) = [g]. The equivalence classes are denoted by |f| and (M, |f|) respectively, and |f] is
called the kernal of reference-system f. The geometry C(M)/ ~ about relation of equivalence ~ on intrinsic
geometry C(M) is called the kernal geometry on geometric manifolds. The element (M, |f]) in kernal

geometry C(M)/ ~ is called a kernal geometric manifold.

Specially, if Fjy) is a unimodular flat transformation of reference-system, the equivalence classes are
denoted by ||f|| and (M, || f||) respectively, and || f|| is called the regular kernal of f. In this case, the
geometry C(M)/ ~ is called the regular kernal geometry on geometric manifolds, or regular geometry

for short. The element (M, ||f]]) in regular geometry C(M)/ ~ is called a regular geometric manifold.

Remark 2.2.3.1. It can be understood intuitively as following. Consider Figurel in the introduction
section. Fix axis and scale, and rotate the whole curve L by an angle. The intrinsic geometric curve S’ now
is different from the intrinsic geometric curve S before. However, the major bending characteristics remain
unchanged after the rotation. At this time, what being used to describe these invariant characteristics is
the equivalence class [S] determined by the unimodular flat transformation of reference-systems. [S] can
be called regular kernal geometric curve. Regular kernal geometry is the geometry which determines these
major bending characteristics in intrinsic geometry strictly. Various bending characteristics are described by

various regular kernal geometric properties of [S].

2.2.4 Riemannian geomelry

Definition 2.2.4.1. Let k be a reference-system on manifold M. Its slack-tights B3, (see Definition
2.2.8.1 ) satisfy Aup Bje[Bﬁ = Eyn. The inherent transformation Fjy) induced by k is called an orthogonal

transformation of reference-system.

Definition 2.2.4.2. Let there be intrinsic geometric manifolds (M, [f]) and (M, [g]), and their slack-
tights be (By)4; and (By)4;-

Define relation of equivalence ~¢, such that [f] ~o [g] and (M, [f]) ~o (M, [g]) if and only if there exists
an orthogonal transformation F}; such that Fyg([f]) = [g]. The equivalence classes are denoted by [f]o

and (M, [f]o) respectively, and [f]o is called the Riemannian core of f. The geometry C(M)/ ~o about
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relation of equivalence ~¢ on intrinsic geometry C(M) is called the Riemannian geometry on geometric
manifolds. The element (M, [f]o) in Riemannian geometry C(M)/ ~¢ is called a Riemannian manifold.
Remark 2.2.4.1. Noticed it is an obvious fact that [f] ~o [g] if and only if Aap(By)4(Bp)S =
Aap(By)4(By)E, so this definition is consistent with the traditional definition of Riemannian manifold.
Definition 2.2.4.3. Let k be a reference-system on manifold M. If the inherent transformation Fi
induced by k is both a flat transformation and an orthogonal transformation of reference-system, Fj is
called a general inertial transformation.
Remark 2.2.4.2. The general inertial transformation will behave as the Lorentz transformation in Min-

covski form of reference-system of classical spacetime. The details will be discussed in section 6.3.8.2 .

2.2.5 Universal geometry

Discussion 2.2.5.1. Let there be geometric manifolds (M, f) and (M, g). Define relation of equivalence
~, satisfies that (M, f) ~ (M,g) if and only if there exists an inherent transformation F}; such that
Fi37([f]) = [g]. In fact this transformation always exists, which is Fj;-1,4. Therefore, M(M) becomes the
only equivalence class in the geometry M(M) £ M(M)/ ~ determined by relation of equivalence ~. It
makes M(M ) the universal geometry on geometric manifolds. Because each universal geometry on geometric

manifold is independent of the selection of reference-system, it can also be called a universal geometry of

reference-system.

Discussion 2.2.5.2. Each differential topological property defined on differential manifold is as the
same for all geometric manifolds in universal geometry M(M ). In other words, each differential topological
property is independent of the selection of reference-system, so as to be a universal geometric property on

geometric manifold.

2.2.6 Several corollaries

Discussion 2.2.6.1. Make a summary for geometries of reference-system.

(1) An intrinsic geometric property on geometric manifold is an invariant property under identical inher-
ent transformation of reference-systems. A kernal geometric property on geometric manifold is an invariant
property under flat transformation of reference-systems. A Riemannian geometric property on geometric man-
ifold is an invariant property under orthogonal transformation of reference-systems. A universal geometric
property on geometric manifold is an invariant property under arbitrary transformation of reference-systems.

These geometries are all subgeometries of intrinsic geometry. For any subgeometry of intrinsic geometry,
we say its geometric property is a class of intrinsic geometric property.

(2) Consider in the sense of Definition 2.2.2.4 . Let e be the unity element of GL(D,R). According
to Remark .1, {e} as the transformation group of intrinsic geometry is the smallest transformation group

on geometric manifold, and GL(D,R) as the transformation group of universal geometry is the largest
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transformation group on geometric manifold. In other words, intrinsic geometry is the largest geometry on
geometric manifold, and universal geometry is the smallest geometry on geometric manifold.

Discussion 2.2.6.2. Now that we have those concepts of geometries of the previous sections, then the
basic principle of theoretical physics in section 1.2 naturally has several obvious corollaries as following.

Corollary 1. A specific physical property in ontology is cognized by using a specific intrinsic geometric
property on geometric manifold in epistemology.

Corollary 2. Any kind of physical property in ontology is cognized by using a class of intrinsic geometric
property on geometric manifold in epistemology.

Corollary 3. A universal physical property in ontology is cognized by using a universal geometric
property on geometric manifold in epistemology.

For convenience, Corollary 3 is called the principle of universal relativity.

Discussion 2.2.6.3. According to the above discussions, now it can be commented that:

(1) Universal geometry has the universal applicability for cognizing universal property of matter-motion;

(2) Intrinsic geometry has the universal applicability for cognizing specific property of matter-motion;

(3) Other geometries between universal geometry and intrinsic geometry have specific applicability for

cognizing some other properties of matter-motion.
2.2.7 Coordinate representation of reference-system

Definition 2.2.7.1. Vp € M, let U be a neighborhood of p. ¥q € U, denote ¢ £ ¢y(q) € R®, 2z =
ou(q) € R®. Now coordinate frames 1y and ¢y can be denoted by (U, €) and (U, x), or as component forms
(€4} and {2},

If no confusion, a reference-system can also be denoted by & £ gogl oty € REF,(U), z £ 1/){]1 owpy €
REF,(U).

Based on these two kinds of notations, the coordinate representation of referece-systems @51 oYy

and ’(/Jl}l o (py can be written as

or as component form
€A = A(gM)y, oM = oM (¢4,
Definition 2.2.7.2. For convenience, some index symbols have to be specified. In the absence of a special
declaration, the indices used below are valued in the following range:
(1)for coordinate frame (U, ¢), indices A, B,C,D,E =1,2,--- ,D, such as £4;
(2)for coordinate frame (U, ), indices M, N, P,Q, R =1,2,--- D, such as M.

2.2.8 Basis vectors and metrics of reference-system

Definition 2.2.8.1. Let (M, f) be a geometric manifold. Vp € M, on a neighborhood U of point p, let

the coordinate representation of local reference-system f(p) be ¢4 = ¢4 (xM), 2™ = M (¢4). Their derived
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functions
pA 2 afA M2 daM
M axM5 A agA

on U are called the slackness and tightness of the local reference-system f(p) on neighborhood U of point

p, or called the slack-tights for short.

If need to emphasize the local reference-system f(p) explicitly, b4, and ¢} can be denoted by (bf(p))ﬁ
and (cpp))

Corresponding to the two coordinate frames of local reference-system f(p), the tangent space T}, at point
p has two sets of natural base agiAv MLM € T}, and the cotangent space T} also has two sets of natural base

deA, daM e Ty If need to emphasize the point p explicitly, the tangent vector base 6% and (%LM are denoted

by a%‘ and %L} respectively, and the cotangent vector base dé# and dz™ are denoted by d§A|p and
P
da™ |p respectively.
Define two sets of smooth real functions on manifold M:

9
Bjy: M =R, p— Bj(p) £ <3IM ,de\p> = (by) ()
p

)

Y M SR, pwc%<p>é<a

M M
o7+ |p> — (es) ¥ ()
then call Bj(‘/[ and CY! the slack-tights of reference-system f on manifold M.

Definition 2.2.8.2. Let 77 be a (r,s)-type tensor bundle on manifold M. The mapping h : M —
T7, pw h(p) € T (p) is called a section of tensor bundle 77, or called a tensor field on M. Moreover,

if h is a smooth mapping, h is called a smooth section or a smooth tensor field. Specially, a 1-order

tensor field is called a vector field.

Suppose on neighborhood U of point p there are natural basis vector fields d¢4 ‘ U dzM ’U, a%‘ . azLM ‘ U

v ()=

determined by coordinate frames (U, £4) and (U, zM) of local reference-system f(p), satisfying d¢

d§A|p’ dg;M|U (p) = dggM|p7 8% ” (p) = a%‘ ) SJLM|U (p) = ﬁaﬂp at this specific point p. The slack-tight
of f(p) can be expressed with these natural basis vector fields, as
0
A A
by = <8mM Uadf |U>
5 .
M _ M
ca _<5§A U,d:v ‘U>

Suppose on manifold M there are © cotangent vector fields A and ® cotangent vector fields w™,
satisfying A\ (p) = de’p and wM(p) = da;M’p at any point p on M. If no confusion, the vector fields A\*
and w™ can be denoted by d¢# and daz™ | which are called the coordinate forms determined by reference-
system f on M. In the same way there are tangent vector fields a% and WOM, satisfying agiA(p) = a% )

and %(p) = an |p at any point p on M. Now the slack-tight of f can be expressed with these vector

fields, as
0
A A

e
¥ = {geras")
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Definition 2.2.8.3. Denote

1
VI M A
emn =e"N= ey —{

) )

, Oap =01P=054 & .
0, A#B

0, M#N
The reason of distinguishing the notation ¢ and § is to avoid confusion when expressing concrete indices in
the following sections.
Definition 2.2.8.4. Let (M, f) be a geometric manifold. Vp € M, let U be a neighborhood of point p.
(1) The coordinate frames (U, £4) and (U, ™) of local reference-system f(p) respectively inherit metric

tensor fields
g £ 0apdé? @ deP = gynds™ @ da™

h2eyndeM @ de™ = hapde? @ deP

from R®, where dé# and dz™ are natural basis vector fields determined by the two coordinate frames (U, £4)
and (U,zM) of f(p). Obviously,

guN = dapbirby

hag = emncicy ,
which are determined by local reference-system f(p) completely.

If need to emphasize the local reference-system f(p) explicitly, g and h can be expressed as gs(,) and

hypy, then garn and hap and be expressed as (gf(p))mn and (hyp))AB-

(2) On manifold M, define two sets of © x ® smooth real functions
Gun:M =R, p—Gun(p) = (970))un(p)

Hap: M =R, p— Hap(p) £ (hs@p)an(p)

and define
Aap: M =R, p— Asp(p) £ 6ap

Ean i M >R, pes Byy(p) 2 ey
Thus on the entire manifold M, two metric tensor fields are constructed:
G = Aypde? @ deP = Gynde™ @ dzY
H = Eynde™ @ de™ = Hapded @ deB
where dé4 and dzM are the coordinate forms determined by f on M. Obviously,
Gun = AapBi By
Hap = EynCYCY
which are determined by reference-system f completely.
(3) The Riemannian manifolds (M, G) and (M, H) determined by f are called dual mutually.
Remark 2.2.8.1.
(1) The local coordinate transformation of metric tensor on manifold: ¥p € M, on the neighbornood U
of point p, let the slack-tights of f(p) are b4, and c}. f(p) induces a local coordinate transformation F F(p)

on U. By Fyp, the restriction of Gjsn on U is to be transformed to

/ M N C nD M _N
GMN ’_)GAB :GMNCA Cp :ACDBI\/IBNCA Ccp.



20 Zhao-Hui Man

Notice that for any point ¢ on U, B4, (q) # bi;(q) generally. It is only at point p that Bi (p) = b4, (p) is
true.

So it can be seen that the curved shape determined by slack-tight Bj@ or metric Gy = Ac DBI\C/}B{\D,
will not vanish under the influence of local transformation c.

(2) For the sake of simplicity, if no confusion, d 45 as a general notation and A 45 as coeflicients of metric
tensor are not to be distinguished, and so are e,y and Ej;n. They are mainly expressed as the notations
dap and e)7n uniformly.

Discussion 2.2.8.1. Suppose in the two coordinate frames of local reference-system,
h2eynde™ @ da™ = hypdé? @ deB
g2 04pde? @ deP = gyndz™ @ dz 7
where
hap = 5MNci\{[cg
guN = dapbiby

Denote
dés & hapde®

)

d.TM £ gMNdJZN
two new coordinate frames (U,£4) and (U, zs) can be determined in the degree of only an integration con-
stant difference. Notice that d€4 and dxj; can also become natural basis vectors induced by new coordinate

frames on cotangent space. Correspondingly, let the natural vectors induced by new coordinate frames on
1%}

Oz s

tangent space be 8%; and . These basis vectors are all independent of integration constant. According
to Proposition 2.2.8.1, they necessarily satisfy <8§%, d§A> =08 and <%, d:cM> =el.

Definition 2.2.8.5. Similar to Definition 2.2.8.1 , define

MA 5 9z cans & Oz v o 94
0€a oA AT Oy
bAM A 8514 bMA 2 8§A 6]1?4 A 83:M
0x g OzM afA
It should be noted that for the convenience of distinguishing between gi: and g%, and between g?: and

2=, byl and cfy are specially denoted by b and &4

The transformation relations about {b4;, X'}, {b4M, canr}, {bara, M4}, {08, E )

deM — C%dgA _ cMAdgA dry = Ef/[de = cAMde
A = b da™ = v Mdzy, | dea = BN dens = bagada™
i_bAi_b i 9 _’Mi_bAMi
daM ~ M peA T "MAGe, dray A 0Ea - 9EA
o w9 _ 07 )0 a9 ma 0
OEA — A ggM T TAM G s MPry  ° 0aM

are called the basis vector representation of local reference-systems £ = £(z) and x = z(§).
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These local relations are also true on the entire manifold. More concretely, similar to the slack-tights
{B4,, CA} of Definition 2.2.8.1 , {BAM Cunr} {Bara, CMA} {BA, C4}} can also be defined.
Take {Bﬁ, CA!} for example, the basis vector representation of reference-system on manifold about

cotangent vector fields dz™, dé4 and tangent vector fields ﬁ%, 6% can be written as

0 a4 0
da™ = ¢ ag? oot — Buigex "
de? = Byl da™ , 0 _ oM 9
oEA A PaM

Definition 2.2.8.6. Based on these coefficients of base transformations, some metrics of local reference-
system can be defined. The two of them have been defined in Discussion 2.2.8.1 . They are gpsn and hap. Now
all four basic metric tensors concerning the local reference-system are defined collectively as following:

g2 0apde? @ deP = gynda™ @ dz = ¢MNdzy @ dey
h 2 eyndzM @ de™ = hapde? @ deB = hAPdey @ dép
k2 648de, @ dep = KMV dayy @ daey = kyndae™ @ de™

12 MNgey @dey = ZABde Rdép = ZABde ® d¢P

Correspondingly, there are another four tensors:

P, P P 9 P
asa 9 o 0 _  uN 9 _ o 0
X =0T SA O eE — T gpnt © gun T TMN g @ 5
P P P P
A _MN —AB_ Y o T _ R —
Y= oam © g TV 9ea @ geB TYAB 5, © 5e,
ag O 0 9 9 mMn_9 0
VEOange © e SN g @ = et © g
whe O g 9 0 o0 a0 o 0
T MNOra T ey PoEs T 06 964 T 9¢B

The coefficients

A B M N MN _ sABTMiN AB _ _MN=A -B
gMNZéABbeN hAB:E:MNCACB k =4 bA bB l =£ CpCN
9 b b 9
MN AM ;BN AB MA _NB AB MN
g =0apb” b h™2 =epncc kun =077 byprabng lap =" " camenn
AB MN MN MA NB AB AM ;BN
MmN =0""camceN yap =€ byabnp v =dapct e w™ =emnd™b
b 9
MN _ sAB M N AB _ _MNA 1B _A -B TMTN
€T =4 CpCp Yy =& beN UAIN:(SABCMCN wAB:E:MNbAbB

are called the metric representation of local reference-systems & = £(x) and x = z(§).

Remark 2.2.8.2. The metric representation of reference-system on the entire manifold can also be
defined. It only needs to replace the metric tensors of local reference-system to the one on manifold. Their
expression forms are the same, so they will not be described repeatly.

Not all of these tensors will be used in this paper. First, according to Discussion 2.2.8.4 , g, h, x, y have
better properties than k, 1, v, w. Second, according to Proposition 2.2.8.5 , the coefficients of g and x are

equal completely, and the coefficients of h and y are equal completely. Third, because of the properties of
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evolution in Remark 2.4.4.1 . Therefore, only the tensors g and h are usually needed to concern. The rest

contents of this section will discuss this concretely.

Proposition 2.2.8.1. On the neighborhood U of point p on manifold M, the following equations hold:

AB _ B A AB 4 ap_9 9 _ h 0
hoal™™=0c  JAT =0T Jag, TN aer J ot T Mg
MN N’ M MN ’ 0 o’ 0 0
gpmg = dx™ =g dry Y _ _MN _
r O s g oxN oxM gun or N

Proof.

The first, cMAdéy = da™ < MAhy pdeB = dx™ . In consideration of cp MaeB = da™ | then ¢MAhap =
M. Then, P = ey ncMANE = hach*Phpp = enn (M Ahac) (N Phpp) = epnc el = hop, which is
a product of invertible square matrices hoah*Phgp = hep. Therefore hoah4E = (55, and it means they
are inverse matrices of each other.

The second, hapdé® = dés = hAChapde® = hACdEy & 6Gde8 = hACdEy & dEC = hAC9dE .

The third and fourth, cMAh g = ¥ o <8§  daM >hAB - < €B,dgc > o <hAB%,d:cM> _

thC 9

BC o
=hPC ok & 5 9E5 -

<8§B,dz > & hapgls = g = WBPChappls = hBC 32 & 6552 it =
The above is a proof about h. For g it is the same. gy pgMY = ¥, dat’ = gMPdx )y, 6%\, = gMN%,
62}3 = gNPBxLN also hold. OJ
Proposition 2.2.8.2. On the neighborhood U of point p on manifold M, the following equations hold:

k‘]MPUpN = 6% lAC’LUCB = 5§
s .
’UMPkpN = EAN4 ’U)ACZCB = (5§

Proof.
EMPypyn = 04BbAbE 5o peGel = 64PN 6G5cpel = 6495cpbilel = sabN el = bMel = 1.

U]WP]CPN = (5ABCMACPB(SCDbP0bND = 5ABCMA(SC§CDZ)ND = (SAcécDCIMAbND = 6A CMAbND = 8%.

wAClCB = EMNbAMbCNEPQCCPCBQ = SMNbAI\/I(SN PQCBQ = EMPEPQbAN[C BQ — EQ bAM = 5A.

lAC MN zA =C 7PBQ: MN A MP

wep = eV ey CrepQbaby 5chMbg =g chQ gbg = (5‘4

eNaprB =c
Remark 2.2.8.3. Generally, kP kpy = £3 does not hold. A sufficient condition is that if S4Bhgphpp =

Spr, then KMPkpyn = 5%. There are similar conclusions for ZACZCB, vMPypy, wACwep.

Proposition 2.2.8.3. On the neighborhood U of point p on manifold M, the following equations hold:

MA M AB _ -B AM A MN _ 7N
¢ “hap =cp camh =Cy b* M gun = by byprag =by
MA A’ MN N’ AM M’ AB B
¢ CguN = Cy caMY =cy b hap = bp byrah™” = by,

bAM = b g™ bara = b gun

CMA:c]ghAB CAMZEf/[hAB

MA _ A MN' pAM — pM pAB ’

, )
N B
CNY CAM = CAgMN bya =byhasp

Proof. Start from Definition 2.2.8.5 , and according to Proposition 2.2.8.1, we have:
cMAdE ) = dzM & MAh pdeB = dzM | due to cMdeB = daM | so cMAh g = M, cMA = ¢

AB =B =B
h = Cprs CAMZCMhAB.

M AB
MpAB,

CAMde =dry & CAMhABde = dzx )y, due to EMng =dxp, SO CaM

bAM gy = deA < bAM gy ndaN = déA, due to bdaN = deA, so bAM gy = b, pAM = pA gMN .
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barade™ = dég < byragMVdey = dﬁA, due to b dzy = déa, s0 barag™™N = b, bayra = b gun.

MA_ 8 _ 8 ) ) o) MA _ A _MA _ zA_MN
5 _85,4{:)6 gMNBxN 85 , due to CNa a.gA so ¢ guN = Cy, C cygt .

o _ MN D o _ MN _ N _
CAMm—a?A@)CAMg o~ = afA,due to CAW_ QTA,SO camg™MN =l can = N gun.

AM 0 _ AM 6 _ 0 o pAM _IM pAM _ 7MpAB
b 3§A—awM©b haBze; Bag = go—r 50 VM hyap = by, bAM = b AP,

bMAagA 5 M e bMAhAB(%B = 78951”7 due to b]\/jagiB = ?fM, SO bMAhAB = bM? bya = thAB- O

Proposition 2.2.8.4. On the neighborhood U of point p on manifold M, the following equations hold:

GMVBSHR = §CD T | RABCRD = PR | MV eh = 6D IABpERD = PQ
Proof.

gMNCC CD = 5ABbA bNCC’ CD = 5AB(bA )(bNCD) = (5AB(5A55 = 5CD~
§CP = §G64P = b5 N 04P = MG, clN 040 = gMP gpnb§ e 640 = gMP 55 pbBblbS N 4P = gM P bB.

hABbeQ =epnchy cBbAbQ =epn(cH bA)(cng) = EMNegaQ =epg-

e = EﬁEMQ = chB eM@Q — 6AchB eMQ — hAChCBcbeﬁaMQ = pAC eMQ — hACcicg.

enrcNcBclbB e
kMN C D_(SABbeN C D_6AB(bM C)( ¢ ):(SAB(SS(SBZ(SCD.

lABbﬁbgz MNcMchPbQ eMN (bR (EBDF) = eMNel e = 79
UMNBg/[B 5ABCMCNbe —5AB(CMbC)( Eg) 5,4350(5 5CD-

wABCpCQ = EMNbeNCPCQ = 5MN(bA EP)(bBEQ) = é‘MNag ‘C:Q =E€pQ- O
Proposition 2.2.8.5. On the neighborhood U of point p on manifold M, the following equations hold:

A A1B _ <AB s s M N _ _MN A
guN = 0aBby by = 0" camceN = TuN hap = emncacg =€ "byabnp = yan

AB

)
MN & 5ABbAMbBN :5ABC%Cg A MN hAB A MACNB :gMNbII?/Ibﬁ y

xT = EMNC

[I>

g
Proof.
According to Proposition 2.2.8.4 , gMPb( b8 = 660 = gMNp(, chCcD =69P¢ z Q = gPQ =2 PQ,

4 §AB NQ _ gPM(;AB

TMN camesn = 9" Mrung cameang™N9 = 648 (canrg"M) (cang™N?
QPQ = g"Mryn = Eﬁ = TMN = JgMN-

According to Proposition 2.2.8.4 | hABcicg =ePQ = pABCE cBbeQ = EPQbeD hEP = 4D,

yap 2 eMVbyabyg = hCAYAphBD = hCAMNY by phBD = eMN (by  hCA) (by phBP) = eMNpS b0 =
heP = Ay ap = 6§ = yap = hap. O

Discussion 2.2.8.2.

1. By transformation of basis vector, tensors g, h, x, y not only induce automorphisms of tangent space
or cotangent space, but also induce isomorphisms between tangent space and cotangent space. For example:

(1)By the coordinate transformation 2™ + zx = x5 (M), tensor g induces an automorphism of tangent
space:

0 0 0 0
M M A pM _—_ 2 —
idg : T =T, T psi = idg(T 6M) T gMN&'zN N@xN’

and induces an isomorphism between cotangent space and tangent space:

9 d d
T ST, T T L Ty—— = Tyg™» AN _—_
G — 1, de — G( Md:E ) MafL‘M 8xN 92N
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(2)Similarly, by the coordinate transformation ™ + x5 = x5 (M), tensor x induces an automorphism

of cotangent space:
idt T = T*, Tyda™ — idi(Tyrda™) £ (aMVTy)dey £ TN day,
and induces an isomorphism between tangent space and cotangent space:

X:T— T TMan X(TMaBM) L2 TMazy = TM ey ndaN 2 Tyda™

2. Moreover, the isomorphism between tangent space and cotangent space induces an isomorphism be-

tween 2-order covariant tensor space T £ {TMNdxM ® daxN |Tarv € R} and 2-order contravariant tensor

space I £ {IMNan ® MLNHMN € R}:

d 0 ) 9
G:I-T, IMN%M © 5 G(IMNa 7 © gow —) 2 gupgnoIMNda" @ dz® £ Ipgda” © da®

o 9 0 0
1. M N ~1 M Ny & MP_NQ PQ_Y o Y
G T oI, Tyyde™ @de® s G (Tuwda™ @ da™) £ gMPgNOTyy o p @ 55 £ TP S5 @ o .

3. Taken together, the above discussion can be expressed as a chart:

MN_d o G M N

|idy idz

IuN 72— ® IMNdxM®de

6I1\7 G

Discussion 2.2.8.3.

1. Tensors k, 1, v, w also induce an automorphism of tangent space or cotangent space, but the way has
some different from tensors g, h, x, y. It is because there are some differences between the reversible relation
of tensor coefficient square matrix in Proposition 2.2.8.1 and the one in Proposition 2.2.8.2 . For example:

(1) et coordinate ks be defined by dkar 2 kynda™. Due to (52 dky ) = 3, then 52 = vMN 500
Further, v™Ndky; = dz and kMN% = MLN are obtained.

M s kn 2 kn(zM), tensor v induces an automorphism of cotangent

By coordinate transformation x
space:

id T = T*, Tyda™ — ids(Tydz™) 2 TyoMN dky,

and tensor k induces an automorphism of tangent space:

0 0 0
id T — T, TM —— id,(TM —) £ TMk
B gt 1T ) S T kv
(2) Let coordinate vy, be defined by dvas = varndxY. Due to < va> = 61\N4, then ﬁ £ ]{;MNMLN.

Further, kMY dvy = dz™ and vy &?M 851\, are obtained.

M s vy 2 vn (M), tensor k induces an automorphism of cotangent

By coordinate transformation x
space:

idy, : T* — T*, Tayrda™ s idj (Tarda™) & To kN doy,
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and tensor v induces an automorphism of tangent space:

0 | A M 0
3$M) =T UMN@’UN.

0
idy : T > T, TV v idy(TY

2. Tensors k, 1, v, w induce an isomorphism between tangent space and cotangent space. For example,
tensor k induces an isomorphism K : T* = T, Tydx™ — K(TMd:EM) £ TM% = T]wkM]VamiN7 etc. Thus

the isomorphisms between 2-order covariant tensor space T and 2-order contravariant tensor space I can be

induced:
K:IT, v_9 9 gmv 9 O ) o [MNgp & dky 2 knrphinol MV da? @ da?
=1 axiM@)axiN*—) ( ([31‘7M®51‘7N)_ M Q@ AkN = KM PRENQ T Qadx~,
K1'.T—>1I Tynd™edzV — K’l(TMNdxM®de) £ TMNi(@i £ 'UMPUNQTM]\;i®i
' ’ OkM 8]6‘]\[ aIL‘P 8$Q7

V:I—T, IMNaxiM ® &EiN — V(IMNaxiM ® axiN) L TMNqyy @ doy évMvaQ[MNd:EP®sz,

0 1o} 0
vl.T > 1, TMNCZZM ®d:cN — Vﬁl(T]yde(ﬂjw ®dl‘N) £ Tun &K — £ kMPkNQTMNi R ——=.
Ovy  Oun ozF = 0z@
3. Tensors g and x satisfy gyny = zyn and gMN = MV 50 the coordinate gy defined by dgas £

gundzY and the coordinate xy; defined by dxys 2 xpndxz” are the same (only have a difference of an
irrelevant integration constant). dgys and dx s can be denoted by dz s uniformly. And also because of this,
the four isomorphisms X, X!, G, G~! between covariant tensor space and contravariant tensor space in
Discussion 2.2.8.2 simply merged into two, namely G and G~!.

However, tensors k and v do not have that relation as g and x. So kj; and vy; are essentially different
coordinates. The four isomorphisms K !, K and V!, V are unable to simply merged into two. According
to Proposition 2.2.8.2 , tensors 1 and w have the similar case with tensors k and v, so they will not be
described repeatly.

Discussion 2.2.8.4. In a word, tensors g, h, x, y have better properties than tensors k, 1, v, w. Therefore,
the following sections will only adopt coordinates ™, €4, x,/, €4 to research the properties of reference-

system, rather than v?, va, k4, ka, IM, Ly, wM, wyy, ete.
2.2.9 Connections of reference-system

The essence of connection is to establish differentiation of vector on manifold. In this paper the definition
of the well-known concept of affine connection is expressed as following form.

Definition 2.2.9.1. A connection D on tangent bundle or cotangent bundle is called an affine connec-
tion. Let I’ 11\‘,/[13 £ "M b are smooth real functions on manifold M. Vp € M, dz™ and 8%1” are natual basis
vector fields in coordinate frame (U, z™) of local reference-system f(p). Consider the restriction of smooth

real functions I'¥, on U, affine connection can be expressed as:

0 9
oxN oxM (2)
DdzN & -l dz? ® da™

D 2 pModz” @
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where 'Y, are called affine connection coefficients of D about coordinate form dz™.
Discussion 2.2.9.1. In order to enable affine connection to describe intrinsic geometry, I'np need to
be defined as the one depending on the slack-tight B3, or CA! of reference-system on manifold, such as

Levi-Civita connection

v s lomg (0GNg | 9Gpg  9Gnp
NP9 OxP oxN 029 )’

or other forms.

According to Discussion 2.2.2.3 | when describing intrinsic geometry, any connection form selected is
effective, as long as it depends on the slack-tight of the same reference-system on manifold. Considered that
in a large quantity of experiment data, the simpler the characteristics, the easier they are to detect. So
the simpler the connection form, the easier the theoretical form fits in with those characteristics and laws
observed and induced from a large quantity of experiment data.

Levi-Civita connection is the unique torsion-free and metric-compatible connection. However it is regretful
that it does not fit in with describing gauge potential in the way of section 6.4.3 and section 7.3.1 , on one
hand it is because the description of intrinsic geometry by metric is not comprehensive enough, on the other
hand Levi-Civita connection is not simple enough. Fortunately, the significant simplest affine connection that
fits in with describing gauge potential does exist.

For Levi-Civita connection, the torsion-free condition is very helpful to simplify the theoretical form,
but the metric-compatible condition restricts the further simplification of connection form. Considered that
the metric-compatible condition DG = 0 was introduced to establish the intuition of Levi-Civita parallel
displacement, but it is not the condition that more general concept of parallel displacement must rely on.
Therefore, in order to simplify connection further, it can be imagined that the torsion-free condition remains
and the metric-compatible condition is given up. A nice choice is to adopt the following definition.

Definition 2.2.9.2. Let there be an affine connection D, which is expressed as equation (2) on perfor-

mance coordinate frame (U, ™). If the connection coefficients are defined as

OB aB£> 3)

Ty = %C% <8xP +(9567N
D is called a simple connection.
Discussion 2.2.9.2. Now it is needed to prove the simple connection is really a connection.
Let there be a reference-system f on manifold M. And let there be a local reference-system ¢,, which
induces a coordinate transformation yf* = yf(2™) and a reference-system transformation Fy,, and Fy,
transforms reference-system f(p) whose coordinate representation is oM = M (5‘4) to reference-system
A

h(p) £ f(p) ot, whose coordinate representation is y® = yf(¢4). (U, &%) is the common basis coordinate

frame of f(p) and h(p). They can be expressed as a chart:

(et 22 ()

f(p) l Sty
(U, zM)
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Let the slack-tights of ¢, be

N oyt v oo Oz
M gpM° B gyR-

Let the slack-tights of f be B]ﬁ[ and C}L. For the restriction of them on U, the slack-tights after doing the

transformation are
1A M pA 1R R ~M
B :eRB]\,{7 C :)\MCA

According to Definition 2.2.9.2 | the simple connections before and after doing the transformation are re-
spectively

A A
0By 0Bp
oxf  OxN

OB'% N aB';i)
oyT oy "

1
i 2 Lo ) e ok

Calculate the local transformation relation of the simple connection:

s lon <aB/A 8B'$> _Lyrow (5(91531%) N 8(953?)>

2 oyT + oys oyT oyS
U g s (00N B4 NyOB&y 00L .,  ,0BA
== iAMCA (aT HS ayT +873P +9T873
Lop o (onOBR | pOBp 208 oor 4
QAMCA (9 G N+ oF T 58 + )\ oM DT N+8y 2
OB% 0B 1 o0y 0%
- ey (egve?ﬁa x +959§Vax§> oy (91;8 f,B;@Jrngang}é)
1 OBy  0B# ol o0
ZQAﬁc%(awngaz )e o7 + (AﬁaseT ’;anes>
r 08Y

= AR PML0N 08 4 \E 5
NnpYsUr MG, T
This is completely consistent with the general tansformation relation of affine connection. So it has been

A A
proved that the simple connection ', = %C M (ng + gf}i ) is really a connection, and obviously it is

torsion-free.
Remark 2.2.9.1. There are two obvious properties about simple connection.

(1) If defining Tnynp 2 Garar T, then

1 OB  0Bs
I'vinp = 55,43351 ( )

oxP  OxN

Now it is easy to validate that

oG oG oG
I'vinp+I'npym+ITpun = 2( MN NE PM)-

oxr OxM oxN

(2) Tt is obvious that when Gy are all constants, Levi-Civita connection must be zero, and the cor-
responding Riemannian curvature tensor also must be zero. However, in this case, simple connection is not
necessary to be zero, and the corresponding Riemannian curvature tensor is also not necessary to be zero.
This indicates that simple connection reflects much more bending properties of manifold than Levi-Civita

connection.
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2.3 Time metric and space metric

2.3.1 Definition of time metric

Definition 2.3.1.1. On a neighborhood U of point p on geometric manifold (M, f), as Definition 2.2.8.4
says, the two coordinate frames (U, £4) and (U, 2™) of reference-system f(p) inherit Euclidean metric tensors
g £ 64pdéA @ dEP and h £ ey ndx™ @ da™ respectively. Then there are two metrics defined as

(d€%)? £ 0apds™de” = gy da™ dz™
(4)
(dz°)? & epnda™da™N = hapdetdes
on U. The d¢° and dz® are respectively called the total space metrics of coordinate frames (U, £¢4) and
(U, zM), or called the time metrics on local coordinate frame.

On geometric manifold (M, f) there are metric tensors constructed in Definition 2.2.8.4 as

G 2 Aupde? @ deP = Gyndas™ @ daN Gun = AapBi,BE

H2 Eynde™ @ de™ = Hapded ©@de® | Hap = EyyCMCN
The d¢° and da® defined according to differential forms

(d60)2 £ AABdede = GMNddexN
(5)

(dz)? 2 Epynde™daN = Hypde?de?
are respectively called the total space metrics about coordinate forms dé4 and dz™ on M, or called the

time metrics on M.
2.3.2 Definition of space metric

Definition 2.3.2.1. Let 1 < ¢ < ©. On D-dimensional geometric manifold (M, f), each ¢g-dimensional
Euclidean subspace metric that inherits from coordinate frames (U, £4) and (U, z*) is called a space metric
of coordinate frames (U, ¢4) and (U, ).

Remark 2.3.2.1. The various space metrics on coordinate frames (U, £4) and (U, 2™) can be uniformly

expressed as

(gt a)z & % 7 (dg®)?

a=A1,Az, - Ag

(dzlMidle M2 &0 KT (dam)?
m=M;,Ma, - M

or as

dgiAz A £ 4 > (dee)?

a=A1,Az,  Ag

Y B Sue:
m:Ml,]\/fz,“- ,Mq
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where 1 < ¢ < D. Specially, the metrics on 1-dimensional manifold are dé() £ +dé4 and dz™) & fdz™.
It can be seen in section 2.3.2.2 that the metric form is closely related to the evolution of reference-
system. Usually the definition of metric adopts only positive sign, but here both positive and negative signs
still remain, because the signs actually mark the two opposite directions of evolution, and they will bring
convenience for expression.

Definition 2.3.2.2. Let P and N be closed submanifolds of manifold M = P x N. Denote r = dim P.
Let s,i=1,---,7and a,m =r+1,---,D. Select some proper coordinate frames {¢4} and {z™} such that
on P there are coordinate frames {£°} and {z'} inherited from M, and on N there are coordinate frames
{¢*} and {2™} inherited from M. Correspondingly, two subspace metrics can be defined on the coordinate

neighborhoods on P and N respectively:

T D
(AP 237 (de") = dgdgidst | (dEMD)P 2 Y (dg™)? = Bupdgde”
s=1 a=r+1
A g ) ) j , o .
(da'P))? & Z (da')? = eyyda’da’ (dzN))% & Z (dz™)? = eppdr™dz™
i=1 m=r+1

déN) and dz™™) are called the propertime metrics about coordinate frames {¢%} and {2™} on N. For
convenience, NV is called an internal space submanifold and P is called an external space submanifold.

Remark 2.3.2.2. As differential forms, time metric and space metric are universal geometric properties
on geometric manifold. According to the principle of universal relativity in section 2.2.5.2 , they necessarily
can be used to cognize some universal physical properties of physical reality, which can be understood as the
ontological time interval and space interval.

According to the viewpoint of section 5.2.1 , the evolution of light in vacuum can be understood as an
evolution totally pointing to external space of geometric manifold. The value of the internal space metric
is identically zero on this direction of evolution, and the external space metric is identically equal to the
time metric. Thus, Einstein’s principle of constancy of light velocity is implied in it automatically. In this
section, time metric and space metric have strict definitions, based on which, total space metric is actually
time metric, so it can be considered that the origins and essences of time and space are the same. The light
velocity ¢ in vacuum is only a superficial constant, which becomes explicit just when time metric and space
metric are endowed with different dimensions such as second and meter. The selection of the dimensions

cannot divide the connotation of concept.

2.4 Evolution direction and actual evolution

2.4.1 Definition of evolution

Definition 2.4.1.1. Let there be two reference-systems f and ¢ on manifold M. If f and g motioning

relatively and interacting mutually, namely Vp € M such that

Yo (U) L2 o () L2 py (0),
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it is called that there is an evolution of reference-system f in referece-system g, or there is an evolution
of reference-system f on geometric manifold (M, g), or f evolves on (M, g), or f evolves in g, for short.
Meanwhile, it also can be say that g evolves in f, or g evolves on (M, f).

Definition 2.4.1.2. On manifold M, each smooth tangent vector field X determines a one-parameter
group of diffeomorphisms px : M X R — M. px is called a set of evolution paths on M, and X is called
an evolution direction field on M.

Let T C R be an interval. If a smooth mapping L, : T — M constitutes a regular submanifold of M,
there exists a smooth tangent vector field X such that L, is on the orbit ¢x ,(¢) of px through point p.
Now the mapping L, is called an evolution path through p on M. The image set L, = L,(T) is called a
world line through p. The tangent vector % £ [L,] is called an evolution direction at p, or direction
for short.

If it does not need to emphasize the point p, L, can be denoted by L simply.
2.4.2 Coordinate form of evolution

Discussion 2.4.2.1. Denote x £ oy (p), € = Yy (p), ¢ = pu(p). Let the time metrics on coordinate
frames (U, pv), (U,v%r), (U, pr) be respectively dz®, d¢®, d¢°.

The coordinate representations of reference-system f(p) £ @51 oty and f~1(p) £ 77/;51 oy are
A _ A A
¢h=¢t@M), oM =apiEh),
and the coordinate representations of reference-system g(p) £ ;' o prr and g~ (p) £ p;;* 0 ¢y are

¢t=¢tEM), M =a(Y).

If no confusion, xﬁ/f and xé” are uniformly denoted by ™. Thus the coordinate representation of reference-

systems f(p) and f~1(p) are

and the coordinate representation of reference-systems g(p) and g=!(p) are
CA — CA(Z‘M), J?M — J?]VI(CA).

Definition 2.4.2.1. Consider reference-system f. Each world line L,, is a 1-dimensional regular subman-
ifold of M, therefore on the open set U, £ UNL, of p there exist coordinate frames (Ur, ¢y 1) and (Ur, Yur)
such that the regular embedding

m:L, = M,qg—q (6)

induce coordinate mappings

Yy omoy i R = R® (£0) s (€4),64 = ¢4(¢9)

<p51L omoyy:R— R, (xo) — (J:M),mM = xM(xO)
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which satisfy
> (%) -
A=1 de®
()
=\ da®
then the coordinates (¢€4) and (¢°) are called equivalent on Uy. The equations
¢t =)

SUM _ CU]W(LL'O)

describing the above coordinate mappings are called the original parameter equation of world line L.
Definition 2.4.2.2. By the action of the regular embedding 7, the reference-systems on the neighborhood
U of manifold M

E2 f(p) =g oy, z2 fHp) =¥y' oy € REF,(U)

induce reference-systems on the neighborhood U;, of 1-dimensional regular submanifold L,

L fr(p) £ oprovur, ¥ 2 fl(p) £ vpL o vuL € REF,(UL).

Vq € Uy, if no confusion, denote £° = ¢y (q), 2° 2 oy (q), then the coordinate representations of reference-

systems on Uy, are

¢ =¢"(")
2 = 20(”)

Using this representation, the original parameter equations become
¢ =40 = (e (") 2 €12

M = aM(2%) = 2M(2°(£0)) £ 221 (£°)

The equations

¢ =0

a™ = 27! (")
are called the standard parameter equation of world line L.

Definition 2.4.2.3. Put the above reference-systems and parameter equations together, it will be
=@M = @) 2N =aM(Eh) =27/ (")

, (8)

& = ¢ ¥ = 2%(€%)

and is called the coordinate form of evolution of f and f~! in arbitrary direction %, or called coor-
dinate evolution equation. If no confusion, {4 and §‘L4 as well as 2™ and xﬁ/f are not to be distinguished,

and are directly denoted by
¢h=eMM) =M@ [aM =aM(g) = 2M(€")

£ =) 10 = 2%(¢°)
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Remark 2.4.2.1. Considered generally, for any evolution path L, € % defined on M and through p, if
regular embedding 7 induces a mapping 7 : h — hp, or 7 : h, — h between universal geometric properties on
M and on its regular submanifold L,, denoted by h >~ hp, then h ~ hy, is called the h form of evolution

d d

in arbitrary direction J; at p, or called the h evolution equation in arbitrary direction ;.

2.4.3 Basis vector form of evolution

Discussion 2.4.3.1. Let L be an evolution path on manifold M, Vp € L. Suppose T,(M) and T,(L) are
the tangent spaces at p respectively on M and L, and T, (M) and T;(L) are the cotangent spaces.
Vp € L, the regular embedding 7 : L — M, g — ¢ induces tangent mapping

Tulp : Tp(L) = Tp(M), [vL] = [y o7 (10)

p

and cotangent mapping

7|, T (M) = T3(L), df = d(mo f). (11)

Restricting on evolution path L, the tangent mapping is an injection, and the cotangent mapping is a
surjection.

(1) For tangent mapping, the reference-system is essentially a nonsingular coordinate transformation, the
Jacobian determinant of which is non-zero, so the tangent mapping .|, is an injection [9].

(2) For cotangent mapping, Ywodz® € T(L), Jwydz™ € Tr(M), = |p(warda™) = woda®. In fact,

when wy; = wy 067 da? we have
5p M JEA
oxM dg I ’

daM
. dx®

o6
OxM deA

A 7.0
™, (dz™) = wy ¢ dx

—_— dz® = woda®.
. OxM geA 0

L

* My _
7|, (wpdz™) = wo

So 7*|, is a surjection.
In addition, generally, the tangent mapping is not a surjection, and the cotangent mapping is not an

injection. The former is true obviously. For the latter, let wyda™, vprda™ € T (M) satisfy ™|, (wprda™) =

| » (vardz™) on L, namely wyy ‘igol dz® = vy Cil‘;f dx®. The dz? is the basic vector of contangent space
T (L), so the coefficients satisfy was % =Up % . This holds only on the specific evolution path L,
L L

however it does not hold generally on any other evolution paths. So wp;s — vy = 0 does not hold generally,
and then 7*| is not an injection.
Definition 2.4.3.1. V- € T,(L), Vdf € T;(M), denote
d d A s 5
Pl it €T,(M), dfy =", (df) € T;(L). (12)

% and % are called being equivalent. df and df;, are called being homomorphic. They are denoted by

d _ d
i df ~ dfy, (13)

called an equivalence and a homomorphism respectively.

The above locally defined concepts can also be applied to the entire manifold.
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Suppose I'(T'(M)) and I'(T(L)) are sets of all sections of tangent bundle respectively on M and on L.
I(T*(M)) and I'(T*
be vector fields ﬁ € I'(T(L)), df € I(T*(M)), & € I(T(M)), df, € I'(T*(L)).

Ifvpe L

(L)) are sets of all sections of cotangent bundle respectively on M and on L. Let there

i’zi
Y odtlp T dt ’
p Ly

say % and ﬁ are equivalent on L, which is denoted by

d d
~ 14
dt — dty’ (14)

called an equivalence. Thus, the tangent mapping .| patp induces a tangent mapping

d d

« I(T(L rrm), —— — 15
m: I(T(L) > TTOD), 2= & (15)
on the entire path L.
If Vp € L, df|p, ~ dfi|p, say df and df; are homomorphic on L, which is denoted by
df ~ dfr, (16)
called a homomorphism. Thus, the cotangent mapping 7r*|p at p induces a cotangent mapping
" D(T*(M)) —» I'(T*(L)), df — dfr, (17)
on the entire path L.
Remark 2.4.3.1. If = W and df ~ dfr, it is easy to know that <dt,df> = <£,df,;>, denoted by
daf _ dfn
dt = dtg,
In fact, at any point, the tangent vectors E and 47— are respectively defined as equivalence classes [7]

and [yr] of parameter curves, which satisfy
=YL OoT.
The cotengent vectors df and dfy are respectively defined as equivalence classes [f] and [f1] of smooth

functions, which satisfy

fo=mof.

(500) = (gdi) & GLID = (el ) o D20 - L2 8)

Thus,

where
yof=(yomof, vLofL=vL0o(mof).
Obviously, v o f =L o fr, which guarantees <%7df> = <£,de> is true.
Definition 2.4.3.2. The tangent mapping on tangent space induces a tangent mapping on 2-order tensor

product space

e D(T3 (M) @ Ty(L)) — T(TF (M) @ Tp(M)), df & % - df ® %.

p

tensor products df ® dt and df ® W are called being equivalent, denoted by df ® dt = df ® g called an

equivalence.
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The cotangent mapping on cotangent space also induces a cotangent mapping on 2-order tensor product
space
d

w (T (M) 9 T,(00) - DT @ T,(M), o 5 - di e 5,

tensor products df ® % and dfy, ® % are called being homomorphic, denoted by df ® % ~ df;, ® % called
a homomorphism.

Remark 2.4.3.2. This kind of concepts of being equivalent or homomorphic can be transplanted
without hindrance to any-order tensor product space generated by tangent bundle and cotangent bundle.
Therefore, in the following sections, definitions of similar concepts about equivalent or homomorphic tensor
products will not be given one by one any more.

Definition 2.4.3.3. Suppose the coordinate forms of evolution of local reference-systems f(p) and f~*(p)

in direction % on evolution path L are respectively

=@M =60 [T =M (e =2 ()
€0 = ¢0(2) ’ 20 = 20(¢°) '
Vp € L, on coordinate neighborhood Uy, of point p, define
s B0 o A dat g da
DS B o S g 0% g
dz™M deA
Eé\/j =S dxO = bgCéVI = béc%a 664 =S TEO = 08b64 = Cé\/fbj]éf'
They determine smooth functions on the entire evolution path L:
By : L =R, pr By (p) £ (by)i (p) By :L =R, p Bi(p) = (byp)o(p)

Gyl iL—=R, p=>Cy'(p) 2 (cs)d' (1) | Co:L =R, prr Cop) £ (cs))o(P)
For convenience, if no confusion, still using notations € and §, there are smooth functions:
eo! £ BYCy! = BCY o3 £ 9B = CY' By

Define
s d2° 2 ¢
deo ~ da®

déy and dz( determine two new coordinate frames (Uy,&y) and (Ur,xo) in the degree of only an intergra-

déo dz°, dzo de’.

tion constant difference. d§y and dxy become new natual basis vectors induced on cotangent space by new
coordinate frames. Let the natual basis vectors induced on tangent space by new coordinate frames be %

and %, satisfying <di£o’ d£0> =69 =1and <ﬁ, dx0> = &9 = 1. These basis vectors are all independent of

integration constant.

On Uy, define
o & A pon d0 o s dTM o p dT0
A d.TO ) 0 d$0 ) M ng ) 0 dfO )
d _ _ o o dE . _
2,2 I ot — B, 8% & YA g — o p.
dl‘o ng
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They determine smooth functions on the entire evolution path L:
By :L—=R, pr Bi(p) = (bs)A(p) Bi:L—=R, p Bi(p) = (bsp))o(p)
CRr: L =R, prr Chy(p) = ()3 () 58 L= R, pe CY() 2 (e0)S(0)
For convenience, if no confusion, still using notations & and §, there are smooth functions:
2,8 B — BYCA 502 OB — OO, BN
Remark 2.4.3.3. On Up, the following equations hold:

o v _ doarda™d0d” sy oq  d€ad€t da®da’
ME0 ™ dry dxd  dgodgd T T TATO

T dgy dE0 T da¥dad

Proposition 2.4.3.1. (Evolution lemma). Let there be an evolution path L on manifold M. Yw™ WOM, Wy an S

D(T(M)), Vuzls, wogk= € [(T(L)), Ywyda™, ©Mdxy € I(T*(M)), and Vwodz®, @0dzo € I'(T*(L)),

dl.o 9

the following conclusions hold:

0 d _ 0

M 9 o od M 0_M - ~ -
— 2w — S w" =we Wr = Wo—— & Wy = Woé
O0xM dz0 0 , O dxg M

wrdr™ ~ woda® < 5é‘4wM = wy wMdxy ~ 0dzy < 5])\4@]‘/[ ="

Proof. The following locally discussion can also be applied on the entire manifold.
1. Consider the case that basis vectors are do™ and %.

For tangent vector,

d dz™ 9 N dz™ o _ d M o . d o w0eM o w
T == = —F _—— w — =
dz0 OzM dz0 0zM — dz0 O 9xM ~ dx0 0

dz0 -
Because the tangent mapping is an injection, then

M 0 o d M _ ,0_M
w (%cM_wdocO@w =w'ey .

For cotangent vector, de™ ~ séwdxo = wyrde™ ~ sé\/[dexO, then wyrdz™ ~ wodz® < sg/IwM = wy.

2. Consider the case that basis vectors are dx s and an

For tangent vector,

d deé) dxME)Nd@_Oé‘Ndé__oaw_d
| =) = Y —— oy =2 — S Wy Zwo—.
d.’l?o d.’l?o 8IM dl‘o al’M dl‘o M(’?xM dl‘o 0 Ma(I}M Odl’o
Because the tangent mapping is an injection, then
= = G- e @ D&Y
Wy ZWog—— & Wy =W .
MaxM Odm0 M 0 M

For cotangent vector, dxp; ~ s‘onxo = oMdxy ~ EOMde:EO, then @Mdxy; ~ @wVdzy < s_oMu_)M = .

O
Proposition 2.4.3.2. On the evolution path L, the following equations hold:

M A M M A0 A M pA ApR0 A0 S0 AA 0 A0 B0 _ 50 B0 _ =0 BM
Cy" =60Cq =¢q Cy, By =eq By =064 By, Chy=0,Cy =EyCh, By=063By=&yBy .
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Proof. The differential rule of real function of several variables guarantees these equations are obviously
true on any neighborhood. This local conclusion can be applied on the entire evolution path L. [J

Definition 2.4.3.4. The conclusions of Proposition 2.4.3.2 are called basis vector evolution equa-
tions of reference-system f on arbitrary evolution path of geometric manifold (M, f). Due to the expression
form of slack-tight, they are also called slack-tight evolution equations of f.

Discussion 2.4.3.2. According to the evolution lemma of Proposition 2.4.3.1 and the slack-tight evolu-
tion equations of Proposition 2.4.3.2 , on arbitrary evolution path of geometric manifold (M, f), the following

conclusions hold:

) d d 0 0 0 d d -

M ~ 0 _ 0_M 0 ~ A0 00
Cy o0 :Co—dxo = Je e oM =l 7 CM(%:M = Cp 0 dzo dg &0 = 005M7
deé? = Byyda™ ~ Blda® < ' By, = By dés = BYdxy ~ BYdr < 8,BY = BY

) d d o =0 d
A ~ RO _ 0 0
Oag—A:BO@_dO@BO_B060 BA8§ gy dw()(:)BA_BO(SA

M — e de? ~ cMag® < 5ol = o)t day = Cihdes ~ C%,dey = 64C1 = CY,
So there is a definition as following.

Definition 2.4.3.5. The conclusions

de? = By da™ ~ Bglda® dzM = oM dg? ~ cMde®
d o d d A0 o od d
g = o~ g | B gen = oG =

are called the basis vector form of evolution of reference-system f on arbitrary evolution path of geometric

manifold (M, f). They can also be equivalently expressed as

de = B d.TM >~ BAd.Z‘O dJ?M = C_’jj\ejdgA ~ CYR/[dfo
_ 0 —q d d _ 0 _d d
Y 00— =—" |BY—=B)— = ——
M O Ydzo  déo 4064 0d&y — dxo

2.4.4 Metric form of evolution

Definition 2.4.4.1. On neighborhood Uy, define

dxg da® d&o d¢°
s 20 b 00a > _ 0.0 h A 250 0.0 hOO A0S bObO.
Jgoo a0 0 07 g o CoCo» 00 4o CCo» s 000

They determine the following smooth functions on evolution path L in the way of Definition 2.2.8.4 :
Goo £ BBy, G £CyCy, Ho £ CiCH, H™ £ BYBY.

Proposition 2.4.4.1. On evolution path L, the following equations hold:

4 _god 4 o d
dl‘o - dJ?O’ dfo dEO

d

o =X # about basis d%ov and tangent vector

Proof. At any point, tangent vector 47— is expanded as 77—

f is expanded as % = Yd—50 about ba51s dTO'

d d 1 d d
deg ) =16 ( X——,gooda’ ) =1 Xgoo =1 X=— = — =g%—
<d 7 l‘o> < 07900 30> Joo 900 g’ =>de 9 50
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d d 1 d d
_ =1 - 0 -1 =1 _ — 1,00 00 )
<d§0’d§°> (:><Yd60,hood£>_ & Yhoy = @Y_—hoo h :>—d£0_h pr]

This local conclusion can be applied on the entire evolution path, so % = G4 and % =H 00% hold
on L.

Proposition 2.4.4.2. On evolution path L, the following equations hold:
Hoo = Hapd'ss, Goo = Guned'e
Proof. On a coordinate neighborhood Uy, of any point on L,

daM daN _ dz® dxd _
A a0 = dgh a0 =™
deA deP de® de® '
A0 dg®  da0 dgo I

A B M N cAcB
hA360 60 :EMNCA 0360 60 = E&EMN
M _N A1 B_M_N
gMNEy €p :5ABbeN50 €o :5AB

So Hyg = HAB(SS‘(S(’,B and Ggg = GMNEéV[E(Z)V hold on the entire evolution path L. [J
Discussion 2.4.4.1. Due to Proposition 2.4.4.2 , Gynedell = Goo. And denote Gon e Gunedt,

Guo 2 GMNeév. According to Definition 2.4.3.2 , on evolution path L, tensor G = Gyndr™ @ dz™ has the

following homomorphisms of tensor products:
Gundaz™ @ da™ ~ Gondz® @ dz ~ Gproda™ @ da® ~ Gooda® @ da®.
Similarly, on L there exist the following homomorphisms of tensor products:
GMN gy @ dey ~ GNdry @ dey ~ GMOdxy @ deg ~ Gdxy @ dxo,
Hapd§" ® d§¥ o~ Hopdg® @ d€” ~ Haods” @ d€§® ~ Hopdg" ® de’,
HABd¢, @ dég ~ H'Bdgy ® dég ~ HAYdE 4 @ dég ~ HdEy ® dé.

Discussion 2.4.4.2. In a word, the homomorphisms of covariant metric tensors alway exist. However,

generally, the below equivalences of contravariant tensors do not exist:

0 0 0 d d 0 d d
XMNi gXMO v %XONi gXooi .
oxM © oxN oxM ® dz0 dz® =~ OzN dz0 = dzx0

It is because on a neighborhood of any point on L, when ® > 1, 2% cannot be expressed as the form like

yedlely. Otherwise, let MY = yellel¥| then:

dzMdzprda™N dey .
dx9dz0 = ygoodzyrda™ = y = — = ¢
goo

drpyrda™ = 2MNdeydey = (yséweév)ddexN =y

)

)
D =aMVeyn = (e el Vgun = y(gnned ed) = ygoo = vy = Pl Dg%,

which contradict with each other. In the same way, the following equivalences of tensors do not exist:

0 0 d 0 0 d d d
XMN%®%:XONT%®%:XMOM(®TM:XOOCTT()@TIO,
pan 0 0 a0 A e d D i d

. _ . U~ o 7 ~vyv00_ T 7
06 Y oeB = 9ea® g T g @B = g0 @ geo
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0 0 d 0 0 d d d
2Yop— R — 2 Yp0— R — =2 Yy — K —.
96, C0es - 0Pag Y oes - 06, T gy dg © g

Remark 2.4.4.1. It has been seen that although metric tensors G and X have relations Gy = Xyn

Yap+—

GMN = XMN and metric tensors H and Y have relations Hap = Yap and HAB = YAB

and , if considering
the evolution induced by the regular embedding of evolution path, tensors G and H have better properties
than tensors X and Y. Therefore, the evolutions of only G and H, instead of X and Y, will be used in the
following sections.

Definition 2.4.4.2. The homomorphisms
GundzM @ dzV ~ Gondz® @ da ~ G poda™ @ da’ ~ Goodz® @ dz°

Hapdé? @ deP ~ Hypde® @ deP ~ Hppde* @ de® ~ Hyode® @ de°

are called the metric form of evolution of reference-system f on arbitrary evolution path of geometric

manifold (M, f).

2.4.5 Definition of actual evolution

Definition 2.4.5.1. Let V™ be the set of all sections of n-order tensor bundle generated by tangent

bundle T'(M) and cotangent bundle T*(M). VT £ t:{a‘z.

® dx*} € V", the absolute differential of T is

DT 2 Dt ® {— ® da*} 2 15, odw 1.

On evolution path L, t;,8 2 7 ot? is a smooth real function induced by regular embedding 7. Define

Ty, —tL.{ ®dl"}
de
treo = t:-PWa

DLTLfDLtL,@J{ - ®da*} £ tp2,da’ ®{—®dm‘}

Define operators

g 0
axpaxp’DT> P G

d d d 0
VLV"%F(T(L»@V"’ TL'_)VLTLé<dOd DLTL>_tLOOd {a .®d$}

0

® { ® dx®},

V:Vr— vt T»—>VTé<
3x‘

(18)

They are uniformly called the (absolute) gradient operators about connection D on manifold M. VT
and VT are uniformly called the (absolute) gradient of tensor T', where

d
Vitre £t

Vs £ ¢2 —
i0 dzo

oPa

are uniformly called the (absolute) gradient direction of components of tensor T.
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Specially, for a smooth function as a zero-order tensor on M, the definition of gradient operator degen-

erates into

. s/ 0 0 NaOf 0 _0f 0
VC (M)*)F(T(M)), vaf<8mP(9xp’df>6xp0xP5xP8mp’
4 d o N\Nod d _dfy d

dx© dxorde> -

: C(L I(T(L £ L _ YL
Vp:C™(L) = I(T(L)), foeVifr < oo d20 — 420 dzg’

where V f and V| fr are uniformly called the gradient direction of smooth function f.
Remark 2.4.5.1. The gradient operator is a universal geometric property on geometric manifold.

Remark 2.4.5.2. According to evolution lemma, the homomorphism of cotangent vector field
Dtg £ 13 pda” ~t12da® £ Dptr?
holds. Further more, the homomorphism of tensor product
DT £ Dt; @ { 0 ®@dx®} ~ Dptre®{ 0 ®dr*} £ D, T
= —_— X ~ —_— X =
7 oz LiLe & e Lok

holds. Specially, for the smooth function as a zero-order tensor, the homomorphism df ~ df;, holds.
It is especially significant that the following propositions hold.

Proposition 2.4.5.1. VT € V", T £ t:{ai, ® dx*}. Let L be an evolution path on any orbit of the

one-parameter group of diffeomorphisms determined by smooth gradient field ¢3.,, Bsz on manifold. The

following equivalence of tensor products holds on L necessarily:

vrae 2 ® { 0 ®da®} £V, Ty,

M Oz ox®

denoted by V =V, where t;$ = mot2.

. ~ L] d a
® dz } = tL.;OE ® {8$'

Proof. Because the tangent mapping is an injection, tangent vector field £3.,, 89?M € I'(T(M)) uniquely

corresponds to a tangent vector field X% € I'(T(L)) such that

0 d
s Ox pr = Xdi»ﬁf
According to the evolution lemma,
tos =X % L da™ ~ % deo.
So there is a homomorphism
t:;Md:vM ~ X % . CZCT];[ deo.

According to Definition 2.4.2.1 , the coordinate mapping induced by the regular embedding satisfies

(dg0)? = Ail (d¢)?, further more, which is dzodz® = dxyrdr™ on evolution path L. Substitute it into the

above homomorphism, then t:;deM ~ Xdz". Due to the evolution lemma, X = t:;M% =treo- U
Proposition 2.4.5.2. For any smooth real function f on manifold M, let L be an evolution path on

any orbit of the one-parameter group of diffeomorphisms determined by smooth gradient field ai@ an on

manifold. The following equivalence of tensor products holds on L necessarily:

A af 9 gdfiLi
T 9xM Qxyy — da dxg

vf £VLfL
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where fr, £ o f.

Proof. This is a special case of Proposition 2.4.5.1 ; so it holds obviously. [

Definition 2.4.5.2. (Actual evolution). The gradient operator is called the actual evolution on
manifold. A gradient direction is called an actual evolution direction. A gradient direction field is called
an actual evolution direction field. An evolution path on gradient line is called an actual evolution
path.

Proposition 2.4.5.3. (Actual evolution theorem).

(1) VT £ t2{52 ® da*} € V", equations te.ar = tre,oey, and toM = ¢899} hold on manifold M if and
only if their evolution direction field is the actual evolution direction field of ¢3.

(2) For any smooth real function f, equations 821111 = %djx and ai{v - = % dd”;t] hold on manifold M

if and only if their evolution direction field is the actual evolution direction field of f.
Proof. (1) is a direct corollary of the evolution lemma and Proposition 2.4.5.1 . (2) is a special case of
(1), and also is a direct corollary of the evolution lemma and Proposition 2.4.5.2 . O

Definition 2.4.5.3. (Actual evolution equation). Equation
::,M = tL:;OEOM or t:;M = tL:;OEéw
is called the actual evolution equation of ¢;. Equation

of  df deu of  df daM

0xM T dx0 dz, or Oxnr  dxg da®

is called the actual evolution equation of f.
Abstractly, in Proposition 2.4.5.1 , the equivalence of gradient operator V = V, induced by the regular
embedding is called the most general actual evolution equation.

Remark 2.4.5.3. The actual evolution direction field always satisfies

DT ~ DLTL
{ ) (19)
VT =V,.T,
or written as
t:;le‘Q ~ t:;odxo
o _ .. d . (20)

t:;Q% = t';odixo
Noticed that for any smooth tensor product U = “:Q{a%- ® dz*} ® dz?, system of 1-order nonhomo-
geneous linear equations t3., = ugq about {3 always has a solution, thus U can necessarily determine an
actual evolution direction field Vig satisfying

u:deQ ~ usydz®
. 0 o d . (21)
Ugy=—— X Ugyg—
Q@ dxg *0 dxo
Say that the actual evolution direction field u:Q% or U:oﬁ is determined by evolution form u:deQ
of tensor product U.
Remark 2.4.5.4. Now that the concepts about actual evolution have strict definitions, next it may be

discussed that what more we can say about actual evolution. In fact, for any universal geometric property
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defined in form of tensor product on geometric manifold, including smooth function as zero-order tensor, its
actual evolution may anyway be discussed.

In order to better connect with the traditional theory, only two important cases will be discussed about
their actual evolutions in this paper. The one is the actual evolution of potential field of reference-system
itself. The other is the case that the general charge of one reference-system evolves in another reference-

system.
2.4.6 Actual evolution of potential field of reference-system

Definition 2.4.6.1. Let there be an evolution of reference-system f in reference-system ¢, namely
(U, &%) <~ @) — (U,azM) =— 9(r) =% (U,¢4). In the same coordinate frame (U,z™), if not specified in the follow-
ing sections, the notations here will always be adopted.

(1) Colon :” is used to express the absolute derivative about connection AX, of f on geometric manifold
(M, f), and semicolon ”;” is used to express the absolute derivative about connection I'#4, of g on geometric

manifold (M, g), such as
uQ du® + 'LLHAQ

P = a P HP>
and
ou®
UQ;P oz P —l—’U,HFgP.

A connection is also called a potential field, or potential for short.

(2) The notation

oAN 8/1
K¥pg £ axp aNP+ANQA — AR p A,

is used to express the coefficients of Riemannian curvature of reference-system f, and the notation

or¥.,  orM
Q
Rypq = 2P aNP+FNQFHP I'ipTig

is used to express the coefficients of Riemannian curvature of reference-system g.

(3) The values of indices of internal space and external space in this section are according to Definition
6.1.1.1 .

Discussion 2.4.6.1. In order to describe the intrinsic geometry of gauge field, A%, can be either the
Levi-Civita connection or the simple connection in Definition 2.2.9.2 . For describing intrinsic geometry, the
effectivenesses of them are the same and the simple connection just reflects some more bending properties.

In order to connect the form of traditional gauge theory, here let AY, and I'¥, be simple connections.

Moreover, for reference-system f, the Riemannian curvature tensor satisfies
M _ aM M
Knpo = Ang:p — ANp:g
and its absolute divergence about index P is

M P M P M P M AHP
KNpq =ANg.p —ANrg —KbopeAn -
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_d_
dzo

According to Remark 2.4.5.3 , suppose is along the actual evolution direction determined by curvature

divergence form K %PQ:Pda?Q, that means

:P
K%PQ da@ ~ pMdx®

K]W P 0 ~ M d (22)

NPQ % = PNodTL,O
holds, where
,0%0 2 K]]\VIIPQ:PESQ' (23)
Now according to the evolution lemma in Proposition 2.4.3.1 ; we get the actual evolution equation
KJA\;[PQ:P = PAI\//[()“T%
Denote
j%@ £ P%oagp (24)
the actual evolution equation becomes
Ko = iNa- (25)
Due to the above discussion or according to the actual evolution theorem in Proposition 2.4.5.3 , the following
proposition is directly deduced.

Proposition 2.4.6.1. (General gauge field evolution theorem). The evolution equation K]J\\,/[PQ:P =
j]]\V,IQ holds on M if and only if its evolution direction field is the actual evolution direction field determined
by form K%PQ:deQ.

Definition 2.4.6.2. K%PQ:P = j%Q is called the general Yang-Mills field equation of reference-
system f.

Definition 2.4.6.3. Except p}),, there are pi/® = GOpM, prinvo £ GMM/pJ\N% and pun® 2 G%arno.
Each of them is called a general charge (density field), or charge for short. If no confusion, they are

denoted by pA or parn, or simply denoted by p for convenience.
2.4.7 Actual evolution of general charge of reference-system

Discussion 2.4.7.1. In order to better connect with the traditional theory, when discussing the acutal
evolution of general charge of f evolving on geometric manifold (M, g), without loss of generality, only the
case of charge tensor F £ py n0dz™ @ dz™¥ will be considered, and py;n° is denoted by pasn simply.

Definition 2.4.7.1. On manifold M, suppose reference-system f evolves in reference-system g, namely
(U.¢%) L2 (U,a) 22 @, ¢A).

On geometric manifold (M, g), the absolute differential of tensor F© is defined as DF? £ py;n.rd2f @
dz™ @ dzN, where D is the simple connection of g. Denote Dpysn £ pMN;Rda:R and call it the charge
differential form of f evolving on (M, g).

Discussion 2.4.7.2. On (M, g), the absolute gradient of tensor F? is VF? £ pMN;R% ® doeM @ dz™.

[é)

Then the absolute gradient direction Vpyn = purw; Roes

is the actual evolution direction of py;y of f

evolving in g.
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According to Definition 2.4.3.1 , on the actual evolution path L through any point p on (M, g), the charge
pm N has the following homomorphism and equivalence induced by regular embedding 7 : L — M,

Dpun 2 punsrdzs™ =~ panvioda® £ Drpuw,

d

Voun = PMN;R% = PMN;OM £ VLpMNs

due to which, we get Proposition 2.4.7.1 .

Definition 2.4.7.2. Formulas

R 0
PyMN;RAT =~ parn;odT

~ ool (26)
pMN;RaxR - PMN;O dxo

or

R ~ ;0
puNTdrr ~ pynTdg

R O o d (27)
PMN’ IR = PMN’ 120

are called the actual evolution equation of p,;x evolving in g, or called the charge evolution equation.

Proposition 2.4.7.1. (General charge evolution theorem). The charge evolution equation holds if
and only if its evolution direction field is the actual evolution direction field of the charge.

Remark 2.4.7.1. According to Definition 2.4.5.2 ;| the actual evolution is a universal geometric property
on geometric manifold. Due to the principle of universal relativity, the concept of actual evolution can be used
to cognized an ontological universal physical property, which can be understood as the objective universal
evolution of physical reality.

Like the viewpoint of section 2.2.9.1 that the origins and essences of time and space are the same, in
the next section it will be seen that for the energy, mass, momentum, kinetic energy and potential energy,
their origins and essences can also be regarded as the same. For example, the classical rest-mass is actually
the total energy-momentum in direction of internal space. The strict connotations of these concepts will be

described by the definitions of the next section.
2.4.8 Energy-momentum equation

Definition 2.4.8.1. For the evolution of reference-system f in reference-system g, the concepts about
energy and momentum of general charge can be defined. For convenience, omitting some index notations,
pMm N is denoted by p.

(1) E° £ pi® £ pifeQ and Ey £ p.o £ p.rell are called the energy (density) of charge p evolving in g, or
called total energy, total momentum, total mass, total kinetic energy or total energy-momentum.
These terminologies are used to refer to the same concept. They are no difference essentially.

(2) pf £ pif and pr £ p.g are called the momentum (density) of charge p evolving in g, or called
kinetic energy, energy or energy-momentum.

d

(3) H° & ddTpo and Hy £ £5 are called the canonical energy (density) of charge p evolving in g, or

called canonical total momentum, canonical total kinetic energy, etc.
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(4) PR & % and Pg £ 8‘1—’; are called the canonical momentum (density) of charge p evolving in
g, or called canonical kinetic energy, etc.

(5) V0= E° — H% and Vj £ Ey — Hy are called the scalar potential energy (density) of interaction,
or called field action kinetic energy.

(6) VE & pl — PR and Vi £ pg — Pg are called the vector potential energy (density) of interaction,
or called field action momentum.

Proposition 2.4.8.1. If and only if the evolution direction of p evolving in g is the actural evolution

direction, equation

EOEO = PRPR

holds.
Proof. With the concepts of energy and momentum, the actual evolution equation of charge p can be

expressed as

Eodz® ~ prdz® E%dzy ~ pfdap
d 9 % od _ 50 - (28)

0— PR — =5

d!Eo 8.’)33 d:L‘O 8£L'R

The conjugation between the actual evolution direction and the charge differential form is the directional

derivative of p in the actual evolution direction, i.e.:

Drp » < d > < d > s Dp
= 77D = 75D = 57
dtr, \dty, at,” ")~ at,

d 0
Ey—, Eod2® ) = { pp=——,pada™ ),
dxg Orr

which is GOOEoEO = GRNIpRpA{, i.e. EQEO = pRpR. (Il
Definition 2.4.8.2. Equation

more explicitly,

EoE° = ppp”

is called the general energy-momentum equation of charge p of f evolving in g.
Remark 2.4.8.1. Specially, if g is a complete inertial reference-system defined later, the energy-momentum

equation becomes
)
2 2
Eg =) vk
R=1
or
)
(2 = 3" ")
R=
Further more, the total energy-momentum in partial direction can be defined similarly, such as

Epartdz™) £ Y pmda™, B, % > P

m=iy,-ip;1SESD m=iy, i 1SESD

—

Proposition 2.4.8.2. The relations about energy-momentum of p

R 0 dx®t drp

pt=F pR:EOT
Zo
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hold if and only if the evolution direction of p is its actual evolution direction.

Proof. Starting from the equivalences pR&% % Eoﬁ and pR% ~ Eoﬁ determined by the actual
0 dz®
dx®

d$R

evolution, according to the evolution lemma, p* = E and pr = EOE are deduced immediately. [

Remark 2.4.8.2. This proposition can also be regarded as a corollary of the actual evolution theorem
in Proposition 2.4.5.3 . In the actual evolution direction, the conclusion above is completely consistent with

the classical definition

of momentum in traditional theory.

2.4.9 Conservation of energy-momentum of charge

This section will deduce the conservation of energy-momentum of charge by calculating step by step.

Definition 2.4.9.1. Denote

dp A OpmN

PTel £ 56 —ra = o6 —punic = punlig +punTirg, ([l £ G99pl),
d d 01 & ~00
Lol = dTZJ —po = Z;ION — punio = P Lo + prnTigos [pI™) = GTlpTo),
therefore
{[pFG] =Pe—pa, [[pI“]=P%—p°
[pIo] = Ho — Ey [pI°] = H° — E°.

And denote

ory, orf ory; ort
A NQ NP MQ MP
[PBpq| = puu < P F¥e, + pHN 9P 9@ |7

[PRpq] = pMHRJgPQ + pHNR]\H/[PQ7

then denote

a OlpIg]  Olplp]
PFrol = oxP 0zQ

[pEpql = [pIQ):p — [pIPl.q-

Proposition 2.4.9.1. The following two equations hold:

(D[pFprql = [pEPq];
(2)[PFPQ] - [PBPQ] = (pMH,PF]I\_IIQ - pMH,QFJI\_fIP) + (pHN,PFﬁQ - pHN,QF]\I;[[P) .
Proof.

[pEpq] = [pIQl.p — [pL'Plq

= (puuI¥o+ pHNFJ\I}IQ);P — (pmulalp + punTiip) 0

3

= (). + (o Tlla)  — (o Tp) o — (o Tlip)

) )

= pumplig + pMHFJI\?Q;p +pun:pTiig + pHNFJIV}[Q;p — pmmINp — punlp.g — pun:@Lite — punTiip.g
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= PMH (FJI\]{Q;P - FJIV{P;Q) + PN (I‘J\ZIQ;P - FI\IZP;Q) + (pMH;PFJIV{Q - pMH;QFZI\LIIP) + (pHN;PFJ\I}Q - PHN;QFAZIP)

= Pmn (FJI\?Q;p - FJI\LfIP;Q) +onN (Fz\%;p - FAZIP;Q)
+ ((pmap — prcliip — panliip) Ing — (pvaq — pualfio — parliig) I'ip)
+ ((pun.p — puclSp — panTiip) FJ\I}[Q — (paNng — PHGFﬁQ - pGNFgQ) I'yip)

= puH (FJ{}’Q;P - Fﬁp;Q) + puN (FﬁQ;P - Fﬁp;Q) + (pmm.pTNG + punplitg) — (punlNp + pun.olirp)
+ ((—pmaliip — panliip) T — (—pmaTHg — pauliig) T'ip)
+ ((—pucINp — panTiip) Titq — (—prcTRq — PanTHq) Titp)

= pmn (FJI\?Q;p - Ff\fp;@) + puN (FJ\I}Q;p - Fﬁp;Q) + (pum pT{g + pun,pTig) — (pvuTNp + pEN.Q N P)
+ ((—pmalipTiq — parliipINg) — (—pmcTHoINp — parTiiglNp))
+ ((—puclNplitq — ranTipTitg) — (—puaTNo e — panTHo ip))

= pmH (FJI\?Q;P - F]{IIP;Q) + pEN (F]\I}ITQ;P - Fﬁp;g) + (pmm,pIig + PN, pliig) — (pumINp + puNQTiip)
— (pma T plNg — rvcTioINp) — (parTiipTNg — par QTN p)
— (praTNplitg — pralNqTitp) — (panTHpTitg — panTHo itp)

= pun (FJI\?Q;p - F]{IIP;Q) +pHN (FJIV}IQ;p - Fﬁp;g) + (pvm pINg + prn.plii) — (pvm@l'Np + prn.qliip)
— (pmaTiplNg — rvcTioINp) — (panTHipTiig — pan T iip)

= pmH (FJI\?Q;p - Fﬁp;Q) + pHN (Fﬁcg;p - Fﬁp;Q) + (pmupIfg + punplitg) — (pvu@lNp + pan.olirp)
— (puuIEplNg — pmnléoyp) — (punIEplitg — punTéoiip)

= (pMH,PF]I\_IIQ + pHN,PFﬁQ) - (pMH,QF]I\}IP +pun.oliip)
+pPmH (F]{—/IQ;P ~I'p.q + IETNp *FCI:{PFJ%JQ> +PHN (FﬁQ;P —Iiip.g + I iip *FCI:{PFJ\%Q)

orl ort orf ort
H re oy H H NQ NP MQ MP
= (pMH,Pl NQ T PHN.P MQ) (pMH,Ql Np + PN Q] Mp) + pPMmH 9xP 0z +p 0xP 0z@

orf, or ort, orH
_ H H H H NQ NP MQ MP
= (pmu,pI'Ng — pumINp) + (PuN.PTAIg — PHN.QI N P) + PriH ( 2P oxe | TPEN| 5P T e
= (pma,pINg — prm, QFNP (pun.pTaig — pun.olirp) + [PBpg)

I 8FM
= | pmu,PI'Ng + PMH pun,pIiq + PHN —F—p° 9P
rH
NP

ora
H MP
(PMHQFNp+pMH 2@ ) (pHN,QFMp+PHN 2@ >

9 (pmnI{y) N 0 (punTiiq) 0 (pmulfp) 0(punTiip)
- ozF ozF 0z@ 0x@

9 0
= 9P (pMHFJI\?Q +pHNF1\€[IQ) - 8;79 (p]V[HF;\;'IP +pHNF1\€[IP)

_ OlpIg]  OlpL'p] _
T 9zP aa@ = lpFrol. D
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Proposition 2.4.9.2. The following two equations hold:

opp  Opqg B
( )axiQ*axip*[PFPQ]* ;
dpp 8E0 85Q

Proof. Accoring to Definition 2.4.8.1 |

0Pp 0Fg opp  Opqg | OlpI'p] Olplg] dpp  Opg B
[0Fpq] = 0.

— - —= =0 — — — L Tx _

0xQ  9rP 0zQ  OzP 0z@ ozF 0zxQ  0zF

The cotangent mapping 7* induced by the regular embedding of evolution path maps

Ipp 2@ _ Ipq Q
896Qd o Pdm — [pFpgldx

to the evolution path:

opp dpp dz? dpp
*sda® e —da® = ——-da”,
T 8@ 7 92Q A0 T
g, o, o da® 9 (pQ %) o o [(dx®\ ,, O0FE,,, 0§
T 8de ™ 9xP dad 0= dzP de ~PRgP ( x0>d B 5‘de$ —andex ’
N dz®?
7 : [pFpgldz® [prQ}wdajO = [pFpglelda®.
Then o
dpp OEy Oe
720 ——da’ — Td +p 83:(1)’ da® — [prQ]sgzdxo =0,
finally
dpp an 850Q

40~ ggP TPagyp ~ PFralss =0.0

Proposition 2.4.9.3. With torsion-free connection, the following two equations hold:
(Dpp:q — pa:p — [pBrql = 0;

(2)pP;O — Eo.p +pQ50Q;P - [pBPQ]g(? =0.

Proof. According to equation (2) of Proposition 2.4.9.2 , g;% — g%‘i — [pF'pg] = 0. Substitute equation

(2) of Proposition 2.4.9.1 into this equation, then we get

dpp  Op
9@ 83:71% - (PMH,PFJI\L/IQ - PMH,QFJI\/{P) - (PHN,PFﬁQ - PHN,QFJ\ij) = [pBpq]
Opunp  Opun;
520 9P © — (pmmplfo — pumalilp) — (pun.pliio — punolilp) = [0Brq)
dpuN.p H H IpMN;Q H H
<~ B pMH,PFNQ - pHN,PFMQ “\TozP prmuQINp — PENQL VP | = [PBPQ}

0x@

_ IpMN;Q
oxr

& PMN.P,Q — PMN:Q:P = [PBPQ]

OpMN;P
< ( - pMH,PF]I\?Q — PHN,PF]\IZQ - p]\/[N;HF}gQ

— puroI'Np — paN.QI NP — PMN;HFgP) + punsa (I'pg — T5p) = [pBpq)

< pp,@ — PP — [PBpgl = 0.
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The cotangent mapping 7* induced by the regular embedding of evolution path maps
pri@der®? — po;pdz? — [pBpgldz?

to the evolution path:
dz®

da

N dz® dz® dz®
T :pQ;pde — pQ;dexO = <<de$0) —po (dx0> dz® = EO;PdI'O — stoQ;szo,
3P P

w* :pp;deQ e Je) dz® = pp;odl‘o,

. dz®?
7 : [pBpgdx® [poQ]deO = [pBpgledda®.

Then
pp.odz® — Eo.pdz” +pQ€8de0 - [poQ]sonxO =0,
finally
pro — Eo;p +posgp — [pBraled = 0. O
Proposition 2.4.9.4. With torsion-free connection, the following three equations hold:
(Dppiq — po:p — [PRPQ] = 0;
(2)pp:0 — Eop +poegp — [PRpolei = 0;.
(3)[pBrql = [PRpql.
Proof. The covariant derivative of pp = p:P £ PMN;P = PMN,P — pMHF]I\}TP — pHNFﬁP is:
PP;Q = PMN;P;Q = PMN;P,Q — pMH;PFJI\L]IQ - PHN;PFJ\I}{Q - PMN;HF§Q7
Pasp = PMN:QiP = PMN:Q.P — PumLNp — prniLitp — prunin I Gp.
Substract them:
PpP;Q —PQ;pP
= (pun:pg — pum:pTig — pun:pTiig — pun:alhg) — (Punio.p — pum@Tnp — pun:Tarp — pun:aTp)
= (pmn:pQ — puni@.p) + (pvmTNp — pump i) + (PNl il — pun.pTiio)
+ (i e — pynin IFG)
= (pun:pQ — punie.p) + (PumQINp — pumpTig) + (punDitp — prN:pLiiQ)
= (pmn,p — Pl p — pHNFAli[IP)’Q — (pvn,g — pr g — PHNF]\}}[Q)7P
+ (pmm,q — pMGF}C;Q — pGHF](v;[Q) i, - (prm,p — pvclsp — PGHFAC}p) TJI\}[Q
+ (pun.g — prclSg — panThq) Thip — (pun.p — pucTsp — panTiip) Thio
= ((pMHFJl\LfIQ),P + (pHNFﬁQ),P> - ((pMHFJl\LfIP)}Q + (pHNFﬁP),Q>
+ (pMH,Q - pMGFgQ - PGHFJ\%Q) F]I\}IP - (PMH,P - PMGFgP - PGHFAC}P) FJI\?Q

+ (pun.g — prclSg — panThq) Tiip — (pun.p — pucTsp — panTiip) Thio
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= (omu,pTig + puulNg p + pun pLiig + punTiiop) — (pumQINp + puulNpg + pune iip

+pHNF1\Ij[{p,Q)

+ (pmr TN p — pucT G p — paalsiolNp) — (prmpTNg — pucTiipTNo — paulsipINo)

+ (pun@lip — pucT ol iip — panTolip) — (pun.pTio — pucT§pTiio — panTfpTilo)

= (omuTNgp+ punTiig.p) — (omal{po + punTiipq)
+ (—pmcToINp — rauliigInp) — (—pmclHpTNg — ranTiipTq)
+ (—PHGFJS;QFAIZP - PGNngFﬁP) - (_pHGFﬁPFI\IZQ - PGNFEPFEQ)
= (omuTNgp+ punTiig.p) — (omaTpo + puNTiipg)
+ (_pMHFC{‘IQFgP - pGHFJ\CjQFJIV{P) - (_pMHFCI}JPFJEI;Q - pGHFAC;}PFII\LZIQ)

+ (_pGHFJI\?QFA(/;[P - pHNFgQFJ\CjP) - (_pGHF]I\}[PFIEQ - pHNFgPFJ\C/T}Q)

= pMH(F]I\?Q,P - FZ{_/IP,Q + FgP[ﬁQ - FgQFﬁP) + PHN(FJ\I}Q,P - FJIV}[P,Q + ngrﬁQ - FgQF]gP)

= PMHRJIéPQ + pHNRJIiIlPQ = [pRpq].

That is pp,o —po.p—[PRrg] = 0. And compare it with equation (1) of Proposition 2.4.9.3 , then [pBpg| =

[pRp(] is obtained. Finally, due to equation (2) of Proposition 2.4.9.3 , pp.o — Eo.p —|—an81:, —[pRpoleld =0

holds. [J
Definition 2.4.9.2. Equations
dpp 8E0 aEOQ Q
e =0 220 _hE =0
dr0 ~ axP " PRp.P [PFroleg
and

pro — Eop + poegp — [pRpgle =0

are called the conservation of energy-momentum of charge p of f evolving in g.

(31)

Remark 2.4.9.1. For the way of consideration of conserved quantity in this paper, see Remark 2.4.11.1

Definition 2.4.9.3. Formula

dpp  OEg 0e9
Fp2 228 20 020 4 [pFpole?
P =00 = ggP PP + [pFPrqleg

is called the interaction force (density) on charge p. Formula

Ip = ppo = Eop — pQEOQ;P + [pRPQ]EdQ

(32)

(33)

is called the absolute interaction force (density) on charge p. These two formulas are uniformly called

the general Lorentz force equations.

Remark 2.4.9.2. Lorentz force equation has a status as principle in traditional theory, but there is no

need to have such a principle in the theory of this paper, because it automatically holds due to the definition

of energy-momentum. Further more, it will transition to the traditional form on the following conditions.

Definition 2.4.9.4. The following two conditions are uniformly called the traditional standard con-

ditions.
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(1) dEp = 0 is called the constant mass condition.

(2) ¥ & rMoel’ = 0 is called the canonical mass condition.

Remark 2.4.9.3. A few explanations for traditional standard conditions are given below.

1. Constant mass condition. In the Minkowski coordinate frame defined in section 6.1.3.1 , the
evolution parameter z° becomes 7, and the constant mass condition is correspondingly re-defined to dm, =
0, where m. is the rest-mass. This fits in with the physical intuition of mass point model of traditional
theory.

Now return to the general coordinate frame, according to Proposition 2.4.13.1 , on the constant mass

condition dEy = 0, the actual evolution path of p is a geodesic line on (M, g), so the geodesic equations

daM —0, dx g N ~0
dxV N dxo

hold. That is to say that on the constant mass condition, the motion of p in potential field I'#% is equivalent

to a free motion of p on geometric manifold (M, g).

2. Canonical mass condition. In the Minkowski coordinate frame, the canonical mass condition will
be re-defined to I £ fﬂpéﬁ =0.

(1) Take the electrodynamics for example. With natural units, the canonical energy-momentums of electric
charged particle are

H=FE+gqp, P=p+qA

Noticed that there is no concept of canonical mass M, in traditional theory. If defining

/L'é@’y +A"U,, M‘rémT""qA‘ra
the canonical mass condition is actually
ey +A-u=0, M, =m,,

which can be understood as that when a charge p evolves in an electromagnetic potential field (¢, A), the
energy-momentum flow of (¢, A) contributes just to the energy and momentum of p, but nothing to the
rest-mass of p. This does fit in with the traditional physical intuition.

Based on the above reason and the following two reasons, at least it can be considered that the traditional
theory regards M, and 1, as the same by default.

(2) In the Minkowski coordinate frame, it will be seen later that the canonical mass condition which
makes M, = ., hold is the premise of the Legendre transformation and Euler-Lagrange equation remaining
their traditional forms.

(3) In the general coordinate frame, on the constant mass condition and the canonical mass condition,
the following conclusions hold.

M
0 (dac ):0, 0 (de>:0’ DEy =0,

OxN \ dz0 Orn \ dxg
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which make the general Lorentz force equation simplified to

dpp
Fp£ dz0 [PFPQ]E(%

fr 2 ppo = [pRpoles.

In the Minkowski coordinate form defined later, it will be re-expressed as the traditional forms of Lorentz

force equation:
5 o dp P
Fp é di"'p— = [pr”]€i7 )

fp = Dpir = [ﬁRPU]ég'
In a word, the two conditions in Definition 2.4.9.4 is necessary for the general theoretical form of this

paper to transition to the traditional theoretical form.

2.4.10 Conservation of energy-momentum flow of potential field

Discussion 2.4.10.1. If there exists a symmetric tensor Y3,p the divergence of which satisfies

Vap™ = -G%(Eop — pQE(C)g;P + [pRpqleg),

then
pp® = =Yup"

Definition 2.4.10.1. Yj;p is called the energy-momentum flow of potential field of reference-
is called the conservation of energy-momentum flow of potential field of

system g. pp;o = —YMP;

g.

2.4.11 Conservation of total energy-momentum flow
is called the energy-momentum flow of p, or called the

Definition 2.4.11.1. Wy £ Eo9fas 4ex
energy-momentum tensor of p.
Discussion 2.4.11.1. In the actual evolution direction of p, consider

dQ?M dl‘N dl‘M
W = E =
MN 0 d:CO dx() d.To PN,

then
dx s M dx
Wun™ = | =—"pn =pvM—— =pn? = —Yun'",
dxo dll?o
thus
(WMN + YMN);M =0.
Denote TN £ Wyn + Yarn, then
Tun™ =0.
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Definition 2.4.11.2. T,y is called the total energy-momentum flow of the actual evolution of p of f
evolving in g, and also called the total energy-momentum tensor. Ty, ~™M = 0is called the conservation
of total energy-momentum flow.

Remark 2.4.11.1. A conserved quantity is a geometric property. The most general abstract theory about
conserved quantity is the Neother theorem, which relies on a concept of action defined by an abstract way.
When the connotations of the functions in the abstract expression of action have no concrete construction,
the Neother theorem would never tell us the concrete connotations of those conserved quantities determined
by the action. One of the important purposes of this paper is exactly to solve the problem of the absence of
concrete connotation, by the way of constructive definition.

From this perspective, the Neother theorem does not meet the needs of this paper. In other words, it is
not enough to just content with the abstract way like the traditional theory to research conserved quantities.

Therefore, as a supplement to traditional theory, in this paper, Definition 2.4.8.1 and Definition 2.4.9.2
and so on do not consider conserved quantities in the abstract way, but based on the concept of reference-
system, directly construct concrete connotations for the specific conserved quantities, then prove these con-
crete connotations make the conservations hold automatically.

The significance of the concrete connotations of these concepts is no less than the significance of the

abstract summary of Neother theorem. They are two sides of the same thing.
2.4.12 General gravitational field equation

Discussion 2.4.12.1. Consider the actual evolution of reference-system f in reference-system g.
(1) Let C(zypmn be a 0-order or 2-order symmetric tensor satisfying C(I)MN;M = 0 only depending on g.

Different tensors are distinguished by index (). For any (), let ¢(*) € R is a constant, then

M

where the summation traverses all the 0-order or 2-order symmetric tensors with zero divergence depending
only on g.
(2) Let Tipym ~™ = 0 be the conservation of total energy-momentum flow of charge p of f. Different

charges are distinguished by index (p). For any (p), let ¢(P) € R is a constant, then

M
(Z C(p)T(p)]\/IN> =0,
p

where the summation traverses all the total energy-momentum tensors determined by various indices of
charge p £ PPQ-
Therefore, Ve®), c(?) € R,
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If the ergodic ranges of the summations are sufficiently large, it is deduced directly that
Z C(w)C(x)MN + Z C(p)T(p)MN =0.
z P

Definition 2.4.12.1. Equation ) c(gc)C(x)MN +> c(p)T(p)MN = 0 is called the general gravitational
T 2
field equation of the actual evolution of reference-system f in reference-sytem g, where the dimensions

among various terms are harmonized by constants ¢(®) ¢(#).
2.4.13 Evolution quantity

Suppose charge p of f evolves in g. On manifold M take a as the start point and b as the end point of
an evolution path. Let I be the set of all evolution paths from a to b.
Definition 2.4.13.1. Let dz° be the time metric and satisfies ¢, = 2°(a) < 2°(b) £ t,. VL, € L, denote

a fo 0 o R b dzM dxN
spw (Lp) = . Dp = ; Eodz” = /t prdz™ = ; WMNW@ 7,
P a a

The functional s, (L,) about path L, is called the general evolution quantity (density functional)
of p evolving along path L,,.

Remark 2.4.13.1. In the Minkowski coordinate frame defined later, the evolution quantity will be
expressed in form of well-known action, for example, evolution quantity f:j Eydxz® will be re-defined to
f:j m,dr in the Minkowski coordinate frame. In the actual evolution direction, the integrand of evolution
quantity is a directional derivative in gradient direction, so the actual evolution path as the integral curve
of gradient directions should satisfy the following proposition. In addition, it will be seen later that for
f;b m-d7r there is also a concept of gradient direction in the Minkowski coordinate frame. Thus, the least
action principle, which has a status as principle in traditional theory, becomes a theorem in this paper. First,
a proposition in general coordinate form is given as below.

Proposition 2.4.13.1. (General evolution quantity extreme value theorem). For the charge p of
f evolving in g, an evolution path L, is exactly the actual evolution path if and only if s, = 0.

Proof. Let the parameter equation of evolution path L, be

and let the parameter equation of evolution path L, + L, be
oft = 229 4 628 (%), t, <2 <ty, 0xF(ty) = s2T(ty) = 0.

Let the unit tangent vector of path L, at any z° be

d dx®
L — )& =
X =m (dz0> da0

and let the unit tangent vector of path L, + dL, be
d (a:R + 5$R) o dz? n 5dacR
dzxV , Ozf -\ dad dzV

X +6X 2

0
T T
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Then consider the variation of s,w (L fL Eydz® = fL predida®.

Aspw(Lp):A/ predtda® */ predtda® f/ predidx® */ p.revidr® 7/ pRsOd:c
L, Ly+dL, L L,+8L, L

/ (X, Dp) dx® — / (X, Dp) dax
L,+3L, L,

ty

/tb (X +6X,Dp (mR + 5:ER)> da® — / (X, Dp (;UR)> dax®

ta

H~

ty
:/ <X+(5XD Ry 4 %530M+0(6x)>dx0—/ (X, Dp(z")) da”
ta x ta
tp
:/ <X+5X Dp) +<X+6X,gf]56 M>>d 0 / (X, Dp)dz’ + o (0z)
23 ta
ty
= <5X Dp) + < ?5 M>> dz° + o (0x)
M

((6X, Dp) + (X,6Dp)) dz° + o (6z)
ty
(6X, Dp) dz®+ / §Dp + o (dz)
ta

ty
= / (6X,Dp) dx’ + o (dz) .
t

a

Thus we get
ty

ds,w = (6X, Dp) dx®

ta
When point b — a, dds,w = (6X, Dp) dz°. The directional derivative (X, Dp) = p,o cos, where  is the

included angle between the evolution direction X and the gradient direction. Take the directional variation,
(60X, Dp) = p,pdcosf = —p,osin§50.
Thus, the evolution quantity variation of p is
dds,w = —p,osin 060da°.

For general p, dds,i = 0 if and only if sin@ = 0, namely the evolution direction at this point is exactly the
actual evolution direction (take the positive direction without loss of generality).

Take integration from a to b, then § |, ttab ds,w = 0 if and only if the evolution direction at each point of
integral curve L, is the actual evolution direction of p. In other words, ds,iw = 0 if and only if L, is the
actual evolution path of p. [

Remark 2.4.13.2. Compare the actual evolution equations of charge and potential field

P
prdx® ~ Fydx®, K%PQ’ dz® ~ pMdx®,
d P 0 d
—— ~F — KJ\/I T o~ M %
br Oxp 0 dzo NPQ 9z PNo dzo’

due to the expression form of the evolution quantity

Sow = /Eodzo = /pRso dz,
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one may naturally associate the definition of evolution quantity of the potential field with

:P
Spy = /P%odfo = /K%PQ egtda’.

It is effective, because in the gradient direction % determined by the above evolution equation according to
Remark 2.4.5.3 , s,y = 0 holds necessarily, which describes the actual evolution of potential field of f (in
form of curvature divergence). Meanwhile it is remarkable that in the same direction %, the form of s,y
satisfying ds,y = 0 is not unique.

Traditional theory has already told us that the forms of action (evolution quantity) can be diverse, and
different evolution quantities can be used to describe the same actual evolution. According to a concrete
Yang-Mills field equation determined by a concrete reference-system f, correspondingly, kinds of evolution
quantities s,y about potential fields AY, and I'¥f, can anyway be constructed such that the Yang-Mills
field equation holds if and only if ds,y = 0 holds.

The feasibility of these constructions makes it sure that when s, = S,w + 5,y is defined, no matter which
effective form of s,y is adopted, ds, = 0 can always be used to uniformly express the actual evolutions of
both the charge and the potential field of f.

In addition, it has to be noticed that the effectiveness of the traditional action in the form that is similar

to

1 P
> TR L
m,n=r+1,-,9

is due to some occasionality. It is because it actually should be strictly written as

1 »
j{: i Z?NQ}%ZL Q7
m,n=r+1,---, D
which is however not appropriate to be used to deduce the Yang-Mills field equation. This is a complicated

problem, which should be discussed in detail in further articles rather than here.
2.4.14 Evolution equations of quantum mechanics

Discussion 2.4.14.1. For any two smooth tangent vector fields X and Y on manifold M, let Ly be
the Lie derivative operator induced by the one-parameter group of diffeomorphisms ¢y determined by Y.
According to a well-known theorem [9], Lie derivative equation [X,Y] = Ly X holds.

On one hand, suppose H is the unit tangent vector field along the actual evolution directions of p, and
@ is the one-parameter group of diffeomorphisms determined by H, and the the parameter of g is 2°. The
Lie derivative equation induced by ¢ is [X, H] = Ly X. Lie derivative operator Ly and tangent vector field

—4- are both uniquely determined by H, so it can be denoted that diX £ Ly X. Thus, the Lie derivative

dx0 0

equation becomes [X, H] = % X.

On the other hand, according to Remark 2.4.3.1 and the equivalence H = Hy, induced by the regular
embedding of evolution path, for any smooth function f, equation (H,df) = (Hp,dfr) holds. Notice that

Hy and fi) are the same, so H f = ﬁfL holds.
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In a word, Ly and Hj, are both uniquely determined by the actual evolution direction unit field H. Due
to the above discussion, the following proposition holds immediately.

Proposition 2.4.14.1. Let H be the actual evolution direction unit field, for any X and any f, equations

d d

hold if and only if # is the actual evolution direction unit field.

Definition 2.4.14.1. Equation [X, H] = %X is called the general Heisenberg equation. Equation
Hf = d%%ﬁ is called the general Schrodinger equation

Discussion 2.4.14.2. Both the two equations describe the actual evolution. H can be defined as the
actual evolution direction determined not only by charge differential form Dp like Discussion 2.4.14.1 , but
also by curvature divergence form R} PQ;szQ, or even by any other differential form.

The actual evolution is a universal geometric property on geometric manifold, so these two equations are
applicable to arbitrary reference-system.

The essences of the quantum mechanics and the theory of this paper are the same. Both of them describe
the actual evolution, just expression forms have differences.

(1) Heisenberg’s matrix mechanics and Schrodinger’s wave mechanics are two analysis theories about
two mutual dual linear spaces. They describe the same actual evolution. However, the selection of mutual
dual spaces is not unique. In quantum mechanics they are abstract operator space and state space, and
in this paper they are concrete tangent bundle and cotangent bundle. The mutual transformation between
Lie derivative operator Ly and tangent vector field Hj, represents the mutual transformation between two
pictures of mechanics. What remain unchanged during the transformation are their geometric properties. As
such a geometric property, the actual evolution direction field is the common meaning of different pictures
of mechanics.

(2) Notice that Definition 2.4.14.1 is not expressed in form of complex value. It is not important, because
what equations in form of complex value describe is none other than the actual evolution. So equations in
form of complex value necessarily can be deduced from a form of real value in a certain way, no matter for
wave function or for field function. Such as the concrete deductive process of complex-valued Schrédinger
equation of charge field function, see section 6.3.7.1 . It can be said that the value of a specific actual
evolution direction is determined by intrinsic geometry, and has nothing to do with the form of either
real value or complex value, the effects of which for describing intrinsic geometry are the same. During the
transformation between the two theoretical forms, what remain unchanged are their geometric properties. As
such a geometric property, the actual evolution direction field is the common meaning of different theoretical
forms of quantum mechanics.

In a word, there is no need to be constrained on theoretical forms, and the actual evolution is the very
essence should be grasped. Heisenberg equation and Schrédinger equation do not rely on complex form

essentially, and they hold not only in the quantum mechanics.
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The only necessity of using complex form is that it is most convenient for describing the coherent super-
position of propagator. However, it is a different problem with that of this section and it will be specifically
discussed in the next section. In order to achieve the purpose of clarifying concepts, it is beneficial to separate

the two equations here from the coherent superposition of propagators of the next section.

2.5 Measurement and evolution distribution

2.5.1 Definition of measurement

Definition 2.5.1.1. If reference-system f evolves in reference-system g, we say that g makes a mea-

surement of f.

Remark 2.5.1.1. For ontological measurement, there are usually two aspects to consider. One is to

measure the objective position, the other is to measure the objective evolution.

(1) The basic principle of theoretical physics tells us a physical reality is cognized by using a reference-
system, rather than using a point. That means it is hard to cognize the full picture of the objective positions
of physical reality by using the coordinate of a single point.

(2) Generally, an ontological measurement is always accomplished by the interaction of a physical reality
A on another physical reality B. Physical reality A is specific after all, the interaction of A on B is necessarily
inclined to a certain orientation, rather than omni-directional. That means it is hard to get a glimpse of the
full picture of the objective evolution of reality B by a single measurement.

In a word, the cognition will be more comprehensive to research the distribution of positions or distribu-

tion of evolution directions.

Remark 2.5.1.2. As Remark 2.4.5.4 said, for any universal geometric property p defined in form of
tensor on geometric manifold, its actual evolution can anyway be discussed. Similarly, for any universal

geometric property p, the distribution of its evolution can anyway be discussed.

(1) Intuitively, if g is a completely stationary reference-system defined later, the actual evolution direction

field of p of f distributes uniformly on the completely flat geometric manifold (M, g).

(2) If g is non-trivial, the potential field of g would effect the distribution of the actual evolution directions
of p of f, in other words, the shape of geometric manifold (M, g) would effect the distribution of the actual

evolution directions of p of f.

In order to describe the effects, it has significance to research this distribution, which will be discussed

in detail in the next section.

2.5.2 Constructions of propagator and wave function

Discussion 2.5.2.1. Abstractly, propagator is defined as the Green function of evolution equation. Con-

cretely, propagator still needs a constructive definition.
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One method is to construct with Feynman path integral f;ab ez (t), which is expressed in form of
functional integral. However, until now the functional integral has strict definition only in some special
cases, and the strict definition in general case is still an unsolved problem.

This paper adopts another method to strictly construct propagator.

Definition 2.5.2.1. Let ¥ be the set of all flat transformations of reference-system defined in section
2.2.2.3 . Any geometric property p determined by reference-system f is a universal geometric property on
geometric manifold (M, g). Let H be an actual evolution direction field of p on (M, g).

Let an element T € ¥ act on reference-system f, then it induces T,p of T'f and the actual evolution

direction field T H of Typ on (M, g). The set
ol & {pr £ Tup|T € T},
which is determined by the kernal |f| of f, is called the kernal of p. The set
|H| = {Hr £ T.H|T € T}

is called the actual evolution direction field of |p| on (M, g).

Let g be the one-parameter group of diffeomorphisms induced by H as a smooth tangent vector field
on M. Va € M, the actual evolution path determined by H and starting from point a is denoted by g 4.
Suppose ¢ = ¢g,4(0), the set

Qe = {px.alX € |H[}

is called the actual evolution path of |p| starting from a. Vt € RT, the set

o1m)a(t) 2 {ox.q(t)|X € [H[}

is called the evolution image of point a at time .
V{2 C %, the set
|Ho| £ {T.H|T € 2}

is a subset of |H|, and the set

P|Heola £ {exalX € |Hal}
is a subset of ¢z . Correspondingly, Vt € R*, the evolution image

Plrala(t) = {ema(t)|X € [Xol}

of a at t is a subset of ¢|g q(t).

Va € M, the restrictions of |H| and |Hg,| at point a are respectively denoted by
H(@)| 2 (TLH@IT € T}, |Hala) 2 {T.H()|T € 2},

Remark 2.5.2.1. When ¢t = 0, intuitively, the actual evolution directions |H (a)| of |p| start from a and

point to all directions around a uniformly. Affected by the potential field of reference-system g, when they
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evolve to a certain ¢ > 0, the distribution of the actual evolution directions on ¢ Hw(t) are no longer as
uniform as around a.

To exactly characterize this kind of uniformity provides a way of describing the effects of potential field.
The following definition is needed.

Definition 2.5.2.2. (Evolution distribution). Take the inverse transformation F,-1 of g, we get a
trivial reference-system e = F,-1(g). Now (M, g) is transformed to a completely flat geometric manifold
(M, e). The actual evolution direction field |H| of |p| on (M, g) is transformed to an actual evolution direction
field |O] on (M, e). Correspondingly, ¢|,4(t) is transformed to |o|,q(t). In a word, F,-1 induces the following
two mappings:

g, | H| = 0], gt P|H|,a 7 Pl0],a-

V|Hg| C |H|, denote

0| £ 9. (|Hol) €101, 9oala = 9 (Plra)a) -

Further, Vt € R, the measure P (9|0, (t)) = P (95 (¢1r0),a (t)) of ©j0g),a(t) is called the actual
evolution distribution of ¢z, 4(t), or called the actual evolution distribution of |p| starting from a
along |Hg| at time ¢, or called evolution distribution for short.

Due to T = SL(D,R), for convenience, take {2 as a neighborhood of any element T' € SL(D,R). Now at

the start point a, |Hg(a)] is called an evolution neighborhood of Hr(a), and

0a(a)] £ g7 (|Ha(a)))

is called an evolution neighborhood of
Or(a) £ g; ' (Hr(a)).

When the neighborhood §? is sufficiently small, the evolution neighborhood |Hg(a)| and |Og(a)| are both
sufficiently small, and Vt € R the sets ¢ p,,|.q(t) and @jo,,|.(t) are also sufficiently small.

Concretely, when the neighborhood 2 approach to T', |H,| will approach to Hy = r%linT |Hg|. Therefore,
the evolution neighborhood |Hg(a)| at start point a will approach to the evolution direction Hr(a) =

éimT |Hp(a)|, and the set of evolution images ¢|,,|,4(t) of a at time ¢ will approach to a point
—
br & (1) = lim o(t
T ety = lm Pl (t)
on manifold M.

The limit

w N dVo, 2 {im P(@lonl@ (t)) — lim P(g;*l (SD\HQW (t)))
o (0r) = Wiy 20 P (g ) Bt P (@1rg).a (1)) (%)

is called the actual evolution distribution density of |p| at point by about the start point a, or called

the evolution distribution density for short.
Remark 2.5.2.2. Radon-Nikodym theorem [51] guarantees the existence of such a limit.
Remark 2.5.2.3. For any two points a and b on manifold M, we can anyway talk about the actual

evolution path of p from a to b. It is because even if the actual evolution path of p starting from a does
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not go through b, it only needs to properly adjust the initial momentum of p so that the path exactly goes
through b. This is the same way of consideration as traditional theory. Generally, it only needs to take a
flat transformation of reference-system defined in section 2.2.2.3 for f so that the purpose of adjusting
initial momentum can be achieved. During the transformation of initial momentum of p, the value of kernal
geometric property of f remains unchanged, so the geometric essences about the curved shape reflected by
p before and after the transformation are the same.

More strictly, according to Definition 2.5.2.1 , let |p| be the kernal of p. For any points a and b selected,
it is always meaningful to discuss the actual evolution path of |p| from a to b, because there certainly exists
an element p’ € |p| such that a and b are exactly both on the actual evolution path L(b,a) of p’. Therefore,
it can be said broadly that L(b,a) is an actual evolution path of |p|.

If necessary, the connotation of p may be re-defined as p’, we can now talk about the actual evolution
path of p from a to b. However, usually it is not necessary to do so, because it is very convenient to discuss
by using the kernal |p|.

To say it informally, |p| enbodies the common essence of p and p’ in different motion directions. |p| can
be regarded as the particle ITSELF, and a particle |p| is respectively denoted by p and p’ in two different
directions. No matter how the motion direction changes, the particle as a motion subject is unique.

That is what geometry does. It can characterize the specific essence at a specific level. The kernal geometry
describes a particle at the level that is independent of overall directions.

Definition 2.5.2.3. (Evolutor). Va,b € M, let L(b,a) be an actual evolution path of p from a to b on

(M, g), and w,(b) is the actual evolution distribution density at b about @ on this path.
rr(b,a) = \/wa(b)

is called the real-valued evolutor of p about L(b,a) on (M, g). Let sy (b,a) be the evolution quantity of
L(b,a).

Rr(b,a) £ rp(b,a)e’t ("

is called the complex-valued evolutor about L(b,a), or called evolutor for short.

Remark 2.5.2.4. The definition here put the evolution quantity density sy, (b, a) in the exponent. Tra-
ditional theory customarily put the volume integral Sy, (b,a) = [ sp(b,a)dV of evolution quantity density in
the exponent. It will be seen from section 6.3.7.1 that the ways of using Sr.(b, a) and using sy, (b, a) have no
essential difference for describing the evolution. Therefore, in order to be consistent with traditional theory,
in the discussions of some following sections, Ry (b, a) £ 71 (b, a)e’r (@) will be used as evolutor indiscrimi-
nately. But in this section, in order to clarify the essential form of the theory, the evolutor is expressed by
using sy, (b, a), rather that S (b, a).

Remark 2.5.2.5. Feynman path integral takes the summation of all paths from a to b. It is difficult to

get a general and strict definition, and it is not necessary. Now all we have to do is to reduce the scope of
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summation to the set of all actual evolution paths from a to b. In some special case, the actual evolution
path of |p| from a to b is unique, such as the case of free particle, but in general case they are not unique.

Definition 2.5.2.4. (Propagator). Let £(b,a) be the set of all actual evolution paths of |p| from a to
b. VL(b,a) € £(b,a), let Rr(b,a) be the evolutor about L(b,a). Then

K(b,a)2 Y Rp(ba) (36)
Leg(ba)
is called the propagator of |p| from a to b.

Remark 2.5.2.6. As the simplest example, consider the propagator of free particle.

On the completely flat geometric manifold (M, g), in the sense of Remark 2.5.2.1 | intuitively, the actual
evolution directions of |p| starting from a spread uniformly in all directions around a. No matter where b is,
the actual evolution distribution density w,(b) at b about a is identically equal to 1.

Then for a fixed b, take the actual evolution path L(b,a), the corresponding evolutor of p is Ry (b,a) =
rr(b,a)et ) = | fw,(b)et*r(>@) = ¢ist(b:a) Because |p| is a free particle, there is only one element in
£(b,a), which is L(b,a). So the propagator is K (b,a) = Ry (b,a) = e (b:2),

Of course, it has not been normalized on the wavefront, otherwise there would be a coefficient of normal-
ization.

Remark 2.5.2.7. For the propagator of non-free particle, there may be multiple elements in £(b, a). Now
that the superposition of the evolutors about these different actual evolution paths has been defined, why
could it be in form of complex number?

That is because p is determined by the potential field of reference-system f. The wave of the potential
field of f determines the wave of p, and the coherent superposition of the potential field of f determines
the coherent superposition of p. We know any coherent superposition can be described in form of complex
number.

Concretely, the evolution distribution is determined by two aspects. (i) The shape of geometric manifold
(M, g) makes the evolution distribution of p deformed. (ii) The coherent superposition of the potential field
of f makes p itself changed, and finally effects the evolution distribution.

In order to understand conveniently, review the electromagnetic wave in Maxwell theory. Let an elec-
tromagnetic wave f propagates on geometric manifold (M, g). The propagation direction ¢ of f and the
potential vector direction A of f are completely not the same thing. The wave direction is ¢, rather than A.
On (M, g), ¢ determines an evolution path L.. There is a phase difference of A between any two different
positions on L.. This kind of phase difference can make A be coherently superposed and cause the coherent
superposition of the distribution of ¢. This is what the interference of light is.

From this analogy we may think that on (M, g), the actual evolution direction v of p and the potential
field direction A of f are also not the same thing. On (M, g), v determines an evolution path L,. If there
is a phase difference of the slack-tight of f between any two different positions on L,, there is also a phase
difference of potential field A. This kind of phase difference can make A be coherently superposed and cause

the coherent superposition of the distribution of v. This is what the essence of quantum interference of p is.
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Traditional theory cannot clarify the origin of coherent superposition of particle. It is only considered
as a probability wave, obviously which is not enough. However, the above discussion clearly illustrates this
origin. The probability wave is not the most fundamental understanding about particle, and is not the only
way of description, because there are more fundamental |p| and the most fundamental f.

According to the general form of Fourier series, although the coherent superposition can be completely
described in form of real number, the expression form of complex number is also feasible and convenient.
This is the answer of the above question.

Definition 2.5.2.5. (Wave function). Let a be a point on geometric manifold (M, g). Yag € M, d(a, ao)
is the geodesic distance between ag and a. Denote X, (ag) = {q € M|d(a,q) = d(a,ag)}. Let (bo)ﬁ be the
slack-tight of g at ag and satisfy d(a}liolrn_}DO (bo)’& = 4. If complex-valued function ¢ : M — C satisfies both
the following two conditions, then 1) is called a wave function of actual evolution of p on (M, g).

(1) 3r > 0 such that d(a}(ilir}ﬁri//(ao) =cor d(a’}lisx)lﬁoow(ao) = ¢ holds, where ¢ is a constant.

(2) Yag,a € M,

(a) = /E PR CnOrs

Remark 2.5.2.8. Propagator and wave function describes the distribution of the same actual evolution
directions in different ways, so their effectivenesses are the same.

Based on the above basic concepts and discussions related to propagator and wave function, it must be
able to expand the whole quantum mechanics and quantum field theory in the way of constructivity. Although
it may be formally a little different from traditional theory expressed in the way of abstraction, the essences
of them are the same. This paper only focuses on the theoretical foundation at the most basic level, and
the geometric viewpoints for further development have already been established in section 2.4.13.2 and
section 2.4.14.2 , so the construction in this paper about quantum theory stops here. Further development

and formal comparison need to be researched in other articles.
2.6 Summary of this section

This section mainly discusses the following contents.

1. An axiom is established for Hilbert’s 6th problem of theoretical physics.

2. Based on the concept of reference-system, Riemannian manifold is generalized to geometric manifold.

3. Based on the concept of reference-ssytem, the concept of intrinsic geometry is generalized.

4. The concept of simple connection, which can be used to describe some more bending properties of
manifold than Levi-Civita connectdion, is defined.

5. Those having a status as principle in traditional theory, such as Yang-Mills field equation, Lorentz
force equation, conservation law of energy-momentum, gravitational field equation, least action principle,
Schrodinger equation, Heisenberg equation, Dirac equation(see section 6.3.7.1 ), etc., become theorems that
automatically hold in the theory of this paper. The purpose of removing redundant principles and postulates

has been achieved.
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6. This section adopts the most general coordinate form, whose evolution parameter is time. In section
6.1.3.1 , the Minkowski coordinate will be constructed, whose evolution parameter is proper-time. It has to
be emphasized that no matter what coordinate forms are adopted, their geometric essences are the same,

and the physical properties described by them are also the same.

Based on the theoretical foundation established in this section, various kinds of concrete reference-systems

can be discussed in the following sections, which are used to cognize various matter-motions.

3 Trivial interaction and relative motion

Definition 3.1. On manifold M, if the slack-tights B3, and C}/ of reference-system f are all constants
independent of positions, f is called a completely flat reference-system on M. Specially, if the metric
tensor satisfies orthogonal condition Gy ny = AABBﬁIBﬁ = Euyn, [ is called a completely inertial
reference-system. More specially, if Bf}[ = (5]‘\‘}[ and CAT = 6}, f is called a completely static reference-

system.

Discussion 3.1. Let f be a completely flat reference-system on M, g be an arbitrary reference-system on
M, and f evolvesin g, i.e. Vp € M ¢y (U) iGN wu(U) o), pu (U). And let the coordinate forms determined
by coordinate mappings v, @, p are respectively d¢4, de™, d¢A.

On a neighborhood U of point p on M, let the coordinate representation of local reference-system f(p) is
oM = MeA +aM | where Yl and a™ are all constant functions on U. And let the basis vector representation

of fis dé# = Biydax™M and dzM = C{1d¢A, where By, and C are all constant functions on M.

Thus, the simple connection of f is A¥, = 0, and the curvature tensor is K%PQ = 0. The charge of f

evolving in g is ppry = 0.

Discussion 3.2. Conversely, let f is an arbitrary reference-system, and g is a completely flat reference-
system. Similarly, consider the evolution of f in g. Then the simple connection of g is ', = 0. For any

charge p of f, the actual evolution direction of p on (M, g) is

d d dp d dp d
- P prg]) = 22 ¢
(d:cR o RD dep  deFdzp

That is to say, p moves freely in g, and there is no interaction.

Remark 3.1. According to the basic principle of theoretical physics, the completely flat reference-system
points to a physical reality. In fact, it is the physical reality in the ideal case of trivial relative motion and
no interaction. In ontology, trivial relative motion is the same thing as no interaction, they are both finally

cognized by using the uniform concept of completely flat reference-system in epistemology.
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4 Inversion interaction and relative motion

4.1 Coordinate inversion transformation

Remark 4.1.1. In this section, the index values of internal space and external space are taken according
to Definition 6.1.1.1 .

Definition 4.1.1. Suppose the coordinate representation of each local reference-system on M is 4 =
€4 (xM) such that

(1) On the internal space N, the coordinate frame inheriting from M satisfies £* = §2% z™;

(2) On the external space P, the coordinate frame inheriting from M satisfies £* = —d;z°.

The transformation of reference-system induced by such a reference-system is called the external space
coordinate inversion transformation on M, or the parity transformation, denoted by P.

Definition 4.1.2. Suppose the coordinate representation of each local reference-system on M is ¢4 =
A4 (xM) such that

(1) On the internal space N, the coordinate frame inheriting from M satisfies £* = —0% a™;

(2) On the external space P, the coordinate frame inheriting from M satisfies €5 = 53,

The transformation of reference-system induced by such a reference-system is called the internal space
coordinate inversion transformation on M, or the charge conjugate transformation, denoted by C.

Definition 4.1.3. Suppose the coordinate representation of each local reference-system on M is 4 =
751‘311]” , and the slack-tights satisfy B%, = 7(51\‘4/1. Then the transformation of reference-system induced by

such a reference-system is called the total space coordinate inversion transformation on M, denoted

by PC or CP.

4.2 Metric inversion transformation

According to the definition in section 2.2.9.1 , the positive or negative sign of metric is independent of
the sign of cooridnate. The time metric and the space metric may be either positive or negative. They reflect
two opposite directions of evolution.

Definition 4.2.1. Let N be a closed submanifold of M, and let its metric about submanifold be dz™).
The transformation dz™) — —dz™) is called the space metric single inversion transformation on N,
denoted by TO(N).

Specially, when N = M, the transformation TO(M) : dz® — —dz¥ is called the total space metric single
inversion transformation, or time metric single inversion transformation, denoted by Tg for short.

Definition 4.2.2. Let N is a closed submanifold of M. The set of all closed submanifolds of N is denoted

by B(N). For every B € B(N), take a space metric single inversion transformation TéB) cdzB) — —dz(P)

on B, then the transformation

TN) A H TO(B)
BEB(N)
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is called the space metric complete inversion transformation on N.

Specially, when N = M, TM) is called the total space metric complete inversion transformation,
or time metric complete inversion transformation, or time inversion transforamtion for short,

denoted by T

Remark 4.2.1. Consider in the premise that the positive and negative signs of all coordinates remain

unchanged.
(1) According to the definition, no matter metrics inverse or not, the signs of Fy and pr remain unchanged.

(2) A space metric single inversion transformation may change the sign of the specific term of evolution

quantity ds = Eodx® = prdz’ about a certain value of index R.

(3) The time metric complete inversion transformation 7' changes the signs of all the terms of evolution

quantity, that is
Eodz’ — —Eydz®, prda® — —ppda’.

So it is not difficult to understand that here is exactly the origin of the complex conjugate in the time

inversion transformation 7" of traditional theory.

4.3 Space-time inversion transformation

Definition 4.3.1. The joint transformation of total space coordinate inversion transformation C'P and
total space metric complete inversion transformation T is called the space-time inversion transforma-

tion, denoted by CPT.

Remark 4.3.1. In the case where coordinates and metrics are all inversed, it is not difficult to understand
the intuitive meanings of well-known conclusions such as physical laws remain unchanged during C PT', there

is a difference of CPT between a particle field and its antiparticle field, etc.

5 Typical gauge interaction and relative motion

Section 2.2.1.3 has defined the concepts of general gauge field and tansformation of general gauge field.

Now some concepts related to typical gauge field have to be defined.

5.1 Typical gauge reference-system

Definition 5.1.1. Suppose each local coordinate representation of reference-system f on M is 4 =

€4 (xM) such that
(1) the internal coordinates £% satisfy £* = £%(ax™);

2) the external coordinates £° satisfy &% = 65z,
y i
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Such a reference-system f is called an internal gauge reference-system on M. The transformation Fy
induced by f is called an internal gauge transformation, or a gauge transformation of traditional
gauge field.

Definition 5.1.2. Suppose each local coordinate representation of reference-system f on M is 4 =
€4 (xM) such that

(1) the internal coordinates £% satisfy £* = 6% z™;

(2) the external coordinates £° satisfy £° = £%(a%).

Such a reference-system f is called an external gauge reference-system on M. The transformation
Fy induced by f is called an external gauge transformation.

Definition 5.1.3. Suppose each local coordinate representation of reference-system f on M is 4 =
A4 (xM) such that

(1) the internal coordinates £% satisfy £* = £%(ax™);

(2) the external coordinates £° satisfy £* = £%(a%).

Such a reference-system f is called a typical gauge reference-system on M. The transformation Fy

induced by f is called a typical gauge transformation.

5.2 Typical gauge field reference-system

Definition 5.2.1. Suppose each local coordinate representation of reference-system f on M is 4 =
A (xM) such that

(1) the internal coordinates £® satisfy £ = £2(2™);

(2) the external coordinates £° satisfy &5 = £5(a?).

Such a reference-system f is called a typical gauge field reference-system on M, or called a typical
gauge field for short. The transformation F; induced by f is called a typical gauge field transformation,
or gauge transformation of traditional gravitational field.

Definition 5.2.2. A reference-system which satisfies the externally flat conditions CM = §™ and
B = 6/ is called an externally flat reference-system. A refernce-system which satisfies the internally
standard conditions G,,, = const, and G,,, = 0 when m # n, is called an internally standard
reference-system.

Remark 5.2.1. In ontology, the gauge fields and particles which are observed so far can be cognized by
using the typical gauge field reference-system such that: external space indices satisfy 7,s = 1,2,--- ,r and
internal space indices satisfy m,a =9 — 4,0 — 3,9 — 2,9 — 1,9, where r =3 and ® = 8.

In order to connect the standard model of traditional theory more clearly, when discussing concrete typical
gauge field reference-systems in section 6.4.3 and section 7.3.1 , the electromagnetic-weak interaction and
relative motion as well as the strong interaction and relative motion will be discussed respectively first, and
then the reference-system of electromagnetic-weak-strong unified field will be discussed, and the externally

flat conditions and internally standard conditions will always be adopted.
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Before that, we should strictly discuss the relation between general coordinate and classical spacetime
coordinate, as well as the classical expression forms of some important contents of section 1.2 .
6 Classical spacetime interaction and relative motion
6.1 Regular form of evolution of classical spacetime reference-system

6.1.1 Regular coordinate form

Definition 6.1.1.1. Consider the external space submanifold P and internal space submanifold NV defined
in Definition 2.3.2.2 , and their coordinate frames {¢*}{z'} and {£*}{z™} inheriting from M.
For convenience, if there is no special declaration, the values of the internal space indices and the external

space indices are as following.

(1) The external space indices in coordinate frame (U, §) are s,t,u,v = 1,2,--- | r, and the external space
indices in coordinate frame (U, z) are 4, j,k,l =1,2,--- | r.

(2) The internal space indices in coordinate frame (U, §) are a,b,c,d = r+1,7+2,--- , D, and the internal
space indices in coordinate frame (U, z) are m,n,p,q =1+ 1,7 +2,--- | D.

(3) The regular simplified indices in coordinate frame (U, &) are S, T, U,V =1,2,--- ,r, 7, and the regular
simplified indices in coordinate frame (U, z) are I, J, K, L =1,2,--- ,r,T.

(4) For the definition of Minkowski indices, see Remark 6.2.1.1 .

Definition 6.1.1.2. On (M, f), if tangent vector

d, 40 . 0

T S W T

satisfies that components a® and 5™ about internal space indices are not all zero, such a % is called an
internal-directed evolution direction. Let there be a smooth tangent vector field X on M. If Vp € M,
X (p) is an internal-directed evolution direction, then X is called an internal-directed evolution direction
field.

According to Definition 2.3.2.2 , let M = P x N and P be the external space submanifold of M. Vq € M,
parameter equations ™ = z;*(m =r +1,--- ,D) can define a closed submanifold P x {g} through ¢ on M.
Vp € P x {q}, the closed submanifold P x {q} can also be denoted by P x {p}.

Let ox : M xR — M be the one-parameter group of diffeomorphisms determined by an internal-directed

evolution direction field X on M. The restriction of px on P x {p} is

ox|pxipy 1 P x {p} x {t} — P' x {p},

where points p and p’ are on the same orbit L, £ ¢x ,, and P x {p} and P x {p} are both homeomorphic

to P. If not to distinguish P and P’, we have

@X|P><{p}5Px {p}XR—)PXLp.
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Then considering all of such {p} on the entire orbit L,, we obtain a mapping
ox|pxr, : P X Ly xR —= P x L.

Vp € P, L, is homeomorphic to R, this is to say, each orbit L, can be expressed as a parameter equation.
All of them can take the metric parameter z° on M as their common parameter. Thus, for every orbits of

px we obtain the following mapping:
ox|pxr: PXRXxR—= P xR.

Denote M £ P x R. M is called the classical spacetime submanifold of M along evolution direction
field X. Then
@Xé(p)dM:MXR—)M

constitutes a one-parameter group of diffeomorphisms on M. Natually, ¢ ¢ determines a smooth tangent
vector field X on M.

Accoring to the above construction, the tangent mapping

Yo : T(M) - T(M), X+ X
induced by regular embedding mapping v : M — M is an injection and generally not a surjection, so 7*5(
is a subset of X, and vectors in X correspond one-to-one to vectors in the restriction of X on M. For
convenience, on the classical spacetime submanifold M, X and X are usually not distinguished, which are
uniformly denoted by X.
Each evolution path L : T — M, t+— p determined by X on M induces an evolution path

i:LO'y_lzT—>]\~4,tl—>p

determined by X on M. Obviously, the image sets of L and L are the same, i.e. L(T) = i(T) For convenience,
on the classical spacetime submanifold M, usually L and L are uniformly denoted by L.

It is seen that the classical spacetime submanifold M is not independent of M, and determined by the
evolution direction field X on M. So a part of the properties on M can be expressed as properties on M,
anyway which is for only some properties on M, not all.

Now these properties should be researched on the classical spacetime submanifold M. First, consider the
relationship between the parameter equations of L and L, and establish the coordinate representation of
classial spacetime reference-system.

Definition 6.1.1.3. Let % £ X (p), and let L, e % be an evolution path on orbit ¢ x , through p on M.
And the evolution direction at each point on L, is an internal-directed evolution direction. Thus, about the
metric parameters £ and 7 on the internal space submanifold N, there is a kind of parameter equation of
i,

et =M

JZM — x‘JFM(xT)
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Substitute this parameter equation into the coordinate form of evolution in Definition 2.4.2.3 :

=) =0 @) [ =2M(eh) =21
€0 =) L2 =20 ’
then it is obtained that
sA =&t (@ e (@) = &0 (o) [aM =aM (g e (€)= a7 (€0)
& (%) o =2 (¢")
f gu ({Ek xm (m'r)) _ 5% ($0) LL‘ — (gu §a (57)) =k (50)
& Q=6 (b2l (7)) =& (29) a™ =™ (€60 (€7)) = 2 (€°)

€0 =¢0 (xO) 29 — 20 (50)
¢ =g («F, a (27)) = € (2°) o =k (£, €0(¢7) = 2% (€0)
S QEH(E) =€ (2" 2 (7)) =€ (2°)  Qal (@7) =™ (€67 (€7)) = 2 (€°)
£ =¢0 (xO) 20 — 20 (50)
g =" (b, 2 (27)) = £ (2°) ok = (g e (€7) = 2 (¢°)
S =" () (Ml (7)) =€Eo(€) (2°) JaT =aTe (@) (€& (E€N) =T o (@) (€0)
€0 =¢0 (xO) 29 — 20 (gO)
=g (aha") =¢f (a%) (2" =2y (€4€7) = 2] (&)
S = (aMa27) =€ (2% {aT =27 (£ ¢) =7 (&) .
£ = ¢0 (IO) 20 — 40 (50)

Now these two systems of equations are called the regular simplified coordinate form of reference-

d

system and its evolution about proper-time parameter in direction J;, or regular simplified

coordinate form of evolution of reference-system. For convenience, they can also be called the regular

coordinate form for short. If no confusion, they are also be denoted by

£ =€ (a*,a") = €(a”) ok = ok (e, €7) = 2" (€°)
E=¢(aha) =€ ("), (aT =aT(€€) =aT(¢"), (37)
&0 =¢%(a") 2% = 2°(¢°)
more concisely, denoted by
£V =€) = ¢"(2") ¢V =€) ="

; ; (38)
" =¢"(2") €0 =¢"(2")

where ¢V = ¢V (2K) and 2% = 25 (¢Y) are called the (local) classical spacetime reference-systems at
p, denoted by f(p) and f~!(p). The coordinate frames (U,£Y) and (U, z¥) on a neighborhood U of point p

on M are called two classical spacetime regular coordinate frames.
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According to Definition 2.2.1.1 , these local classical space time reference-systems f(p) constitute a
classical spacetime reference-system f on M, and f can also be called a classical gravitational field
reference-system, or gravitational field for short.

Remark 6.1.1.1. Generally, the simplified coordinate representation of reference-system is not equivalent
to the original reference-system. It packs the properties of internal space of the original reference-system, so

it cannot reflect all the geometric details of internal space of the original reference-system.

6.1.2 Regular basis vector form

Definition 6.1.2.1. For a classical spacetime reference-system, the complete coordinate representation
¢t =M™
oM = ()
transitions to simplified coordinate representation

¢° =¢%(a")

o = al(€9)

Correspondingly, the basis vector representation

dgA = bA]VICl.’,E]w 8514 = Cy 8(ij
dzM = cMged | 9 _4a 9
oM M agA
also transitions to
s S I 0 _ a9
dg = b[ dl’ aé-s - CS 6$I
I_ I g08° 0 g 07
d =l | g =V ges

where the internal space basis vectors are packed in the following way:

agsd . 8§Sd ” ds 0 0x™ 0
9z T Pam ™ Ox, O0x™ ~ O&5 O™
oxt 9zt 7 dry 0 _ 0¢* 0 7
g & = et D¢, 0&T  Oal OEa

S - ~ S
gi” ggi, g%, g—g on M and Ziﬂ %, Zfﬁ? % on the evolution path of internal space submanifold N of

M are equal respectively.

Similar to Definition 2.2.8.1 , there is a basis vector representation on M:
0 ; 0

d¢® = B da' ags = Csgut

I 1 e8] 0 0 (39)

de’ = Cgd€ =~ _pBs_ =

oxl T oes

By transplanting Definition 2.4.3.3 and Definition 2.4.3.5 , the regular basis vector form of evolution

of classical spacetime reference-system on M can be defined as

deS = By dx! ~ Bf dx® do! = Cldes ~ clag®
d d d o d d (40)
I — >0 —=_—"_" |BS-%=~By—=—"
Co oxT Co dz0  deo 0 9es 0de0 — da0
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or as _ _ _ _
dés = BLdx; ~ BYdxg dry = CPdes ~ CVdegy
0 0 o d d N | d . (41)
Coig 07:7 BoigBoizi
" oxy Odzy — déo 50¢s Odéo — dzo

6.1.3 Regular metric form

The regular metric form can be directly transitioned from section 2.2.7.2 | which will not be discussed
repeatly. The concept of time metric in Definition 2.3.1.1 is expressed as the following form on classical
spacetime submanifold.

Definition 6.1.3.1. On a neighborhood U of p on geometric manifold (M, f), similar to Definition
2.2.8.4 , the two coordinate frames (U, &%) and (U, z') of f(p) respectively interit Euclidian metric tensors

g 2 0g7de® @ deT and h £ e;5d2! @ da’ from R, On U, two kinds of metrics are defined according to

(d€°)? £ " (de*)? + (d€7)? = bgrde®de” = gryda’da’
s=1

(dx")? £ Z (dz")? + (da7)? = epydz’dz’ = hgpde®de™

i=1
Obviously, such d¢® and dxz® are consistent with the d¢® and dz® in Definition 2.3.1.1 . It is because the

internal space metrics satisfy

3 )
(A7) & > (g, (daT)?E Y (da™)’
a=r+1 m=r+1

The above d¢® and dz® are called the total space metrics of classical spacetime coordinate frames
(U,€%) and (U,z"), or called the time metrics. d¢” and da” are called the proper-time metrics of
coordinate frames (U, &%) and (U, z!).

Similar to Definition 2.2.8.4 , there are metric tensors G £ Grydz! @ dz’ and H £ Hgepdé® ® déT on
M. The differential forms d¢° and dz° determined by

(de®)? & Gpydaldx’
(dz°)? & HgrdeSde™

are called the total space metrics of M about coordinate form dz! and d¢®, or called the time metrics.

6.2 Minkowski form of evolution of classical spacetime reference-system

6.2.1 Minkowski coordinate form

Remark 6.2.1.1. Due to historical reasons, some concepts in traditional physics such as coordinate,
vector, connection, curvature, etc. are not based on the regular coordinate (coordinate indices take values in
1,2,--+ ,r,7 and the value of evolution parameter index is 0) defined in Definition 6.1.1.1 , but based on the
Minkowski coordinate (coordinate indices take values in 0,1,2,--- ,r and the value of evolution parameter
index is 7). If the evolution direction is internal-directed, such a Minkowski coordinate always exists, which

actually can be constructed based on the regular coordinate in the following way.
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For convenience, if not specified in the following sections, the Minkowski indices take values in the

following range.
(1) a, B,7,0 =0,1,2,--- | r in coordinate frame (U,é)
(2) p, v, p,o =0,1,2,--- 7. in coordinate frame (U, Z).
Definition 6.2.1.1. The Minkowski coordinate representation should be constructed from the regular

coordinate representation in Definition 6.1.1.3 .
g =g, a") = €} (2°)
(1) &7 =€ (2", 27) = €1(=")

¢ ="
e = e ok, (€9)) = € (° (€9)) g =g (ah a7 (£ (2°) =& (2° (217" @)
&6 (2°) = ¢ (¢5,07 (€)= € (= (¢9) & { &F (2" (6) = € (.07 (£ (2°))) = €F («° (a1 (7))
& (") =¢ € (7€) =21 @)
g =g (ah, a7 (€ (2))) = € (a° (o1 7 7)) g = §"(ah,a) = € (a7)
1€ = (g7 (€ (@haf (€ (=) =7 7" (@7) . abbreviated as { ¢* = &(a¥,a%) = €} (") -
& =i (" (217 (@) & =ér(a)
ot =t (g, €)= 2} (€)
(2) a7 = a7 (€%,€7) = 2 (€")
z¥ = 20(¢Y)
o = ok (60,67 (:°)) = ok (€0 («2)) o =2 (6,67 (2 (€)= 2k (¢° (67" (€D))
& 3 (€0) =7 (661 (+) =27 (€0 (+%) > 4 0 (€0 (2%)) =27 (€67 (o (€)) = T (€ (67 D))
2 (€°) = a” 2 (217 7)) =67 (€)
2 =t (6] (20 (€)= 2k (¢ (7€) ot =3t (¢ =2} (¢7)
& Qa0 =a® (o7 7 (o7 (€160 (2 (€))))) = €17 (€7) . abbreviated as ¢ 2° = 20 (¢7,¢%) = 7%, (€7)
= (¢ (7€) T=E(E)
Define Minkowski coordinate )
Bre (e
£ L, AT
pre |2
therefore
gr =28 (ah2%) =&t (@) (Er = (3 E0) = & (@) g =& (4,3%) =& (@)

=60 (sckwo) = (7)) &0 =¢" ( i%) = €9 (&™) ,abbreviated as { €0 = ¢ (55 ,i0) = ) .
fT _ g‘r (1,7') g-r _ fT (jT) f _ g‘r (fé )
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:L‘k

€ (= (@) =) et (e =3t

~k
L
() e’ =i° (5",50) =79 (¢7) ,abbreviated as ¢ #° = ¥

" (6",¢°)
I’O 5:0 (£u7£0)

2" =3 (£7) BT = a7 (67') BT — a7 ( r)

Using Minkowski indices, they can be concisely denoted by

=g @y =@y |a=a(e)=a (&)

£ =€ (37) S P (g) : (42)

which are called the Minkowski coordinate form of evolution of classical spacetime reference-system,

determined by the regular coordinate form

Eo @) W) oo (€)= ()
€0 = ¢ (29) 20 =20 (£%)

On the classical spacetime submanifold M, Vp € M, the Minkowski coordinate frames on a neighborhood
U of p are (U,£%) and (U, Z).

Remark 6.2.1.2. It is seen that when describing internal-directed evolution, the Minkowski coordinate
frame is not independent of the regular coordinate frame, but is uniquely determined by the regular coordinate
frame. The effectiveness of discussions of geometric property in Minkowski coordinate frame is as same as
that in regular coordinate frame.

It must be noted that the Minkowski coordinate frame is not suitable to express the parameter equation
of the evolution path not internal-directed, such as the parameter equation of the actual evolution path of

light in vacuum. By contrast, the regular coordinate frame is suitable for this.

6.2.2 Minkowski vector form

This section at first defines Minkowski tangent vector and Minkowski cotangent vector which are equiv-
alent to the regular tangent vector and regular cotangent vector, then constructs the Minkowski vector form

of evolution, and at last obtains the evolution lemma in Minkowski form.

Definition 6.2.2.1. V ﬁ’ €T,(L),V & » € T,(M), each element of direct sum space T),(L) & T,,(M)
P

is denoted by % + %h}. Let V},(M) be a 1-dimensional linear subspace of tangent space Tp(Z\Z). And

each T, ( d ‘ ) has a unique vector projection P (de
p

dtrp,
_d_
T (dtL

—_pl -4
p) <dtLp

there exists an injection

> eV (M) Then, there exists a unique d%|p =
P

) € T, (M), and moreover there exists a unique ﬁ

| d A d
A W7 I 7
p Llp L

— &, €T, (L)®T,(M). Thus,

)-r (@)

p

d d
e

) iy

i:Tp(L)HTp(L)@TP(M>’ dt,
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Specially, if V, (M) is spanned by the basis vector {8%}, then (de ) and P (de ) are uniformly
P P

called the Minkowski tangent vector of % , respectively denoted by d%‘p and -2 ‘ . The set of all
P P

dty,

d

such Minkowski vectors e

%|p and

at p is respectively denoted by W, (M) and W, (L).
P

) ail)

induced by ﬁ’ is called the Minkowski tangent mapping at p, and say the Minkowski tangent vectors
P

The injection

Ruly £ Wy (L) — W, (31, P(de

i <d p) and P (ﬁ‘p) are equivalent at p, which is denoted by

dty,
d d d
il — 2P| — or —
dtr |, dir|,)

The above is a local definition. These local concepts exist on the entire evolution path L. If a tangent

d ~ d
J=r el

vector field % on 1-dimensional manifold L satisfies i <
the Minkowski tangent vector fields ¢ (i> and P (ﬁ) are equivalent on L, which is denoted by

~ 4
L dip

p

qis > at each point ¢ on L, then say
dty,

1V — = - r — = —.
dtr, dtr, dt dtp

The corresponding Minkowski tangent mapping on L is denoted by 7, : P (ﬁ) — (—) or & 4.

More concretely, let

d o od d. ,d. .
_— = A _— —_— = *
diy o a

d 0 d d -0
Pl—)=A"—, i|—|=4"— A" —
(dtL) ox™’ ! <dtL> dx0 Oxt’

now we have the equivalence between the Minkowski tangent vectors:

9 P
Ty A g ' T
i) "V am T 5

then

0o d 0 L 40
dx0 Ozt Oz
Define notations
9 »_ 0 d 5 9 a2 d
0zt Oz’ dim  Ox7’ 019 dx0’
thus
0 .0 d
A° A'— 2 AT .
om0 " ow - Y o
And denote
AV 2 A0 ATA AT AT A AT
thus
<y 0 < 0 <~ d
A A'— =2 A7 .
om0 " ow - Y o
Using Minkowski indices, this equivalence can be simply denoted by
Alti o~ AT d
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A A o)
=G oTH ) di,

o
>
(Y
3
3
o

Remark 6.2.2.1. Applying the metric tensor é/w defined later, define
A, 2 CNY'WA“, A, 2 G, A7. Then we have

o)
R

Remark 6.2.2.2. Similar to the above definitions about Minkowski tangent vector, there are concepts

about Minkowski cotangent vector, which are defined as following.

Definition 6.2.2.2. V df|,, ds|, € T, (M), each element of direct sum space 7, (L) & T,/(M) is denoted
by m* (df|p) +ds|,. Let V' (M) be a 1-dimensional linear subspace of cotangent space Ty (M). And each dfl,
has a unique vector projection P (df\p> evy (M) Then, there exists a unique ds|p = df|p - P (df\p) €
Ty (M), moreover there exists a unique 7* (df\p> — ds|p S by (L) eT, (M) Thus, there exists an injection

i1y (M) = T3 (e Ty (3), dil, i (drl,) 2 Carly) - (), — P (1))

Specially, if V,* (M) is spanned by the basis vector {dz”}, then i (df |p) and P (df |p) are uniformly called

the Minkowski cotangent vector of df| i respectively denoted by d f

and de‘ . The set of all such
P P
Minkowski vectors df ‘ and d fL‘ at p is respectively denoted by W; (M) and W;‘ (L).
p P

The surjection
7, Wa (1) > Wi (n), i (arl,) = P (arl,)
induced by df |p is called the Minkowski cotangent mapping at p, and say the Minkowski cotangent
vectors 4 (df | p> and P (df |p> are homomorphic at p, which is denoted by

i(dr,) = P (dfl,) or df| =~ df

p

The above is a local definition. These local concepts exist on the entire evolution path L. If a cotangent
vector field df on 1-dimensional manifold L satisfies ¢ (df\q) =P (df|q> at each point g on L, then say the
Minkowski cotangent vector fields i(df) and P(df) are homomorphic on L, which is denoted by

i(df) ~ P(df) or df ~ dfy.

The corresponding Minkowski cotangent mapping on L is denoted by 7* : i(df) — P(df).
More concretely, let df £ Bydx® 4+ Bydx™, dfy = n*(df) = Bodx® then

P(df) = B.dz™, i(df) = Bodaz" — Bydz?,
now we have the homomorphism between the Minkowski cotangent vectors:
Bydx® — B;dx' ~ B,dz".

Define notations
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thus
Bydi® — B;d#' ~ B,di".
And denote
By2 By, B;%2-B;, B.2B,,
thus

Bodi’ + B;d#' ~ B.di".
Using Minkowski indices, this homomorphism can be simply denoted by

B, di* ~ B,dz".

Remark 6.2.2.3. Applying the metric tensor GW defined later, define dz, = G,wda?“, di, & GTTdJE",
BY A& G“VB,L, BT A& GTTBT. Then we have

B"di,, ~ B"di,.

Definition 6.2.2.3. V4 £ Ar_2 df L B.dit, - & AT-4 de £ B.di7, define the conjugation of
dt / L d

oz dt T

Minkowski tangent vector and Minkowski cotangent vector:

d = -0 = o~ d ~ - d =~ - .
—dfy={( A*— B,di* ) £ A"B —.,d =(A" B,di™ )& A"B,.
()= {3 sy . ()= (o o

Proposition 6.2.2.1. If

d ~
— = = d ~ d 5
7 . [ ~=dfL
then
d = d ~
d = - d
<dt7 .f> <dtL7 fL>
Proof. Let
d , d d d )
AN g )2 AT
dty Az dt <dtL) azl’
df & Brdz!, dfy = 7*(df) £ Boda®.
And let
d o -, 0 d , « d
— = AH — = A7
dt oxr’  dig dzT

are the Minkowski tangent vectors of %, and

are the Minkowski cotangent vectors of df.

According to Definition 6.2.2.1 and Definition 6.2.2.2 we obtain

d d d d ~ ~
-2 — & — =2 —  df ~dfy & df ~dfr.
di — dip  dt  dtg f=dfp < d =df

I
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dtr,’

<A1501,B[d(£[> = <A0ddO,BOdm0>a
xr XL

that is ATB; = A°By, or can be expressed as A’B; + A"B,; = A°By, then A’By — A’B; = A" B, further
more, A°By + A'B; = A"B,, i.e. A”BM = A" B,, that is to say

d d
()~ (1)

Remark 6.2.2.4. With the above concepts about Minkowski tangent vector and Minkowski cotangent

Now according to the equation <%, df> = < d de> of Remark 2.4.3.1 |

vector, the Minkowski form of Definition 6.2.2.5 can finally be constructed. Now do it step by step.
Definition 6.2.2.4. According to the Minkowski coordinate form of evolution of classical spacetime
reference-system on a neighborhood of point p,
€ =g =€0En) i =aEn) =l
g-r — gr(‘%‘r) - ‘%T(g‘l')
The partial derivatives }
po o O s O
BooomnT Y g
are called the Minkowski slack-tights on the neighborhood of p. In addition it can also be defined that

Ea -y déa ET A déT

ToodEm T diT
N
Todert T deT
Similar to Definition 2.4.3.3 , they determine smooth functions Bﬁ‘, CH, B, BZ, C* CT on M. Then denote

gy £ CHBY, 0 = BICY,
gt £ BICM = BXCY, 62 £CIBY=C!BY.

Proposition 6.2.2.2. There are the following relationships between Minkowski slack-tight and regular

slack-tight.

B =B B: =B B = B} Cl =" Ci=Ctl Cy = Cg
L B L= = e
,60 ’ ) 95 ; o > € > o -

o G er=G e GO B B g B
T T8 T8 T Togg Tg

Proof. It can be directly calculated from Definition 6.2.1.1 according to the derivative rule of multivariate

compound function. On any local region of manifold, the complete expression of the Minkowski coordinate

form
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is

= (6,61 (+° (€9)) = 1 (€ (7€)
20— 20 <x2—1 (xT (ﬁs,fz (mo (50))))> _ 2—1 (€.
o =ap (€ (7€)

Then

a ags __ags __afs
I N
08 08 ded(¢p)toer  de o b

P oF T dxt da®  dET 8zi__d7573xi__% ’
s ditdEy dal de0d(g))”' dat d%dal  d)

T e dgr T dE0da0 dgr | der  dem de® 33
_ € _ dgpdid(ap) T _ dg;
Tdim dam da®de0  dxm daT
_ ) _d@p) A dgfd(ep) Tt de® dep b

S
()
(1>
QU
Ay
hv\

(=

o
>

‘ QL
a5y
Sl=)

T dET dar dam  dE] d€0  dam  d€] dam 0]
diT  diT  da]ded(¢))”  da]  dda]
T dér  der T d€0da® dgr T dgT T dET dE0 T G
0> 9€° 0 dal  O€ daf d€®  9¢*dxl  0€% daf  dEE .

y
4
>

b & = == T ===
07080 T 920 Ozt dad ' Ox7 dE0 dx® Ozt da® ' Oz dax®  dad 0
joo 06 _ 08 _de® () (0 daj  O€T daf dg®) _ dgdg” _ by
07 920 920 dx0  deT ozt dz0 = Ox7 de0 daO dém da® o5

oo diy _dif _d(g)) _da®dd(¢f) " da®de® _

TUodér dg A d0da® der T d0de o 5p
or' _ o0F' _ 02’ _
°ogs ZSENS,

07° 07" dio d(z7)"" a7 daz® 0z™ (]

X
(1>

S

“T9f T 9 T A dam 0&  der 0g | 5
& _dg; _de da®d(ap)”t _dé  da®dgy by

T diT dam dx0de0  dxm daT damda® €]

dzy, _ diy, _ doy d€*d(&f)" _dry

T odgr déT T d€0da®  der T dem T

diy diy  d(&)”'  da®dald(¢])T"  dada] L
T oder  der T der dxp da®  deT daf dET T &)
df”  d§T dgTda®d(a])”t  dgT da®dgT bf

dim  dzT  dade0  dem daT  daT da® &

I8
>

=
)
1>

X
[>

2
=]
(1>

SX
S
[>
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oz

s a0 _ oz _ Oxt dgs Oz dET dfxo _ ozt d&s 02’ gy _ dz’ _
0 9o dEO s AEO ¢™ da0 HEo aEs HEO ET DEO dgo 0
00 020 03 _da®d(a})" (027 dgj | OxT dg} da®\ _ daldaT _
07 gg0 060 T de0 daT &5 de0 ' 9T dab dgo dx™ d€0 &
oo @ _d _d@ep) _ ddald(ap) T deda® b
Toodzm daxT dx™ dz0 d&  da7 dz0 dz™ €]
Thus, the following conclusions are proved on the neighborhood of any point on the manifold.
b = —b; b = b by = b & =—c &=l & = ch
TR T, R A= IR = &
R T e P L T | P
T8 T8 T8 T T T
Therefore, there are the following conclusions on the entire manifold.
B =-B; B: =B} B = Bj Ci=-Ci Ci=ci Cy=Cj
po_ Bl B0 _ Br po_ B co__C7 20 _ OF ]
' 5 T 06 T e, T, 7 e
=% e a8 -2 |m-2 (n-2
oG 96 ) o €o o

Discussion 6.2.2.1. Now starting from the regular basis vector form

ded = bda’ ~ b5 dax®
;0 d d

da! = cLde® ~ clag®
02T ~ Odz0 ~ dgd

s 0 Lpd _ d
09es — "0qe0 T da0

the corresponding Minkowski basis vector form can be constructed. The regul

b
%cg

expanded as

de® = bida' 4+ bida™ ~ bdx®
b7 br

d¢® = bida' + bida™ ~ bida®

b

_ i, Or 5+ 0 _ 700
) 0 o d d i 9 T 9 0 4 1 d
st =% = T S 9 % I
Ox Ox dxV  dgo 57 Ozt | 67 Oxm  OF da¥ 0 dEo

b da® + bidat ~ bSda” bydi® + bidi' ~ bSdz"

bdx® + b0da’ ~ b0 dxT

)

ar basis vector form can be

byda® — bidx' ~ b*da”

T T ) bT
Oda® — Ldat ~ Zdz”
) ) )
@d 0 G0
65 dz¥ 67 Ozt 6] Ox”

= = {00di® + 00di' ~ 00diT o 9 d (%)
d ) 9 ) ) d Croan S G
0 4 5 0 o 0 5 9 oo Tozh T dET
“at "o o \Tap Toem - T
dx' = cide® + cLdeT =~ chde” da' = cydg® + crdg" ~ code” cods” — cidg® ~ cdg”
g s é T o~ @ 0 _ 0 i 0 _ é S ~ é T
dx™ = c;'dé-s 4 C:dfT ~ nggo - 56d§ + Egdé =~ 56d€ =dx = 570— df 70_d§ >~ 56 df
-l Lagd 4 o o Wd 1d  |Wd bo o
SRS g dx er € | ep 0T e5 dE0 2] dad ep de0  cp 06 e €T
Ghde® + & des ~ Edem GhdE® + ELde® ~ & dET N N
o e oo €S ~ HdET
&de® 4 &2des ~ Pacm &de® + Ades ~dem o o o i d (%)
~Oi_”s 0 §~T 0 bOi_’_Ns 6~ gNT d~ T@_ Tdé‘r
TdE0 TOEs TOET TOE0  Togs  Tder
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(1) On one hand, bidz", ¢hdé* € Wy (M) and & b2 -2 € W,(M) in (*) and (**) are Minkowski

T aggu ) T aga

cotangent vectors and Minkowski tangent vectors, respectively.

(2) On the other hand, in cotangent space T; (M) and tangent space T, (M) determined by the Minkowski
coordinate frames {éa} and {Z"}, there are cotangent vectors dé® = Bgdi", dit = éhdee e T; (M) and
1 oaw b?—‘@ € T,(M).

The above (1) and (2) determine the below (3) and (4).

tangent vectors c¥

(3) The Minkowski cotangent vectors l;“dfc“, E“dgo‘ € W*(M ) uniquely correspond to the cotangent

vectors badx“, c”dgo‘ € T*( ) Such an injection defines a relation of equivalence = such that
brdat = bodit,  hde™ = ehdl

The Minkowski tangent vectors in W,(M) and the tangent vectors in Tj,(M) have a similar relation to the

above, which is denoted by
0 0

cH =cH

“om = o ag = ae

o 0 _ja 0

(4) The Minkowski cotangent vectors b*dz", dé™ € W;( ) uniquely correspond to the cotangent
vectors bOdE™, FdET € T; (L), which is denoted by

b2diT = b0dzT,  AdET = dET.
The Minkowski tangent vectors in W, (L) and the tangent vectors in T},(L) also have a similar relation to

the above, which is denoted by
d d -~ d -~ d

~T ~T T — LT
=C —_— =

“diT - Tdi e Tdg

It has to be noticed that the mappings of equivalence from W,(M) to T,,(M) in (3) and (4) are injections,
and not surjections. W,(M) is not a linear space spanned by {d#"} as a basis. When Ay = 0 and A; # 0,
although Agd7° + A;d#" is a cotangent vector in T),(M), it is not a Minkowski cotangent vector in W, (M).
For example, consider the energy-momentum cotangent vector Eqdz® — p;dzt € TP(M ). If FEy =0and p; #0,
Eodi® — P;da’ is not a Minkowski cotangent vector in Wp(M ), and as an exception case it just exactly has
no corresponding physical intuition. Obviously, any formula including = constructed in the way of (3) and

(4) is absolutely not such an exception case.

All of the above equations together can be written as formula

€™ = bodit = bdit ~ b2di” = b di” dit = SHdE™ = FHdE™ ~ FdET = dET

L0 0 _.d _ _.d d, 830 0 100 _d - d d

H——=—=—=0C—=— e =00 2 — =b— = —
OFH OFH T dzm  dér g o dém d¢m daT

In consideration of the fact that no matter for the Minkowski tangent vector and Minkowski cotangent
vector in W, (M) and W; (M) or for the tangent vector and cotangent vector in T},(M) and T (M 1), the
basic conclusion of Proposition 6.2.2.1 holds for the same, so these two expression ways are consistent with
each other. In this sense, the above formula can alway be concisely denoted by
b dE" dit = G dE® ~ Fdem
0 -.d d

~ e ~ T
C = = —_— =

Toxr T TdiT  dér Toge  Tdér  dam
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The above discussions can be applied to the entire manifold, therefore on M it is obtained that

d§* = Bdit ~ B2di” dit = CHde™ ~ CHdE™
on 0 e d _d 50 0 L d _ d - (43)
Tafﬁﬂ Tdi'T dET Tafa TdET d‘%T

Definition 6.2.2.5. The fomula (43) is called the Minkowski basis vector form determined by the

regular basis vector form

deS = B dx! ~ Bf dx® da! = CLde® ~ Clae®
d d d B, d d
I o 0 _ ’ S ~ po _
Co ot o dx®  deo 0 9es 0de0 — da0

of evolution of classical spacetime reference-system on M.

Similar to Definition 2.4.3.3 , for the Minkowski form, define

~ dz™ . ~ dém -
d . £ —dz" d - s de™
SEEE =
and define dé and dgT such that
<Cf ,d5~7> —1, <‘f,d;zT> 1.
d&; dz,
Denote ) N
l:)T s d§a T A d&— oA dflt s dz,
«"dz, T dE, M dg T dE

which determine smooth functions B}, B, C},, CT on M. Moreover, denote

= A o :agiaiia TA:T 7'7:7'04 T A T RT __ T D
g, = BLCY =€, 05 —C#Bgféﬁ, g, =BJC, =B.Cy, 4,=CIB,=C]B}.
Thus, the Minkowski basis vector form can also be expressed as
dé, = BldF, ~ BLdE, di, = Codé, ~ CLdé,
= 3 = d d ) = a = d d
CS P = ;’.— po - —= ;7,,, =~ BZ_— —_— = —
0, Tdi,  dE, 0. dE,  di;
Proposition 6.2.2.3. The inverse transformations of Proposition 6.2.2.2 are
By =B} B =-B; B: =B: ci=Ci Ci=_(Ct ci=Ci
B BY 30 A0 0 0
0 == T == By =—= =% or=-% =%
09 59 09 3 &, s &, &9
CVO éz T BO Bs BT
0 T i T T _ T 0 T s __ T T __ T
R R I S S ) s
Proof. First, consider the local case. On a neighborhood of a point on M:
de® = bida' + bida™ ~ bida® bydz® — bida' ~ bSdx”
dg7 = b dx’ +blda” ~bjda® s ] b5da® — bldat ~ bldxT (44)
Cii+07iucoi—i 0 d i 0 uTa
0021 T 09z T Va0 T a0 \0gn T D — Dgyr
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dx’ = cld&® + ctde™ ~ cfdg”

dax™ = cld¢® + cTdem ~ cfde°
) ) o d d

Ve = Pogen =

S

Oaigs

dé® = b3dz° + bidi' ~ bSdz"

d€° = 03di® + b0dz* ~ b2diT
0 agd
7 920

T ozt

dit = & de0 + L de® ~ A dem

di® = &3de® + 0dé* ~ Rdem
2 g0 agd 4
Tog0 T ogs

I~

T dg‘r

dzT

Compare (44) and (46), it is obtained that

by = bg b =
»o
by = = bl =
69
=0
0o €
cop = S(TJ co =
T
Compare (45) and (47), it is obtained that
=G <
=0
© T
g = c
0 570_ ; s
30
bO _ T bs =
0 50 0

dz®

chde® — cldes ~ chdem

cgde® — cTde® ~ cTdem
0 d .0 L0
O deo 0oer

=

)

08753 -
de® = b3di° + bidi' ~ bsdz"

1 - B S
—de® = 2di® + ZLdit ~ Ldi”
60 60 60 60 :
g0 @0 gd 14
50080 50 0F  §0dET 50 dér
dit = & de® + & de® ~ A deT

1 & o @ &
—di’ = 2de° + 2dét ~ ZdET
ER L R
wo bo bd _1d
00 Hoge der & daT
—bs b =b°

b -
TR TR

& |._=
_@ CO 59

i (d=d

& ;&
_é ’ CT = é
by . b
R S

(46)

The above conclusions are proved on a neighborhood of an arbitrary point on M, so there are the following

conclusions on the entire manifold.

By = B; B =-B; B =Bj
B g B B
050, ‘ F T8
R R N N PG
0 S,,Q 0 59 0 59

i T 7 T
Ci=C Cl=-Ci Cl =
~0 ~0
cg=% cr=-% Cl =
0 ~0 s ~0 T
E‘r 9 57. )
B Bs
By = =T B = =" Bf =
0 0
€5 o=

Proposition 6.2.2.4. (The Minkowski form of the evolution lemma). For any Minkowski tan-

gent vector field w“%, IT]M%
conclusions hold.
w9 =y St =wTEH
oTH dzm™ T

b
wudz! ~ wdT" & lw, = w,

5 9 g O
oz, — Tdi,

whdz, ~ 07 dz, & Eut = o7

1%

-
& Wy, = W),

and any Minkowski cotangent vector field wwa%, QT#, the following
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Proof. Similar to the proof of Proposition 2.4.3.1 , the following local discussions can be applied on the
entire manifold.
1. Consider the case that basis vectors are dz* and %.

For Minkowski tangent vector,

. d dz* o dz* 0 d ., 0 d oy O . d
T | — ) = —=— — Eh— = —— S wel — 2w —
dzT dz™ Jxm dzT ozt dxT oTr  dIT oz dzT
Because the tangent mapping is an injection, then
0 d
I o o7 B T EH
whae Ew diT@w =w'el.

For Minkowski cotangent vector, di# ~ etdz™ = w,dz" ~ élw,dz", then w,di" ~ w,dz™ & etw, =
Wi
2. Consider the case that basis vectors are dz, and %.
"

For Minkowski tangent vector,

- d d:z#a@d@ﬂawd@%awdﬁ_:arv_d
T | —=— ) = —=—5=— — — = — € = — W€, = = Wr—.
dz, dz, 0%, dz, 0%, dz, “ox, di, i hox, T dz,
Because the tangent mapping is an injection, then
By =g, o & W, = W-E,
Moz, — Tdz. T

For Minkowski cotangent vector, d,, ~ &/, di, = w"di, ~ & w"di,, then w'di, ~ 0’ di, & &0t =

w”. [
6.2.3 Other Minkowski forms

Some concepts related to Minkowski metric representation of classical spacetime reference-system can be
tranplanted from the general concepts in section 2.2.7.2 and section 2.4.3.5 .
Definition 6.2.3.1. Denote
1 pu=v=0 1 a==0
=2 A u=v#0, bup=0"2{ - 1a=8#0.

O’ /”’L?éy Oa O‘#B

Discussion 6.2.3.1. According to Definition 6.1.3.1 , on a neighborhood of any point p on M,

(A°)? = (d€*)’ + (d€7)* | (d€7)? = (d€°)* =D _(de)* | (dE)7 = (d%)7 =) (d&°)?

= =

(dx) = Z (dz")? + (da™)? (dz7)? = (da®)? - Z (dz')? (dz7)? = (di°)® — Z (dz')?
=1 i=1 i=1
(d€7)* = Oopdé®dE”
= .
(dz7)? = &,,di"dz”
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Substitute the local Minkowski basis vector form of Discussion 6.2.2.1 to the above equations,
(d€7)? = Gopd€dEP = §osbobldTtdz"
(di7)? = &, di"di” = &, 5dEdEP
Denote o
guu é 5@,61731)5

A = spaw
hap = €,,ChC5

then ~ ) o
(d€7)? = bopdE®dE? = G, ditdz"
(dE7)? = &, dF"di" = hapdE®dEP '

For the same reasons as Discussion 2.2.8.4 | here we do not define other metric tensors like Definition

2.2.8.6 . It is enough to just consider metric tensors g and h.

Definition 6.2.3.2. Define the Minkowski metric tensors
g 2 00pde™ @ dEP = g, d7" @ d7¥ = §'di, @ di,
Eudit @ diV = hapde® ® dEP = hoPdE, ® dés

of classical spacetime reference-system on a neighborhood of p, where
ilaﬁ = 5uu5552 = éuyi)uaguﬁ

Guv = 0apblibl = 6P ca,is,
heP = g, = e bob]

T T

Similar to Definition 2.2.8.4 , define the Minkowski metric tensors
G 2 A,pd* @ d€P = G, di" @ di”
H 2 E,,di" ® di¥ = Hapde® @ dEP

on M, where
Guv = AapBLBY = AP C,,Cp, Hup =B, ChCl = EM BuaBug
é#’/ = AN(XBBO"”B/BD = Aaﬁégég .

Definition 6.2.3.3. Denote G, £ BIBI, G"™ £ C7CT,
Proposition 6.2.3.1. On the evolution path L,

d - d d P
~ — TT popt) —_— = HTT = .
dZ, dz™ dé. deT
Proof. It is similar to Proposition 2.4.4.1 .
d d _ d o _d d d _v_d
Expand tangent vector T as g = X 77+ about basis zz=, and expand tangent vector kil Y e
o d
about basis T
d d = ~ 1 ~ d ~
—di, Y =1 (X—, G dT )=1XG =1 X=—=G@"=>—=G"—.
dz, dz Grr dz, dz™
1 - -
— =H" = —=H"—. O
dé- dgr

<Cf,d¢i> =l <Y d ,FITTdfT> —1eYH,=1aY =
dE, dér i,
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Proposition 6.2.3.2. The following conclusions hold.

S0 50 =0 =0
G.. = 2% o = S50 s Goo = TG Hep =
T — 00, T — 5T5T 005 00 = ~020 JTT 00 — 20 70 TT*
5050 Erer 67'57'

Proof. The following local discussions can be applied to the entire evolution path.

_ dETdET deTdeT 6363deRde 6767 N 6950

A o e ereddx0dx®  efe] g 900 = J00 = SUSY g0 9

~ diTdi™  dxTdx"  eleldalda’ elel 50 éo =

o= = = hoo = hoo = =—=hrr. O
déraér — dgTdeT — 05o5dg0dg® — sgag T T 5050

Proposition 6.2.3.3. The transformation relationships between regular metric Gy; and Minkowski met-

ric G, are

5 5050 A
G . GTTG _ 57-57' GTTG ~ GOO A 60 68 GOO
T = = 00 = =0 A& T GOO = G-,—-,— = GOO
G el @ G el G
00 ™ 00 T €o&o Lrrr
A 5050
o _ Gy _ 882G G~ Gir ra 58 Goo
ir=—=¢6,Goo = —— = i0 0="7 Eobrr = = G iT
00 €7 Goo TT co Grrr
~ 5050 ~ Grj +~ 9005 G
G GOJ ~OG _ 5T6T GTT@ GO =__1 e, G == — 00 00
rj = ==& G = — L= =G, i =G, 00 PG,
00 £ Goo o o T
G 550 &, - 7y = —Ci g, — %% Guo
iJ TV ITT G - G -
Gij=—="Goo = —5 = Gij * G erel G
=0 & TT TT
00 67'57' GOO 070

Proof. The regular metric and the Minkowski metric are

Goo(dz®)? = (d€®)? & Gpyda’ da’ dz")? + Girdr'da™ + Grjda"da? + Gijdatda?

rr(
Grr(d2™)? + Girehda'ds® + G jelda’da’ + Gyjdx'da?
G (diT)? = (d€7)* & G, ditdi” = Goo(d 02 4 Gipd#'di® + Go;di’di? + Gyjdi' di?

Goo(di®)? 4 Gipedzdi™ + Go;E%di™d7? + Giydi di .
The transformation relationship between Gj; and G uv can be obtained in the following way.

. o A
Grr(y 9280 Goy

GTT = = 00 = = = TT
Goo €982 Goo
G G. _ G G.. .. G 5050 a
de®)? = 27 (de™)? + 2T datda” + S daTda? + =L datda? Gir = — 220G = =G,
(dz") Goo (da”) Goo Goo Goo N Goo e g9 Goo 0
. . o N $050 A~ ’
(di%)? = Srr(gzmy2 - Cin D dFidsT G—ﬁdfd@ﬂ _ G g Gy = GG, = G
Goo Goo Goo Goo 00 €% Goo
~i' SOSO ~‘r7' ~
Gij = *gj Goo = *égég % ij
00 757 00
~ Goo = 0405 Goo
Goo = Grr = Goo
Grr e0eg Grr
(da™)* = goo (dz®)? — g” enda’dx® — %Egdxodmj — %dwidxj Gio = —g” 3G, = —5050 goo
~ =
G G G G, . ~ Gri =~ 6508 G
~T\2 00 / ;~0 2 0 7~4 O] 0 757 ij ~j Go: = — Tj TG — 0% “200
(dz") . (dz")* + a =—di'di® + — Az dz’ + TTd F'di 0j a. e0Grr < Gor
~ Gii ~ 6508 G
Gz == GTT =22 00 Gz
! Gy erel Grr 7




86 Zhao-Hui Man

Definition 6.2.3.4. Similar to Definition 2.2.9.1 , we can define an affine connection D on M, called a
Minkowski affine connection. Take smooth real functions I} L, on M. Using the restriction of them on a

neighborhood U of p, the Minkowski affine connection can be expressed as

0 A =
= F“
gz vt pgn
Ddz" & fFV dz’ ® dzt

D

The Minkowski-Riemannian curvature tensor is defined as

0 afu 81 b
12 P 1 Vo vp
W Rl,pg S ®dZ¥ @ dzf ® d2°, RUPU =2 popes

A u al S ald
+ I F = I;,I5,.
6.3 Actual evolution of classical spacetime reference-system

6.3.1 Actual evolution direction

The general theory about the actual evolution of general reference-system in section 2.4.4.2 can be
transplanted to the regular form and Minkowski form of classical spacetime reference-system. The forms of
regular concepts such as regular gradient, regular actual evolution equation, etc. are as same as the general
forms. This section mainly discuss their Minkowski forms.

Definition 6.3.1.1. Let V" be the set of all sections of n-order tensor bundle generated by tangent
bundle T(M) and cotangent bundle T*(M). VT £ i${-2

52; ® di*} € V", the absolute differential of T is
DT £} ,dz° ®{ - ®di*}.

On evolution path L, #3, £ 7 oty is a smooth real function induced by regular embedding 7. Define

- . 0 .
T, éti'{ér ® di*},
A e dE°

{o
Le;T LHes diT ’

- - 0
DTy 213, di" 7}
LT =1, 550 ¥
Define operators

V:yr oyt T»—>VT—t:08{)

- - . - - d
ViV 5 I(T(L) @V, Ty — VT 2 tz,ﬁ% ® {

®{ s ®@di*},

0
ox*

® di®}.

They are uniformly called the Minkowski (absolute) gradient operators about connectionD on manifold

M. VT and VT are uniformly called the Minkowski (absolute) gradient of tensor T, where

e A Te 0 = je A Je d
Vig = oua ) thLo:tLQ;TE
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are uniformly called the Minkowski (absolute) gradient direction of components of tensor T.
Proposition 6.3.1.1. VT € V, T £ f:{% ® dz*}. Let L be an evolution path on any orbit of the

one-parameter group of diffeomorphisms determined by smooth gradient field 2. #8% on manifold M. The
DT,

following equivalence of tensor products holds on L necessarily:

X O 0 d

T A Je ~e\ ~v Je 0
VT = ’W(’?ii#@{ai‘ ®d$ }_tLo;‘rE(g{

oxr® ®d§3.} £ @LTL,

denoted by V = V., where t}. L rofs.
Proof. It is similar to Proposition 2.4.5.1 .

Because the tangent mapping is an injection, tangent vector field f:; #a%u el (T (M )) along L uniquely

correspond to a tangent vector field X -4- € I’ (T (L)) such that

dz

0 d

7e ~

19z, dis

holds in sense of the equivalence of Minkowski tangent vectors. According to the evolution lemma,

~ dx dz*
foo—x Y oger~ B gim
s di. |, dz™ |,
So there is a homomorphism
P da o~ x Bul AN
" dz, |, di7 |,

According to Definition 2.4.2.1 , the coordinate mapping induced by the regular embedding satisfies
(de®)? = S (de*)? + (dET)2, e (dET)2 = (dE9)2 — 3" (d€*)2, further more, which is dz,di™ — i, di" on
evolution Z);lth L. Substitute it into the above homo:ul)rphism, then f:; pdzt = Xdz". Due to the evolution
lemma, X =17, 922 =13, . O

Definition 6.3.1.2. The Minkowski gradient operator is called the (Minkowski) classical spacetime
actual evolution. A Minkowski gradient direction is called a (Minkowski) classical spacetime actual
evolution direction. An evolution path on Minkowki gradient line is called a (Minkowski) classical
spacetime actual evolution path. Equation

7e __Je =T e 78T~
to;,u - tL.;T€p7 to - tLo Er

is called the (Minkowski) classical spacetime actual evolution equation of ¢3.
6.3.2 Actual evolutions of potential field and charge

Discussion 6.3.2.1. Similar to Discussion 2.4.6.1 , we have Minkowski Yang-Mills field equation

% P ~
H — K
Kl/pU 7]1/0)

where the Minkowski charge and flow are defined as

suo A peu P TuoA spoaT
Pvr = Kl/po € Jve = Pur€o-
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Consider the externally flat case, only the internal charge 59, does not vanish, and the Minkowski Yang-Mills

field equation becomes

0 P 0
KOpO’ Joo>
where
~0 A 0 Pxo 0 A <0 zZT
Por = Opo Ers Joo = Por€o-

Similar to the discussions of section 2.4.6.3 , there is the actual evolution equation of Minkowski charge

p of classical spacetime reference-system f evolving in classical spacetime reference-system g, as following:

podi® ~ p. di”
) d

P;TE

P;G%

1%

Now there is a problem. After the encapsulation of classical spacetime, several internal space dimensions
in general reference-system become only one. Several internal charges p|, describing by the general Yang-
Mills field equation also become only one, that is pZ, in regular form, and is g9, in Minkowski form. Thus,
the original geometric properties of internal space cannot be completely described.

On the premise of not abandoning the four-dimensional spacetime, if we want to describe gauge fields, the
only way is to put those degrees of freedom of internal space to the phase of complex-valued field function.
This way is effective, but not natural at all.

The logically more natural way is to abandon the framework of four-dimensional spacetime. We should
put internal space and external space together to describe their unified intrinsic geometry, rather than based
on the rigid intuition of four-dimensional spacetime, artificially setting up several abstract degrees of freedom
which are irrelevant to the concept of time and space to describe the so called gauge fields.

No matter for gauge fields or for gravitational fields, their concepts of time and space should be unified.
The gravitational fields are described by the intrinsic geometry of external space, and the gauge fields are
described by the intrinsic geometry of internal space. They are unified in intrinsic geometry.

Now we have to know that the complex-valued expression form of traditional gauge field theory is a his-
torical necessity, but not a logical necessity. It can be seen later that as long as expanding those encapsulated
dimensions, only real-valued expression form will be needed to clarify the goemetric properties of internal
space. Especially, if understanding in the way of intrinsic geometry, some man-made postulates of standard
model of particle physics will be unnecessary, because they will hold automatically.

The details will be discussed in section 6.4.3 and section 7.3.1 based on section 5.1.3 .
6.3.3 Energy-momentum equation

Discussion 6.3.3.1. (Regular form). Let f and g be classical spacetime reference-systems, and f
evolves in g. As same as section 2.4.7.1 , here simply denote regular charge p;; by p.

The energy (density) of regular charge p evolving in g is E° £ pi® £ pKe0 or By 2 pg £ p.xell. The

momentum (density) is pX £ p or px £ p.i. The canonical energy (density) is H? £ ji—,po or Hy 2 %’0.
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L

The canonical momentum (density) is PX £ or Py 8‘1—‘}(. Usually denote

- 8{131(

mTépTa m'rép'r, MTé_PTv M‘ré_Pr

Similar to Proposition 2.4.8.1 and Proposition 2.4.8.2 | in the actual evolution direction of p, there is an

energy-momentum equation EqE® = pgp’
EoE° = prp* +m,ym”

And in the actual evolution direction, the energy and momentum satisfy relations pX = E% and px =
Foel..

Definition 6.3.3.1. (Minkowski form). Let f and g be classical spacetime reference-systems, and f
evolves in g. Simply denote Minkowski charge p,., by p.

(1) m™ £ 5™ and 7, = p., are called the rest-mass (density) of j evolving in g.

= p:u are called the energy-momentum (density) of p evolving in g.

[\
]
=
(>
heY}

# and p,

(2)
(3) M™ & 92 and M, & —ﬁ, are called the canonical rest-mass (density) of p evolving in g.
(4)

4) pr & 90 and P, = % are called the canonical energy-momentum (density) of p evolving in

Usually denote

E°£(°, Ey2po, H°2-P° Ho% P

Proposition 6.3.3.1. If and only if the evolution direction of p evolving in g is the actual evolution
direction, equation

~ ~ T ~

mym” = pupt

holds.
Proof. Similar to section 2.4.7.1 | with the concepts of energy and momentum, the actual evolution

equation of charge p can be expressed as

T dE, ~ prdE, medz” ~ p,dz"
. d L0 or . d . 0
T xpH mr = —
dz= U ok Tz, Mo,

The conjugation between the actual evolution direction and the charge differential form is the directional

derivative of p in the acutal evolution direction, i.e.:

LP & <fl,[)Lp~> - <‘f,Dﬁ> S Df’,
trp dtrp dt; dt;

4 P
<mrdx~7_7m7'dx > <pua~ ,puda? >

which is G, = GH Dby, i.e. mym” = p,p* O

more explicitly,

Definition 6.3.3.2. Equation

e
mym” = pupt
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is called the energy-momentum equation of Minkowski charge p evolving in g.

Remark 6.3.3.1. The energy-momentum equation can also be written as m,m” = pop° +prp* or denoted
by

mT EOEO + Pkp
Specially, if g is an inertial reference-system defined later, the energy-momentum equation of p becomes
m} = E§ — pi.
Proposition 6.3.3.2. The relations about energy-momentum of p

dx“ dz,,

de ) Py = Mmr

dz,

hold if and only if the evolution direction of p is its actual evolution direction.

Proof. Starting from the equivalences 13"8% = ﬁfd;% and 73#8% =~ -3 i determined by the actual
z u

T dzt
dzT

evolution, according to the evolution lemma, p* = m and p, = m, Z‘;“ are deduced immediately. [
Remark 6.3.3.2. Similar to Remark 2.4.8.2 | in the actual evolution direction, the conclusion of this

proposition is consistent with the classical definition of momentum in traditional theory.

6.3.4 Conservation of Energy-momentum

Similar to section 2.4.8.2 , we can define the conservation of energy-momentum in classical spacetime
reference-system. Now talk about it briefly.

First of all, the traditional standard conditions of Definition 2.4.9.4 will be expressed as following in
classical spacetime reference-system.

Definition 6.3.4.1. (Regular form) The following two conditions are called the (regular) traditional
standard conditions.

(1) dEp = 0 is called the (regular) constant mass condition.

(2) I'M £ TM.el’ = 0 is called the (regular) canonical mass condition.

Definition 6.3.4.2. (Minkowski form) The following two conditions are called the (Minkowski)
traditional standard conditions.

(1) dm,; = 0 is called the (Minkowski) constant mass condition.

(2) Tr & f‘ﬁpéﬁ = 0 is called the (Minkowski) canonical mass condition.

Discussion 6.3.4.1. (Regular form) It is similar to section 2.4.8.2 .

The conservations of energy—momentum of the actual evolution of regular charge p of classical spacetime

reference-system f are ‘flp" 8E° +pL2 5% — [pFkL]el = 0 and pryo — Fo.x +pL5€;K — [pRi1)el = 0. On
the traditional standard conditions, ‘ffog - [pFKL]aé =0, px,o — [pRKL]eo =0.
The regular Lorentz force equations are Fr £ 2% = 95 _ ) az% + [pFkrlel and frx £ pro =

Eo.x — pLeéK + [pRx)ek. On the traditional approxitmate conditions, Fir = [pF]el, fx = [pRir]ek.
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Similar to discussions in section 2.4.10.1 , there is a conservation of total energy-momentum flow 77,7 = 0.
Discussion 6.3.4.2. (Minkowski form) The strict deduction of the conservation of energy-momentum

in Minkowski form is similar to the discussions in section 2.4.8.2 . Here only list the results. Denote j £ Puv

and 95 5
~T5 P ~ P v ~ ~ s ~ -
] = ozw P < 353[; = Puviw = Pux L0 + P L,
= dp . Apuy . - S ’
[pIr] & T P = d;T — Puvir = Pux L5 + P L7
and denote
[pI) = gX“[pIy]
[pI7] £ g77[pI%]
therefore
[ﬁ w}:Pw_]aw [ﬁl—w]:Pw_ﬁw
[P T]:MT_mT [ﬁfT]iMT_~T
Then denote
= . oryx. — ory B orx. —ory - . .
[poa] £ Pux ( o ax"p> + Pxv < 5le - 8;?) vl pa} £ pllAXR?fpo' +PXVR§,M’
s opl,)  olpl,] .= e 5
o) 2 S0 - SO (5E,) 2 [5F), — T

The conservation of energy-momentum of g is

dp, Om. 022

dir ~ ozr  Pooze

ﬁp;f - m‘r;p + ﬁaéggp - [ﬁRPU]éZ =0

- [ﬁﬁ polé7 =0
on the traditional standard conditions,

dp P
di’f— - [pFPU]ET =0

Bpir = [PRpo)E7 = 0

The Minkowski Lorentz force is

. . dp, Om 97 ~
o A R e A S A
p dx™ 8‘%;} b 8ﬂ~jp + [p P ]ET

fp é ﬁp;‘r = mr;p - ﬁaéf—;p + [ﬁRPU]sT

)

on the traditional standard conditions,

F, = [pF,0)ég
fp = [,5]%/,0]5:

Similar to section 2.4.9.3 , there is a conservation of total energy-momentum flow TW = o.

6.3.5 Gravitational field equation

Discussion 6.3.5.1. Similar to section 2.4.11.1 , for the evolution of classical spacetime reference-system

f in classical spacetime reference-system g, the following gravitational field equations are obtained.
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1) Regular gravitational field equation is 3 ¢ C ;s + 3 P T( ;7 = 0, where the dimensions among
€)) (p)
z 2
various terms are harmomized by constants ¢(®), ¢(®).
(2) Minkowski gravitational field equation is Zc(i)é@w + Zc(ﬁ)f(ﬁ)w = 0, where the dimensions
z p

among various terms are harmomized by constants ¢(*), ¢(?)

6.3.6 Evolution quantity

The general discussion about evolution quantity in section 2.4.12.1 can be transplanted to classical
spacetime reference-system. Now talk about it briefly.

Discussion 6.3.6.1. (Regular form) The regular form is similar to the general form.

Let L, € L be an evolution path of regular charge p of f evolving in g, and dz° be the time metric and
satisfy t, = 2%(a) < 2°(b) £ ;.

The regular evolution quantity (density functional) of p from a to b along path L, is

oo (L) 2 [ Do [ Eods® = [ prds’ - tb—deH—[F]R)dT
pW p) = . p = ; oaxr- = ’ PrRAT " = ] de( 0 PL R|EY T .
P a a a

Similar to Proposition 2.4.13.1 , because in the actual evolution direction, the integrand of evolution
quantity is a directional derivative in gradient direction, so the actual evolution path as the integral curve
of gradient directions should satisfy the following proposition. The proof is as same as Proposition 2.4.13.1
, 80 it does not be discussed repeatly.

Proposition 6.3.6.1. (Regular evolution quantity extreme value theorem). Suppose charge p of
f evolves in g. For the charge p, an evolution path L, is exactly the actual evolution path if and only if
dspw = 0.

Definition 6.3.6.1. (Minkowski form) Let dZ” be the proper-time metric and satisfy 7, = " (a) <
i7(b) 2 7,. VL; € L, denote

B N B Tb B oy To B B Tb dr™ ~ o -0
SﬁW(Lﬁ):/L Dp:/ mdT :/ pudx“:/ 5 (MT—[pFU]z-:T) dz®.

The functional § ;SVV(Lﬁ) about path VL; is called the Minkowski evolution quantity (density func-

tional) of p evolving along path L;. Usually it is also called the action of j evolving in potential fields.
Proposition 6.3.6.2. (Minkowski evolution quantity extreme value theorem). For the Minkowski
charge p of classical spacetime reference-system f evolving in classical spacetime reference-system g, an evo-
lution path Lj; is exactly the actual evolution path if and only if 65 o =0
Proof. It is similar to Proposition 2.4.13.1 . The only difference is that the gradient about general
coordinate is replaced by the gradient about Minkowski coordinate.

Let the parameter equation of evolution path Lj; be

P =i(F), 1. <F <7
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and let the parameter equation of evolution path L; + dL; be
7 =2%(2") 4+ 62°(&7), Ta<ITT <My, 037(1,) =027 (1p) =0.
Let the unit tangent vector of path L; at any 27 be
~ d dz°®
X £, £
i (di7> i |,
and let the unit tangent vector of L; 4 6L; be
g <di°' dz°® >
~ e + 5j
s 0T dz dz™ )| ;-
Then consider the variation of 5,y (L) = [, m.di™ = [ poE7da.
A§5V~V(L,3) = A/ DoEldET = / DeEldET — / DeEldET = / Pie€dTT — / pie€ldxT
Lﬁ L5+5L5 Fi L§+6L5 Lﬁ
:/ <X,f)ﬁ> A7 —/ <X,Dﬁ> A7
ﬂ+6L P

/Tb <X X, Dp(F° + 5:5”)> 7™ — /

X +6X,Dp(a%) + %5% + o(éi)die"> dz™ — / <X, bﬁ(fc")> Az
€T T

d(z° 4 0z° 0 0
d (27 +42%) e = (E7 (&) + 887 (7)) 5=

X +6X 2
+ di

Tb

<X7[7ﬁ (j")> 7

Il
~|\\‘
P
Qq
Ex
\/
ax
0«)
=l
™
+
QS
—
[
2

Thus we get
Tb _ ~
5557 :/ (0%, Dp) da”.

When point b — a, 6d§ﬁW = <6)~(,l~)ﬁ> dZ”. The directional derivative <)~(,l~)ﬁ> = p,r cost), where 6
is the included angle between the evolution direction X and the gradient direction. Take the directional

variation,

<5X, Dﬁ> = p.;0cos = —p., sin 600,
Thus, the evolution quantity variation of p is
83 53, = — 7 sin 0560dz°.

For arbitrary p, dds;; = 0 if and only if sinf = 0, namely the evolution direction at this point is exactly

the actual evolution direction (take the positive direction without loss of generality).
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Take integration from a to b, then § f:b dss =0 if and only if the evolution direction at each point of
integral curve L; is the actual evolution direction of p. In other words, 5 s =0 if and only if Lj; is the

actual evolution path of p. [
6.3.7 Legendre transformation and equation of motion

This section does not discuss the general abstract theory of Legendre transformation, but discusses the
relationship between energy-momentum equation and the concrete construction of Legendre transformation.

Definition 6.3.7.1. (Regular form). Denote

i éEOLﬁ dzx®

I e (Ho — [pIklel)

da® dax®
L. 2 H, = 7 (Eo + [pI'k]el) -

Obviously on the canonical mass condition,

On the canonical mass condition, £ is called the regular Lagrangian densigy of the regular charge p of
f evolving in g.
According to Discussion 6.3.3.1 , the canonical energy-momentums satisfy Hodz? = Prda® — M, dz". As

a result,

k 0 k
M, = Pkda: I% dx _p, dz
dx™

— Hy—— — L.
dz™ O dem

M. is called the regular Hamiltonian density of regular charge p of f evolving in g. Such a transformation
between M, and L, is called the regular Legendre transformation.
Definition 6.3.7.2. (Minkowski form). Denote

~ dz™ di" /-~ ~
L é~7'7:7(]\/[7'_ ~F(T~U>
0 m di’o d{io [p ]6 )

L (o)

EOéMT

Obviously on the canonical mass condition,

On the canonical mass condition, £ is called the (Minkowski) Lagrangian density of Minkowski charge
p of f evolving in g.

According to Definition 6.3.3.1 , the canonical energy-momentums satisfy M,di™ = P,di* — Hodi. As
a result,
~ dzF - diT < dit

Hy =P~ — M.~ = P,— — L.
0= "haz0 dio " Fgzo 0
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Hy is called the (Minkowski) Hamiltonian density of Minkowski charge p of f evolving in g. Such a
transformation between lffo and Eo is called the (Minkowski) Legendre transformation.
Discussion 6.3.7.1. (Euler-Lagrange equation) On the traditional standard conditions, Euler-Lagrange

equation can be obtained directly from the definition of Lagrangian density. Concretely,

L AHon_ﬁdxo_ 8p ddeixo
T 00 T dx0daem  9xM da daT’

SO

oL, 0 op dax™M dfxo
0xK — 9zK \ 9zM dx0 dx™
According to Remark 2.4.9.3 | in the actual evolution direction,

oL, daM dz0 9 < op ) dzM dz° 9 ( Op > B daM dz0 0Pk _ dPg

0rK — da0 dom 92K \92M ) T dx0 dzm 92M \ 92K ) T da0 dam 9zM  dzT
Thus we get
@ _ L, =0
de™  Oxk 7

which is the regular Euler-lagrange equation.
There is a similar deduction in the Minkowski coordinate form. On the traditioinal standard conditions,
dx™ dp dz”  Op di* di”

-
= M —_——= = —_— —_—
Lo TdE0 T diT di®  O0H daT did’

SO

0ic 0z \ 9t diT di®

Similar to Remark 2.4.9.3 | in the actual evolution direction,

oLy ditdim 0 (ap) _dEtdim 0 ( Op ) _ da*di" OP, _dP,

oLy ) ( op dit di:T>

07— drT di® 03 \0xr ) diT di® 9xr \ 9x° ) diT did i+ di0’
Thus we get R ~
APy 9Ly _
dzo  9zk 7

which is the Minkowski Euler-lagrange equation.

dz"
dz0

Denote 0% £ In traditional theory EO = Pkﬁk — ﬁo is usually regarded as a function Eo(fk, 17’“), then

P, = 35,8. Consequently the Minkowski Euler-Lagrange equation fli];{;' - gf;’,‘; = 0 can be written as

ov
i 67‘,30 _ 9Ly -0
dz0 \ 9k oxk 7

which is as same as the traditional Euler-Lagrange equation.

6.3.8 Evolution equation in complex-valued form

This section concisely discusses the construction of evolution equation in complex-valued form. In order
to connect traditional theory, we consider the Minkowski form directly.
Discussion 6.3.8.1. Take a very simple field function ¥ (z#) = f ¢S for example. Let real function f (zH)

satisfy
df ., Of
2 Vv A <
/fd =1 da}f‘gTagzu_O'
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And let

sS4 /gdv, 5= /Eodio = f28.
Then let
M, £ /thdV, my = f2M,.
Further more let
BLI2 [(phJav. (o) = PIPEL
According to Discussion 6.3.2.1 ; in the actual evolution direction of p,
Pipd! ~ p. dx”

S0 . d
Pinoz, ~ Pz,

9

1%

then we obtain energy-momentum equation p.,p** = p.-p’", so the above actual evolution equation can be
equivalently witten as
{ﬁ;ugﬁ = Dsr
ﬁ;uﬁ;u = ﬁ;rﬁT

Without loss of generality, it can be denoted that either ., £ pir OF 1y =

= —p.r. For convenience, adopt the
latter. On the canonical mass condition, Zo = I~/0. It is obtained that

0§ a8 ~
it = - v
T Dt e = & dxm T
ﬁ;u/}m = pirp” PPt = pirp”

On the canonical mass condition, [ﬁf’ wJé* = 0, and the first equation becomes

. (.08 iS DT iS | _ iS ) of s 95 iS DT iS Y iS
@zs‘;(zaxﬂfe —i[PI,]fe )—MTfe @zsﬁ( e —1-2@](6 —i[PL,]fe

dzH
o(fes) N . :
- (a;u> —i[PL,)fe' | =M, fe's « igt ( % _ z'[PF#]z/J> =M,v

oTH

D) . 3
o it (o ~iPF]) v = v,

which is concisely denoted by iéﬁblﬂlz = M, where D“ = ag“ —i[PI ]. Thus, the evolution equation

becomes

iEDytp = My
ia;uﬁm = ﬁ;Tﬁ;T
which is the actual evolution equation in complex-valued form.

Discussion 6.3.8.2. The above equation is similar to Dirac equation, but not the same. p.,,p** = p.-p'"

can also be written as G*p.,p., = m2, where G*
) T

is the metric tensor of g. Then define the well-known
general Dirac algebra such that

Y A =26
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No matter what kind of matrix representation of «* is, directly substitutes it into C;"“’,é;uﬁ;,, = m2, then
('Vuﬁ;u)('yuﬁ;u) + (’Yuﬁ;u)(’}’“ﬁ;u) = 277172_.
If ¢ satisfies that p # v = G* = 0, then y#7” = —”~+* holds for different 1 and v. In this case the
above equation can be writter as (vp,,)(v"p,,) = m2, moreover we obtain y*p,, = —m, (be consistent
with Discussion 6.3.8.1 ).

Now according to the same thoughts in Discussion 6.3.8.1 , add an extra condition of flow conservation

'y“aan“ = 0 and a similar canonical mass condition y*[5I] ] = 0. Then

. N 9 - S y 08 -
VP = —hr & 7“7 =—Mmr < 'Y#ﬁ =—-M; & (83:“ - [PFM}> =—-M-

< iyt <i65;fei§ — i[f’fﬂ]feis> =M, fe'¥ < ir* (i}i S + i%f@ig — z[lSZ;IL]fdg) =M, fe**

L BTl ) =Ty

which can be denoted by

iV Dyp = My,
where the definition of D# is as same as that in Discussion 6.3.8.1 . Thus the Dirac equation has been
constructed. If adopting the matrix representation of v*, it just needs to use a four-component field consisting
of such four .

However, that is not all. Noticed that the above Dirac equation requires that the metric tensor of g is
a diagonal matrix. For a general g, the metric tensor is not necessarily a diagonal matrix. At this time we
should take another way based on the above result to obtain a general Dirac equation.

Concretely, consider the evolution of a charge p of an arbitrary classical spacetime reference-system f in
another arbitrary classical spacetime reference-system g. Review Remark 2.2.1.2 | and define a completely
static reference-system e such that Fy(e) = g. There is a traditional Dirac algebra yoyB APy = 2628
strictly defined on e. Then using the above result, it is obtained that the Dirac equation of p evolving in e
is ivaDaz/Je = M—ri/ie, where D, £ 3?1 — 1[15A~a]

When the reference-system transformation F transforms e to g, the transformation of slack-tight is

ng — B,

9
g
0 0 0

and the transformation of basis vector is

= a7~'—> —
ogr ~ " géa T aan  TH pi

and correspondingly let the transformation of v be

VP =By s A & Cly”,
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According to the definition of simple connection, the transformation of [13A~a] can be expressed as

[PAL] = [PT,] = [PALBS + 1y,
and correspondingly the transformation of D, is
~ 0 0 & -, 0 Lo _ .
D, & — £ — —j[Pl,] = B®— —i[PA,|BY —ir, = BYD, — ir,,.
oce ozH "

wo
Thus the transformation of . is

. / (P + PAL) dE" e / (By + PL]) da K / (P -+ (PALIBS +7,.) do”

—i[PA,] — D,

)

ie.
i/rudi”
we — ¢ = wee .
Denote
= /rudi‘“, Ty = 0,0,
then

e > = weei9~
The Dirac equation iV“f)(ﬂﬁe = MTwe correspondingly becomes
i (Bar) (Co(Dy +i0,0)) (we™™) = W, (we ™),
i'y“(DM +10,,0) (we_w) = M, e ",
iyt (@ —i[PT,) + i@,ﬂ) (e~ ) = M,pe ™,
"0, (we*w) + 7“[15]1]1/)@’1'9 — 'y“q/)e’wé)ﬂg = M, e,
iy be ™ +intepd,e T + ’y“[f’fu]z/ie_w — yHipe™9,0 = M, pe™ ",
iv”@m{;e*w + 7“1/1%067"0 + 'y“[f’fu]we*w - 7“1/}671‘98”9 = M, e ",
iV Out) + 70,0 + A [PLL) — ¥40,0 = Mo,
Y Oy + [lsfu]"/) = Mﬂb,
finally that is
iy Db = Map.
It is shown that a reference-system transformation F; brings a transformation of slack-tight, further more it
brings a kind of very general gauge transformation. In this sense, it is not difficult to understand the termi-
nologies in Definition 2.2.2.3 . The essence of the so-called gauge transformation is actually a transformation
of reference-system.

Thus, the Dirac equation i’y”f),ﬂb = M, about arbitrary classical spacetime reference-system has been

constructed.
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Now the Dirac equation becomes a theorem, and is not a principle anymore. In consideration of that the
Dirac equation is constructed from the actual evolution equation, so it also reflects the concept of gradient
direction, and it thereby describes the effects of intrinsic geometry of manifold on the gradient direction. In
this sense, the Dirac equation in epistemology can be used to cognize the actual evolution of physical reality

in ontology. This is the origin of the effectiveness of Dirac equation in traditional physics.
6.4 Classical spacetime inertial reference-system

In order to connect traditional theory, directly consider the Minkowski form.

Definition 6.4.1. Let g be a classical spacetime reference-system on manifold M.

(1) If g satisfies dC~ T =dz" on M, g is called a classical spacetime orthogonal reference-system, and
geometric manifold (]\7[ ,g) is called an isotropic spacetime. For convenience, dgT and dz”™ are uniformly
denoted by dr. According to Definition 6.2.3.2 , the metric tensors G and H of g satisfy GW = AQBBE‘BE =
By and Hop = By, C1CY = Ags.

(2) If the slack-tights Bﬁ‘ and (3;; of ¢ are both constants independent of positions on manifold M, g is
called a classical spacetime flat reference-system, and (M ,g) is called a flat spacetime.

(3) If ¢ is not only a classical spacetime orthogonal reference-system but also a classical spacetime flat
reference-system, g is called a classical spacetime inertial reference-system, or an inertial-system for
short, and (M ,g) is called an isotropic and flat spacetime.

Definition 6.4.2. Let F} is a reference-system transformation induced by g.

(1) If g is a classical spacetime orthogonal reference-system, Fy, is called a classical spacetime orthog-
onal transformation.

(2) If g is a classical spacetime flat reference-system, Fy is called a classical spacetime flat transfor-
mation.

(3) If g is a classical inertial reference-system, Fy is called a classical spacetime inertial transforma-
tion, or an inertial transformation for short, or called a Lorentz transformation.

Remark 6.4.1. Reviewing section 2.2.2.3 and section 2.2.3.1 , a property which remains unchanged
during a Lorentz transformation is not only a classical spacetime Riemannian geometric property but also a
kernal geometric property. It can be called a Minkowski geometric property.

Discussion 6.4.1. The cotangent vector field form of the evolution of an inertial-system g is

d¢* = Bydi® + Bidi' ~ B3dr dzt = CidC® + Cidl® ~ Cldr
de® = BOdi° + BY%F ~ BOdr | di® = 6040 + C0dl* ~ Cdr
Denote -
fo % o

They are called proper-time velocities, and obviously satisfy

s _ dzt
T dr

o* = By’ + B’ ' = Ci® + Clo®

~ ~ . ~ ~ °
i’ = B’ + B’ i’ = 90’ + CY0°
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Discussion 6.4.2. Consider the evolution of a charge p of an arbitrary classical spacetime reference-
system f in an inertial-system g.

(1) In the basis coordinate frame {(*} of g, let the actual evolution direction of 5 completely point to
the internal space, that is to say, on the evolution path the external metrics satisfy d¢* = 0. So dfo =dr,

the time 50 is exactly the proper-time. Therefore, the proper-time velocities of p are v° = % = 0 and

70 =92 g,

(2) In the performance coordinate frame {Z*} of g, on the evolution path the time metric of p satisfies
di’ = C’gdéo = C’ng, and  is called the coordinate time of p. The proper-time velocities of j are @° = C’é
and @0 = CY = C’B , which are all constants.

That is to say those two coordinate frames have a constant relative velocity with each other, which is
exactly the typical intuition of traditional inertial-system.

Thus, the evolution of p performs as relative rest in the basis coordinate frame {fo‘} and performs as
isotropic uniform linear relative motion in the performance coordinate frame {Z*}. The relative rest and
the isotropic uniform linear relative motion are uniformly called the isotropic and flat relative motion,
or the inertial relative motion.

Remark 6.4.2. The relative rest is not a stopped evolution, but an evolution in a specific direction.

Remark 6.4.3. On one hand, a non-trivial interaction should be described with non-trivial slack-tight.
On the other hand, if the slack-tights are not constants or does not satisfy the orthogonal condition, the
evolution will not perform as an isotropic and flat relative motion, at this time it can also be said that some
classical spacetime interaction happens.

In a word, the relative motion and the interaction are just two different statements for the same thing.

Specially, the trivial relative motion and no interaction are just two different statements for the same thing.

7 Weak and electromagnetic interaction and relative motion

7.1 Weak-electromagnetic reference-system and its general evolution form

Definition 7.1.1. Let ® = r + 2, and on a ®-dimensional smooth manifold M there be a typical gauge
field reference-system f defined in Definition 5.2.1 , such that on a neighborhood U of each point p, the
coordinate representation of f(p) is

{53 =& (a') {wl = 2'(¢°)
e=g@) lam=am(e?)

Then f is called a typical weak-electromagnetic interaction reference-system, or a weak-electromagnetic

;o 1<s,i<r; am=9—-1,9.

reference-system for short.

Discussion 7.1.1. The coordinate form of the evolution of weak-electromagnetic reference-system is
£ =¢(z") =€ (") ' =2'(€%) = 2'(¢°)
=gt =€00), A =am(Er) = (€9),
£ =) a® = 2%(€%)
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and the basis vector form is

d¢* = Bjdx' ~ Bjdz® da' = CLde® ~ Cdg®
de® = BSdz™ ~ Bgda® da™ = CRdgt ~ Cprdg®
o 0 od d L0 ,d d

- dz®

~00 = — By — = By— =
oM Ydad — dgo 0 geA 0 deo

where

For the sake of simplicity, the effects of gravitational field should be excluded. So let f be externally flat and
internally standard. According to Definition 5.2.2 , it is required that

Bf =6, Bf!=0, Ci=4§, C™=0.

S

Gmn=0(m #n), Gun = const.
Definition 7.1.2. For convenience, indices should be specified first of all. Based on Definition 6.1.1.1 |
if not specified in other sections, the values of internal indices are as following.

The internal indices are a,b,c,d,e = ® — 1, in coordinate frame £ and m,n,p,q¢,r = © — 1,9 in
coordinate frame x.

Discussion 7.1.2. Calculate the metric tensor of weak-electromagnetic reference-system f.

s anb s
Gij = 0t B; B; + dap Bi' B} = 05t0; 6; = 0jj
Gin = 6 B{Bl, + 6y B{ B}, = 0
G]\/[N £ 5ABBQB£ = (SStBi/[BfV + 611631?/13?\7 = s
Gmj = 05t B}, B + 6y B BY = 0
Gun = 0 B2, B! + 6,B%LBb = B2~1B2~1 1 B?B®
GV = 5*1CIC] = §°'616] = 6V
G =6"CICr =0

GMN =sABCl ey =steM o) sy oy = _ ,

G™ =6§CCl =0

GM = §SOMCT + 5P CMOP = O CR L+ CHCOR

Discussion 7.1.3. Calculate the connection of weak-electromagnetic reference-system f.

For the simple connection defined in Definition 2.2.9.2 | it is obtained that

l}VP:
v ol o, 0BN  OBA 1 9By | 0Bp e
A = —_—) = - —_— 1 6Ba aBa °
Np =50 (g p T gon) =0+ 50 (5 p T 5 8) = A?P:§C£n(ax;+8x5)
m 1 .. 0B% OBy
ANP_Q a(axp 5$N)
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M/ -/
Ainp = GiM'/le = Giz"/QVP =0
M’ m’

' 1 OB  0BA 1 0B* OB
Aynp = GumrANp = 4 = —d,pBE =z L) = ~6uB) 3 -
ne mnb = 9 ABEm \ 5P + oxn 9 abPm \ §pP + oz

1

oB4 0B} 1 oB% OB
_ 4 B N p L b N P
AmNp - 2(5ABBm ( 8.13p + 8l‘N> 25ame ( 6$p + 6$N>

Definition 7.1.3. The affine connection components A.,.p, i.e. Ao_1y@-1)P, d@-1)0P; AD®-1)P>
Apop, are called the general original gauge potential of the weak-electromagnetic reference-system f.

Discussion 7.1.4. Calculate the curvature coefficients of f.

A aAﬁQ aA;?P

m —

nPQ = "5yP 0x@

+ AEP/L?Q - AEPA?}Q

Y . NG
Ko-1 _ ®-1HQ (®@-HP | D-1,D _A® AD-1
©®-1)PQ = P oz T Mop dm-ne ~ Ade-nriog
N2 gpR-t
D1 _ 2Q DP D-1 D1 D1 4D D1 D1 D D1
_ Kopq = 9P op@ T Ao nplog +A5p Aoq — Aop An 1o — Aoridng
OA2 ON2
D _ ®-1)Q ®-1)P D -1 D 4D D-1 D D D
Ko-nrq= 5,7 ~ gea T A@-nrdm ne t dorde-1e — 4o yrde-1e —de-1nriog
aA%Q aAgP D D1 D—-1 4D
Esre = 3,7 ~ gpa T Am-nrdog ~Aop An-ne

OxP 0z

+GHC N pAcng — G Agnp Amug

KmnPQ £ G7rLM’K7]LV1[DQ = Gumm :LnPQ =

+ A p Ay — Ao Amng

OxFf 0x@
aAan aAm,nP
= 9xP - o) + th (AthAgnQ - AgnPAth)
ONp_1)(D-1 N1y @-1)P
Ko 1)-1)pq = — g = =S 4 G (A e Ago-10 — Ago-npAm-1mo)
0Npo1 INp@-1)P
Ko®-1pQ = a(xP < a(xQ 2 4+ G (AonpAyo-1q — Ago-1pAong)
=
IMo-1pq 9d@-1or
Ko-nore=—57— ~ g0 G" (A@-1npAgoq — AgorA@-1)h0)
_ 0dong OAoop hg
Koopg = 2P 9.0 + G (ApnpAgng — AgopPAohQ)
0N -1y (-1 N -1y (o-1)P
Ko _1yo-1yprg = ( 8:10)1(3 e X 8222 )P | Go (A@—1)pprAom@-1)0 — Ao@-1)pA®-1)90)
OAp (o1 0Apo_1)p
Kowo-1)pg = a(xp @ _ (f)(xQ £ go» (AoopAn@-1)0 — Ap@-1)PAo00Q)
N +GOTVOY (Ug o1y pA—1)0-1)0 — Ao-1)(0-1)PAD(D-1)Q)
0No_1)o dNo_1)oP
Ko _norg = (axp) @ ((%Q) +G®? (Ap—1yoprdooq — AoopA@-1)0Q)
+GPVEY (A5 -1y pAo-119¢ — Ao-10rAD-1)®-1)Q)
0Npp 0Npp _ _
Koopg = 8xPQ - &TQP + GeP-HE= (/19(@71)P/1(971)®Q - /1(971)@19/19(@71@)
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Definition 7.1.4. In order to conveniently compare with the traditional Glashow-Weinberg-Salam the-

ory, define
1
A D1 14 o)
b (e ahy) 402 (03 aR)
1 ’ 1 '
3 D-1 D-1 D
Ap 2 \7 (A A(@ 1)p) AQP = 72 (A’}DP B A(@—I)P)
And define
Bpqg 2 (K + KD Fho 2 — (K254 + K2
Q= \f DPQ (@ 1)PQ PQ 2 DPQ (D-1)PQ
1 .
3 2 a1 (D1 D
FPQ f (KQPQ K(@ 1)PQ) FPQ - V2 (K@pQ K(B—I)PQ)
Discussion 7.1.5. By direct calculation we obtain
OB 0B
Bpo 2 K32po + K2 = =20
PQ Vf’( Bra+ K3 ra) = 5o ~ a0
1 OA 8A3
3 4 Q 2 41
Fro =75 (K8rq ~ K yra) = TP~ g0 T V2(ApAG - ARAG)
1 DAL aAl , ; '
1 4 ) 2 p 2 43 3 42
Fpq \f (KZ)PQ + K(@ 1)PQ) 0P 9@ +v2 (APAQ o APAQ)
1 AL 9A2
2 D-1 D _ Q P 3 41 1 43
FPQ NG (K:DPQ K(©—1)PQ> = 92P  o2Q V2 (APAQ - APAQ)

Noticed that there is a difference of positive and negative sign between F I%Q here and that in Glashow-
Weinberg-Salam theory. Fortunately this difference is not very important, which does not hinder further
discussions.

And noticed that there is a difference of coupling constant between the FPQ7 FI%Q, FIP;Q above and those in
Glashow-Weinberg-Salam theory. The results of Discussion 7.1.4 indicate that the coupling constant is deter-

mined by G"9. Concretely, consider a condition G®~D@ -1 = G®? denote g £ \/(G(@*U(@*D)2 + (GP2)?,

and replace Definition 7.1.4 with

1
Bp £ — (Apop + Ap-1)(2-1)P) Ap & — (Ao_1yop + Ao@-1)P)
V2 2
1 ’ 1 ’
AL & — (Aoop — A@-1)(2-1)P) A & — (Ao-1yop — Ao@-1)P)
V2 2
Bpo 2 — (Koorq + Ko-1)0-1)Pq) Fpo 2 — (K@-1nore + Kom-1)re)
V2 V2
1 ’ 1
F,2 — (K — Ko1)o F2,2 — (Kip_ — Ko(o_
G (Koorq — K@-1)0-1)rq) G (K@-1norq — Kn@-1)rq)
Thus we obtain
1 1 (Moo +Ap-n@w-10) 1 9(Adoop+ A—1)0-1)P)
B = K K — _
PQ = G (Koorq + Ko-1m-1prQ) = NG 0xP V2 02@

0By OBp
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1
F1?3Q £ NG (Koorg — K@-1)®-1)PQ)

- \% (6/815;?62 N 83231) + GO (Ug o1y pAm-10q - A(©1)©PA©(91)Q))
% (8/1(9—6;);@_1)(9 - 8A(®52éz©_1)P +G? (Ao-nordo@-1)q - A®(©1)PA(©1)©Q)>
= Zi% - gf(% + 9 (As@-1)pA@-1)90 — A@-10PAD(®-1)Q)
_ gffg SOk g (A - A3 AL
Similarly we also obtain
Fho— 220 0% (- apa3).
Fo= 50t - 2k g (apaly - 4y

3
If considering in the way of traditional theory, substitute them into —3BpoBF? — 1 7 Ff,F¥@. By
k=1

mixing them with Weinberg angle 0y, then define the mixture of gauge potentials

1
+ A 1 P A2
Zp & —Bpsinfy + A% cos Oy Wp *E(ApszP)
Ap £ Bpcosfy + A?j) sin Oy Wp 2 1 (A}D +iA§3)

V2
Thus, we can obtain the Lagrangian of Glashow-Weinberg-Salam theory in the degree of just some differences
of positive and negative signs. The mass term will be explained later.

In this sense, beyond doubt it is feasible and effective for the weak-electromagnetic reference-system
f to describe the weak and electromagnetic interactions. More significantly, the gauge potentials are no
longer connections abstractly defined in traditional theory, but affine connections concretely constructed by
the slack-tight on geometric manifold, therefore they are intrinsic geometric properties now. The coupling
constant is also no longer introduced artificially like that in traditional theory, but a natural reflection of

intrinsic geometric property.
7.2 Actual evolution of weak-electromagnetic charges

Discussion 7.2.1. Now calculate the evolution forms of charges po_1)(0—1); PoD; Po(D-1), PD—1)D Of

f evolving in g, where f and g are two weak-electromagnetic reference-systems.
First, generally, ppmn.p = Oppmn — pHanP — pmHFfP = OpPmn — PhnijlLP — pmhfffp. Concretely, by
calculation we obtain
PO-1)(®-1);P = OPP@D-1)(D-1) — 2P(©—1)(@—1)F(%111)p — (Po@-1) + Po-1)0) I D>_1)P
poo;p = Oppon — 2p00l5p — (Po@-1) + P@-1)D) st

po@-1);p = OPpo(®-1) — (,0(3371)(3371)1%)131 + psgf(%,l)p) — pPo(®@-1) (F(%ill)p + F%)p) .

P-1)®:p = OPp-1)D — (P<®—1)<©—1>F§131 + P%F(%—np) — P(@-1)® (F(?}Dill)P + F%’p)
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Definition 7.2.1. Denote | £ (po-1)(®-1), Po®), which is called a charged lepton. Denote v =
(po(@-1), P(®—1)9), Which is called a neutrino. [ and v are uniformly called leptons, denoted by L.

L% (1) is called a left-handed lepton, and L% (1)) is called a right-handed lepton

L% (j) is called a right-handed anti-lepton, and L% (’11) is called a left-handed anti-lepton.
Thus, left-handed and right-handed charged leptons are
1 1
Iy & 7 (po-1)(2-1) T Poo), g% 7 (Po-1)(@-1) — o) -
Left-handed and right-handed neutrinos are

1
—= Po®-1) —PE-1)D) -
75 )

(1>
(1>

vy % (,0@@71) + p(®71)©> , VR
l;, and [ are uniformly called the implicit polarity representation of charged leptons.

Remark 7.2.1. The reason for defining chirality in this way is that in traditional theory the essence of
helicity is a concept reflecting the relative relation of phases of components. It is true for both the polarization
of electromagnetic wave and the spin polarization of lepton. Different relative relation modes of phases of
components represent different motion states. The existence of different components is the premise of the
existence of such a degree of freedom of motion.

Take the charged lepton [ £ (p(@_l)(g_l), pgg) for example. Denote 20 £ (cos#, sinf). With two

independent components, [ can make various orthogonal decompositions.

(1) If the orthogonal basis is chosen to be 27 and Z0, then

Vs
l= P©®4§ + po-1)(0-1)40.

(2) If the orthogonal basis is chosen to be £ (+§) and £ (fg), then it is regarded as the orthogonal

decomposition reflecting two opposite helicity directions that
T T
I=1 4( 7) ! 4(77),
Le\ty) Ty

where
e L (p +poo), Ir*= = (p — poo)
\@ ®-1)(D-1) ’ \@ (®-1)(D-1) .

The concept of chirality in Definition 7.2.1 exactly comes from such a consideration.

Although here is no complex-valued operator analysis like the traditional quantum mechanics, actually
a similar effect appears. The above orthogonal basis £ (+%) and £ (—7) correspond to the eigenvectors of
helicity operator of traditional theory, and the above parameters +7 and —7 of orthogonal basis correspond
to the eigenvalues of helicity operator. Anyway there must be a way to describe the degree of freedom of
helicity for each theoretical form.

Except this, it also can be seen from the evolution forms of leptons deduced later that such a definition
of chirality is reasonable.

Definition 7.2.2. Denote
1
A

1 .
Wp £ 7 (lo-1yop + Io@-1)p) Wi = 7 (Wp —iW§)
1 ’ 1 . ’
Wi = 7 (Fo-1op — I'o@-1)pP) Wp = 7 (Wp +iWE)
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which are uniformly called the W potential of weak interaction, and the former is called the implicit
polarity representation of W potential, and the latter is called the explicit polarity representation
of W potential.

Discussion 7.2.2. According to Definition 7.2.2 | there are

W) = % Wi+ ws)  [Foonor = % (Wh +W2)
W= (W5 -W5) | Taoyr = o (Wh—13)
Moreover,
Nio-var = 75 (5 (Wi +1W5) + = (W5~ w5))
Po@-nr =5 (75 (W5 + W) = = (W5~ W5))
N I'o-1op = %W; + : ; iWE

1—1 144 7
Io@-np=— Wi+ > Wp

Wi = % (\}5 (Fo-nop + I'n@-1)p) — l% (Io-10p — F@(@np))
Wy = 1 (1 (I'o-1op + Iom@-1)p) + Zi (Fo-1y0p — F@(@—l)P))
2 \V2 V2
Wg = %F(QA)QP + L lF@(@q)P
= 1+ 13
Wp = — lo-par+ —Ioe-yr

Substitute them into the arranged result of Discussion 7.2.1 , it is obtained that

PO-1)(®—-1);P = OPP@-1)(D-1) — 2/)(971)(971)11(%7_11);1 — (po@-1) + P@-1)9) F(%fl)p
poo:p = Oppon — 2poolapr — (Po@-1) + Po-10) op '

Po(®-1);p = OPPD(D-1) — (/J’(z)—1)(@—1)121))131 + P@@F(%—UP) — Po(®-1) (F(%__ll)]) + ng)

pPo-1)o:p = OPp@—-1)D — (,0(@71)(@71)11551 + P@@F(%A)P) — P@-1)® (F(%ZIUP + F’SP)
Po-1@-1:P = OPPo-1)@-1) — 20@-1)(0-1 (9 _1)p — \%VL (Wp = W5)

poo:p = Oppon — 2poolsp — \%VL (Wp + W3)

PO(®-1);P = aPPBD(ZDfl) - % ((P(©1)(©1) + P@@) %W}: + (0(3371)(3371) - P@@) \%W129>
— pPo@-1) (F(%__ll)p + FSP)

1 g 9
pP-1o:p = OPpD-_1)0 — 7 <(P(©—1)(©—1) + poo) \*@W}: + (p-1)(2-1) — Poo) \/§W123>

— P@-1)D (F(%_,ll)p + F%DP)
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- g
p@-@-1:p = Orp@-1@-1) ~ 2@-n@-0 5 e — v (Wh = WE)

poo.p = Oppoo — 2po0lap — %VL (Wp+W3)

N pPo@-1);p = OPPo(D-1) — g ((r@-1)@-1) + poo) Wi + (po-1)0-1) — poo) W5)
— PD(@-1) (F(%__lnp + F’SP)

pP-12:Pp = OPpO_1)0 — % ((Po-1)0-1) + Po2) Wp + (pro-1)0-1) — poo) W)
—P(@-1) (F(%ill)p + F’)?P)

PO-1)(®-1);P = OPPD-1)(D-1) — 20(9—1)(@—1)F(%__11)p - \%VL (Wp —W3)

poo;p = Oppon — 2po0lep — %VL (Wp +W3)

7 pPo(@—1):P = OPpo(D-1) — \%lLW}a - %ZRW% — Po(@-1) (F(%_—ll)P + ng)
pPo—-1)0:p = OPP(D—1)D — \%ZLW}D - %ZRW% —P@-1)® (F(%__ll)P + ng)
le.p = OplL = V2p @1 (»_1yp — V2000 5p — g Wp
lr;p = OplR — \/5,0@71)(@71)112)__11)13 + V2000 5p + griW
=

vL.p = 8131/[, — glLW}g — glRWIQJ — Uy, (F(%_—lnp + ng)

VR.p = apyR — VR (Fggill)p + I%)P)

The above result has already shown an obvious evidence of asymmetric chirality appearing automatically.
But that is not all. In order to obtain further results, the geometric essence of symmetry breaking has to be
clarified first of all.

Remark 7.2.2. Generally, the essence of symmetry breaking is that the geometry is too small and its
ability of describing shapes is not strong enough, so the geometry needs to be made larger to enhance the
alility of describing shapes. Concretely it can be illustrated in the following way.

Let R and S be two subgroups of the general linear group. According to Definition 2.2.2.4 | let f on M
be a reference-system generated by R.

(1) If S is a subgroup of R, according to Remark .1, geometry M /S is larger than geometry M/R. M/S
has a richer description of geometric shapes than M /R. The geometric shapes of f generated by R of course
can also be described by M/S. In other words, all of those properties of f remaining unchanged during
transformations of R will surely also remain unchanged during transformations of S. At this time we usually
say [ has a symmetry of S group, or say M /S has the ability of describing all the details of the shape of f.

(2) If S is not a subgroup of R, S may not have a richer description of geometric shapes than M/R. So
we cannot promise all of those properties of f remaining unchanged during transformations of R still remain
unchanged during transformations of S. There must exist some geometric shapes of f, we cannot find any
geometric property of M/S to be able to describe them. From the point of view of S, they are so irregular

that any reference-system transformation generated by S cannot eliminate them anyway. At this time we
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usually say the symmetry of group S is broken, actually it is because S is not small enough or say M/S is

not larger enough and M /S has no enough ability to describe those shapes that seem irregular to M/S.

In a word, it is more intuitive to say the geometric shape cannot be completely described by M /S, or
M /S has no enough alility to clarify all the details of the shape of f, than to say f has a breaking symmetry
of S.

Then, which kind of geometry on geometric manifold has the strongest ability of describing shapes? The
answer is instrinsic geometry. According to section 2.2.5.2 , the intrinsic geometry is the largest geometry
on geometric manifold. It just requires the smallest symmetry. Its symmetry group is the subgroup {e}
consisting of just one element which is the unit element e of the general linear group GL(D,R). It represents
the most trivial symmetry. In other words, the symmetry of intrinsic geometry will never be broken, because
it is too small to continue to break. Therefore, each geometry on geometric manifold is a subgeometry of the
intrinsic geometry. And the intrinsic geometry is defined by the slack-tight of reference-system, so no matter
how irregular the shape is, it can be exactly described by the slack-tight. Other kinds of geometries can be
regarded as those obtained from the restrictions of the slack-tight by some symmetry conditions, just like

what section 2.2.2.3 and section 2.2.3.1 do.
Now we have to know:

(1) The traditional theory starts from a very large symmetry group, and reduces symmetries in the way

of some kind of breaking to approach the target geometry.

(2) The theory of this paper starts from the smallest symmetry group {e}, and adds symmetries in the

way of some kind of symmetry conditions to approach the target geometry.
These two ways must lead to the same destination. They both go towards the same specific geometry.

It is remarkable that not all the transformation groups of the geometries determined by symmetry
conditions used to restrict slack-tight are simple and easy to describe. It is nice that if the transformation
group is too complicated, we can choose not to describe its structure but directly describe the geometry in
the way of adding symmetry conditions restricting the slack-tight. When discussing in this way, it does not
matter what the group looks like.

Thus it can be seen that for the general matter-motion, it is better to focus on geometry than to focus on
symmetry group. And it is more convenient to study how to add symmetry conditions to intrinsic geometry

than to study how to break a symmetry group.

Discussion 7.2.3. Return to the evolution of charges. The evolution form

lp.p = 0ply — \/50(9—1)(©—1)F(%__11)p — V2000 'Sp — grL W}
lr;p = Oplr — \/Ep(Dfl)(Qfl)F(f}%:ll)p + V200l 5p + gri Wi

vL:p = 8PVL — glLW}; — glRWJ% — vy (F(%_—ll)P + FZ‘?P)

VR;p = OpVR — VR (F(%:ll)P + F§P>
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is deduced in the sense of the most general intrinsic geometry, and it is determined by the slack-tight
of reference-system. During the process of deduction, except externally flat condition, internally standard
condition and G@~-D@-1) = G?? the slack-tights have not been restricted by any other conditions.

Now we have to introduce a more symmetry to the shape of geometric manifold (M, g). Concretely, if
adding a symmetry condition I'p_1ypp = I'p—1)p to reference-system g, then W2 = 0, and the above
result becomes
lp.p = 0Oply — \/§p(©71)(©71)F§)111)p —V2pool5p — gviWp
lr;p = Oplr — \/ip(g—l)(g—nfg)ill)p + V200050

VL. p = dpvy, — Vg, (F(Z%:ll)P + ng) —glLW}p

VR,p = OpVR — VR (F(%_,ll)p + F%DP)

Definition 7.2.3. An externally flat and internally standard weak-electromagnetic reference-system
which satisfies I'o_1ypp = I'n(p—1)p and GP-D®-1) = G279 ig called a typical weak-electromagnetic
gauge field, or weak-electromagnetic field for short.

Remark 7.2.3. Noticed that on the symmetry condition I'g_nop = I'n@-1)P; W2 = 0. The W
potential defined in Definition 7.2.2 satisfies W; = Wp . Superficially, it seems that W potential loses a
degree of freedom. However, this lost degree of freedom is actually insignificant.

(1) In traditional theory, the W potential can also be written as W;)t = WpeTiT. It is one real function
Wp rather than two real functions W} and W3 that effects the interaction. The complex exponent just has
an effect on passively marking the polarity, and the dynamic effect of polarity is completely determined by
the charge, rather than by the complex exponent e¥*7. So the positive and negative signs of the complex
exponent indeed just has an effect on passively marking polarity, and this mark may or may not be needed.

(2) In traditional theory, the propagators of Wf; and W are completely the same, which are independent
of tan™! % The relative relation between W3 and W3 cannot bring any degree of distinguishment between
the propagators of W; and Wp.

In summary, even in traditional theory, it is enough for W and W, to be described by just one degree
of freedom, and the other degree of freedom is redundant essentially. Therefore, on the symmetry condition
I'o_1yop = I'n@—1)p, it is reasonable to cognize the properties of W field with just one real function Wh.

Discussion 7.2.4. Reviewing Remark 7.1.5 and Definition 7.1.4 , there the electromagnetic potential

and Z potential are defined in the way of Glashow-Weinberg-Salam theory, that is

Zp £ —Bpsin Oy +A3Pcost9w

Ap £ Bpcosfy + A:’}; sin Oy

and for reference-system g,

(I'oop + Io—1)(2-1)P)

(I'oop — o—1)(2-1)P)

sl- sl
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This definition is very suitable for the traditional theory with Higgs mechanism. However, according to
section 7.2.4 , Higgs mechanism is more of a phenomenological theory. In this paper, the way of attributing
the rest-mass to matter-motion in internal space is more natural than Higgs mechanism. Higgs field is
probably not fundamental and the Higgs mechanism is probably an equivalent theory brought by the group
behavior of zero-spin neutrino pairs at a higher level of theory, which is the reason why the electromagnetic
coupling constant and weak coupling constant become different. In a word, Higgs field does not necessarily
have enough importance at the most basic level.

Thus, at the most basic level, there is no sufficient reason to stick to the expression form of traditional
theory with Higgs mechanism, so it is not necessary to stick to the traditional definition of the electromagnetic
potential and Z potential. The result of Discussion 7.2.3 implies that the following definition might be
reasonable in theory of this paper.

Definition 7.2.4. Define the Z potential of weak interaction and the electomagnetic potential

1
Zp & 7 (I'o-1y@-1)p + Ioop)
1 )
Ap & 7 (Fo-1y@-1p — I'oop)

correspondingly,

1
I'o_1ny@-np = 7 (Zp + Ap)
1

I'oop = 7 (Zp — Ap)

Discussion 7.2.5. Substitute the above definition into the result of Discussion 7.2.3 and obtain that

vi.p = Opvr — gvr.Zp — glLWh

g 1 g 1 1
ln.p=0plL —V2po_1y0-1)—=—~ (Zp + Ap) — V2pon—=—F= (Zp — Ap) — guLW.
L.p = 0ply, PO-1)(® 1)\@\/5(13 P) EENG 2(P p)—gviWp
g 1 g 1
lr.p = Oplr — V2po-1)(0-1)—=— (Zp + Ap) + V2poo—=— (Zp — A
r;p = Oplr PE-1)(® 1)\&\@( p+ Ap) pggﬁﬂ( p—Ap)
{I/L;papVLgVLZpglLWP%
Vr;p = OpVR — gVRZp
g g
IL.p = OplL — (po-1)(0-1) + PoD) EZP — (po-1)(@-1) — Po2) ﬁAP —guLWh
lr;p = Oplr — (po—1)@-1) — POD) I Zp - (P@-1)(2-1) + Po9) 2 Ap
= ’ V2 V2
{VL;P = Opvr, — guZp — glLWp
VR,p = OpVR — gVRZp
{ZL;P =0ply, — glLZp — glgAp — guLWh
N lr;p = Oplr — glrZp — gl Ap

VRr.p = OpVR — gVRZp



Intrinsic geometry and constructivity methods for Hilbert’s 6th problem 111

Definition 7.2.5. The above equation is called the evolution form of weak-electromagnetic inter-
action of leptons.
Discussion 7.2.6. The following actual evolution equations of charges completely describe the dynamics

of weak-electromagnetic interaction of leptons.

Ip.pdz” =~ I1.0dz° Ir.pdax’ ~ lp.odz” vp.pde’ ~ vy oda® vr.pdr? ~ vg.oda®

I o I d I 0 ~ d o d 0 d

LiP o~ = L0 — RPH — = IR0 — Vi, po—— = VLo~ VRiP 35— = VR0 7~
aLL'p d{EO al‘p ' dl‘o a’,Cp dl‘o ' a,Tp d{Eo

Moreover, they can also deduce the forms similar to Dirac equation in the way of section 6.3.7.1 ,and
then imagined that complex-valued Lagrangian and action can be constructed, and further more the theory
similar to QFT can be developed in the sense of section 2.4.14.2 , etc. However, these are beyond the subject
of this paper and they will not be discussed in detail.

Discussion 7.2.7. The above evolution form is expressed as the implicit polarity form, now its explicit
polarity form is discussed as following.

Definition 7.2.6. Define

- A 1+ 1—1 T 1—14 141
= B) P(®-1)(D-1)> Tﬂ@@ ) = B P(D-1)(D-1)> TP@@

and its left-handed representation and right-handed representation

14 1—i oA 1+ 1—i

I £ Po-1)®-1) + —5— P00 lr = PO-1)(D-1) — poo
2 2 2 2
1—1 141 ’ 1—21 141
= 5 P@-1@-1) T —5PoD I 5 P@-1(®-1) = —5 PO

Iy, lz, Iy, l; are uniformly called the explicit polarity representation of charged leptons.

Discussion 7.2.8. Due to the definition, it is obtained that

1 1

IL \/§ (lljz - ZE) lp =

S -1) = G+ (1=

=5 (L ~11) =

(lg +1ily)

3 H%‘

(I +1) = (Iz +ilR) In

2

Sl

)

(lL—ilR) l}—;éT(lR_ZlL) |

Sl =Sl

Thus, starting from the implicit polarity evolution form of weak-electromagnetic interaction, we can deduce

its explicit polarity form. Concretely,

lp.p=0ply — gl Zp — glgAp — gviWp
lr.p = 0plr, — gl Zp — glRAp — guL Wp lJLr;P = 0plf — gl Zp — gl Ap — gu W5
{ZR;p — Oplp — glpZp — glLAp lnp = Oply — glpZp — gly Ap — igu, Wy
{VL;P = Opvi — gviZp — gLWp - Lo = Oplh — gl Zp — glf Ap + igu Wi
VR,p = OpVRr — gVrZp vip = Opvp — gupZp — glf Wy — gl Wi
{VR;P = 0pVR — gVRZP
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Thus the evolution forms of leptons have been expressed in the two ways of implicit polarity and explicit
polarity. Because these two ways are equivalent, from the former we know the terms —igv, W, and +igvp, W;f
in the latter with imaginary unit do not reflect any ontological observable physical effect.

Remark 7.2.4. Why do leptons have three generations? The typical weak-electromagnetic reference-
system in Definition 7.1.1 has no enough ability to describe the differences of three generations of leptons.

It requires a more complete reference-system in Definition 9.1 .
7.3 Rest-mass problem of fermion and boson

Discussion 7.3.1. It is well-known that traditional theory has solved the rest-mass problem in the way
of Higgs mechanism. The physical reality cognized by the concept of Higgs field of traditional theory can be
detected in the experiment of LHC [1,8], but it does not mean the concept of Higgs field of traditioal theory
is necessarily the most appropriate concept to cognize such a physical reality. Higgs mechanism may be just
a phenomenological equivalent theory.

According to the viewpoint of this paper, the physical reality is finally matter-motion. Any viewpoint
that cannot be attributed to matter-motion is finally a matter of expediency. So an abstract concept of Higgs
field is unsatisfactory.

1. The rest-mass of fermion.

In the traditional non-Abelian gauge field theory, the appearance of mass term of fermion field breaks
the gauge invariance. By Yukawa coupling and Higgs mechanism, Glashow-Weinberg-Salam theory tells us
that the broken is just superficial, and is caused by the non-commutative theoretical form, and essentially
the gauge invariance is not broken. This explanation is successful.

However, it has to be emphasized that a theory fundamental enough should never need extra explanation
to maintain its rationality. That is to say, the theoretical form of traditional gauge field is not fundamental.
In the case of without adding Higgs mechanism, it has no ability to fit in with the geometric essence precisely.
Even if adding Higgs mechanism such that it fits in, the theoretical form would be distorted. Moreover the
Higgs mechanism is not based on the viewpoint of motion, so it is not natural enough.

From the viewpoint of motion, let f evolve in g. According to Discussion 6.3.2.1 , the evolution equation

of charge p of f is
Dpdzt ~ m,dz”
0 . d
pu% = mr@
d

where 7 is the evolution parameter, and _z— is completely internal-directed. The rest-mass 7., = pir is

the total energy-momentum in internal space direction of the evolution of p. This is the explanation to the
essence of rest-mass of fermion from the viewpoint of matter-motion.

In this viewpoint:

(1) The mass term p,,dZ" is an expression form of geometric property ., dz", caused due to the regular

embedding of evolution path.
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(2) Now that the universal geometric property Dp is independent of the selection of reference-system,
then it is of course invariant when reference-system transforms. According to Discussion 6.3.8.2 ; the essence
of gauge transformation is exactly a reference-system transformation, then p,,dz* is gauge-invariant on
manifold M and p.+dZ7 is also gauge-invariant on evolution path L.

It is seen that now the theoretical form fits in precisely with the geometric essence, without adding an
extra Higgs mechanism.

2. The rest-mass of boson.

Noticed that the Z{LPQ:P in general Yang-Mills field equation does not contain any mass term. Then how
the rest-mass of the gauge boson of weak interaction appears?

In traditional theory, the rest-mass of gauge field is brought by Higgs field. In the Lagrangian
Ly = (D*¢)*Duo — V()
of Higgs field of Glashow-Weinberg-Salam theory,
V(g) & —p*dT o+ A¢T9)?,
N i g
D, =0, —igl; A}, — z;YBN.

The rest-mass of boson is contained in the ground state of ¢.

Higgs field is a complex-valued doublets (fﬁ: ) V(¢) determines that the amplitude of ground state with

spontaneous symmetry breaking is (), such that VuZ + 02 = g At this time, it needs to be artificially
specified that v = 0 and v # 0. Concretely, the purpose of the specified u = 0 is to make A, never couple
with Higgs field, and the purpose of the specified v # 0 is to make Z,, and Wf necessarily couple with Higgs
field.

(1) Such designations are artifical and not natural. Why an abstractly defined Higgs field distributing all
over the space does not couple with the electromagnetic potential A, and not couple with the gluon potential
G, but just only couple with the potentials Z,, and W,jt of weak interaction? We cannot just specify them
but not ask why.

(2) V(¢) & —p2¢T ¢ + Mt ¢)? is a potential energy term. Generally, there is a concept of potential
energy just only for interactions. The fact that there is a potential energy term in Lagrangian of Higgs field
indicates that the Higgs field consists of several particles more fundamental.

(3) According to Remark 7.2.2 | the symmetry breaking indicates that the geometry is not large enough.
Noticed that there is no mass term in K}L"PQ:P described by intrinsic geometry, and the symmetry breaking
can lead to the mass term. This fact tells us that the intrinsic geometry of one reference-system is not large
enough for describing such a mass term. If making the geometry larger, the only way is to use the intrinsic
geometry of more reference-systems.

In a word, although the rest-mass is made out by the Higgs mechanism, the concrete form of internal

motion does not explained clearly by Higgs mechanism. In the viewpoint of matter-motion, the only probable
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rational explanation is that the Higgs boson consists of at least two particles more fundamental, which only
participate in weak interaction and their total spin is zero.

A bold but reasonable idea is that these particles more fundamental is exactly neutrinos. The zero-spin
neutrino pair is exactly the matter-motion form having such characteristics.

It can be imagined that Z field and W field propagate in the medium consisting of large quantities of
neutrino pairs. Z field and W field interact with neutrino pairs and they have interaction potential energy,
which makes Z field and W field act like fields with rest-mass.

Simply make an analogy. If an electromagnetic wave propagates in a dielectric medium and its group

velocity v is less than the light velocity ¢ in vacuum, the proper-time metric of evolution is

T s

dr = | (dz0)? — Z (dxy)? = | 2dt? — Z (dzk)? = Ve —v2dt # 0.

k=1 k=1
According to Definition 6.1.1.2 , the evolution direction of the electromagnetic wave is internal-directed. This
can be explained as that the interaction potential energy between the electromagnetic wave and the medium
make the electromagnetic wave act like a field with equivalent rest-mass.

Such pictures at least provides a more natural intuition of the rest-mass of Z field and W field.

The group behavior of particles does not belong to the research scope at the most basic level, and it
should be described by a theory at a higher level, so in this paper it is judged that Higgs field is a concept
at a higher level, like the Cooper pair about superconductor. Higgs field is not fundamental, so there is no
need to take the equivalent rest-mass caused by the reason at such a high level into the general Yang-Mills
field equation at the most basic level.

To say the least, it does not matter at all even if the rest-mass is contained, because the equation would
still be strictly gauge-invariant at the most basic level.

Make a summary concisely.

(1) The rest-mass of fermion is the total kinetic energy in the internal evolution direction of charge.

(2) The rest-mass of boson is the total potential energy of the interaction of gauge field in medium.

(3) Higgs boson is not fundamental, which is probably a zero-spin neutrino pair.
8 Strong interaction and relative motion
8.1 Strong reference-system
Definition 8.1.1. Let ® = r + 3, and on a ®-dimensional smooth manifold M there be a typical gauge

field reference-system f defined in Definition 5.2.1 , such that on a neighborhood U of each point p, the

coordinate representation of f(p) is
{53 =¢&(a) {IZ = a'(¢°)
g =g (aM)

Then f is called a typical strong interaction reference-system, or a strong reference-system.

7 1<s,i<r; am=9-29-1,9.
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According to the definition,

For the sake of simplicity, the effects of gravitational field should be excluded. So let f be externally flat and
internally standard. According to Definition 5.2.2 | it is required that

By =6, B!=0

¢ , Cl=4§ CM=0.

Gomn =0m #n), Gun = const.

In addition, a symmetry condition G®@~-2®@-2) = g@-H®-1) — G2 jg required, and denote g, =
\/(G(@,l)(@,l)f (GO = \/(G(Qfl)(’Dfl))z + (GE-20-2)? = \/(G(mfz)(safz)f 4 (GO,

For convenience, indices should be specified first of all. Based on Definition 6.1.1.1 | if not specified in

other sections, the values of internal indices are as following.
The internal indices are a, b, ¢, d, e = ©D—2,0—1,D in coordinate frame £ and m,n,p,q,r =0-2,0-1,9

in coordinate frame z.
8.2 Actual evolution of strong charges
Discussion 8.2.1. Let f and g be two strong reference-systems. Now focus on calculating the evolu-
tion forms of charges P(D—-2)(D-2)) P(®-1)(D-1)s PDD; PD(D-1)s P(D-1)D) PD(D-2)s P(D-2)D) P(D-1)(D—-2)>
pPo-2)@-1) of fin g.
Pmn;P = 8Ppmn - PHnFn}fp - pmHF»,fIP
= aPpﬂ%n - p(®72)nF£1§2 - p(Dfl)nIﬁ?;l - pCDnFn%P - pm(®72)1—‘7?1;2 - pm(fol)FZDpil - Pm@l—?p-

Concretely,

P(D—2)(D—2);P = OPP(D—2)(D—2) — 2P(©—2)(@—2)F(%122)p — (p@-1)@-2) + PO-2)2-1)) F(%ilg)P
— (po(@-2) + P®-2)9) F(%_z)p,
Po-1)®-1);P = OPPD-1)(D-1) — 20(1)71)(971)F§)__11)p — (po-2)9-1) T PO-1)(D-2)) F(%__Zl)p

— (po@-1) + P@-1)0) F(%,l)p,

poop = Oppon — 2p00l5p — (P@-29 + Poo—2)) Inp- — (Po-1)0 + Poo-1)) I'ap

po@-1):p = OPPo(®-1) — (P<@—1><©—1>F§131 + mega—l)p) ~ Po(@-1) (F%DP + Fgaill)p)
— p-2@-1lap. — 09(972)F§)__21)p7

po-1)2;Pp = OPP@-1)D — (P<@—1><®—1>F§131 + PMF(%—nP) ~P(@-1)D (F(%ill)p + F%’p)
- 0(1)71)(972)1%)};2 - p(sfz)gf(%__%)p

Po(®—2);p = OPPD(D—2) — (P@@F(%_2)p + P(D—Q)(’D—Q)FQ?EQ) — pPo(D-2) (ng + F(%__Zg)p>
- 0(971)(972)1%31;1 - 09(971)11(%__12)137

P@—2)p:p = OPP(D—2)0 — (/J’@@F(%_mp + p(g_g)(@_g)FgF_)Q) — p(o—-2)0 (ng + F(%__ZQ)P>

D—1 D—1
—pe-2@-1)lop —P@-19l (5 5P
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PD—-1)(D—-2);P = OPP(D-1)(D—2) — (P(@—z)(z)—z)F(%iZl)p + P(©—1)(9—1)F(%112)p)

— P@-1)(D-2) (F(%__Qg)p + F(%__ll)p> - /-7@(@72)1?%_1)13 - P(@q)@ﬂ%_z)p,
Po—-2)(D—-1);P = OPP(D—2)(D—1) — (0(972)(972)F§f_21)p + p(©71)(971)1ﬂ§f_12)p)

— P(D-2)(D-1) (F(%i)p + F(%ill)p> ~p@-20L(p-1)p — Po@-1)(D-2)P-

Definition 8.2.1. Denote

di £ (po—2y@-2), PO-1)(D-1)) ur £ (po—2)(0-1), PO-1)®-2))
d2 £ (po-1)0-1), PoD) , Quz = (po—1o, Po@-1))
d3 £ (poo, pPO-2)(0-2)) uz £ (po(o-2), P®-2)0)

dy; and u; are called red charges, d; and uy are called blue charges, and ds and us are called green
charges.

—d; and —u; are called anti-red charges, —d; and —usy are called anti-blue charges, and —d3 and
—ug are called anti-green charges.

di, ds, d3 are called down-type color charges, uniformly denoted by d.

uy, Uz, ug are called up-type color charges, uniformly denoted by wu.

d and u are uniformly called color charges, denoted by q.

q% (1) is called the left-handed color charge, and q% (_11) is called the right-handed color
charge.

q% (j) is called the right-handed anti-color charge, and q% (’11) is called the left-handed

anti-color charge.

Concretely, left-handed and right-handed down-type color charges are

1 1
dip £ 7 (Po-2)(—2) + PO-1)®-1)) dir £ 7 (P@—2)(2-2) — PO-1)(D-1))
1 1
dor, £ 7 (Po-1)@-1) + Poo) ; dor £ 7 (Po-1)(9-1) — PoD)
1 1
ds = 7 (poo + P0-2)(2-2)) dsp £ 7 (poo — Po-2)(-2))
Left-handed and right-handed up-type color charges are
a 1 A 1
w5 (Pe-20-1) + Po-1)(0-2)  |wr= NG (Po-20-1) ~ P-1)(0-2)
1 1
Usp & — (P(@—l)@ + P©(©—1)) ) usp £ — (P(©—1)© - 09(9—1))
V2 V2
1 1
us, £ —= (po(m—2) + po-2)0) usr £ — (po(@-2) — P(@-2)D)
V2 V2

Remark 8.2.1. The terminology of quark is deliberately avoided here, and the terminology of color charge
is adopted instead. It is because the connotation referred to by the terminology of quark in traditional theory

contains not only property of color charge but also properties of electric charge and weak charge, and this
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connotation is different from the concept in Definition 8.2.1 . In order to avoid confusion, the terminology
of color charge is adopted to clearly refer to the connotation of the above concepts.

Definition 8.2.2. Denote

1 1
Ub2 — (Io_ovmop + Lo 10— X¥P L2 _—_ (T, + 1,
P \/5( (D-2)(D-2)P ®-1)(D 1)P) P ﬁ( (D-2)(D-1)P (D-1)(D— 2)P)
1 ’ 1 '
VEE — (Io_ovoop — Lo 10— Y22 — (Io_oyo-1p — o110
P ﬁ( (D-2)(D-2)P ®-1)(D 1)P) P ﬁ( (D-2)(D-1)P ®-1)(D 2)P)
2 a 1 314 1
Up = 7 (I'o—1y@-1p + Ioop) Xp' 2 —= (lo—1yor + I'n@-1)p)

7 )

1
Vi4 7 (IFo-1@-1p — I'oop) Yt 2 — (Io-1yop — Io@-1)p)

NG
1
V2
Ui & 1 I T, X224 L I T
p= ﬁ ( oop + (972)(®72)P) P = ﬁ ( D@®-2)P + (sz)gp)
1
V2

V3A1 ’

NG (Foop — Io-2)9-2)p) Y& — (Foo-2p — [(2-2)0P)

They are called the strong interaction potentials.

Discussion 8.2.2. From Definition 8.2.1 , it is obtained that

Po—2)(D—2) = —= (d1L —dyp +d3r) = —= (d1L +dir) = —= (d3L — dsg)

g
g
SH

P®-1)(D-1) = ﬁ (dip +dop —d3r) = ﬁ (dor 4 dag) = \[ (dir —diR) .

1 1
oo = 5 (=dip +dop +d31) = NG (dsr +d3r) = ﬁ (d2r, — d2r)
1 1 !
pro—9) 1) = —Q(um +uiR) Pe-1)D = E(UQL + u2r) Po(D-2) = ﬁ(u?)L + u3r)
1 ’ 1 ’ 1
PO-_1)(D—2) = \/E(UIL _ UlR) PO(D-1) = E(UQL - UQR) PD-2)D = ﬁ(ugL - ugR)

From Definition 8.2.2 , it is obtained that
1 1 1 | 3
I'o-2)0-2)p = E(UP +Vp) = E(UP - Vp)
1 1
Fo-1y@-1nyp = E(UIQD +Vp) = \ﬁ(U}) - Vp).

1
(Up+ Vi) = - Vi)

1
_ 2
I'nop = NG \@( P

1 . 1 1
Fo-20-1)p = E(Xl%d +Y3) I'oo-2p = E(X}) +Yp7) lo-1opr = E(X})’} +Y3)

1 ’ 1 ’ 1 ay.
Fo-1@-2p = E(XI%?’ - YJES) lo-20p = E(X}f - YP1>2) I's@-np = E(X% - Yﬁﬂ)
Discussion 8.2.3. According to the result of Discussion 8.2.1 , by calculation we obtain
dlL;P = 0pdyp — gsdlLU}v — gslevli — gsulLX?:? 2 U Xp + 5 LYSI — ? usy, X - 5’&3 Y1;1)2
dar:p = Opdar, — gsdarUp — gsdarVp — gsuar X3 — 5 3L X5+ §U3LY}%2 - ? X3P — 5 YR
dsr:p = Opdar, — gsdarUp — gsdspVp — gsusp X — %S 1 XE 4 5 ui Y32 — % 2 X3 — % Uz Y



118 Zhao-Hui Man

dir;p = Opdir — gsleU}? - gsdlL‘/]l + gsUlL}Gg3 + %UQLXI%} - 5 usy, YP — % 3L X 28 U3LYI£2
dop.p = Opdar — gsdarUp — gsdar, VA + gsuar Y + %USLX}:? - %U3LY1%2 - %UlLX - 5101 Y3
dsg;p = Opdsr — 9sdsrUp — gsdsL VP + gsusrLYp” + 5 1 XP — 5 YR — % 2 X — ?uz LYA!
uir.p = Opurr, — gsurLUp — 92 usr X — % 2 Yp2 — % s X5+ EUSLYP — gsdi1L X3 — gsdirY?
Usr.p = Opuar, — gsuar,Up — %USLX% - ESU:sLYQB - ESMLX12 + ESUILYJ%Q — gsdor X} — gsdar YS!
usr.p = Opusr, — gsusrL,Up — 512 X — 5 ur YA — 5 o X5 5U2LYP — gsd3 . X P — gsdarYp®

uip;p = Opuip — gsu1rUp + &UzRXP + %y RYp + Lugg rRXP — 5“ RYp'

2 2 2
Usp;p = Opusg — gsuarUp + %U3RX1233 + %U?,RYzzg + ? 1RXE — 5“ RYp
U3R;P = Opusr — 95U3RUP + ?U1RX}331 + Eul Y,.?’l + %UQRX - Eu RY

Discussion 8.2.4. According Definition 8.2.2 , U, V, X, Y fields are generated by nine internal con-
nections I'p_2)yo-2)p; L(®-1)@-1)P, [20P, [(®-1)0P; [D®-1)P; L(®-2)0P; ID(®-2)Ps L(®-2)(D-1)P
I'io_1)(p—2)p, so there are nine independent strong interaction potential fields. This actually corresponds
to the transformation group GL(3,R) of slack-tight of internal space. GL(3,R) has nine generators. On a
proper condition, it is completely feasible to use GL(3,R) to describe the algebraic properties of SU(3). Now
consider the algebraic corresponding relationship between the above connections and the gluon potentials of
QCD.

Noticed that
Up —Up+VE=0

Up —Up+Vp=0,
Up—Up+Vp=0
so there are only three independent potentials in UL, U3, U3, VA, VA, V3. Without loss of generality, let
Rp £ arUp + brUp + crU}
Sp 2 asUp + bsUp + csUp
Tp £ agUp + brUp + crUp

and its inverse transformation

Up 2 arRp + asSp + arTp

Up £ BrRp + BsSp + BrTp

Ul 2 ygRp 4+ v5Sp +yrTp
where the coefficient matrix is nonsingular.

If taking agr = br = cg = % and ag = Br = YR, where v is a constant then according to the viewpoint of
QCD, Rp = % (U},, + U3 + UIP;) = % (F@,g)(@,g)p + 1l o-1@-1)p + F@@p) can be regarded as a color
singlet. Now as long as adding a symmetry condition I'{g_2)®—2)p + [(®-1)(0-1)p + IpoP = 0, there is no
need to put Rp into SU(3) theory of QCD. Thus, the rest eight gauge potentials Sp, Tp, X, X%, X3!,
Y22 Y33, Y3 exactly fit in with the generators of SU(3).
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Define
Apexp [apexp  [apexp  [apts
apsvp apevp (apsvp o |4pe
And define
AT E X +iYR? VD ¢ ¢ AR & XE 4R
AP 2 XP —iYp? AP & X —avE! AP & XP —ivE?
1 1 2
A 2 Sp+ —Tp, ABL _Sp+ —Tp, ABL_ " Tp
Then define the following matrix consisted of the above potentials.
) AL Al2 A3 ) Sp + %Tp X1 —ivE? X3 -yt
Ap 2o | AP AR AP | = o | X +iYp? —Sp+ 5Tp XBP — iV
AP AR AP X +ivEh XP+ayE - ZTe
. Ab + A Ap —iAp A —iAp
. 1 .
=3 Ap +iA} —Ap + sAp Ap —iA}

Ap +idy  Ap+iAp — T AR
1
=3 (MAp + X2AD + A3AD + MAD + A5 AD + X6 AD + M AL + AsAD)
T, A,

where T, £ %)\a are the generators of SU(3), and A, are the well-known Gell-Mann matrices defined as

010 0—i0 100 001

M2[100], 2lioo0], M2lo0-10], M2]000],
000 000 000 100
00 —i 000 00 0 L (100

ME21000 |, M2[001], XM2[00—i], X=2—[010
i0 0 010 0i 0 6\op0—2

Now if defining the notations of color states

/ 7b & %()\1 +’i)\2) fgé %()\44—2)\5)
br £ 7(/\1 - ’L)\Q) / bg £ %(AG + ’LA7)
qr £ %()\4 — Z>\5) gb £ f(>\6 — Z)\7) /

and that on diagonal
1 _
ﬂ(r_r —bb) £ )3
1 )

it is obtained that

M= 5@b+br) M=J5(fg+gr) A= 5(bg+gh) A =7 —5 (7 — bb) -
Ay = —=(Fb = br) As = — J5(7g — gr) A& = — 5 (bg — gb) As = J=(7r + bb — 27g)

Substitute them back into matrix Ap, then

S
3

2Ap = MAL + XM A% + M3 A% + N AL + A A% 4+ N AS + M AL + N A%

1 ' _ 1 _ 1

E(rb +br) X \}i(fb —br)Y3% + ﬁ(w — bb)Sp + E(fg +gr) X3

i i 1T,
ﬁ(m gr)Yp' + f(bg +gb)XE — ﬁ(bg —gh)Y3' + %(W +bb — 2gg)Tp.
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It is seen from the results of Discussion 8.2.3 that the superscripts of potentials X and Y reflect the
color types of interaction, and there are corresponding relations 1 <> red, 2 <> blue, 3 <> green. The results
are completely consistent with the traditional theory of QCD.

The above discussions clarifies that the concept of strong interaction reference-system in Definition 8.1.1
contains the key part of QCD, so it is reasonable to use such a concept of strong interaction reference-system
to describe the ontological strong interaction.

Discussion 8.2.5. The electromagnetic potential, Z potential and W potential cannot be described in
the strong interaction reference-system defined in section 7.3.1 , because they are seperate from the weak-
electromagnetic reference-system defined in section 6.4.3 .

In order to completely include the weak-electromagnetic interaction of hadron, the two dimensions of the
internal space of weak-electromagnetic reference-system of Definition 7.1.1 has to be put together with the
three dimensions of the internal space of strong reference-system of Definition 8.1.1 , and we should consider
the case of five dimensions, which will be described strictly in the next section.

Review the GUT based on SU(5), which unifies the electromagnetic, weak and strong interactions to-
gether. Of course it benifits from the five dimentions of internal space. Just as section 7.2.4 | the theoretical
forms of such GUTs are not fundamental enough, so they are not easy to fit in with the geometric essence
precisely, therefore they may cause a prediction of proton decay which may be inconsistent with experiments.
Such a prediction will not be caused by the theory of this paper.

This paper expresses in the way of intrinsic geometry, then appropriately makes the geometry smaller
by adding symmetry conditions, finally it must be easier than traditional theory to achieve the purpose of

approaching the target geometry.
9 Weak-electromagnetic-strong unified reference-system

Definition 9.1. Similar to Definition 7.1.1 and Definition 8.1.1 , let ©® = r + 5 and on a ©-dimensional
smooth manifold M there be a typical gauge field reference-system f such that on a neighborhood U of each

point p, the coordinate representation of f(p) is
{gs = &) {x = (&)
e=e@) lem=ame)

Then f is called a Weak-electromagnetic-strong unified reference-system.

1<s,i<r; am=9-49-3,9-29—-1,9.

Accoring to the definition,

For the sake of simplicity, the effects of gravitational field should be excluded. So let f be externally flat and
internally standard. According to Definition 5.2.2 | it is required that

B =6, Bj=0, Ci=9d, CI'=0.

S

Gmn=0m #n), Gun = const.
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In addition, symmetry conditions

GE-H(O—4) _ (®-3)(2-3)

GE-2(®-2) _ GO-1)([®-1) _ GO

are required, and denote

g2 \/(G<®f4><®f4>)2 1 (GE-3)@-3)?,

gs 2 \/(G(’}Dfl)(ﬁfl))z + (G©®)2 _ \/(G(Q*U(Q*Uf + (G@*Q)(Q*?))Q _ \/(G(®72)(©72))2 + (G’D’D)z.

Specify the internal indices, which are a,b,¢,d,e =0 — 4,0 — 3,0 — 2, — 1,9 in coordinate frame £ and
m,n,p,q,r =D —4,0—3,D—2,9 — 1,9 in coordinate frame z.
Discussion 9.1. Let f and g be two weak-electromagnetic-strong reference-systems. Now focus on cal-

culating the evolution forms of charges py,, of f in g.

Pmn;P = OPPmn — pHnF:LIP - pmHFrg-"
= Oppmn — Po—1ylimp ' = P@—3mlmp. — P@—2lmp” — P@-1ynlnp " — ponlinp

— pm@-0 g = pmo-3)Tip ° = Pm@-2Lap > = Pme-1) L g ' — pmoLap

Concretely,

po:p = Oppon — 2ponlar — (Po—2)0 + Po@-2)) Inp> — (Po—-1)0 + po@-1) I'ap "

— (po-1o + po@-1) Iap ' — (Po-310 + Po0-3)) Iap >

Po-1)0:P = OPP(D—-1)D — P(D-1)D (F(%__ll)p + ng)

~ (om0 I85" +roa B 1yp) — (o201 3 %) p + P02 T557)

- (P(©—4)®F§3_,41)p + P(@—1)(©—4)F§E4) - (P(@—?,)@F(%_j)p + P(®—1)(©—3)F§133> ;
pPo-2y0:p = OPP(D-2)D — P(D-2)D (F(@ apt F@P)

- (P’}D’}DF(%fz)P +p@-2@-2Top ) - (P(@A)@F(%:lg)p + P(©72)(©71)F§1§1)

- (P(@—4)©F(%_,42)p + P(@—z)(©—4)F§E4) - (P(@—?,)@F(%_i)p + P(@—z)(@—g)Fgﬁg> ;
P@-3)0:p = OPP(D-3)D — P(D-3)D (F(%__?},)p + F%)P)

— (PooI B gyp + pio-s0-9 185" ) = (020l %) p + P0-s10-2T857)

- (P(©—1)©F(%_,13)p + P(®—3)(©—1)F§131) - (P(®—3)(®—4)F§E4 + P(©—4)©T§3:%)p> ;
Po-10:p = OPPD-2)0 — P(D-4)D (F(@ —_pp T F@P)

~ (PooI B syp + o s Ta5") = (020 TS % p + P00 T877)

D — D—
- (P@—lmf(@ e+ Po-ne-nlop ) - (P<©—4>(®—3)F@p3 +P<©—3)©T<@i>p>
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pPo@—1):P = OPPo(D-1) — PO(D-1) (F%)p + F(%ill)p>
- (/-7(@71)(@71)1}?;1 + P@@F(%_np) - (0(972)(971)1}?}32 + p@(z)fz)Fé))__Ql)p)
- (,0(@74)(3371)1%)134 + p@(@74)F(%7_41)p) - (,0(@73)(971)1%)133 + p@(foS)F(%:?)l)P) )
PO-1)(®-1):P = IPPD-1)(D-1) — 2P(©—1)(©—1)F(%:11)p
— (Pe-2)@-1) + P@-1)@-2) [5_1p — (Po0-1) + P@-19) [(3-1)P
— (Po-n@-1) + Po-10-1) I3 1)p — (P-8)0-1) + P@-1)9-3) [(>_1)p"
P@-2)@-1);P = OPP(@-2)(®-1) — P(®-2)(D-1) (F(%__zg)p + F(%__ll)p)
- (p(Q—l)(Q—l)Fggilg)p + p(@-z)(g_z)F(%i%)p) - (p©(©—l)F(%72)P + P(@-z)gf(%,l)p)
- (0(9—4)(9_1)F§31§)p + p(@—Q)(’)D—4)F(©©__41)p) - (P(@—g)(@—nf(%__?;)p + P(@—2)(©—3)F(©@__31)p> )
PO—3)(D—1);P = OPP(D—3)(D-1) — P(D—3)(D—1) (F(%__?},)p + F(%__ll)p)
~ (eI e +re s B he) — (re-n@- T3 bp +po-s10-0 5 1p)
- (P(@—z)(g_nf(?{_%)p + p(’D—S)(D—Q)F(%__Ql)p) - (P@(@—UF(%_g)p + P(@—g)gf(%_l)p) )
P(O—4)(D—1);P = OPP(D—4)(D—1) — P(D—4)(D—1) (F(%__i)p + F(%__ll)p)
- (P(©—4)(9_4)T§)ﬁ)p + p(@-l)(g—nf(%i)p) - (P(@-s)(s—nfg)ﬁ)p + P(©—4)(©—3)F(®@131)p>
- (P(@—z)(g_nf(%__i)p + P(®—4)(©—2)Fg)__21)p) - (p@(@—l)F(%_4)P + P(©—4)©F(%_1)p) ;
Po(®-2):Fp = OPpPo(D-2) — PD(D-2) (F%)P + F(%__QQ)P>
- (P(@—z)(m—z)Fgﬁz + P’)D’}DF(%fz)P) - (P(@—l)(@—z)Fgﬁl + P©(©—1)F§)112)p)
- (p<@_3)<@_2>F§;3 + P©(®—3)F(%_,32)p) - (P(©—4)(©—2)F§E4 + P@(@—4)F(%_,42)p) ;
PO-1)(®-2);P = OPP(D-1)(D-2) — P(D—-1)(D—2) (F(%__ll)p + F(%__Qg)p)
- (p(©72)(3372)f‘(%:21)p + p(@*l)(@*l)l—‘(:%:lg)P) - (P@(sz)lﬂ(%fl)p + P(@q)gf(%fg)p)
- (0(9—4)(9—2)1@3:41)13 + p(@—l)(©—4)F(®@i42)p) - (p(@—3)(©—2)r(©@131)P + P(®—1)(©—3)F£3_,32)p> )
P—2)(®—2);P = OPP(D—2)(D—2) — 2P(®72)(©72)F(%__22)p

— (Po-1@-2) + P-20-1) Im>_2p — (Po(0-2) + P0-2)0) [(D_2)p

— (Pro—a)0-2) + P@-2)0-4) I (> 5p = (Po-3)0-2) T P@-2)0-3)) I (5 3)p>
P@-3)(D-2);P = OPP(D-3)(D-2) — P(D-3)(D-2) (F(?D:%)p + F(%ié)p)
- (P(@—z)(@—z)ﬂ%—_%)p + P(@—s)(©—3)F(%__3'2)p) - (P(@—4)(©—2)F(%__A§)p + 0(9—3)(9—4)11(%.__‘12)13)
- (P(@q)(@a)ﬁ(?f_lg)p + p(gfs)(gq)Fg{_lg)p) - (p®(®72)F(z’})3—3)P + P(®73)©F(%72)P) ;
P@-1)(D-2);P = OPP(D-14)(D-2) — P(D-1)(D-2) (T(%fi)p + F(%:é)p)
- (P(D—zxz—z)F > vp T P@-n@-oT, (%__42)1») - (P(@—s)(@—mf > yp T Po-n@-3T (%_—32)P>

D—1 D—1 D D
- (P@fl)(@fz)F@_@p + p(©*4)(©*1)F(©—2)P) - (P@(@mf@%)p + P(@%)@F(@fg)p) ;
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Po(®-3):p = OPPD(D-3) — PD(D-3) <F§P + F(%i%)}))
- (9(973)(973)F§133 + P@@F(%_s)p) - (0(974)(973)1}?}34 + p@(@#)lﬁgf_‘é)p)
- (,0(@72)(@73)1%)132 + P@(@q)F&i)p) - (,0(@71)(973)1%)131 + p@(@*l)[‘(%:]é)p) ;
P@-1)(@-3);P = OPP(D_1)(D-3) — P(®—-1)(D-3) (F(%ill)p + F(%i%)p)
- (p(9—3)(®—3)F(%:31)P + P(@—l)(@—nf(%__le,)p) - (P(@—4><®—3)F(%__41)p + P<©—1><9—4>F§{_‘§>p>
- (p(3372)(©73)1-‘(/}%:21)]3 + p(ﬁDfl)(©72)F§)7_23)P) - (p’D(@fS)F(z’})D—l)P + p(@,l)gf(%,;s)}p) ;
P(@-2)(D-3);P = OPP(D-2)(D-3) — P(D-2)(D-3) (F(?D:é)p + F(?g:%)p)
- (P<D—3>(©—3>F > p T P29, (%__23)1») - (P(@—4><®—3)F > 5yp T P20 (i:)o_—43)P>
- (p(”Dfl)(ﬁDfS)F(,}%:lg)p + p(©72)(©71)[‘§)7_13)}9) - (p’D(@fS)F(%—%P + p(g,g)gf(%,;ﬂp) ;
P(@-3)(2-3);Pp = OPP(D-3)(D-3) — 2P(©—3)(®—3)T(%_,33)p
— (Po-n-3) + P-3)0-2) [n_5p — (PO-20-3) + P-3)0-2) [(m 5P
~ (p@-1@-3) T Po-30-1) L3 _3p — (Po0-3) + p-3)2) [(D_3)P:
P(D—4)(D—3);P = OPP(D—4)(D—3) — P(D—4)(D—3) (F(%__i)p + Fg)__?},)p)
- (p@_s)@_g)f“&j)p + p(®—4)(©_4)F§)f§,)p) - (p(@-z)(@-s)r(%j)p + p(©—4)(@_2)F(®@123,)p>
- (p(Q—l)(’D—S)F(%__Z)p + P(®—4)(©—1)F§)__13)p) - (P©(©—3)F(%_4)P + P(©—4)©F(%_3)p) ;
Po(®—4):Pp = OPPD(D—4) — PD(D—4) (F%)p + F(%__t)p)
~ (po-no- 985" +poo B syp) — (P90 25" + P05 T3 )
- (P(@—g)(®—4)F§EQ + P@(@—z)F(%_jl)p) - (P(®—1)(©—4)F§131 + P@(@—1)F(%_,14)p) ;
P(O—-1)(D-4);P = OPP(D—1)(D—4) — P(D—1)(D—4) (F(%__ll)p + F(%__i)p)
~ (P 0T34 p+ o v I3 p) = (P90 0B p + P8 > p)
- (P(@—z)(®—4)F£3:21)p + p(@—l)(@—Q)F(%ii)p) - (p©(®—4)F(%_1)P + P(@—l)gf(%_4)p) )

D—2 D—4
P@-2)(-2)P = OPP(D-2)(D-4) ~ P(D-2)(D-4) (F (@-2)p T 1 (@_4)1:)

D —4 D —2 D -3 D —3
- (P(@%)(@%)F (d_2)p T P@-2)@-2)] (@4)13) - (P@fs)(@f@fﬁ @—2)p T P@-2)@-3)] (@74)13)

- (p(i)—l)(’D—4)F(©@:12)p + P(@—Q)(z)—nf(%ii)p) - (P@(@—4)F(%_z)p + P(@—z)gf(%_4)p) )
P(D-3)(D—4);p = OPP(D-3)(D—4) — P(D—3)(D—4) (F(%__?Zg)p + F(%__i)p)

- (P(@%)(@%)Fgﬁ%)p + p(©73)(©73)f‘(:%::1)13) - (P(efz)@%)lﬂgﬁ%)p + p(@*B)(@*Q)F(C%i%l)P)

- (P(@—l)(®—4)T(%:13)p + p(’D—S)(@—l)F(?D_,Z)P) - (P@(@—4)F§>_3)p + P(©—3)®F(%_4)p) ;
P(D—4)(D—4);P = OPP(D—4)(D—4) — 2p(974)(®74)1ﬂ(%__i)p

— (Po-8)0-1) + Po-n0-3) I3 3yp — (P-2)0-1) + P-1)0-2) I3 P

— (Po-1y@-2) + Po-n@-1) I3 _4yp — (Po@-2) + P0-2)0) [(D_1)p-
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Definition 9.2. Interaction potentials.

Define the weak-electromagnetic interaction potentials

1 1

Zp = E(F(©74)(3374)P + Io-3)®-3)P) Wp £ E(F(©—4)(©73)P + lo-3)(2-4)P)
1 ’ 1

Ap & —(Io—1y0-1p — Lo—3)(9-3)P) Wi £ —(o-1y0-3p — Lo-3)9-1)P)
V2 2

and the strong interaction potentials

Up = % (Fo-20-2p + Lo-1)(9-1)P) Xp = % (To-20-1np + Io-1)0-2)p)
Vp £ % (Mo-20-2p — No-1)0-1)P) |vpe % (lo-20-1)p = L@-1)0-2)P) |
U2 2~ (To1yo1p + Toor) X8 & 2 (No_1yor + oo 1p)

V2 V2
Vi A& % (Ho-1y@-1)p — I'oop) ’ YA & % (Ho-1yop — Io@-1)P) 7
Ug £ % (I'oop + [o-2)(2-2)P) Xp = % (Fo@-2p + To-20P)
Vi £ % (Foop — Io-2)(0-2)P) | Yp? £ % (F'o@-2p — Io-20P)

Definition 9.3. Weak-electromagnetic charges and color charges.

Define the electric weak charge

1£ (0(9—4)(974)7 0(973)(973))

and the neutral weak charge
A

V= (P(@—s)(©—4)a P(©—4)(©—3)) )
which are uniformly called the weak-electromagnetic charges. Define down-type color charges
di £ (po-2)(-2), PO-1)®-1))
d2 2 (po-1)(2-1), PoD) )

ds £ (poo, po-2)9-2))

and up-type color charges
Ul £ (P(®72)(971)a P(©71)(©72))

A
U2 = (P(@—l)@» P@(@—n) )

us £ (09(972)7 0(972)9)
which are uniformly called the color charges. d; and u; are called red charges, ds and us are called blue

charges, and ds and us are called green charges. Similar to Definition 7.2.1 and Definition 8.2.1 , define

left-handed and right-handed weak-electromagnetic charges

l AL 1 AL 1
L= ﬁ (/)(@74)(@74) + 0(973)(973)) vy = ﬁ (,0(@73)(974) + 0(974)(973))
1 ’ 1 ’

I 2 — (pro_ay®—1) — P(D—3)(D— L2 (pro_3)(o_1) — P(D—1)(D—
R ﬁ(f)(g 4)(D-4) — P(D-3)(D 3)) VR \/i(f)(sa 3)(D—4) — P(D-4)(D 3))
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and left-handed and right-handed down-type color charges

1 1
dip & — _2)@—2) + Po—1)(— dip = — 2)®-2) — P(D-1)(D—
1L \/i (ﬂ(@ 2)(®-2) T PO-1)(D 1)) 1R \/§ (P(@ 2)(D-2) — P@-1)(D 1))
1 1
L C A dorc — (po_no) —
2L V2 (,0(@ 1)(®-1) p@@) 2R /2 (P(@ 1)(®-1) P@@)
1 1
ds, 2 + p(o—2) (D dsp & —= — Po—2)(D—
3L /2 (P@@ P(D-2)(D 2)) 3R /2 (P@’D P(D-2)(D 2))
and left-handed and right-handed up-type color charges
UlLéi(/) +p ) U1Réi(0 - P )
N (D-2)(D-1) (D-1)(D-2) N (D-2)(D-1) (D-1)(D-2)
Uy, £ ! (P +p ) uzp £ ! (P - P )
/2 ®-1)° D(D-1) ) /2 (®-1)D D(D-1)
ug £ ! (P +p ) usp £ ! (P —-p )
/2 D(D-2) (-2)D /2 D(D—2) (D-2)D

Definition 9.4. Define the symmetry conditions of weak-electromagnetic-strong unified rerference-system.

(1) Basic conditions, No.1:
GP-4)(®-4) — (9-3)(D-3)
G@-2)(0-2) _ o(@-1)(®-1) _ ;0D ;
(2) Basic conditions, No.2:
{F(Q—S)(©—4)P =lo_4@-3)P

INo_syo-2p t Io—ny@-1)p + Ioop =0
(3) MNS mixing conditions of leptons, No.I:

Tolpr=ca3la e (T sor=coilogpr [B5=ca]
I pp=ca3lm p (T sp=Coala 5p, (B5=B 4
F(%%)P = C%—SF(%:?:;)P F(%—S)P = 03741?9143)13 -3 =Cp_4
(4) MNS mixing conditions of leptons, No.2:
P(D—-2)(D-3) = P(D-2)(D—4) P(D-3)(D—-2) = P(D—-4)(D-2)
PD-1)(D-3) = P(D-1)(D—-4) » P(D-3)(D-1) = P(®—-4)(D-1) 5
PD(D-3) = PD(D—4) P(®-3)D = P(D-4)D
(5) CKM mixing conditions of color charges, No.1:
Ioyp =2l yr (Lo ar=3-20o p P _ o _ o
F(%:gnp = ngllr(%:i)P ’ F(?D:%l)P = Cgifféﬁ,)p ) Cz:z B ;:; _ CZ 57
- Bras, Bt -duray, o T

(6) CKM mixing conditions of color charges, No.2:

{p@z)(@g) = PO-1)(9-3) = PD(D—3) {P(@g)(@z) = PO-3)(D—-1) = P(D-3)D

P(D-2)(D—-4) = P(D-1)(D—4) = PD(D-4) P(D-4)(D-2) = P(®-4)(D-1) = P(D-4)D
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The ¢! are all real constants. An externally flat and internally standard weak-electromagnetic-strong unified
reference-system satisfying all the above conditions is called a typical weak-electromagnetic-strong
unified field, or an elementary particle field.

Definition 9.5. Lepton and hadron.

If there is a typical weak-electrolmagnetic-strong unified field such that po_2)y0-2) = po-1)@-1) =
POD = P(D-2)(D-1) = P(D-1)(D-2) = PO-1)D = PD(D-1) = PD(D-2) = P(®-2)D = 0, it is called a lepton
reference-system, or a lepton field. Otherwise, it is called a hadron reference-system, or a hadron

field.

The electric weak charge of lepton reference-system is called an electric charged lepton, and the neutral
weak charge of lepton reference-system is called a neutrino. They are uniformly called lepton charges, or
leptons for short.

If a hadron reference-system satisfies that its three up-type color charges are constantly zero, and two of
the three down-type color charges are also constantly zero but the other one is not, such a reference-system
is called a single down-type quark.

If a hadron reference-system satisfies that its three down-type color charges are constantly zero, and two
of the three up-type color charges are also constantly zero but the other one is not, such a reference-system
is called a single up-type quark.

The single down-type quark and the single up-type quark are uniformly called the single quarks.

Proposition 9.1. (Color confinement) Single quarks do not exist.

For the single down-type quark, this proposition is obviously true. Without loss of generality, suppose
ur =uz =ug =0 and dy = dz =0, then pp_2yp-2) = P@-1)(9-1) = poo = 0, so d3 = 0 holds surely.

For the single up-type quark, without loss of generality, consider the case that dy = do = d3 = 0 and

up = ug = 0. In this case, pio_2)0-1) = P@-1)(@-2) = PO-1)D = PD(D-1) = P(D-2)(D-2) = P(D-1)(D-1) =

poo = 0, and we need to prove uz = 0, that is pp@_2) = p(p—2)p = 0, where

! ’ ’ :P
pun = PN = G pN © = G GPpiy = GMM’GOOK]J\\[/[PQ 582

’ P ’ P ’
00 M M HP

and

1 oB4  0B4
AM 4L 70]\/1 N P .
NPT oTA N\ dxP + OxN
It seems probably true, but this paper has not made progress in its proof.

Discussion 9.2. According to the results of calculation of Discussion 9.1 , as well as Definition 9.2 |

Definition 9.3 and Definition 9.4 | the evolution forms of weak-electromagnetic charges can be obtained as
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below.
lo.p = 0plr, — gl Zp — glpAp — guLWp
1o . g
~ 5 174 (@-20-9 + Po-30-2) + 575 (Po-210-9 T P@-90-2)] W
1o . g
~ 5 1% (@-n@-9 + Po-s0-1) + 575 (Po-n@-9) T P@-02-1)] S
1 g
D) [Cg—4 (99(973) + p(@,3)©) + Cg—?, (09(974) + P(@%)@ﬂ EW}D,
lr;p = Oplr — glrZp — gl Ap,
vp,p = 8PVL — gI/LZp — glLW};
1o _ g
~ 5 75 (P20 + Po-s0-2) + 375 (b@-n0-2 T r@-20-9)] 5WE
1o _ g
~ 5 %75 (po-n@-0) + Po-s0-1) + 575 (b@-n0-1) T P@-n@-3)] FWE
1
T3 [0274 (P®(974) +p@-9)o ) +C© 3 (P(@ 3)D + Po(D-3 )] \[ Wp,
vg;p = OpVR — gVRZp.
Denote

D—2
C
D—4
+

Iy £ po—3)(0-3)

02:2
+

32
+

Further more it is obtained that

-
@ 2

+

I £ po—1yo-a)

!/ A
V1 = P(@-3)(D-4)

/A
Vy = P(0—-4)(D-3)

5 2 (P(@-z)(@_4) + p(©—4)(©—2)) + 9 2 (P(@-1)(©_4) + p(©—4)(©—1)) +

D—-1

Co_yq

5 (P08 + Po-8-2) + =5 (Pe-1H@-8) +PE-3E-1) +

’D—l

Cg} C@ 1
+
ro_
vV =vp
o3 D5
+
D-2 -1
Co_4 Co_4

2

9 3 9 3 3
+ == (P23 T P@-5@-2) + =5 (P13 + PE-8)@-1) +

2

2

c@

2

2

D
€Dy

9 (P(sz)(©74) + 0(974)(972)) =+ T (0(971)(974) + p(’}374)(3371)) + ©274 (09(974) + 0(974)9)
2_3 (Po(@-3) + P(@-3)D)
9273 (Po@-1) + Po-1)D)

©2_4 (Po(@—3) + P@—-3)9)

D—4
+ -2y (1) + P(D—1)(D— PO—1) (1) + P(D—1)(D— D(o—1) + P(o-
Q\f( D@ -1) T P@-n©-2) 2\[( n@- T Pe-n@-) 55 (Pow-s +Po-4o)

D-3
_ _3)+ _ _ + _3)+ _
2\[ ( P(®-2)(D-3) T P(D-3)(D 2)) 2\[ ( P(®-1)(D-3) T P(D-3)(D— 1)) 2\/5 (P@(@ 3) T P(® 3)9)

D—3 D—3
_ _q) + _ _9y) + —— _ _q) + _ )+ ——= _4) + _
2\@ (P(@ 2)(D—4) T P(D-4)(D 2)) 2\@ (/J'(z) 1)(D—4) T P(D-4)(D 1)) 2\@ (P@(@ 4) T P® 4)@)

+ — _3)+ _ — + _3)+ _
Q\f (P(@ 2)(D-3) T P(®-3)(D— 2)) 2\/5 (ﬂ(@ 1)(®-3) T P(®-3)(D 1)) 2\/§ (P@(@ 3) T P® 3)@)
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Substitute them into the above results of calculation, then it is obtained that

ln.p = 0plr, — gl Zp — glRAp — gV Wh
lr,p = Oplr — glrZp — glLAp
vip = Opvr, — gviZp — gy Wh

vRr,p = OpVR — gVRZp

Definition 9.6. The above equations are called the evolution forms of weak-electromagnetic
charges of weak-electromagnetic-strong reference-system. Specially, for a lepton reference-system, they are
called the evolution forms of leptons. I’ and v/ are called the eigen charges about weak interaction,
correspondingly / and v are called the eigen charges about mass.

Remark 9.1. For a lepton reference-system, it is seen from the expressions of I’ and v/ that the three
generations of leptons may be distinguished by charges p(o_2)0—3), P(0—-3)(®—-2)» P®-1)(D-3)> P(D—-3)(D—1)>
PD(D-3)s P(D-3)D5 P(D—2)(D—4)5 P(D—4)(D—2)> P(D—1)(D—4), P(D—4)(D—1)s PD(D—4); P(—4)® in I" and V.

For example, we can imagine that the definitions of electron and electron-neutrino might be

e 21 = (po-a)(0-1): P®O-3)(D-3))
ve 2 v = (0(973)(974), P(©74)(©73))

and the definitions of muon and muon-neutrino might be

1 _ _
1= age+ 5 (au%ipm—zm—@ + a3 4P@-1)(@-1) + Qg 4P (D1,

3 3P(D—2)(0-3) T Gug_sP(@—1)(D-3) + augf3p©(©—3)>

1 _ _
Vi = buve + 3 (bug_ﬁfo(@m(@f@ + b3 3P 1)(0—1) + bup_sP0(04),

b2 3P0 2)(0-3) + bl 4po-1)(0-3) + buB_spo(0-3))

and the definitions of tauon and tauon-neutrino might be

1, o .
T arpi+ 5 (437 1P(0—s)0-2) + 0r9 P-4 (0-1) + 0D _4P@-1)D,

argigp(mfa)@q) + argiép(sfg)(mq) + 078—30(973)@)

1 _ -
Ve 2 by, + 3 (brg_ip(@%)(@fz) + b3 3p-4)0-1) + bro_3p@-a)0,

bra_3P(®-3)0-2) + brp_4P@-3)@-1) + bT§_4p(@,3)©>

where ar, by, a;I", b, are all constants.
The above discussion indicates that the MNS mixing of leptons is determined by geometric properties
of reference-system. It is an issue worthy of further study that how to use this new approach to explain

experiment data.
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Although the above definitions of electron, muon and tauon are just preliminary ideas, it is sure that
when the three generations of leptons and its mixing are constructed in the above way, they will no longer
be artificial postulates like those in traditional theory. Such constructive definitions must become our goal.

Discussion 9.3. According to the results of Discussion 9.1 , as well as Definition 9.2 , Definition 9.3 and
Definition 9.4 , calculate the evolution forms of color charges and it is obtained that

dir;p = Opdir, — gsdlLU}D + gsdzLVﬁ — gsdsL Vp
— gou1 L Xp — 5 o XP + 5 2 YR — %sUgLX - EusLY

l o3 g 1L o 9 111
- o oo Wl — - o oo W
5% s (P-n@-2) + Po-2)0-1) o P T g2 (P@-3)0-2) +P0-20-3) Nokea
l o3 S N 9 1171
- o e Wl — - o e W
501 (P-n@-1) + P@-1)0-19) N (P-8)@-1) + P@-1)(0-3) Nokea

dor.p = Opdar, — gsdQLUlzi' + gsdfﬁLV]% - gsdlLV,%

— gsuarL X3 — 5 s XP + 5 usYp? — ? WX — EulLYE)‘"’

_ 109—3 (p T ) 9wt lc© “p Yo ) 9wy
9 D1 (D-4)(D-1) (D-1)(D-4) V2 P51 (®-3)(®D-1) (D-1)(D-3) V2 P
l 53 1 D4 g 1
— _ ) —WE _ _ay) —=W
2(3@ (P(@ 4H)® T Po® 4)) /2 P35 o (P(D 3 tPo@ 3)) 2 P

dsp.p = Opdsr, — gsdsLUp + gsdu:Vp — gsdar, Vi

— geusL Xp — 58 1 XE + 5 uLYp? — 58 2 Xp — EU2LY

_ 1o (v 4o ) Ly, - 1o (v 4o ) Ly :
5% (@—-2)D T Po(@—-4) 2P T g% @-3)0 T Po(®-3) Nl

l o3 9 Ll 54 9
= 52 (Pe-@-2) + P-20-9) WP~ 5607 (Po-s@0-2 + pe-20-9) Z5WP

dip.p = Opdig — gsdiLVp + gsd2LU113 - gstLU}D

+ggU1LYP +5 XP 75 uzy, YP 75 XP 75U3LY12
dagr;p = OpdaRr — gsd2LVp + gsdsLUp — gsdlLUP
+gsU,2LYP3>1 + 5 X}:;Q — %5 3L Y}:Q — ? X1233 — Eul Ylgg’
dsg;p = Opdsr — gsdsL Vi + gsdu:Up — gsdar, U}
+ gsusYp? + %UILX - 5 w1 Y3 — 58 2 X3 — 5 upp YAV
u;p = Opurr, — gsurLUp — &UzLX}DQ - iUQLY}lQ Yo s X P SUBLY1§1
2 2 2 2
— 9oL X7 + gsdorY3* — gods Y3
I 5.3 g l 5.3 g )
~ 3% (-2 + Pe-20-9) 5V = 5605 (Po—n@-1) + re-ne-0) J5We
L o4 g 1 1oy g 1
~ 3%-1 (Po-n-2) + Po-20-3) J5Wr ~ 5602 (Mo +P0-nw-3) 5Wp
Uspp = Opuar, — gsua L Up — %USLX%} - %U3LY1§3 - 55 L XP + ?u LYp?
— gedor X + gudsr Y — gudi LY
1 o g l o g ;
- 502 N (0(974)(971) + ,0(@71)(@74)) EW}D - 503 ? (P(D 4D + po(@- 4)) EW}D
I o4 g 1 1oy g 1
~ 5% (0(973)(971) + ,0(971)(@73)) EWP T 5% (P(®—3)© + 09(973)) EWP
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usr.p = Opusr, — gsusrUp — 92 urL X3P — 5 ur Yp! — ES 2L X3+ 5 s Y32
— gsd3r. XP + gsdiLY? — gsdar Y52
1 oo g I 5_ g ;
- 503_3 (po-10 + Po(0-1)) EW}D - 503 P (po—1)(—2) + Po—2)(D-1)) EW}D
_ Lo ( + ) -Lwp - 1.2 ( + ) LW
5602 P(®-3)D T PD(D-3) 2 P 5% P(D-3)(D-2) T P(D-2)(D-3) NG P
uir.p = Opuir — gsurpUp + %squle} + %UQRY}? + %umX?} - 5 uzrYp!
Usg,p = Opusr — gsuzrUp + %'UBRXP + 5U3 rYR? 25 uir X — 5U 1RY3%,
usg;p = Opusr — gsusrUp + %UlRX?Dl 5“ rRYE + 5 rRXE — §U2RY
Discussion 9.4. Similar to Discussion 9.2 , denote
/ A 1 D—-3 1 D3
L= 27\/503371@(3374)(@—2) + po—2)(0-1)) + mcg,Q(p(g,4)(@,1) + p@—1)(9-1))
I o4 L o
+ ——c _ _2) + _ _3)) + —=c¢ _ —1) + _ _
Ve oo 1(P@—3)(D—2) + P(D—2)(D-3)) o o_2(P@=3)-1) T P@-1)(D-3))
1 iy 1 _
b = —Nic% 3(P(®74)(971) + p@—1)-1)) + 72\/5037?(/’(9*4)@ + po(0-1))
I 5y I oy
+ ——=c _ —1) + _ _3)) + —=c¢ — + _
2v/2 D (P(@ 3)(D®-1) T L(®-1)(D 3)) 2v/2 @71(,0(@ 3)D T PD(D 3))
1 1 .
A 23 o + )+ ——=c2 3 (o1 (D—2) + P2 (D
NG o2 (P@—1D + Po(D-1)) ok (P@—1)D—2) + P(D—2)(D-1))
I 5y I 5y
+ ——=c _ + _3)) + —=c¢ _ _o)+ _ _
Wi o_2(P@—3)0 + Po(9—3)) 3730 (P@—3)®—-2) + PD—2)(D-3))
1 _ 1 _
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Substitute them into the results of Discusstion 9.3 , and it is obtained that

dip,p = Opdir — gsdiLUp + godor Vi — godsL Vi

— gsulLX - Eu Xp + 516 Y 25 X D) UBLYP gu’lLW};
dar.p = Opdar, — gsdQLU]% + gsds VA — gsdi L Vi
— gsug X3! — 3 3L X5+ %UMYI%Z 2 1 X3 — Eu 1 YRS — guby, Wh ’
dsr,p = Opdzr, — ged3LUp + gedlLVg — gsdar VP
— gsusL Xp — Tuip Xp + ZuYp — sy, up Xp — i“2LYP — gus  Wp

2 2 2 2
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dir;p = Opdir — gsdlLVﬁ + gsdar,Up — gsdsrUp

+ gsur Y3 + 5 2 Xp — % us Yp! — % s Xp — EUSLY}})Q

dap.p = Opdar — gsdar VR + gsdsrUp — gudi LU

+gsuarYp! + %USLX}? - %UaLYﬁ2 - %SulLX - 5 u Y22
dBR;P = Opdsp — gsd3LVg =+ gsdlLU}% — gstLU]%
+ gsusLYp® + %UlLXJ%3 - %UILY - %s 2LXP - 5 s Y3

g
uiL;p = Opurr, — gsurLUp — ESUzLX - 5 Us Y2 2 sL X3+ 5“ LYR!

— 951, X3P + gsdor Y? — gsdap Y32 — gdi Wi
923LXP_53Y_92751XP+51Y

- gstLXP + gstLYP - gsdlLYP - gd LWP

2
Uar,p = Opuar, — gsuarLUp —

usr.p = Opusr, — gsusrL,Up — %UlLX - 51& YA — %U/QLXJQD?) + %uzLYﬁ?’
- QsdsLX}JQ + gsdlLYI}'Q - gsdQLY}t1>2 - /LWIID

uir.p = Opuip — gsurrUp + 2 usr X + 5 usrYp? + 5 uzr X3 — %S usrYp!

Usg.p = Opuar — gsu2rUp + %USRX%?’ + §u3 RYE + ESMRX}:Z - %SMRYF%Q .

usr.p = Opuzr — gsusrUp + 5 1RX P+ 5 1RYPE + %UQRXI%?’ - %S orY P

Definition 9.7. The above results are called the evolution forms of color charges.
Remark 9.2. The charges

! ! ! i I i
1L» ors dsp, Uip, Ugp, Usp

in the above discussion indicate that the CKM mixing of color charges are also determined by geometric
properties of reference-system. It is also an issue worthy of further study that how to use this new approach
to explain experiment data.

Discussion 9.5. An ontological hadron may participate not only weak-electromagnetic interaction but
also strong interaction, so in epistemology the evolution form of a hadron charge may generally be expressed

as

q.p = (Adys + Bdas + Cdzs + Duys + Euss + Fuss + Glg + Hvs).p
where ¢ represents a hadron charge and S represents left-spin L or right-spin R.

10 Summary and supplement
10.1 A supplement to the logical structure of theoretical physics
This paper argues that the research objects of physics have only two kinds, one is the physical realities

that can be actually detected in ontology, the other is the mathematical concepts that can be strictly defined

in epistemology, nothing else.
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1. In order to clarify the logical structure of theoretical physics, the ontology and epistemology of theo-
retical physics have to be clarified first. A convenient way is to construct some philosophical starting points
as following.

(1) Fundamental philosophical starting point.

(a) Ontological fundamental category: existence.

(b) Ontological fundamental principle: the world is existent.

(c) Epistemological fundamental category: cognition.

(d) Epistemological fundamental principle: existence is cognizable.

(2) Natural philosophical starting point.

(a) Ontological fundamental existence: matter in motion and motion of matter, abbreviated as

matter-motion, or matter for short, or reality.

(b) Ontological fundamental principle: the world is existent as matter-motion.

(c) Epistemological fundamental cognition: theory in practice and practice of theory, abbreviated
as theory-practice, or theory for short

(d) Epistemological fundamental principle: matter-motion is cognized by using theory-practice.

(3) Starting point of physics.

(a) Ontological fundamental object: physical reality.

(b) Ontological fundamental principle: matter-motion is existent as a physical reality.

(c) Epistemological fundamental object: mathematical concept.

(d) Epistemological fundamental principle: a physical reality is cognized by using a mathematical

concept. All the physical assertions of this paper are expressed according to this principle.
(4) Starting point of theoretical physics.

(a) Ontological fundamental physical reality: interaction field and relative motion of field. As
matter of motion, the physical reality manifests itself as an interaction field; as motion of matter, the physical
reality manifests itself as a relative motion of field. They are unified in physical reality.

(b) Ontological fundamental principle: a physical reality is existent as an interaction field and relative
motion of field.

(c) Epistemological fundamental concept: reference-system.

(d) Epistemological fundamental principle: The basic principle of theoretical physics.

In a word, physical significances of an axiomatic mathematical theory are obtained just from the above
starting points.

2. In order to clarify the logical structure of theoretical physics, the logical structure of mathematics also
has to be clarified first. Based on the above starting points, the following viewpoints are reasonable.

(1) Mathematics is the theory-practice about concept. Concept is the fundamental philosophical cate-

gory of mathematics.
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(2) Logics is the theory-practice about spekulation. Spekulation is the fundamental philosophical cate-
gory of logics.

(3) Mathematics is not similar to other disciplines to research which specified concept is used to cognize
which specified reality, but to research both the concept and reality uniformly in the name of concept.
Those above epistemological fundamental principles constitute the ultimate origin of the effectiveness of
applications of mathematics to natural sciences.

(4) Basic principle of mathematics: a concept is established by spekulation, but spekulation
do not alway establish a concept.

(5) A proposition is spekulation about concept. A concept in a proposition is called a class. A class and
a proposition about this class are put together to be called an identification. Concretely, if class x satisfies
proposition P(z), then the identification is denoted by z|P(x), and say the class = meets the identification

(6) According to (5), further more, a concept can be established by a proposition. Concretely, a concept
X can be expressed as the whole of all the classes which meet identification x| P(x). The identification z|P(z)
is called the intension (connotation) of X. Class X is called the extension (denotation) of z|P(z),
denoted by {z|P(z)}.

If class a meets identification z|P(x), say a belongs to X, and say a is an element of X, denoted by
a € X. Otherwise, say a does not belong to X, denoted by a ¢ X.

(7) Now that intension and extension have been defined, the basic principle of mathematics can also be
expressed as a conclusion that a concept always has an intension, but an identification does not
always has an extension. Thus, it is conditional for an identification to have an extension. So in
epistemology, we have to appoint which identifications have extensions, and call it a convention.

(8) Different ways of such conventions reflect the same essence of the world from different perspectives.
It makes the conventions obtain sufficient legitimacy.

Concretely, in order to establish the foundation of mathematics, no matter the set theory or the category
theory being adopted, we can always establish the following five basic conventions first.

(I) Axiom of extensionality. There exists an identification that has extension, and equivalent identi-
fications have the same extension, which is expressed by the notation ”=".

(IT) Axiom of single element. If identification x| P(x) has extension, denoted by a, then identification
x|z = a also has extension, denoted by {a}.

(III) Axiom of union-class. If both of identifications x| P (x) and x| P2(x) have extensions, then iden-
tification x| Py () V Py(z) also has extension.

(IV) Axiom of sub-class. If any of identifications | Py (x) and x| P»(x) has extension, then identification
z|Py(z) A Py(x) also has extension.

(V) Axiom of power-class. If identification a|P(a) has extension, denoted by z, then identification

"zVw € z, w € x” also has extension.
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From the perspective of concrete construction, except the above five basic conventions, a pragmatic set
theory still requires other conventions of ZFC axiom system. The reason why ZFC system is a good axiom

system is that it has enough many extensions and can deduce enough rich concepts.

From the perspective of abstract structure, except the above five basic conventions, there is no need to
require other universal conventions. It just needs to specifically give conventions to the definition of each

specified category.

In general, set theory and category theory respectively appoint extensions of the identifications in the
two ways of concrete construction and abstract structure, thereby respectively establish the foundation for

mathematics from different perspectives.

Take the concept of real numbers for example. From the perspective of abstract structure, it just needs
to put some abstract conventions together so that defines the complete archimedean total ordered field,
thereby forms an abstract concept of real numbers. From the perspective of concrete construction, it needs to
construct natural numbers from empty set, then construct integers and rationals, finally construct irrational

numbers by Dedekind cut, thereby forms a concrete concept of real numbers.

Strictly, they are two concepts defined respectively in two different ways, but they reflect the same
mathematical intuition and they complement each other. It is such a situation that gives real numbers a
complete description. Similarly, set theory and category theory also complement each other, they together

give mathematics a complete description.

So does theoretical physics. In epistemology, we should not just satisfy to use the abstract way like
traditional theory to discuss energy-momentum and describe gauge fields. We should be able to concretely
construct all the concepts such as energy-momentum and gauge fields. It is precisely because mathematics
has the logical structure mentioned above that the feasibility of achieving such a target is guaranteed. The

theory of this paper has made an effective attempt for this target.

3. In order to achieve the above purpose, we have to make sure that ontological reality and epistemological

concept are not confused.

A concept must have a strict definition, and a reality must can be detected. Difference between them is
obvious. In traditional physical theory, we usually see such a practice that an ontological reality is used as the
connotation to define an epistemological concept. For example, traditional physical theory ususally supposes
that ey, is a free electron field and vy, is a free neutrino field, which both satisfy the free Dirac equation, so
er, and vy, cannot be distinguished by mathematical connotation. However the traditional theory looks ey,
and vy, as different concepts. This is exactly a practice to define epistemological concepts with ontological
realities as their connotations. Such a practice is harmful, because it is easy to cause confusion of cognition
and thereby conceals the true connotations of the mathematical concepts of ey, and vy,.

In this paper it is suggested that a physical theory with a clear logical structure should strictly distin-
guish ontological objects and epistemological objects in discussion. It is best to execute deductive logic for

epistemological concepts and to execute inductive logic for ontological objects. It should be noticed that the
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mathematical induction is always expressed in form of deduction, so it should be attributed to deductive
logic.

1. Take some examples as following.

(1) The concepts of time metric and space metric in section 2.2.9.1 | and the concept of actual evolution
in section 2.4.4.2 are all universal geometric properties on geometric manifold. According to the Corollary
3 in section 2.2.5.2 , they can be used to cognize some kinds of ontological universal physical properties.

(2) The concept of gravitational field in section 5.2.1 and the concept of inertial-system in section 6.3.8.2
are both concepts of reference-system. According to the basic principle of theoretical physics in section 1.2 ,
they can be used to cognize some kinds of physical reality.

The above are all deductive logical discussions.

2. Then, concretely, what kinds of universal physical properties and what kinds of physical realities after
all? It can only be dealt with by inductive logics. By ontologically executing inductive logic for physical
realities, the following physical assertions can just be obtained.

(1) Time and space law. The time interval and space interval of physical reality in ontology are cognized
by using the concepts of time metric and space metric in epistemology.

(2) Evolution law. The actual evolution of physical reality in ontology is cognized by using the concept
of actual evolution in epistemology.

(3) Principle of equivalence. The gravitational field as a physical reality in ontology is cognized by using
the concept of gravitational field in epistemology.

(4) Newton’s first law. The physical reality of inertial relative motion and no classical spacetime interac-
tion in ontology is cognized by using the concept of inertial-system in epistemology.

3. In the sense of deductive logics, we say the basic principle in section 1.2 is the unique axiom of Hilbert’s
6th problem for theoretical physics at the most basic level.

4. In the sense of the above cooperation between mathematical deduction and physical induction, we say
the basic principle in section 1.2 is the unique fundamental physical principle for theoretical physics at the

most basic level.

10.2 Summary

1. This paper gives an improved expression of Erlangen program. It enhances the flexibility of applications
of Erlangen program.

2. This paper generalizes Riemannian manifold to geometryic manifold. On geometric manifold, the
Riemannian geometry is completely brought into the geometric framework of the improved Erlangen program.

3. This paper strictly defines the concept of reference-system and generalizes the concept of intrinsic geo-
metric, so that the traditional intrinsic geometry based on the first fundamental form becomes a subgeometry

of the intrinsic geometry of this paper.
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4. This paper defines the concept of simple connection, which reflects more bending properties of manifold
than Levi-Civita connection.

5. In this paper it is suggested that a research for a kind of mathematical intuition is regarded as a
complete one only if it is from both the ways of abstract structure and concrete construction. This viewpoint
is carried out and practiced in the process of constructing the foundation of theoretical physics in this paper.
The basic framework of theoretical physics is strictly developed by constructivity methods of mathematics
under a unified view of time and space, and based on a unique fundamental principle. All of those redundant
principles, equations, and postulates at the most basic level in traditional theories are turned into theorems
which hold automatically in the theory of this paper, so that various relative motions and interactions can

be described in a unified form.

6. In this paper it is suggested that the research objects of physics have only two kinds, one is the physical
realities that can be actually detected in ontology, the other is the mathematical concepts that can be strictly
defined in epistemology, nothing else. It is best to carry out deductive logic for epistemological objects
and carry out inductive logic for ontological objects, and strictly distinguish ontology and epistemology
in discussion. A physical assertion should be expressed as a normalized language structure like “a physical
reality is cognized by using a mathematical concept”. The theory of this paper practices the above viewpoints,
so the logical structure of theory is more rigor and clearer than traditional theory. This paper gives a feasible
solution to the problem that traditional physical theory for a long time confused and mixed ontology and
epistemology.

7. Except the concept of reference-system on manifold, this paper presents some ideas such as that time
metric is the total space metric, actual evolution direction is the gradient direction, propagator and wave
function reflect the distribution density of actual evolution directions, typical gauge potentials are described
by simple connection, etc., as well as evolution lemma, and they all play key roles in the construction of
theory.

8. Concepts such as various charges, gauge potentials, energy-momentum, etc. are defined by construc-
tivity methords in this paper, so that their connotations become more concrete. These are supplements to

traditional physics.

There is an obvious difference between the theory of this paper and the traditional theory.

(1) The traditional theory starts from a very large symmetry group, and reduces symmetries in the way
of some kind of breaking to approach the target geometry.

(2) The theory of this paper starts from the smallest symmetry group {e}, and adds symmetries in the
way of some kind of symmetry conditions to approach the target geometry.

These two ways must lead to the same destination. They both go towards the same specific geometry.
However the way of this paper has more advantages.

(1) The theory of this paper is based on intrinsic geometry. It has a more strong ability of describing

shapes. And the theoretical form is more fundametal, which fits in with the geometric essence precisely.
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Compared with the abstract way of dicussing the degeneration of group (i.e. symmetry breaking), the
construcive way of adding symmetry conditions to intrinsic geometry in this paper is more suitable for the
case of complicated group structure. It is easier for the theory of this paper to clarify the essence of many
things. Those characteristics which are artificially postulated by traditional theory can naturally appear in
the way of intrinsic geometry, such as the constructions of concepts of electric charged leptons and neutrinos,
the constructions of concepts of down-type color charges and up-type color charges, the chirality asymmetry
of charges, the MNS mixing of leptons, the CKM mixing of color charges, etc.

(2) In the theory of this paper, typical gauge fields and gravitational fields are unified in the viewpoint
of spacetime. They are completely consistent and perfectly coordinated. Typical gauge fields are described
by the intrinsic geometry about internal space, gravitational fields are described by the intrinsic geometry
about external space, and they are unified in intrinsic geometry.

9. Important issues and directions to be further studied.

(1) The discussions of this paper do not involve angular momentum at all. It needs further study for this
aspect.

(2) This paper strictly restricts the scope of discussions to the relative motion and interaction with no
more than two reference-systems. It does not involve those theories at a higher level with more than two
reference-systems. Therefore, with the current degree of development of this theory, some problems, such as
the origin of rest-mass of weak interaction gauge field in section 7.2.4 and the relation between zero-spin
neutrio pair and the peak [1,8] observed by the LHC near 125 GeV, can be just given qualitative judgements.
It needs further development of theory and exploration of experiment.

(3) Further research of the complex-valued evolution equation in section 6.3.7.1 will surely depend on
the degree of development of the theory in section 2.4.14.2 . In order to grasp the main line of geometric
thought, section 2.4.14.2 just gives the most basic, the most core and the most representative concepts
and framework, without developing further more. These contents still need to be developed deeply, so that
achieving the degree of being able to concretely calculate the scattering problem.

(4) Proposition 9.1 has not been fully proved yet and needs further study.

(5) The MNS mixing of three generations of leptons and the CKM mixing of three generations of color
charges in Discussion 9.2 and Remark 9.1 have been constructed. It is worthy of further research for

physicists that how to explain experiment data in this new way.
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