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ABSTRACT

Oil spills pose a major threat of the oceanic and coastal
environments, hence, an automatic detection and a contin-
uous monitoring system comprises an appealing option for
minimizing the response time of any relevant operation. Nu-
merous efforts have been conducted towards such solutions
by exploiting a variety of sensing systems. Previous studies,
including neural networks, have shown that the use of satel-
lite Synthetic Aperture Radar (SAR) can effectively identify
oil spills over sea surfaces in any environmental conditions
and operational time. Moreover, in recent years, deep Con-
volutional Neural Networks (CNN) have presented some re-
markable abilities to surpass previous state-of-the-Art perfor-
mances in a great diversity of fields including identification
tasks. This paper describes the development of an approach
that combines the merits of a deep CNN with SAR imagery
in order to provide a fully automated oil spill detection sys-
tem. The deployed CNN was trained using multiple SAR im-
ages acquired from the sentinel-1 satellite provided by ESA
and based on EMSA records for maritime pollution events.
Experiments on such challenging benchmark datasets demon-
strate that the algorithm can accurately identify oil spills lead-
ing to an effective detection solution.

Index Terms— Oil pollution, Synthetic aperture radar,
Convolutional neural networks.

1. INTRODUCTION

Oil spill pollution is tightly connected not only with the ocean
ecosystem but also with the increase of maritime commerce
and activities. Since early measures in such cases are of major
importance, numerous algorithms have been presented to ac-
curately and automatically identify such pollution spots. The
vast majority of relevant methods exploits data acquired from
satellites which are equipped with Synthetic Aperture Radar
(SAR) capabilities due to the advantages they display. More
specific, such satellites can cover large areas of interest with-
out the necessity of deploying extra equipment and vehicles,
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while on the other hand SAR imagery is indispensable be-
cause it manifests light and weather condition invariability.

A typical process for oil spill detection can be concluded
into four separate stages [1]. The first stage includes the de-
tection of the dark formations in SAR images while in the
second process, features for such formations are extracted.
Sequentially, the extracted features are compared with some
predefined values and a decision making model follows for
labeling each formation. The approach poses several disad-
vantages, mainly due to the necessity of extracting a number
of features, the non-unanimous agreement over their nature
and the lack of research over their effectiveness. In addition,
the limitation of providing a single label to each of the input
image poses constraints regarding the identified objects.

The most common approaches involve a two-class clas-
sification process, one class that includes only oil spills and
a second, more diverse class that corresponds to dark forma-
tions of all similar phenomena that resembles oil spills. The
latter class can be further divided into subclasses like current
shear, internal waves, algae blooms, shoals, floating vegeta-
tion and grease ice [2]. Also, contextual information, like
existence of similar formations, ship routes etc around the de-
tected instances may affect significantly the final characteri-
zation of these ”dark spots”.

In contrast to the above approach, the presented work
aims at deploying a deep Convolutional Neural Network
(CNN) in the field of oil spill detection in order to allevi-
ate the corresponding shortcomings. While there have been
some efforts dealing with oil spill detection using conven-
tional neural networks [1, 3], spatial features are required to
be initially computed. Also these algorithms were limited
to image classification, i.e. labeling the whole image and
not semantic segmented territories inside the image. The
problem can be considered as a rather complicated task since
it requires specialized knowledge of the various phenom-
ena related to the marine environments while optical means
often fail to provide adequate solutions. Thus, the final pol-
lution affirmation includes the mobilization of the relevant
national/regional authorities and in situ identification. The
proposed approach comprises a promising solution that could
accurately discriminate oil spills from similar instances with-
out the prerequisite of extracting additional features leading
to a completely automatic detection system.



2. RELATED WORK

One of the first attempts for oil spill detection was relied on
the use of visible spectrum images. Various approaches were
proposed such as utilizing polarized lenses [4] and hyper-
spectral imaging [5] among others. Although all relevant re-
searches have proven that there is no wider distinction be-
tween oil and water in this spectrum, the field is active and
the research is ongoing.

On the contrary, microwave sensors including radars are
widely utilized for such applications in order to overcome
the constraints that the optical sensors pose (weather and
operation time dependency). For radar imaging, Synthetic
Aperture Radar (SAR) is predominantly used [6] as they have
been proven to be at a large scale invariant to light condition
changes and clouds/fog occurrences [7].

Capillary waves produce ”bright” image regions known
as sea clutters which in the case of oil spills are depressed
and appear as dark formations. This type of detection is not
exclusively observed for oils spills but also include among
others wind slicks, wave shadows behind land, algae blooms,
land territories etc. [7, 2]. Since the identification of all the
above instances requires the definition of separate classes, an
acceptable simplification regarding the desired oil spill iden-
tification could include the reduction of the problem into a
two class problem, i.e. oil spills vs the rest of the phenomena.
In addition, until recently, oil spill detection approaches were
based on the initial extraction of features that represent and/or
simulate the physics of the oil dispersion. Such features in-
clude geometrical, physical or textural distinctive marks [1, 8]
based on which the models are trained to identify the oil spills.

Contrary to the aforementioned approaches, the proposed
method introduces a new deep CNN which does not require
the extraction of any feature and can semantically annotate
multiple regions in SAR images. In addition, the deployed
model was properly modified aiming at reducing the total
computational cost and thus, the operational time.

3. METHODOLOGY

The proposed approach for oil spill detection aims at seman-
tically segmenting the input images and highlighting the in-
cluded objects instead of just specifying a simple label to the
entire representation. The assignment of multiple labels/tags
in each image [9] or the extraction of bounding boxes with
the use of object detection techniques [10] could be potential
alternatives for the presented problem. Nonetheless, since oil
spills display a large variety of irregular shapes and could be
heavily intersected with look-alike objects, semantic segmen-
tation could be considered as the most effective solution. The
advantage of the approach relies on manipulating images that
can contain multiple objects of different nature without the
prerequisite of splitting the image into multiple image patches
manipulating oil spills, look-alikes etc.

Fig. 1. High-level representation of the altered ”DeepLab”
model.

The model was inspired from the ”DeepLab”, initially
proposed in [11], which has been proven to be sufficiently
effective in multi-class segmentation. In the referred work,
multiple experiments were conducted on a variety of methods
and network models, including VGG-16 [12] and ResNet-101
[13] with the latter giving the best performance.

Similar to the ”DeepLab”, the proposed oil spill detec-
tor includes the use of a deep convolutional neural network
trained in the task of semantic segmentation and the convo-
lution with upsampled filters, which originally developed in
[14] and utilized in the DCNN context by [15]. To efficiently
extract the required dense features and widen the field-of-
view of filters, atrous convolution was utilized as well as an
Atrous Spatial Pyramid Pooling (ASPP) to employ parallel
filters with various rates. The resulted maps are enlarged with
bilinear interpolation to restore their original resolution. A
higher level representation is provided in Fig. 1.

More specific, the proposed model for the required appli-
cation initially uses a DCNN in a fully convolutional fashion
and relies on a ResNet-101 network model. The ResNet-101
network was selected due to the highest detection rates it re-
sults in image semantic segmentation objectives. The model
was redefined so as to fine-tuning it in our case. However,
the repeated combination of max-pooling and striding at sub-
sequent layers decreases the final resolution of the extracted
feature maps and significantly increases the overall computa-
tional cost. Thus, atrous convolution was applied to explicitly
control the resolution at which feature responses are extracted
within DCNN. In the context of DCNNs, atrous convolution
can be utilized in a chain of layers to effectively compute the
networks’ responses at a randomly high resolution.

For example in one-dimensional signals, the output y[i] of
atrous convolution of a 1-D input signal x[i] with a filter w[k]
of length K is defined as:

y[i] =

K∑
k=1

x[i+ r · k]w[k] (1)

The rate parameter r corresponds to the stride with which we
sample the input signal. Basic convolution is a special case
for r = 1.



Fig. 2. Atrous Spatial Pyramid Pooling (ASPP).

Despite their ability to sufficiently represent scale by
trained on multi-resolution images, DCNNs’ competence for
object scale can still be improved to detect both large and
small objects. In applications that involve satellite image
processing where operational heights vary, and oil spill de-
tection where the size and shape of the object display extreme
diversity, the scale problem can significantly affect the de-
tection results. Therefore, to handle the scale variability, the
deployed model adopted an approach which was based on an
R-CNN spatial pyramid pooling method initially proposed
in [16] where regions of a random scale can be efficiently
classified by resampling features extracted at a single scale.
These features are extracted for each sampling rate and fur-
ther processed and fused to compute the final result. The
deployed ASPP is depicted in Fig. 2. The final processing
step involves the feature map resolution increment to restore
the original resolution by applying the basic bilinear interpo-
lation as in the ”DeepLab” system. It should be highlighted
that the final CRF module of the ”DeppLab” system was
excluded from the deployed model since it mostly used for
refining the segmentation results. For the oil spill detection,
the instances in SAR display vague optical limits, hence, the
CRF will not significantly improve the segmented regions
and thus, pointless computational overhead will be applied.

4. EXPERIMENTAL RESULTS

4.1. DATASET

One of the main challenges that the research community has
to face is the lack of a publicly available dataset for such
applications. Previous works [1, 17, 8] confronted this prob-
lem by utilizing a manually created dataset. Nonetheless, the
comparison with other related works using typical standards
is limited. These restrictions in utilizing public benchmark
datasets also limited our options into collecting SAR data
from European Space Agency (ESA) databases, the Coper-
nicus Open Access Hub1. The downloaded SAR images
were acquired using the Sentinel-1 European Satellite. The
required geographic coordinates and time of the confirmed

1https://scihub.copernicus.eu/

Intersection-over-union (IoU)

mIoU Oil spills Look-alikes Background

0.6098 0.4130 0.4564 0.9599

Table 1. Segmentation results using mIoU/IoU.

oil spills were provided by the European Maritime Safety
Agency (EMSA) based on the CleanSeaNet service and its
records covering a period from 28/09/2015 up to 31/10/2017.

SAR raw data were properly preprocessed using funda-
mental remote sensing preprocessing algorithms including:

1. All potential oil spills were localized.

2. Cropped regions from the initial SAR data with the oil
spills were extracted. All resulted images were rescaled
to have the same resolution of 1252x609 pixels.

3. A radiometric calibration of the image was applied to
project the images into the same plane.

4. A speckle filtering process followed to mitigate the ef-
fects of the sensor noise. A basic median filter of mask
7x7 was applied since speckle noise in remote sensing
is similar to the salt-n-pepper in image processing.

5. A linear transformation from db to actual luminosity
values was finally applied.

Numerous SAR images were processed in order to create
a convenient database with a sufficient number of images
which include confirmed oil spills, look-alikes and other ge-
ographical regions. The annotation of the images was based
on information provided by EMSA and human identification
(manually annotation). This process produced image masks
where every desired object was marked with a distinct color
(2 foreground+1 background). The processed images were
randomly divided into a training and a testing set comprised
of 571 and 106 images, respectively. Finally, it must be high-
lighted that the database is updated continuously and will be
publicly available after proper confirmations to the commu-
nity in order to provide a common basis as a benchmark.

4.2. RESULTS

For our experiments, two foreground classes were defined for
the classification process, for oil spills and for look-alikes as
well as one class for background pixels. The performance of
the deployed model was initially measured in terms of pixel
intersection-over-union (IoU) averaged across all classes
(mIoU). In addition, the resulted IoU for each class is also
provided so as to clarify the individual performance of the
model and its effectiveness in each class. Table 1 includes the
results from the initial experiments.



Fig. 3. Example of 4 testing images (from top to bottom): SAR images, ground truth masks and resulted detection masks.

For comparison reasons, we additionally utilized the accu-
racy so that the model could be somehow comparable to pure
image classification models. Every image pair (ground truth
and resulted detection mask) were cropped automatically in a
predefined number of overlapping patches. In order to acquire
a dataset which complies with the rules of image representa-
tion, some constraints were imposed:

1. A minimum number of pixels belonging to either of the
two classes should be present in the patch. A threshold
equal to 2% was applied meaning that the number of
pixels of the largest class compared to the number of
pixels of the background class should be at least 2%.

2. One of the basic classes should be dominant to label
the image patch. The applied threshold was set at most
50% of the pixels of the non dominant class in relation
to the pixels of the dominant class.

3. Patches recalcitrant to the above rules were discarded
in accuracy calculation.

The results of patch image classification are provided in
Table 2. The values are dependent of the number of patches
cropped from each sample. Two different pair values for the
horizontal and vertical number of patches, respectively, are
presented. The results provided in Tables 1 and 2 are some-
how dissimilar due to the fact that for the second metric a
single label per patch is evaluated and not on every pixel.

The comparison with relevant approaches could be con-
sidered as invalid due to the lack of a common image dataset,
nonetheless, some results are compared. The neural network
based method in [3] reported a 91.6% and 98.3% accuracy
for oil spills and look-alikes, respectively, with much higher
number of look-alikes. The method in [1] using a decision

Image patch classification precision results

Number of patches: 3,3 Number of patches: 5,3

Overall Oil spills Look-alikes Overall Oil spills Look-alikes

0.8063 0.8621 0.7588 0.8166 0.8932 0.7540

Table 2. Segmentation results with accuracy.

tree forest resulted an 85.0% accuracy as the highest value.
Also, relevant methods like the probabilistic based in [18] re-
ported results equal to 78% for oil spill and 99% for look-
alikes. Thus, the initial results of the deep CNN based ap-
proach are similar to the corresponding state-of-the-art meth-
ods nonetheless without the need of extracting relevant fea-
tures and with the merit of semantically annotated regions.

5. CONCLUSIONS

In this paper, we introduced a new approach for oil spill de-
tection using SAR images for maritime applications. With
the adaptation of accurate DCNNs, oil spill detection can be
further automated and be incorporated into a larger detec-
tion pipeline. The extracted results are similar to the state-
of-the-art results for general classification problems. For the
oil spill detection problem, the use of similar deep learning
techniques may improve further the identification of such pol-
lution spots. Potential improvements could also be achieved
utilizing a more advanced dataset which may include images
acquired with improved SAR sensors and larger training sets.
Though it is a preliminary work, the initial results could be
considered as promising for further exploitation of deep learn-
ing algorithms in the oil spill detection field.
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