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Abstract 

This document (D4.2) reports the final architecture of the METRO-HAUL control, orchestration, and 

management (COM) system from its initial design in D4.1, after successive refinements driven by 

feedback gathered after implementation and integration activities, and reflecting additional choices 

and newly added components. 

In addition, the document reports the status and assessment of the final implementation of 

METRO-HAUL functional components, including control plane validation of relevant performance 

indicators and tests. The description of each functional component in the COM includes the list of 

subcomponents and their status. The functional tests carried out to validate and integrate the 

subcomponents are described together with the testbeds used. The definition of the specific key 

performance indicators (KPIs) in which the component is involved are defined and measured. The 

interfaces connecting functional components of the COM are defined in terms of functions with 

regard to requirements in D4.1 and new functions. Details of the implementation of every function 

are reported. 
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Executive Summary  
The infrastructure requires a complex Control, Orchestration, and Management (COM) system, 

which includes several subsystems and interfaces among them. The COM system relies on recent 

advances in Software Defined Networking (SDN) and Network Function Virtualization (NFV), trying 

to adapt existing frameworks to the specifics of the project, that is, the applicability to 

Metropolitan networks, the deployment of disaggregated optical networks, the importance of 

monitoring, telemetry and data analytics and the interest of externalizing the algorithmic aspects 

(network optimization, function placement, resource allocation) to dedicated subsystems. 

The architecture of the METRO-HAUL COM system has evolved from its initial design reported in 

D4.1 and successive refinements have been made driven by feedback gathered after 

implementation and integration activities. This document first reports the final architecture of the 

COM system and includes additional choices and newly added components. Specifically, the main 

components include: 

1. The NFV Orchestrator (NFVO) that performs Service Orchestration and Resource 

Orchestration to support the Virtual Network Functions (VNFs) and the logical links. In the 

context of METRO-HAUL, a network slice consists of a Network Service (NS) deployed using 

the NFVO spanning multiple nodes and network domains. The VNF placement 

functionalities are provided by the Back-End Module of the Network Planner. 

2. The WAN infrastructure Manager (WIM) responsible for provisioning of connectivity paths 

between VNFs. The WIM architecture is hierarchical, with an SDN control per technology 

domain and a parent SDN controller abstracting the underlying complexity.  

a. At the optical transport layer, two approaches have been considered based on two 

main disaggregation models: a) Partial Disaggregation: Open Line System (OLS) and 

Multi-Vendor Transponders (TP), and b) Full Disaggregation: Wavelength Division 

Multiplexing (WDM) transport system. 

b. Regarding the control of the Passive Optical Networks (PON), it is realized through the 

adoption of an abstraction scheme which represents the PON as an 

OpenFlow/NETCONF-enabled switch. 

3. The Monitoring and Data Analytics (MDA), responsible for implementing autonomic 

networking. The MDA is distributed, with MDA agents running close to the network nodes, 

and a big data centralized MDA controller running in the COM system. 

4. The Placement, Planning, and Reconfiguration Subsystem (Network Planner), responsible 

for optimizing the resource allocation and applying different policies and strategies. 

5. Two SDN applications for proactive soft-failure detection and de-fragmentation are 

included. 

The document also reports the status and assessment of the final implementation of METRO-HAUL 

functional components, including control plane validation of relevant performance indicators and 

tests. The description of each functional component in the COM includes the list of subcomponents 

and their status. The functional tests carried out to validate and integrate the subcomponents are 

described together with the testbeds used. The specific key performance indicators (KPIs) in which 

the component is involved are defined and measured. 
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Finally, the interfaces connecting functional components of the COM are defined in terms of 

functions with regard to requirements in D4.1 and new functions. Details of the implementation of 

every function are reported. 

Document structure 
This document is structured as follows: 

 Section 1 is the introduction. We briefly present the main components of the control, 

orchestration and management system of the METRO-HAUL project. 

 Section 2 reports the final architecture of the METRO-HAUL COM system. The COM 

architecture includes: 1) the COM core platform that includes the hierarchical SDN system 

and the integration with compute and store; 2) the ETSI MANO/slicing integration; 3) the 

MDA subsystem; and 4) the Network Planner. To illustrate how external applications can 

perform specialized tasks and be integrated with the METRO-HAUL architecture, two 

external applications are included in this section. 

 Section 3 reports the status and assessment of the final implementation of the METRO-

HAUL COM architecture functional components, including control plane validation of 

relevant performance indicators and the designed tests. The described components are: 1) 

the Parent Controller; 2) the Optical SDN Controller; 3) the OLS controller; 4) the SDN for 

Passive Optical Networks; 5) the service orchestrator and the integration with the parent 

controller; 6) the system for network virtualization and slicing; 7) the Monitoring and Data 

Analytics subsystem; and 8) the Network Planner. Additionally, this section includes the 

service and traffic monitoring that is composed by active and passive probes to monitor the 

system at packet layer. Finally, the report of the status of the two external applications is 

included in this section as well. 

 Section 4 is devoted to describing every interface defined between the components 

described in the previous section. The interfaces are described in terms of the functions 

that they support and how such functions have been implemented. 

 Section 5 concludes the deliverable. 
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1 Introduction 
The METRO-HAUL infrastructure spans nodes residing in Central Offices (CO) in different geographic 

locations, where every node combines networking, processing, and storage resources. Such 

modular nodes are composed of different components operating at different layers and 

technologies, and of different vendors realizing hardware and software disaggregation. METRO-

HAUL nodes implement layer 0-1 (optical domain) and layer 2 transmission and switching (frame 

domain), and include Edge Computing capabilities provided by a local pool of computers to 

instantiate Virtualized Network Functions (VNFs) with configurable amounts of processing, 

memory, and storage. Two specializations of the generic METRO-HAUL nodes are: a) Access Metro 

Edge nodes (AMEN) to interface with heterogeneous access technologies (5G and optical); and b) 

Metro Core Edge nodes (MCEN) nodes as gateways towards the core transport network and 

comprise core-oriented capabilities. The nodes are controlled by a Node Agent based on 

NETCONF/YANG handling the integration of such disaggregated components.  

The infrastructure requires a complex Control, Orchestration, and Management (COM) system, 

which includes several subsystems and interfaces among them. Figure 1 summarizes the 

components of the COM system and the main interfaces.  

 

Figure 1. METRO-HAUL COM system and main interfaces 

The main components include: 

1. The Network Function Virtualization (NFV) Orchestrator (NFVO) that performs Service 

Orchestration (involving the functional split of the service into/amongst different VNFs and 

their logical interconnection) and Resource Orchestration dealing with the allocation of 

resources to support the VNFs and the logical links. In METRO-HAUL, the NFVO is used to 

provision Network Services (NS) that usually entail VNFs deployed in multiple; the VNF 

placement functionalities are provided by the back-end module of the Network Planner. 
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Infrastructure (NFVI) and the instantiation of the Virtual Machines (VM) of the VNFs in a 

single datacentre domain (AMEN/MCEN). 

2. The WAN Infrastructure Manager (WIM) is used by the NFVO to orchestrate network 

resources and it is responsible for provisioning of connectivity paths between VNFs. The 

WIM architecture is hierarchical and consists of a Software Defined Networking (SDN) 

controller for every technology domain. Two approaches have been considered for the 

control of the optical layer based on two main disaggregation models: the partial 

disaggregation that includes the Open Line System (OLS) and Multi-Vendor Transponders 

(TP) and the Fully disaggregated WDM transport system. The control of Passive the Passive 

Optical Networks (PON) abstracts the PON as an OpenFlow/NETCONF-enabled switch, 

where the physical ports the PON are represented as the logical ports of a switch. Running 

on top of the SDH hierarchy, the parent SDN controller abstracts the underlying complexity 

and presents virtualized networks to their customers. 

3. The Monitoring and Data Analytics (MDA), responsible for implementing autonomic 

networking. The monitoring system has the capability to do measurements on the data 

plane and for generating data records that are collected and analysed by the MDA 

subsystem to discover patterns (knowledge) from the data. In METRO-HAUL, the MDA is 

distributed and consists of MDA agents that run in the network nodes and are responsible 

for monitoring data collection, aggregation and knowledge usage. Aggregated monitoring 

data is conveyed to the MDA controller where knowledge is discovered. Such knowledge 

can be used to issue re-configuration/re-optimization recommendations towards COM 

modules such as an SDN controller or orchestrator. 

4. The Network Planner, responsible for optimizing the resource allocation in the optical 

metro network to effectively provision services featured by heterogeneous requirements. 

This task comprises the provisioning of VNF in specific METRO-HAUL nodes and the 

allocation of network resources. 

In the context of METRO-HAUL, network slices consist of a Network Service (NS) deployed using the 

NFVO controlling VIM/WIM spanning multiple nodes and network domains. 

The COM system relies on recent advances in on SDN and NFV. Specifically: 

1) Open Source MANO (OSM) is used as an NFVO [OSM]. OSM is an open source MANO 

system which is based on ETSI NFV Information models. 

2) Open Network Operating System (ONOS) is used as SDN controller. 

3) OpenStack is used as the VIM. 

Based on those existing frameworks, extensive adaptation work to the specific requirements of the 

project has been carried out. This includes the applicability to Metropolitan networks, the 

deployment of disaggregated optical networks, the importance of monitoring, telemetry and data 

analytics, and the interest in externalizing the algorithmic aspects (network optimization, function 

placement, resource allocation) to dedicated subsystems. 
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2 Final architecture of the control and management plane 
This section reports the final architecture of the control and management plane after successive 

refinements driven by feedback gathered after implementation and integration activities, and 

reflects additional choices and newly added components. 

2.1 METRO-HAUL COM Core Platform 

2.1.1 Hierarchical SDN system 

2.1.1.1 Parent controller and service orchestrator 

As considered in [D4.1] METRO-HAUL is aligned with the IETF ACTN architecture [ACTN] for network 

orchestration as shown in Figure 2. ACTN can facilitate virtual network operation via the creation of 

a single virtualized network or a seamless service. This supports operators in viewing and 

controlling different domains (at any dimension: applied technology, administrative zones, or 

vendor- specific technology islands) and presenting virtualized networks to their customers. ONF 

TAPI models have been implemented as the northbound interface (NBI) for the SDN controller. 

Virtual network aspects will be reported in next deliverable D4.3. 

 

 

Figure 2. Network Orchestration Architecture. 
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2.1.1.2 Control of the Optical Layer 

In the project, we have considered two approaches based on two main disaggregation models.  

Partial Disaggregation: Open Line System (OLS) and Multi-Vendor TP. In this approach (Figure 3), 

the disaggregation applies to the Digital-to-WDM (DtoWDM) adaption layer (i.e., to the TPs) whose 

lifecycle is decoupled from that of a mono-vendor and proprietary Analogue WDM (A-WDM) 

transport layer [Ric18]. The A-WDM layer remains a proprietary black box analogue transport 

system supporting Optical Channels from external TPs as client signals. An OLS-NBI API is needed to 

configure and report events from the OLS. Note in Figure 3.A) an Open Line System is part of a 

partial disaggregated WDM transport system: the OLS and controller are from a single vendor (1-2); 

TPs may be in pairs from the same supplier (3), or from mixed suppliers (4); the WDM Transport 

Controller interfaces directly with the TPs (5), and through an NBI (7) to the OLS. The Single 

Wavelength Interface (SWI) needs to be standardized (6). Figure 3.B) shows an alternative partial 

disaggregated WDM transport system: OLS and WDM controller are proprietary from a single 

vendor (1-2); TPs may be in pairs from the same supplier (3) or from mixed suppliers (4); the 

proprietary WDM Transport Controller interfaces directly with TPs using a standard SBI (5). The 

Single Wavelength Interface (SWI) (6) and SBI (5) need to be standardized. 

 

Figure 3. A) OLS as part of a partial disaggregated WDM transport system. B) Alternative partial 
disaggregated WDM transport system. 

 

Figure 4. Fully disaggregated WDM transport system. 

The Fully disaggregated WDM transport system is shown in Figure 4 [Ric18]. Optical Network 

Elements (O-NEs) from both the A-WDM and DtoWDM layers are potentially purchased from 
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different vendors, leaving interworking at the control and data plane to the system integrator. 

Therefore, most of the control intelligence is moved to the WDM controller (necessarily vendor 

agnostic) which becomes the most critical element of the whole chain, having also to face all of the 

analogue transmission issues (equalization, transient suppression, etc.). In the figure, a fully 

disaggregated WDM transport system is shown: O-NEs can be from the same (1-2) or from different 

suppliers. No separation between DtoWDM and A-WDM layers exists. A standard SBI (5) is needed 

to simplify the direct control of the whole WDM System by the controller (4). Both Single 

Wavelength (6) and Multi Wavelength Interfaces (7) need standardization. 

Regardless of the actual deployments, we can consider the SDN control of the optical layer as a 

single component of the COM system, provided the right abstractions and interfaces are defined. In 

particular, it is useful to consider that the METRO-HAUL architecture for the control of the 

disaggregated Optical Network relies on a centralized SDN controller and the use of 

YANG/NETCONF as data modelling language and protocol, without excluding deployments 

combining the aforementioned choices. 

The SDN Controller is responsible for the centralized control of the optical infrastructure; exports a 

North Bound Interface to applications, to instantiate services. The services are described using 

YANG models; optical devices (Optical Network Elements) are configured using a NETCONF/YANG 

protocol and data models; and network connectivity is provisioned in the optical layer between 

transponders (with optional recovery mechanisms). 

METRO-HAUL is aligned with three relevant worldwide open initiatives: OpenROADM 

[OpenROADM], OpenConfig [OpenConfig], and ODTN [ODTN]. METRO-HAUL considers 

OpenROADM and OpenConfig to model the hardware devices. The baseline architecture applies a 

single SDN controller for the whole optical domain, without precluding refinements of the 

architecture including a deployment model with multiple co-ordinated controllers, e.g., for 

scalability reasons. 

2.1.1.3 Control of the PON 

Control of the PONs is realized through the adoption of an abstraction scheme which represents 

the PON as an OpenFlow/NETCONF-enabled switch. Under this abstraction, the physical ports the 

PON interconnect to the network infrastructure, i.e. the upstream port of the Optical Line Terminal 

(OLT) and the downstream ports of the Optical Network Units (ONU), are portrayed as the logical 

ports of a switch.  

The proposed abstraction scheme offers two advantages: a) it hides the PON-specific details related 

to forwarding and control/management operations; b) vendor-specific configuration commands are 

automatically translated and executed by the PON components. Therefore, the forwarding 

command messages are exchanged by means of the standard OpenFlow protocol, while 

(re)configuration is realized by means of the NETCONF protocol. 

Under this scheme, the PON is operated as an OpenFlow-controlled L2 switch. The novelty of this 

approach is that it is a truly plug-and-play solution in the sense that standard protocols are used; 

there is no need for OpenFlow protocol extensions or upgrades to the already-deployed SDN 

control/management tools. Operators may simply connect the OpenFlow-enabled PON 
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infrastructure into their network and integrate the provided YANG model into the NETCONF 

infrastructure. Moreover, this approach allows the operator to capitalize on the increased 

penetration of OpenFlow/NETCONF in other network segments (WAN/Metro). 

Further, this scheme is extended to support PON slicing since several OpenFlow-controlled (virtual) 

switches can be abstracted over the same physical Gigabyte Passive Optical Network (GPON). 

Under this mode, each of these switches can dynamically control a subset of the GPON resources. 

Thus, a PON is partitioned into several logical PONs where each one consists of a logical-OLT 

(having a slice of the physical OLT) and from several logical-ONUs that may include any combination 

of ONUs, ONU ports, or even ONU port slices. 

2.1.2 Compute and Storage Integration  

METRO-HAUL follows the ETSI NFV MANO [NFV] architecture, which can be defined as an 

architecture and deployment model around the idea of replacing dedicated network appliances — 

such as routers and firewalls — with software implementations (guests) running on common 

shared hardware (hosts), becoming Virtualized Network Functions (VNFs). The benefits have been 

well established, including lower costs, replacing dedicated appliances with shared servers, use of 

capacity on demand with efficient resource usage, reduction of operational costs with fewer 

appliances to deploy and maintain, enabling migrations), support of on-demand and pay-as-you-go 

deployment models, and enabling innovation by making it easier to develop and deploy network 

functions.  

 

Figure 5. Integration with Computing and Storage, ETSI/NFV MANO 

The ETSI NFV architecture defines the NFVI deployed across multiple points of presence (NFVI-PoP) 

for supporting the instantiation of VMs, along with the Management and Orchestration (MANO) 

subsystem, which deals with the orchestration of VNFs and how to deploy them as components of 

the so-called Network Services. 

The following section details the METRO-HAUL implementation of the elements that are key to the 

architecture (Figure 5): the NFVO, the WIM, and the VIM. The NFVO performs Service Orchestration 

and Resource Orchestration. Service Orchestration is the part of service instantiation that involves 

the functional split of the service into/amongst different VNFs – that may be managed by different 
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managers (VNFMs) by different vendors – and their logical interconnection (called VNF forwarding 

graphs). Resource Orchestration deals with the allocation of resources to support the VNFs and the 

logical links. The WIM is responsible for the provisioning of connectivity paths between VNFs. The 

VIM is responsible for the management of the NFVI and the instantiation of the VMs of the VNFs in 

a single datacentre domain (AMEN/MCEN). VIM components are used “as is” in the scope of 

METRO-HAUL, not being the subject of research. 

2.2 ETSI MANO / Slicing Integration 

In METRO-HAUL, an ETSI-based Management and Network Orchestration (MANO) system, which is 

essentially an NFV orchestrator (NFVO), is used to deploy Network Services (NS) realizing the 

concept of NFV. Each NS is a combination of one or more Virtual Network Functions (VNFs) 

interconnected by logical links. In the ETSI NFV world, each network slice instance is an NS 

encompassing multiple physical locations, where each VNF of the NS may be hosted in different 

PoPs/datacentres and the links interconnecting the VNFs may span multiple network segments. 

Furthermore, the NFVO is responsible for the overall end-to-end deployment of the Network Slice. 

This is depicted in Figure 6. As noted in D4.1: 

Within the scope of METRO-HAUL, the main focus of a network slice is the ETSI NFV Network 

Services, that is, a set of interconnected VNFs, across the METRO-HAUL infrastructure (see, for 

example, Figure 6 and Figure 7).  

An NFVO orchestrates compute resources using Virtual Infrastructure Managers (VIMs), where the 

NFVO deploys VNFs using the VIM. The VIM in turn, deploys the VNFs in Virtual Machines (VMs) in 

the compute nodes under its control. In addition, to deploy the network between the VNFs, the 

NFVO utilizes a WAN Infrastructure Manager (WIM). The WIM may use a combination of SDN 

controllers to deploy the network over various packet and optical domains as shown in Figure 6 

interconnecting the PoPs where the compute resources are hosted. In D4.1, architectural 

considerations were presented regarding multiple NFVO instances. However, in METRO-HAUL, we 

utilize a single NFVO instance to orchestrate network slices.  
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Figure 6: Network Slicing using the integrated SDN/NFV framework. 

Figure 7 further elaborates on the Network Service (NS) as a METRO-HAUL slice where the VNFs are 

deployed as VMs in NFVI-PoPs and the links interconnecting the VNFs are spanning multiple packet 

and optical domains. In this way, an NS is provisioned as a slice of the overall NFVI. 

Within the scope of the METRO-HAUL project, Open Source MANO (OSM) is used as an NFVO 

[OSM]. As an operator-led community, OSM offers a production-quality open source MANO stack 

that meets the requirements of commercial NFV networks. To enable connectivity between VNFs at 

different PoPs, OSM has been extended, as part of release 5, to have the capability to orchestratea 

network between different PoPs using the WIM.  

 

Figure 7. ETSI NFV Network Service as canonical METRO-HAUL 5G slice  

Furthermore, a planning tool performs the VNF placement by selecting the location of the VNFs of 

an NS to be in multiple AMENs and MCENs while instantiating a NS. More details about this can be 

found in Section 2.4. 
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Figure 8.WIM in ETSI MANO architecture 

2.2.1 WAN Infrastructure Manager (WIM) 

In the ETSI NFV architecture, the WIM is used by the NFVO to orchestrate network resources, 

interconnecting the multiple PoPs as shown in Figure 6 and Figure 8. Different VNFs, which are 

running on compute resources at geographically distributed PoPs as part of an NS, are 

interconnected by the network which is provisioned by the WIM. As mentioned before, the WIM 

uses multiple SDN controllers to control the network interconnecting the PoPs as the network may 

be segmented into multiple SDN domains. 

The overlay network interconnecting the VNFs (as part of an NS) on different AMENs/MCENs is 

provisioned by the WIM. OSM has been extended to use a WIM. 

2.2.2 Placement options 

The placement functionalities are provided by the Back-End Module of the Network Planner. In the 

previous deliverable [D4.1], two preliminary algorithms were proposed to address the planning and 

provisioning algorithms: VNF Placement and Scaling Optimizer (NPSO), and Network Resource 

Allocation Optimizer (NRAO). These approaches have evolved to widen the scope for placement 

options. Algorithms hosted in the Back-End module include:  

a. A network service /service chain allocation algorithm 

b. VNF placement algorithm  

c. Network Resource and Wavelength Allocation (RWA) algorithm. 
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Algorithm a) is in an advanced stage of development and already included in the Net2Plan 

framework; algorithms b) and c) are currently under development and integration. All these 

algorithms adopt network optimization techniques, are oriented to connection and service-chain 

real-time provisioning, and exchange information with the Front-end using the NIW library 

integrated in Net2Plan. They are implemented in Java. The second module incorporates algorithms 

oriented to predictive periodical or off-line network re-optimization, they make use of machine 

learning (ML) techniques and are developed in Python. 

Therefore, the user has several degrees of freedom in choosing the algorithms that will actually be 

used for a specific demo or a specific application. Moreover, it will be possible to compare the 

results of different algorithms on the same problem so as to facilitate the evolution of the 

computation methods. For instance, we will be able to compare the single-step approach 

(integrated VNF placement + RWA) to the simpler two-steps (first VNF placement, then RWA). 

We consider four attributes of the implemented algorithms, namely: VNF Reactive, Network 

Reactive, VNF Proactive, and Network Proactive (see Figure 12). A given algorithm, e.g., #4, 

performs functions associated with VNF and Network planning in a pro-active way. The algorithms 

provided by the partners of the project can be split into six different functionalities, according to 

the type of optimization they implement, i.e., they compute the configuration either in reactive or 

proactive modes in terms of VNFs, network resources, or both. 

 

Figure 9: Placement, planning, and reconfiguration algorithmic view. 

2.3 Monitoring and Data Analytics Subsystem 

2.3.1 Architecture 

The overall architecture of the monitoring and data analytics (MDA) subsystem together with the 

related interfaces is presented in Figure 10. As shown, the MDA includes MDA agents running close 

to the network nodes, and a big data centralized MDA controller running in the control and 

management plane. 
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Figure 10. Overall METRO-HAUL monitoring architecture for autonomic networking 

MDA agents are multi-node agents that collect monitoring data records from configured OP in the 

nodes using the monitoring of packet devices (MONp) and monitoring for optical devices (MONo) 

interfaces (collectively denoted as MONx). Data can be used for Knowledge Discovery from Data 

(KDD) to proactively implement local control loops to tune parameters in the network devices and 

to notify the MDA controller about network anomalies and degradations. The MDA agent has been 

conceived to support multilayer disaggregated scenarios. The number of MDA agents in a network 

may vary depending on the size of such network, geographical extension, and/or any other criteria. 

The MDA controller collates measurements from the active Observation Points (OP) in the network 

through the Northbound monitoring (NBIm) interface and stores them in a (big data) repository. In 

addition, the Southbound monitoring (SBIm) interface is used for monitoring configuration. In 

addition, an NBI interface, named IO4, is provided for external systems to access monitoring data. 

The protocol used to implement the SBIm interface for monitoring configuration is RESTCONF 

[RFC8040] that it is based on an extended YANG data model, whereas the IPFIX protocol [RFC6313], 

[RFC7011], has been implemented for the NBIm interface for monitoring purposes and extended by 

defining new templates, specifically to convey measurements from the optical data plane. 

However, different protocols for monitoring and telemetry might be considered (e.g., gRPC). 

Data analytics algorithms in the MDA controller can use measurements as well as notifications from 

the MDA agents to discover knowledge. Such knowledge can be used to make predictions and to 

detect anomalies and degradations before they negatively impact on network performance. Such 

predicted events can be notified to the SDN controller in advance together with a recommended 

action to guide the SDN controller. The recommended action is a suggestion that the SDN controller 

can follow or just ignore and apply its own policies. As an example, BER degradation can be 

anticipated in a lightpath before any threshold is exceeded by analysing the evolution of the BER 

measured in the receiver: this is notified to the SDN controller together with the recommended 
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action of re-routing the lightpath. The notification to the SDN controller might trigger a network re-

configuration, hence closing the loop and adapting the network to the new conditions. In 

consequence, the MDA Controller to COM System interface (the M-COM interface), is required to 

coordinate the SDN controller and the MDA controller, as well as for synchronization of operational 

data bases. 

2.3.2 Workflows 

Figure 11 presents two basic workflows: i) Label Switched Path (LSP) set-up and monitoring / 

telemetry activation; and ii) degradation detection and network reconfiguration. These basic 

workflows are used for the functional tests to validate the MDA subsystem in the Section 3.7. Each 

message exchanged is identified with a number that is relative to the workflow it belongs to: note 

that numbers are reset in every workflow. 

The LSP set-up and monitoring/telemetry activation workflow is triggered by a request to the SDN 

controller (message 0). After computing the specific routing algorithm, the SDN controller sends 

configuration messages (1) to the node controllers along the route of the LSP specifying a set of 

parameters, e.g., the spectrum allocation in the case of a Layer 0 LSP. When the LSP has been finally 

set up, a notification is sent to the MDA controller (3) through the M-COM interface containing the 

route of the LSP, configuration parameters and identifier. 

Next, the MDA controller sends requests to the SDN controller for the creation and activation of a 

subset of OPs for the LSP (4). Those requests are processed in the SDN controller and subsequent 

requests are sent to the node controllers, where the specific IP address of the MDA agent that will 

process the data samples is included (5). Once created, the MDA controller issues requests to the 

MDA agents to create the OPs, and local KDDs create the specific OP handlers to collect, analyse, 

and aggregate measurements (6). 

Once OPs are activated, monitoring/telemetry data is received and can be analysed to discover 

patterns. The KDD process workflow starts when new measurements are received in the MDA 

agent (message 1); monitoring data records are analysed by the corresponding process in a KDD 

application and, when a certain pattern is detected, e.g., a degradation, the MDA agent notifies the 

MDA controller (2). With such notifications, the MDA controller can make decisions, including 

suggesting a reconfiguration to the SDN controller (3), which can be carried out afterwards (4). 
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Figure 11. Basic workflows supported by the MDA subsystem 

2.4 Placement, Planning, and Reconfiguration Subsystem  

The aim of the Placement, Planning, and Reconfiguration Subsystem (alias, in short, Network 

Planner) is to optimize the resource allocation in the optical metro network in order to effectively 

provision services featured by heterogeneous requirements. This task comprises the provisioning of 

Virtual Network Functions in specific computing nodes (e.g., the mini datacentre distributed in the 

metro network) and network resources allocation. 

The traffic generated by end-user-oriented services (such as Smart Factories, Live TV distribution, 

Content Delivery Network, etc.) have different requirements in terms of bandwidth, delay and QoS. 

For this reason, the intelligent optimization algorithms of the optimization module will apply 

different policies and strategies for the aforementioned services in order to optimize VNFs and 

network resources in advance, reacting to specific events. For all the cases, however, the optimizer 

will need data coming from the data plane (optical layer, layer 2, and IP layer) through the front-

end interfaces, to learn the state of the network. Figure 12 shows the METRO-HAUL Service 

Platform, where the dashed red circle highlights the Placement, Planning, and Reconfiguration 

Subsystem. The Network Planner subsystem is composed of two main modules: the Front-end and 

Back-end modules. They are explained further in Section 3.8 including how they interact to 

implement planning and to provide solutions to the METRO-HAUL control plane. 
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Figure 12. METRO-HAUL unified service platform. Planning tool module. 

The open-source Net2Plan tool has been chosen as the common framework for materializing the 

placement, planning, and reconfiguration of the VNFs, IT and network resources. The specialized 

aforementioned algorithms will be used or developed in order to optimize the network and IT 

resources. 

2.5 Applications 

2.5.1 SDN application for proactive soft-failure detection 

As stated in [D4.1], network management requires the need for improved asset management to 

reduce downtime and improve resource usage. Network faults may include cooling unit failure, 

laser degradation, subsystem control unit failure, etc. Early detection of equipment failure states 

and consequent remedial actions can prevent network downtime and enable scheduled preventive 

maintenance. A lot of commercial equipment tolerates some errors until automatically tearing 

down the connection when system thresholds are exceeded. While a restoration procedure could 

be initiated to recover the affected traffic, it would be desirable to anticipate such events and 

taking relevant actions. 

The SDN Application (Figure 13) for proactive soft-failure detection is an analytics application 

enabling cognitive network assurance through proactive soft-failure detection. In particular, we 

cater to real-life network fault use cases and identify them. 

As shown in Figure 13, from bottom to top, optical transport network configuration and telemetry 

information from the optical domain is extracted inside the Network Management System and 

made available to the ONOS controller through a RESTCONF interface. Telemetry information is 

provided northbound to the application for proactive soft-failure detection.  The machine learning 

framework consists of several stages including data access through the REST API, pre-processing 

features, and neural networks for computational mapping of inputs to failure probability, and post-

processing to trigger intents. The communication with the optical devices is done through ADVA’s 

NMS, which exposes an experimental TAPI interface. 
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Figure 13: SDN application for proactive soft-failure detection. 

2.5.2 De-fragmentation application 

The de-fragmentation application operates at the optical layer directly interacting with the Optical 

SDN controller. Specifically, the application is composed of two main components: the de-

fragmentation tool (developed by Nokia as a software tool operating externally to the controller) 

and an extended set of REST APIs (developed as an internal ONOS application) that extends the 

features of the Optical SDN controller (Figure 14). The extended APIs have been merged in the 

official ONOS distribution in the form of an ONOS application with name “optical-rest”. 

 

Figure 14: Main architecture of the De-fragmentation app. 

This section describes the basic behaviour of the de-fragmentation tool and the extended features 

that have been introduced in ONOS to enable the interaction with the tool. 

 External de-fragmentation tool: the tool includes a web interface that takes inputs from the 

user (e.g., maximum fragmentation threshold, maximum reconfiguration frequency, etc.). 

Specifically, the tool proceeds as follow: the tool periodically retrieves the current network 

Optical SDN 
controller
(ONOS)

De-fragmentation
tool

ONOS app
optical-rest R

ES
T

Lightpaths and topology info

Re-configuration commands



 METRO-HAUL H2020-ICT-2016-2 / 761727 D4.2 

© METRO-HAUL consortium 2019                                        Page 30 of 107 

status (e.g., network topology, currently established lightpaths) from the ONOS controller and 

estimates the current fragmentation value, if the maximum fragmentation threshold is 

surpassed a defragmentation operation is triggered (i.e., optimization routine runs). If current 

lightpaths can be re-arranged to achieve better fragmentation status, the new configurations 

are sent from the tool to the ONOS controller (i.e., set up lightpaths on a new optical channel, 

OCh, and tear down the previous OCh configurations). The optimization routine is a component 

(developed in C++) that estimates the possibility of rearranging the OCh in the network so as to 

reduce the overall OMS/network fragmentation. 

 Extended ONOS controller REST APIs (optical-rest ONOS app): the REST APIs of the ONOS 

controller have been extended to enable the interaction with the de-fragmentation tool. 

Specifically, new APIs have been developed to allow GET/PUSH/DELETE operations on lightpaths 

(i.e., optical intents). The GET operation provides the list of all established lightpaths specifying 

the path and the utilized OCh, the PUSH operation enables establishment of a new lightpath 

specifying both a suggested path and a suggested OCh, and the DELETE operation allows to tear-

down a specific lightpath. 
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3 Final implementation of the METRO-HAUL COM functional 

components 
This section reports the status and assessment of the final implementation of the METRO-HAUL 

control and management architecture functional components, including control plane validation of 

relevant performance indicators and the designed tests. 

3.1 Parent Controller 

3.1.1 Description 

The Parent Controller is the component responsible for managing both the optical and packet 

controllers, providing the multi-layer view of the METRO-HAUL Network. The parent controller 

receives VPN service requests from the VNF orchestrator (OSM). The North-Bound interface is 

based on RESTCONF, using the YANG Data Model for Layer 2 Virtual Private Network (L2VPN) 

Service Delivery defined in RFC 8466, also known as L2SM [RFC8466]. The implementation covers 

the creation of L2VPNs with point-to-point topologies, supporting both full-port and dot1q-vlan-

tagged interfaces, and bandwidth/delay constraints. Multiple L2VPNs can be requested over the 

same physical port (bearer). The L2SM YANG model is implemented via a set of REST operations, 

with read and write capabilities.  

In terms of southbound interfaces, the parent controller is connected to the Optical Controller 

using the TransporTAPI version 2.1, using the topology model to retrieve information about the 

connectivity of the optical layer, and the service model to request new optical connections 

between transponder ports. The parent controller is also connected to packet controllers. In 

addition, a packet network emulator based on Open Virtual Switches (OVS) has been developed to 

be able to test with OSM.  

3.1.2 Sub-Components 

L2SM Server: The L2SM RESTCONF server is the main sub-component of the Parent Controller. It 

implements the logic of handling L2VPN service requests (create, read, modify and delete L2VPN 

Services). A set of REST Calls are implemented to fulfil the request of the OSM WIM Plugin. 

It has been generated using Swagger codegen with an Open-API specification of the LS2M YANG 

model. The OpenAPI specification defines the set of calls that need to be implemented by the REST 

server. The mapping of YANG to OpenAPI is performed using a dedicated plugin. All the operations 

made by the server are reflected in a L2 Service database.  

Topology Module: The parent controller maintains a multi-layer topology which contains: 

 Packet topology (read from packet controller) 

 Optical topology (read from ONOS) 

 Multilayer topology  

o Packet links include the uuid of the services of the optical layer 

o Service end points include the identification needed by OSM Plugin: site_id and 

bearer 
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o Line end points (ports of the packet switches connecting to the optical networks) 

include the uuid of the transceiver client side (DSR) end point. 

Database: In order to store the set of L2VPN Services that are created and the mapping to network 

resources, a MongoDB based Database us used. The database contains the list of available sites to 

request connection. It also stores the multi-layer view of the network (based on optical and packet 

controller’s information), as well as the deployed L2VPNs. The server reads and writes the database 

when it is necessary to update the state of the components of the network. In order to facilitate the 

interaction with the server, the data is directly stored in JSON. 

 

 

 

 

 

 

 

Figure 15. Parent Controller 

3.1.3 Status  

At the time of writing, a first version of the MongoDB database is fully operative. It is able to 

register all the operations carried out by the LS2M Server (Swagger based), saving the state of the 

network (all the sites and services that are available and their parameters).  

The TAPI topology is retrieved from the ONOS controller and successfully correlated with the 

packet topology (which is currently loaded using the IETF Topology JSON model). The parent 

controller maintains the multilayer topology with the uuids used by OSM, its relation to the packet 

layer, and the correspondence between packet devices, interfaces, and optical connections. 

On the other hand, the L2SM Swagger Server implements all the operations requested from OSM. 

Also, it implements the response to OSM with different status codes according to the result of the 

operation. 

In order to test the packet layer, an emulator based on OVSs has been created. It enables to 

emulate a L2 VLAN based VPN to interconnect datacentres. 

3.1.4 Related testbed and platform 

In order to test the performance of the developed Parent Controller, some tests have been made: 

 Manual tests performed on the server and database. 

 Tests of the OSM Plugin. 

 Tests of the TAPI of the Optical Controller  

RESTCONF (L2SM) 

OSM (Bristol)  

Parent 

Controller  

Optical Controller  Packet 

Controller 

L2SM Server 

(Swagger) 
 

RESTCONF (TAPI 2.1) RESTCONF (L2SM) 
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3.1.5 Functional Tests 

Manual tests performed on the server: Some manual tests have been executed. These tests were 

developed to check the functions of the server and its connection with the database. These tests 

where developed using the command-line interface to call the functions of the server in order to 

check all these functions have a good performance. 

Tests of OSM WIM Plugin – parent Controller: Once the OSM plugin was developed, it was also 

used to do a cross-test with the server. In this way, using scripts to call the plugin (simulating the 

OSM), it should execute the given orders on the server and obtain the pretended results from the 

server, which should manage in the right way with the petitions from the simulated OSM. A set of 

tests was also performed with the OSM located at University of Bristol. 

Tests of the TAPI of the Optical Controller: A set of tests has been executed to retrieve the optical 

topology for a context and to create a service in the Photonic layer. Both DSR and Photonic layers 

have been successfully performed.  

3.1.6 KPIs 

KPI Description L2VPN Creation with Optical creation 

Context The Parent Controller manages the operations received from OSM and it 

should configure the network following these requests. The worst-case 

scenario is when there is a need to set up an optical connection in 

addition to configuring the packet layer. The following latency 

components are included: 

- Creation of the L2VPN Service (only interaction with database) 

- Configuration of L2VPN end points (writing in database + 

configuration of endpoints and packet network via packet 

controller)  

- Retrieval of updated optical topology 

- Multi-layer path computation 

- Configuration via TAPI RESTCONF of the optical connection 

Note that three calls are needed from OSM to configure the full service. 

Target <10s 

Assessment Measurement of the average time that is used to process a full L2VPN 

creation, including all the calls from OSM. 

Relationship to 

project KPIs 

MH2. METRO-HAUL E2E PtP connection set-up time 

MH3. Set-up time of network service slice across METRO-HAUL 

MH4. Capacity of METRO-HAUL controller 

 

3.1.7 Availability  

All the developed code is available online on the METRO-HAUL gitlab repository: 

https://gitlab.com/METRO-HAUL/parent-controller/parent-sdn-controller 
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3.1.8 Interfaces 

The interfaces implemented in this component are the IETF L2SM (to allow the communication 

between OSM and the Parent Controller), and TAPI (to retrieve the optical topology and request 

the creation of optical services).  

The services and the multi-layer topology are stored in a MongoDB Data Base and the 

communication with the database is done by MongoDB Wire Protocol.  

3.2 Optical SDN Controller  

3.2.1 Description 

The SDN controller for the optical network is used to control devices that are either OpenConfig or 

OpenROADM based. The NBI for the SDN controller is based on TAPI version 2.1. The 

implementation covers the connectivity and topology models. Topology models are read-only, to 

allow topology discovery by other subsystems by means of REST operations (it is also possible to 

discover additional devices if their YANG data model is known and registered). The software can 

accommodate hybrid deployments in which the control of the transceivers is decoupled from the 

control of the Open Line System. 

The SBI is based on NETCONF over SSH transport. Current implementation supports theOpenConfig 

device model for platform and the terminal device or OpenROADM device version 2.2. There is also 

an implementation for an SBI based on TAPI RESTCONF for an OLS. 

3.2.2 Sub-components 

The main sub-components are  

 ONOS METRO-HAUL application. This is the application that implements the main logic, 

that is able to parse requests coming from the NBI and proceed to configure the devices. 

 ONOS OpenConfig Terminal device driver. This is the driver part, which maps high level 

instructions (flow model rules) to the specific instructions required to configure the device 

as defined by its data model. 

 ONOS OpenROADM device driver. Similarly, for devices that follow the OpenROADM 

device model, the driver implements such aforementioned mapping. 

 ONOS Lumentum ROADM device driver. Given the availability of this hardware 

component, METRO-HAUL has also provided an implementation of a driver that does the 

mapping based on the vendor-provided configuration operations. 

 TAPI 2.1 North Bound Interface (NBI). This is the implementation of the interface that 

allows an end user (operator) to retrieve the topology or to request connectivity services to 

the SDN controller. It’s the main interface that complements the SDN controller GUI. 

 TAPI as SBI towards an OLS controller. For the different disaggregation models, this SBI 

also allows the SDN controller to delegate some of the functions to the Open Line System 

(OLS) 

3.2.3 Status 

At the time of writing, the METRO-HAUL target implementations are mostly complete, only pending 

extensions based on feedback collected during regression testing, integration testing, and project-
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wide integrations with other components. In particular, support for OpenROADM is complete and 

demonstrated. This includes implementation of a connection cache, communications with the 

OpenROADM device to retrieve data from the device driver, and implementation of the 

DeviceDiscovery behaviour, the CrossConnect behaviour, the LambdaQuery, and the flowRule 

programmability. This enables ONOS to control the device as a ROADM in the optical model, to 

retrieve the status of the internal connections, and to program cross-connections upon request 

following the OpenROADM device driver. Similarly, the OpenConfig Terminal Device support for 

behaviours of LambdaQuery, FlowProgrammable, and DeviceDiscovery. It supports an OpenConfig 

TerminalDevice and Optical Transport models. There is also an implementation of a TAPI SBI 

enabling discovery of Service Interface Points (SIPs) from a TAPI-enabled OLS controller, to be used 

in a hierarchical setting with an OLS controller. Finally, there is the export of TAPI topology context 

in NBI and basic processing of TAPI Connectivity Requests Remote Procedure Calls (RPCs), as 

previously mentioned. 

3.2.4 Related testbed and platform 

Most of the source code is open source and has been submitted and integrated into the main ONOS 

repository. The functional component has been tested in partners' testbeds (CTTC / Telefonica / 

CNIT / TIM) as well as in several public demonstrations and events. In particular let us mention the 

following events, publications, and demos (non-exhaustive list): 

Initial description and validations 

R. Casellas et al “METRO-HAUL: SDN control and orchestration of disaggregated optical networks 

with model-driven development”, ICTON2018 

R. Casellas et al “METRO-HAUL: Supporting Autonomic NFV Services over Disaggregated Optical 

Networks”, EUCNC2018 

Most recent demonstrations 

R. Morro et al. “Automated End to End Carrier Ethernet Provisioning over a Disaggregated WDM 

Metro Network with a Hierarchical SDN Control and Monitoring Platform” ECOC 2018. 

OFC2019 Demo A. Campanella et al. “ODTN: Open Disaggregated Transport Network. Discovery and 

control of a disaggregated optical network through open source software and open APIs”. 

OFC2019 Demo P. R. Esmenats et al, “Autonomic NFV Network Services on Top of Disaggregated 

Optical Metro Networks” 

OFC2019 Demo S. Troia et al “Dynamic Virtual Network Function Placement over a Software-

Defined Optical Network” 

3.2.5 Functional Tests  

The main functional test is related to the provisioning and removal of an end to end connection 

between terminal devices. For example, for an experimental evaluation, we consider an NSFNet 

topology with 14 OpenROADM devices (emulating the physical infrastructure) and with 42 links 

(see Figure 16). A partition/OVN is defined selecting 10 nodes and a subset of the OpenROADM 

degrees, resulting in a sub-graph of the original topology. Virtual agents are allocated in Docker 
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containers in such a way that devices in the same OVN belong to the same IP subnet. A TAPI 

request is sent to the OVN SDN controller for the Network Media Channel (NMC). The experiment is 

triggered by posting a RESTCONF Remote Procedure Call (RPC) requesting a TAPI connectivity 

service. Due to space reasons, we do not detail the previous tests related to device discovery, 

device configuration and integrated and regression tests part of the development process. 

Figure 16. Optical SDN Controller example scenario and functional tests. 

As stated, the component has been validated in several partners’ testbeds. However, a significant 

part of the development is being done at the CTTC testbed, shown in Figure 17. This same testbed 

is being used for the demonstration to be reported in WP5. 

 

Figure 17. CTTC Testbed for optical SDN Controller integration and validation. 

3.2.6 KPIs  

The KPIs for the SDN controller are related to the project KPIs MH1, MH2, and MH3 (since the 

optical controller is a part of the service setup delay) as well as MH4 (capacity of the METRO-HAUL 

SDN optical controller).  The following table provides a synthesis of the KPIs.  

10.1.1.131

hi-PCE 
10.1.6.228hi-PCE 

10.1.6.227
VNF

Nova 
Controller 
Compute 

10.1.1.148OpenStack

hi-PCE 
10.1.6.228hi-PCE 

10.1.6.227
VNF

Nova 
Controller 
Compute 

10.1.1.147

OpenStack
10.1.1.146

OpenVSwitch

Private Cloud –
Emulated Netconf/yang 
devices

VM VM VM

Host

Docker Docker

10.1.1.130

10.1.1.128

• OSM NFVO - 2x OpenStack 
VIMs

• ONOS SDN Controller 
hierarchy

• 4 HW OpenVSwitches

• Private Cloud for 
NETCONF/Yang devices
(~20 OpenConfig and 
OpenROADM devices)



 METRO-HAUL H2020-ICT-2016-2 / 761727 D4.2 

© METRO-HAUL consortium 2019                                        Page 37 of 107 

KPI Description Setup Delay in the optical network 

SDN-based management framework enabling fast configuration time in the 

Optical Layer to set up or reconfigure services handling 5G applications. This KPI 

is composed of the following elements: 

- Control plane latency and optical node reconfiguration delay 

- Time required to instantiate a network connection through the optical layer. 

Context The following assumptions are part of the context in which the KPI is assessed: 

- A single controller ONOS instance is running in a Linux Server with medium to 

high level hardware (i7, 32 Gb RAM, ..) 

- Virtual Containers are deployed emulating hardware devices. Devices will 

model OpenROADM nodes and AMEN/MCEN nodes with the same conditions as 

with real hardware. 

- The SDN Controller uses a NETCONF session over SSH transport towards the 

devices. 

- A dedicated network supports communication between the Controller and the 

devices, with a minimum of 10 or 100 Gb/s Ethernet. 

This KPI applies across multiple use cases. This KPI will be measured in a Control 

Plane testbed, with a server running the ONOS controller and multiple servers 

supporting instantiated containers. 

Target < 1 min with real hardware. In the case of ONOS controller in the scope of this 

deliverable, the target is met (with emulated hardware is of the order of 

milliseconds). 

Assessment The methodology involves the following steps: 

- Allocate network topologies  

- Configure the SDN Controller with the credentials  

- Measure the time it takes to setup a service. 

Relationship to 

project KPIs 

Related to MH1, MH2, MH3 

 

KPI Description Control plane bandwidth and throughput 

Control plane bandwidth and throughput required to set up a service across 

the network, between client ports of 2 transceivers. 

Context As previous KPI 

Target Feasible, assuming a dedicated control plane network to interact with the 

devices that is supported over a VPN or Ethernet LAN, with a minimum of 10 

or 100Gb/s interfaces. 

Assessment The methodology involves the following steps: 

- Allocate network topologies  

- Configure the SDN Controller with the credentials  

- Measure the exchanged messages and control plane throughput 

Relationship to 

project KPIs 

Related to MH1, MH2, MH3 and MH4 
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KPI Description MH4. Capacity of the METRO-HAUL controller 

The KPI defines the number of supported optical devices controlled by a 

single SDN Controller instance, and it is related to the number of NETCONF 

sessions that can be managed by such controller. This KPI is directly related to 

the processing capacity of the controller. It is assumed that the number of 

managed devices has a direct impact on relevant metrics such as the latency 

in configuring operations across the network, or the control plane overhead 

associated to managing such number of devices. 

Context Same as previous KPIs 

Target Target: control of 10-100 nodes (AMENs/MCENs, i.e., basically Open 

Disaggregated ROADMs). The output of this KPI will qualify in which 

conditions the target is met. 

Assessment The methodology involves the following steps: 

- Allocate network topologies with an increase number of network elements 

(nodes). 

- Configure the SDN Controller with the credentials (IP addresses, ports) of 

the elements. 

- Measure the time it takes until the NETCONF sessions are active, after the 

capability exchange and the initial device and topology discovery. 

Relationship to 

project KPIs 

This is MH4. Local tests verify that the KPI is met in the considered scenarios 

 

Network Operations and Service Workflow 

 

Figure 18. Initial Capability Discovery between the SDN controller and the OpenROADM 

Network Discovery: From the point of view of network operation, the procedure is as follows: first, 

the network operator configures the SDN controller (in our case the implementation is based on 

ONOS) with the list of devices and the NETCONF credentials. This means IP addresses, NETCONF 

ports (default is 830), user credentials, etc.  

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <capabilities>
    <capability>urn:ietf:params:netconf:base:1.0</capability>
    <capability>urn:ietf:params:netconf:base:1.1</capability>
  </capabilities>
</hello>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <capabilities>
    <capability>urn:ietf:params:netconf:base:1.0</capability>
    <capability>urn:ietf:params:netconf:base:1.1</capability>
    <capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
    <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
    <capability>urn:ietf:params:netconf:capability:notification:1.0</capability>
    <capability>http://org/openroadm/alarm?module=org-openroadm-alarm&revision=2017-12-15</capability>
    <capability>http://org/openroadm/common-types?module=org-openroadm-common-types…</capability>
    <capability>http://org/openroadm/device?module=org-openroadm-device&revision=2017-12-15</capability>
    <capability>http://org/openroadm/media-channel-interfaces? …</capability>
    <capability>http://org/openroadm/network-media-channel-interfaces?
    <capability>http://org/openroadm/optical-channel-interfaces?
    <capability>http://org/openroadm/optical-transport-interfaces?
  </capabilities>
  <session-id>36</session-id>
</hello>
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The SDN controller establishes a persistent NETCONF session with the device. Let us focus on the 

OpenROADM devices. First, there is an initial capability exchange, in which the NETCONF client 

(ONOS) discovers what models and features are supported (Figure 18 and Figure 19) using a HELLO. 

Next, the SDN controller issues <get> and <get-config> messages as needed to retrieve info about 

the devices. Typically, a <get> operation with a subtree filter of <org-openroadm-device><info/> 

allows retrieving basic data to add the device into the SDN controller device manager. Similar 

operations on the circuit packs and ports are used to retrieve internal connectivity and to discover 

port capabilities (Figure 18). For example, we query the list of circuit packs and their ports, e.g. the 

DEGREE1 AMPRX and see the DEG1-AMPRX-IN, this is a multi-wavelength port, external, and its 

partner port is DEG1-AMRTX-OUT. We can also see a logical connection point, the DEG1 Trail 

Termination Point for RX for that degree. 

  

 

Figure 19. NETCONF <get> operation to retrieve the list of circuit packs of the OpenROADM. 

If the device supports it, we can retrieve external links to discover how OpenROADMs are inter-

connected. This allows the SDN controller to construct a network topology view. If this is not 

supported, other means of topology discovery need to be defined, including, if need be, manual 

provisioning at the SDN controller. The result is that the SDN controller is aware of the network 

topology and end-to-end services may be requested, using, for example, the GUI.  

Service Creation: In order to request a service, the user or operator retrieves the list of available 

Service Interface Points (SIPs) using the TAPI NBI and proceeds to request a connectivity service 

between a pair of SIPs (for a point-to-point connection). The request can specify if it applies, e.g., to 

a digital signal between two transceiver client ports or, alternatively, a network media channel 

between two transceiver line ports (or two OLS ports for an OLS controller). The SDN controller 

maps those SIPs to node edge points and performs a routing and spectrum assignment process that 

finds the k-shortest paths between the devices, and performs first fit spectrum allocation. Once 

completed, flow and forwarding rules are configured at each device: for the Terminal Device, a 

logical channel association is instantiated within the device between a client (transceiver) port and 

an optical channel component bound to the line port of the device. For each of the OpenROADM 

48

<rpc message-id="3" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <get>
    <filter type="subtree">
      <org-openroadm-device xmlns="http://org/openroadm/device">
        <circuit-packs/>
      </org-openroadm-device>
    </filter>
  </get>
</rpc>

<rpc-reply message-id="3" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <data>
    <org-openroadm-device xmlns="http://org/openroadm/device">
      <circuit-packs>
        <circuit-pack-name>DEG1-AMPRX</circuit-pack-name>
        <circuit-pack-type>AMP</circuit-pack-type>
        <administrative-state>inService</administrative-state>
        <circuit-pack-category>
          <type>circuitPack</type>
        </circuit-pack-category>
        <shelf>SHELF_DEG1</shelf>
        <slot>SHELF_DEG1_SLOT_DEG1-AMPRX</slot>
        <ports>
          <port-name>DEG1-AMPRX-IN</port-name>
          <port-qual>roadm-external</port-qual>
          <port-wavelength-type>multi-wavelength</port-wavelength-type>
          <port-direction>rx</port-direction>
          <label>11</label>
          <logical-connection-point>DEG1-TTP-RX</logical-connection-point>
          <partner-port>
            <circuit-pack-name>DEG1-AMPTX</circuit-pack-name>
            <port-name>DEG1-AMPTX-OUT</port-name>
          </partner-port>
          <roadm-port>...
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devices across the path, a ROADM internal connection is requested: i) OTS and OMS (optical 

transport and optical multiplex) interfaces are created within each degree (if not already existing), 

ii) Supporting Media Channel and NMC interfaces are created, iii) A roadm-connection object is 

created.  

 

Figure 20. Creation of a ROADM connection between two Connection Termination Points. 

For example, to create a unidirectional express connection supporting a 50GHz signal centred at 

190.7 GHz from degree 1 to degree 4 (Figure 20), the SDN controller proceeds as follows. First, 

assume that the OTS and OMS interfaces are configured at the ROADM degrees; these interfaces 

correspond to the lower layers of the OTN model; OTS corresponds to the Optical Transmission 

Section, e.g., between amplified fibre sections and OMS to the Optical Multiplex section. Next, 

create Media Channel (MC) interfaces (via an <edit-config> operation) over the OMS interfaces (by 

convention named MC-TTP-DEG1-TTP-RX-190.7 and MC-TTP-DEG1-TTP-RX-190.7, with a min-freq: 

190.675 and max-freq: 190.725, which specifies the supporting media channel. Next, create NMC 

interfaces over the MC interface, specifying a centre frequency and width, inducing Connection 

Termination Points (CTPs). Finally, establish the unidirectional connection between CTPs, from the 

interface NMC-CTP-DEG1-TTP-RX-190.7 to NMC-CTP-DEG4-TTP-TX-190.7. Once the cross-

connections have been provisioned at all the nodes along the path and the transceivers configured 

with the appropriate transmission parameters, the service is active. 

DEG1
DEG1

DEG1-AMP-RX

DEG1-AMP-TX

DEG1-WSS

DEG4

ExpLink14

ExpLink41

Creation of a roadm-connection 
- Between Connection Termination Points

- Unidirectional RX  TX
- From: NMC-CTP-DEG1-TTP-RX-190.7
- To: NMC-CTP-DEG4-TTP-TX-190.7

NMC-CTP-DEG1-TTP-RX-190.7
networkMediaChannelConnectionTerminationPoint
Frequency: 190.7
Width: 50.0

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="62">
  <edit-config>
    <target>
      <running/>
    </target>
    <config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
      <org-openroadm-device xmlns="http://org/openroadm/device">
        <roadm-connections nc:operation="merge">
          <connection-name>
          NMC-CTP-DEG1-TTP-RX-190.7-to-NMC-CTP-DEG4-TTP-TX-190.7
          </connection-name>
          <opticalControlMode>off</opticalControlMode>
          <target-output-power>0</target-output-power>
          <source>
            <src-if>NMC-CTP-DEG1-TTP-RX-190.7</src-if>
          </source>
          <destination>
            <dst-if>NMC-CTP-DEG4-TTP-TX-190.7</dst-if>
          </destination>
        </roadm-connections>
      </org-openroadm-device>
    </config>
  </edit-config>
</rpc>
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Experimental scenario 

To test the KPIs, the system has been tested with two reference topologies as shown in Figure 21, 

modelling an NSFNet (14 nodes) and a METRO-HAUL European network (10 nodes). In order to 

scale to O(100) of devices (it has been tested with 80 max), the most critical part is the initial 

convergence in which the ONOS controller queries all the devices to get the ports, capabilities, etc. 

Given the non-optimized current implementation of ONOS dynamic configuration stores, this can 

take several minutes. That said, this is a process that happens typically at start up, and it is not 

deemed critical. 

 

Figure 21. ONOS SDN Optical Controller reference topologies. 

An end-to-end request for a network media channel is requested starting when the TAPI 

connectivity request is received. In the worst case, it is O(800ms), including the parallel 

provisioning. A sample service in the Europe (Dom B) abstracted node is mapped to 3 cross-

connections in nodes Lisbon, Madrid, and Barcelona, as shown in Figure 22. Within the domain, the 

provisioning is O(500ms). Note that there is an overhead, given the XML encoding, the SSH 

transport for NETCONF, and the need to send multiple messages (creation of MC, NMC interfaces, 

and connections, OMS and OTS interfaces at each degree port are pre-created). As shown in the 

figure, there are O(100) IP packets exchanged between controller and agents, but the overall 

throughput is relatively low, making latency the critical aspect. Setup delays are computed without 

taking into account hardware configuration delays with real ROADMs, which can be of the order of 

seconds/minutes. Setup delay due only to the control plane has little impact on the performance. 
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Figure 22. Example measurement of KPI for setup delay and throughput in a domain 

3.2.7 Availability 

The implemented controller has been contributed as Open Source to the upstream ONOS SDN 

Controller project. Next, we list key change sets that reflect the contributions. It is worth noting 

that submitting code of the demonstrator is still ongoing, following the rules, guidelines, and 

processes defined by the upstream project. It is also worth noting that any source code that is done 

for the specific demonstration of the project, but which is not integrated in the main project (e.g., 

being too specific, too research-oriented for a production environment, etc.) will still be available in 

the METRO-HAUL internal Repository, located at https://gitlab.com/METRO-HAUL/optical-

controller/onos-controller. For the time being, contributions have been merged to the ONOS Main 

release (as within the METRO-HAUL participation in the ODTN project) 

https://github.com/opennetworkinglab/onos. 

Let us illustrate the contributions process by listing some key changesets (merged to the upstream 

project), such as ONOS-7451 ODTN TAPI connectivity service 

https://gerrit.onosproject.org/#/c/17306/, ONOS-7828 ODTN OpenConfig FlowRule and 

LambdaQuery https://gerrit.onosproject.org/#/c/20382/, Added commons_jxpath as bundle of 

osgi_feature. https://gerrit.onosproject.org/#/c/20353/,  TAPI 2.x rpc service registrator 

https://gerrit.onosproject.org/#/c/17400/, Lumentum ROADM-20 Whitebox, NETCONF driver 
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supporting ROADM app https://gerrit.onosproject.org/#/c/17102/, Generic OpenConfig 

TerminalDevice driverhttps://gerrit.onosproject.org/#/c/18566/, Update sample files to TAPI >= 

2.0.2, https://gerrit.onosproject.org/#/c/17854/ etc. 

Two main implementations that are still under review are the OpenROADM device drivers and 

minor changes to other components. This is expected to be closed by Q3 2019. 

3.2.8 Interfaces 

The interfaces implemented in this component are mainly TAPI, OpenROADM drivers for optical 

matrixes, and OpenConfig for transceivers. They are described in detail in Section 4 of this 

document. 

3.3 OLS controller 

3.3.1 Description 

Multi-layer orchestration requires knowledge of the topology of both the Optical and IP layers. 

Considering one of the METRO-HAUL scenarios, the Optical layer is managed by a technology-

specific OLS controller that exposes the optical links and their features to the Orchestrator.  

To install a service across a multi-layer network, the configuration of each device directly involved 

in the operations needs to be performed. ONOS is mostly device-based (i.e., OpenFlow oriented 

with “per device” configuration) and does not fit perfectly in common network environments, 

where technological domains are controlled by vendor-specific solutions such as proprietary 

controllers or Network Management Systems (NMS). Typically, such controllers provide a “service” 

scope provisioning interface to provision a complete path, instead of single configurations for 

individual devices. The reasoning is that a domain controller has a much more detailed 

understanding of the domain and finds better solutions than a general-purpose controller. 

An example of such proprietary solutions is the Optical Line System (OLS) controller used in the 

project to configure ADVA’s optical infrastructure. The OLS controller is a (logically) centralized 

controller developed commercially to provide an abstraction for the underlying infrastructure and 

to facilitate control of the optical infrastructure via standardized northbound interfaces, like 

RESTCONF/NETCONF. 

3.3.2 Current Transport API Specifications (work in progress) 

The Transport API (TAPI) covers the following set of control plane functions and services:   

1. The topology service handles the retrieval of information about topologies. There are 

different granularities defined for information retrieval, starting from the whole topology 

and going down to individual node-edge-point details.  

2. The connectivity service manages connectivity services between service-endpoints. The 

service interface can be used with or without prior knowledge of the topology to create, 

retrieve, update, and delete (CRUD) connectivity services. Additionally, information about 

service-endpoints, connections, and their endpoints can be accessed.  

3. The path computation service computes and optimizes point-to-point paths.  
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4. The virtual network service allows the user to define, retrieve and delete virtual network 

services, i.e., virtual network topologies. The virtual topologies correspond to reserved 

resources that can be controlled by the client.  

5. The notification service is another piece of the model. The exposed notification types are 

currently limited to created and deleted objects, changed values, and changed states. 

Based on the types, notification subscriptions can be created, modified, deleted, suspended 

and resumed. In addition, notification records are retrievable. Alarms and performance 

monitoring are scheduled for the next release. 

3.3.3 Status 

Functions that are currently supported are: 

1) Discovery and provisioning of fully aggregated domains, where client ports of transponders 

are exposed as Service Interface Points, and services can be created between transponders / 

muxponders inside the OLS domain.  

2) OLS configurations: In this configuration, the OLS controller exposes two topologies, with one 

presenting the Open Line System to establish pure wavelength services (alien waves) and the 

other topology presenting the Transponder domain. Service establishment in the OLS domain 

supports the configuration of an alien wave tunnel and in the transponder domain activates the 

client and network side of the transponders using Ethernet interfaces on the client side and 

OTUx interfaces on the network side. Extensions proposed to the TAPI connectivity service with 

OTSI extensions were used to configure the wavelength used in both the alien wave case as 

well as the channel used at the network side of the transponders.  

3.3.4 Availability 

The Optical Line System (OLS) controller is the ADVA Network Manager System (NMS) and it is not 

publicly available. 

3.3.5 Interfaces 

The URL endpoints supported in the TAPI OLS controller implementation are described below (IP 

and port have to be changed accordingly); 

 Base URL for all calls 

http://{controller ip:port}/tapi/RESTCONF 

 Full context 

String CONTEXT = "config/context"; 

 Service Interface Point Details 

  interface Common { 

    String SEPS = "config/context/service-interface-point"; 

    String SEPS_BY_UUID = "config/context/service-interface-point/{uuid}"; 

  } 
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 Topology Details:  

  interface Topology { 

    String TOPOLOGY = "config/context/topology"; 

    String TOPOLOGY_BY_UUID = "config/context/topology/{uuid}"; 

    String NODES = "config/context/topology/{uuid}/node"; 

    String NODE_BY_UUID = "config/context/topology/{uuid}/node/{node_uuid}"; 

    String ONEPS = "config/context/topology/{uuid}/node/{node_uuid}/owned-node-

edge-point"; 

    String ONEP_BY_UUID = "config/context/topology/{uuid}/node/{node_uuid}/owned-

node-edge-point/{owned_node_edge_point_uuid}"; 

    String LINKS = "config/context/topology/{uuid}/link"; 

    String LINK_BY_UUID = "config/context/topology/{uuid}/link/{link_uuid}"; 

  } 

 Connectivity service details: 

  interface Connectivity { 

    String CONNECTIVITY_SERVICES = "config/context/connectivity-service"; 

    String CONNECTIVITY_SERVICE_BY_UUID = "config/context/connectivity-

service/{uuid}"; 

    String CONNECTIONS = "config/context/connection"; 

    String CONNECTION_BY_UUID = "config/context/connection/{uuid}"; 

  } 

3.4 SDN for Passive Optical Networks 

3.4.1 Description 

The SDN PON Controller is responsible for the control of the PON elements of the METRO-HAUL 

architecture. The NBI for the SDN PON controller is based on TAPI and realises the communication 

between the SDN PON Controller and the Parent Controller. The adopted SDN architecture is 

schematically depicted in Figure 23.  

3.4.2 Sub-components 

The main building blocks of the architecture are the Management Agent Software Framework 

(ConfD), the PON Configuration Agent (PCA), the PON Network Flow Agent (PNFA), and ONOS. 

The ONOS controller platform is the central management system/orchestrator of the entire 

network. The ConfD is the main management and control entity and is responsible for retaining the 

configuration status of the PON. The abstraction of the PON as an L2 switch is based on YANG 

modelling and in particular on the legacy-switch model, but incorporating the QoS queue models of 

Broadband Forum. This integration allows to (re)configure the PON using the NETCONF protocol, 

with the configuration status stored into the Core engine Database (CDB). When configuration 

requests are arriving from the application layer via the North Bound Interface (NBI), the ConfD Core 

Engine Agent retrieves the data stored in the CDB and updates the configuration, while informing 

the other entities in real time of configuration status changes through a CDB API. The PCA, 
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communicating with ConfD via the CDB API, is responsible for realizing the requested configuration 

changes to the PON elements: when the configuration is modified, the CDB engine informs the PCA 

of the changes and the PCA generates the appropriate CLI commands and executes them directly 

on the corresponding PON elements. The PNFA implements the flow management of the 

infrastructure. PNFA uses the OpenFlow protocol a) to receive flow requests from the OpenFlow 

controller of ONOS and to forward them to the MCA; and b) to inform ONOS’ OpenFlow-controller 

of the activation of a new switch (PON) and to establish the initial flows. The MCA is responsible for 

translating these requests to the appropriate element mapping (e.g., VLAN to queue) and to 

execute the appropriate commands. 

 

Figure 23. SDN Control of PON network 

Under the METRO-HAUL abstraction framework, the SDN PON Controller handles PONs as legacy 

switches so a unified management system can be used for all switching entities in the network. 

Finally, in addition to physical PONs, logical PONs are exposed to the SDN PON Controller by ConfD, 

so, through its slice management entity, it can further support sliceability though the NBI. 

3.4.3 Status 

At the time of writing, the building blocks of the architecture are mostly complete. In detail: 

 The PON Configuration Agent is implemented.  

 The PON Network Flow Agent is implemented.  

 The basic building blocks of the SDN PON Controller are implemented, including a NETCONF 

client based on Tail-f Java NETCONF Client (JNC) and an OpenFlow client based on 

OpenDaylight. 

We are currently working on the: 

 Definition of the interface/APIs (e.g., TAPI) towards the parent controller (Orchestrator). 
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 Implementation of the interface/APIs and integration with the parent controller 

(Orchestrator). 

Description and validations 

E. Kosmatos, C. Matrakidis, A. Stavdas, S. Horlitz, Th. Pfeiffer, A. Lord, "A Dynamic Transportation 

Platform for Metropolitan Networks Exploiting PON Technology and a Novel Control-Plane", 

ECOC2018, TuD3, 23-27 Sept. 2018, Rome, Italy 

E. Kosmatos, C. Matrakidis, A. Stavdas, T. Orfanoudakis, " An SDN Architecture for PON Networks 

Enabling Unified Management using Abstractions", ECOC2018, We2.64, 23-27 Sept. 2018, Rome, 

Italy 

3.4.4 Related testbed and platform 

For experimental validation, we implemented the PCA and PNFA components and we integrated all 

the already available components (like ConfD) in order to realise the architecture depicted in Figure 

23. Regarding the PON equipment, a GPON system (ISAM 7330) provided from NOKIA was 

integrated into the testbed.  

3.4.5 Functional Tests  

A set of functional tests were executed in order to ensure that the implemented functions are 

working properly and their outcomes were in line with the project objectives. 

A well-defined set of tests were executed in order to validate the performance of the platform 

under a set of project scenarios and against a set of predefined KPIs including control and data 

plane latency. 

3.4.6 KPIs  

KPI Description Control plane latency 

Context Measure and validate the following control plane latency components: 

 Latency in PCA for PON reconfiguration 

 Latency in PCA for PON reconfiguration causing DATA interruption 
(ms) 

 Total latency in PCA 

 Total NETCONF configuration cycle (request-update-response) (ms) 

Target Target: < 10 s 

Assessment The testbed architecture is described in the sections below. It includes the 

software architecture depicted in Figure 23, while the PON equipment, a 

GPON system (ISAM 7330), was provided by NOKIA. 

Relationship to 

project KPIs 

Related to MH1, MH2, MH3 

 

KPI Description Data plane interruption time 

Context Measure and validate the data interruption time using different traffic types 

(e.g., UDP and TCP) and different service types (e.g., video streaming, FTP 
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download/upload) 

Target Target: < 20 s 

Assessment The testbed architecture is described in the following sections. It includes the 

software architecture depicted in Figure 23, while the PON equipment, a GPON 

system (ISAM 7330), was provided by NOKIA. 

Relationship to 

project KPIs 

Related to MH1, MH2, MH3 

 

3.4.7 Availability 

The developed software components are not publicly available. 

3.4.8 Interfaces 

At the time of writing, the interface (TAPI) towards the parent controller (Orchestrator) is under 

definition and implementation. 

3.5 Service orchestrator 

In the METRO-HAUL architecture, as mentioned in Section 2.2, the WIM is responsible for 

interconnecting the VNFs as part of an NS, where the VNFs are deployed in multiple PoPs (AMENs 

or MCENs) in different geographical locations. The WIM provisions the network using underlying 

SDN controllers, which in the case of METRO-HAUL, are separate for packet and optical domains. 

For the METRO-HAUL project, OSM is used as the reference ETSI-based NFV Management and 

Orchestration (MANO) system. OSM is an open-source MANO implementation under the umbrella 

of ETSI, in charge of orchestrating the VNF placement and life cycle in one or more data centres, 

potentially connected by a transport network. OSM, as part of Release 5, has been extended to 

connect to WIMs and provision connectivity between VNFs hosted at multiple VIMs registered with 

OSM. Figure 24 shows the setup where an NS consisting of 3 VNFs is deployed by OSM. The 

placement for VNFs 1 and 2 has been specified on PoP-A, and for VNF 3 on PoP-B. The virtual link 

connecting the VNF 2 and VNF 3 spans the WAN link interconnecting the PoP. The network for this 

link is provisioned by the WIM under instruction from OSM, using SDN controllers.  

OpenStack is used as the VIM in the METRO-HAUL project. It is configured to provision Layer 2 

provider networks attached to the VMs in the compute nodes. When OSM instantiates an NS as 

shown in Figure 24 with the appropriate VNF placement option, it also instructs OpenStack in PoP-A 

to create a provider network to attach to VNF-2 which spans out of the compute node at PoP-A. 

OpenStack assigns a VLAN id “A” to this provider network. Similarly, a provider network is created 

at PoP-B with VLAN id “B”. Once the VNFs and the networks are created, the VIM sends the VLAN 

information to the OSM. OSM detects that the virtual link connecting VNFs 2 and 3 spans multiple 

datacentres. Once OSM receives the VLAN information, it uses a pre-defined WIM port mapping to 

obtain the WAN endpoints connected to each datacentre. These endpoints along with VLAN 

information about the PoPs is sent to the WIM which uses this data to provision a network between 

the endpoints. The endpoints may be a physical endpoint for (for example) a combination of port 

number with OpenFlow DPID; or may be logically defined, such as a Transport API (TAPI) service 

interface point (SIP).  
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Figure 24: Integrated SDN and ETSI NFV/MANO system 

The following sections provide details of the work carried out to enable OSM to provision 

connectivity between multiple PoPs using the WIM. 

3.5.1 OSM extensions for WIM 

 

Figure 25: WIM Extension for OSM 

In this section, the detailed internal working of the OSM extension for WIM are explained. We 

introduce sub-components inside the NFVO, as indicated in Figure 25. This architecture is based on 

the execution of asynchronous tasks to avoid blocking behaviour and to improve the overall 

network service provisioning time. The WIM Engine has three responsibilities: firstly, to provide 

information to the NFVO about the available WIMs and the characteristics of the connectivity they 

can sustain; secondly, to check the feasibility of the presented placement solution; and finally, to 

specify and schedule a series of tasks that encode the instructions for establishing WAN links. While 

each task works as a standalone processing unit, the WIM Broker coordinates their threaded 

execution in a task queue by implementing a state machine upon activation. By tapping into a 

shared communication mechanism internal to the NFVO (implemented via either a common 
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database or event stream), tasks can verify preconditions and fire actions to the external WIMs 

accordingly. As an example, special information, such as VNF IP and VLAN segmentation id, might 

need to be published by a VIM to the NFVO after its workload is processed. The VLAN information is 

part of the endpoint information that OSM sends to the WIM. To wait for this information, the 

tasks can be suspended, and rescheduling them is the responsibility of the WIM Broker. Conversely, 

when all the preconditions are met, a task invokes commands on a WIM Connector.  

3.5.2 WIM connectors 

The WIM connector for a particular WIM is based on an abstract WIM connector class. Depending 

on the type of WIM, the abstract WIM connector class can be extended to accommodate the WIM-

specific North-bound APIs (NBIs). When OSM is deploying an NS, it detects if a link connecting 

multiple VNFs spans multiple VIMs. This invokes the OSM to access the relevant WIM to provision 

the network between the VIMs, where the WAN network interconnecting the VIMs is managed by 

this WIM. The WIM requires the endpoints as explained earlier, and they include the port mapping 

and the VLANs. In the following, we describe two WIM connectors. 

3.5.2.1 Transport API based WIM connector 

The choice of TAPI as the interface between the OSM and the WIM is motivated by multiple factors. 

TAPI, as defined by the ONF, has fulfilled its goal of having a common standardized North Bound 

Interface (NBI) across multiple network controllers, to be used, e.g., by a network orchestrator or 

applications. It builds on core models that are technology agnostic (aligned with the ONF Core 

Information Model, which defines a common object model for all types of Software Defined 

Networks, including components like network resources or service constructs) while allowing 

technology-specific extensions for relevant layers. TAPI follows a model-driven development: 

models are defined in UML and automatically translated into YANG which, in turn, may be 

automatically validated, and stubs can be automatically generated for common programming 

languages. From the point of view of maturity and adoption, it has been demonstrated in multiple 

proof-of-concepts, interop events and is supported by many vendors [OIF-ONF]. It has been 

adopted by several initiatives and SDOs, such as MEF OpenCS Optical Transport or, for the latest 

v2.1 release, the ODTN Project [ODTN] as the NBI for a controller of an optical disaggregated 

transport network. Release 2.0 added the ability to take into account node constraints, protection 

services and consistent OAM and monitoring, and the latest 2.1 release includes new models for 

the photonic layer, with support for flexi-grid network media channels, including model for the 

OCH, OTSi, OTSiA, OTSiG, OMS, OTS, and Media channels as per ITU-T G.872 (2017) version 4. 

A preliminary implementation of TAPI based WIM connector with MANO for NFV orchestration 

over a Multi-PoP infrastructure has been done. For demonstrating its applicability, the same 

network service composed by 3 VNFs (Figure 26a) was deployed over an optical infrastructure. 

Figure 26b shows the experimental setup, which consists of two OpenStack datacentres 

interconnected by a combination of packet switches and optical cross connects (OXCs) which are 

SDN-enabled and managed by a combination of SDN controllers. On top of the SDN controller, we 

employ a TAPI proxy based on a TAPI 2.0 reference implementation [TAPI]. The TAPI proxy exposes 

two service endpoints (svc_ep_1 and svc_ep_2), at both edges of the interconnection network 

between the datacentres, to OSM. The information about these service endpoints is added to OSM 
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before network service deployment as part of a port mapping process, making them available for 

usage.  

 

Figure 26: a) Network Service b) Testbed for TAPI with OSM 

During the NS deployment phase, OSM detects that the virtual link connecting VNFs 2 and 3 spans 

multiple datacentres. Once OSM receives the VLAN information, it uses the pre-defined port 

mapping to obtain the TAPI service endpoints connected to each datacentre. The TAPI service 

endpoint (svc_ep) and the VLAN for each datacentre is sent to the TAPI proxy to provision a 

network between the datacentres. The TAPI proxy translates this information into low-level device 

specific flow installation using the SDN controller to interconnect the two VLANs at the either 

datacentre. More details about the message sent to TAPI based WIM from OSM are mentioned in 

Section 4.4. 

3.5.2.2 L2 service model connector 

3.5.2.2.1 Description 

The L2 service model connector is the component responsible for the connection between the OSM 

and the Parent Controller to handle connectivity between METRO-HAUL Network endpoints to 

support connectivity between VNFs running in different VIMs. This component implements RFC 

8466 “YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service Delivery” [RFC8466] 

defined by the IETF to describe an L2VPN service from the point of view of the consumer of the 

service. The connection to the parent controller is performed via RESTCONF [RFC8040] interface 

with the data encoded in JSON following RFC 8466 data model. So, this plugin implements all the 

methods defined for the WIM plugins by creating the necessary RESTCONF calls.  

The Service Delivery Model of RFC 8466 models the L2 connection needed in the METRO-HAUL 

network. An AMEN/MCEM Node is seen as two separate entities. One of them is associated to the 

Compute infrastructure (compute nodes and internal switching), which hosts the VNFs, and the 

other one associated to the packet and optical network. From the modelling perspective, every 

compute infrastructure in an AMEN/MCEM model is considered a “site”, according to the 
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terminology in RFC 8466. The L2 link between the compute infrastructure and the network node is 

considered a “bearer”. Every bearer can be used entirely for a single connection or can be split into 

multiple VLANs to be used for multiple connections. An example of an AMEN/MCEM Node and a 

detail of the bearer is shown in Figure 27. 

3.5.2.2.2 Sub-components 

The only component of the Plugin is the python class wimconn_ietfl2vpn.py, which implements all 

the functions to communicate between the OSM and the Parent Controller in order to create and 

manage the L2VPNs of the system. All these functions are explained in detail in section 4.4.2. 

3.5.2.2.3 Status 

The L2SM connector is functional and it performs all of the functions described in Section 4.4.2. to 

create an L2VPN Service on the Parent controller. 

 

Figure 27: Example of an AMEN/MCEM Node 

3.5.2.2.4 Tests 

The Plugin has been tested on a local Swagger server which made the functions of the Parent 

Controller. All the results of the tests have been positive, all developed functions performed the 

desired objectives. 

3.5.2.2.5 Availability 

The plugin is available online at: 

https://osm.etsi.org/gerrit/#/c/7434/1/osm_ro/wim/wimconn_ietfl2vpn.py 

3.5.2.2.6 Interfaces 

The interface of the plugin implements a RESTCONF+JSON interface with the RFC 8466 data model. 

The following operations are used by the plugin: 

 Create connectivity service 

 Delete connectivity service 

 Delete all connectivity services 

 Edit connectivity service 

 Get connectivity service’s status 

 Get all connectivity services 
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3.6 System for network virtualization and slicing 

In this section, the system for network virtualization and slicing is presented. The system consists of 

an integrated environment for NS deployment across multiple datacentres/PoPs using a single OSM 

instance; where an NS comprises of multiple interconnected VNFs.  

 

Figure 28: Reference NSs to explain system for network virtualization and slicing 

To explain this system, assume there are two VIMs: VIMA and VIMB. A WAN interconnects the two 

VIMs. Reference Network Services for this example are NS1 and NS2 as shown in Figure 28, where 

VNF11 and VNF21 are to be deployed in VIMA, and VNF12 and VNF22 are to be deployed in VIMB. The 

VIMs are based on OpenStack version Pike. OSM natively supports integration with OpenStack 

based VIMs. An ETSI based Network Service Descriptor (NSD), which is based on the NSs as shown 

in Figure 28, is required to be defined on OSM. At the time of deploying an NS, the location, i.e., the 

VIM where a VNF of an NS must be deployed, is required to be specified. The same procedure is 

followed as explained in Section 3.6, where the OpenStack based VIMs deploy the VNFs; as shown 

in Figure 29. Furthermore, as explained in Section 3.6, when an NS is deployed using OSM which 

spans multiple PoPs/VIMs, OSM uses an external WIM to interconnect the PoPs. OSM provides the 

endpoints where the VIMs interface with the WAN network along with the VLANs used at each VIM 

for a Virtual Link (VL) interconnecting the VNFs.  

 

Figure 29: Network slicing in WAN 
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Assume that the VLAN assignment for the provider networks made by OpenStack for the VNFs is as 

shown in Figure 29. The VLAN assignment per VL is received by OSM from OpenStack instances 

once the provider networks are deployed and connected to the VNFs. OSM then proceeds to 

request the WIM to deploy the network per VL basis by sending the endpoints (physical or logical) 

along with the VLANs. The WIM interconnects the provider networks at both OpenStack instances 

using the WAN. An intermediate transport VLAN is used for e.g., VLANT1 for NS1 is used to 

interconnect the VLANA1 with VLANB1 by performing a VLAN rewrite on the edge WAN switches 

connected to the VIMs as shown in Figure 29. A similar process is done for NS2 with a separate 

transport VLANT2 to interconnect its respective VNFs.  Since separate VLANs are utilized at each VIM 

and the WAN network, hence this fulfils the need for network slicing. 

The WIM connector in OSM as part of Release 5 is equipped to send the VLAN and endpoint 

information to the WIM. The WIM, which is external to OSM, is responsible for setting up the 

transport VLANs per VL, to ensure proper slicing. 

3.7  Monitoring and Data Analytics subsystem 

3.7.1 Description and components 

The detailed MDA subsystem architecture together with the related interfaces is shown in Figure 

30. It consists of two sub-components: 

 MDA agents are designed to collect measurements from one or more nodes in the 

disaggregated data plane. While each node controller usually controls one single node and 

exposes one single interface toward the SDN controller, MDA agents are designed to be in 

charge of monitoring and telemetry of a set of nodes. MDA agents consist of two building 

blocks, the local configuration module and the local KDD module. The local configuration 

module is in charge of receiving configuration, and the exposes SBIm interface.  

A number of node adapters (one per node) are used to implement the specific protocols 

exposed by every node controller through the MONx interface for monitoring data collection. 

Since different protocols for monitoring and telemetry might be considered for the MONx 

interface, node agents include bespoke node adapters implementing specific protocols and 

function mapping for the underlying node controller. 

Regarding the local KDD module, its scope is to apply data analytics to the measurements 

received from the nodes. Output of the data analytics procedure is forwarded to the MDA 

controller to implement network-wide control loops; two types of messages are supported: i) 

IPFIX-based monitoring messages including processed monitoring samples (i.e., values are 

averaged over the selected monitoring period, e.g., 15 minutes) using the NBIm interface; and 

ii) through asynchronous notifications using the SBIm interface Regarding telemetry, 

measurements are locally processed by specific KDD processes in the KDD module to reduce 

data exchange with the MDA controller. Note that telemetry measurements might be taken on 

a sub-second basis, so analysis is performed locally in the MDA agents and results can be 

conveyed to the MDA controller for decision making. 

 The MDA controller collates monitoring data records from all the nodes in the network and 

stores them in an internal big-data repository. Such monitoring data is available for external 

systems through the IO4 interface. Data are analysed and machine learning algorithms are 
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applied, which can trigger notifications suggesting actions to the SDN controller. The MDA 

controller includes the operational databases (e.g., topology and connections) retrieved from 

the SDN controller using the M-COM interface, which entails having a complete view of the 

network. With operational databases synchronized, the MDA controller is able to correlate 

them e.g., with the route of an LSP for failure localization purposes. 
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Figure 30. METRO-HAUL MDA architecture 

3.7.2 Status 

The MDA subsystem development phase has been successfully completed. 

3.7.3 Related testbed and platform 

The experiments have been carried out in the UPC’s SYNERGY testbed. The scenario consists of an 

MDA controller and the ONOS SDN controller in the control and management plane and a number 

of network locations each with an MDA agent in charge of one local L2 switch, TP node, and L0 

switch. MDA agents, as well as node controller emulators, have been developed in Python, where 

node controller emulators expose a NETCONF NBI. 

3.7.4 Functional Tests  

The tests carried out to validate the MDA subsystem consisted of implementing the basic 

workflows defined in Section 2.3.2: 1) LSP set-up and monitoring / telemetry activation; and 2) 

degradation detection and network reconfiguration. 
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3.7.5 KPIs 

The identified KPIs are related to MH5. Fault/degradation detection time KPI, defined in D2.4. 

KPI Description No real-time degradation notification and node configuration tuning 

Context After the detection of a degradation by the MDA controller and the 

localization of the failure, it sends a recommendation to the SDN controller 

suggesting configuration changes. In this KPI, we assume that the scope of the 

changes is restricted to simple configuration tuning in a node. 

Target 1 minute from the time an MDA agent sends a notification with the detection 

of a gradual degradation until the new configuration is received in the remote 

node. 

Assessment Workflow 2: time measured from messages 2 to 4, where recommended 

action was set to node configuration tuning. 

Relationship to 

project KPIs 

This KPI relates to the gradual degradation no real-time detection scenario 

described in KPI MH5 in D2.4. 

 

KPI Description No real-time degradation notification and network reconfiguration  

Context After the detection of a degradation by the MDA controller and the localization 

of the failure, the MDA sends a recommendation to the SDN controller 

suggesting configuration changes. In this KPI, the change consists of a network 

reconfiguration. For the sake of simplicity, we assume that such reconfiguration 

is re-routing one single optical connection avoiding the localized failure. 

Target 10 minutes from the time an MDA agent sends a notification with the detection 

of a gradual degradation until the connection re-routing is completed. 

Assessment Workflow 2: time measured from messages 2 to 4, where recommended action 

was set to connection re-routing. 

Relationship to 

project KPIs 

This KPI relates to the gradual degradation no real-time detection scenario 

described in KPI MH5 in D2.4. 

 

3.7.6 Availability 

The MDA subsystem will be available at the METRO-HAUL GitLab Repository. 

3.7.7 Interfaces 

Interaction between the monitoring service and the rest of METRO-HAUL entities is enabled 

through the following interfaces (Section 4): 

 IO4. Interface associated to external configuration of observation points (OPs) and data 

retrieval from other METRO-HAUL services. 

 M-COM. Interface used to retrieve of operational databases and notify data-driven events 

from/to COM modules. 

 SBIm. Interface between MDA agents and the MDA controller for network discovery and OP 

(de-)activation. 

 NBIm. Interface between the MDA controller and MDA agents for data from network 

devices exportation. 
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 MONp/MONo. Interface for data collection from network devices. 

3.8 Placement, planning and reconfiguration subsystem 

3.8.1 Description 

The Placement, Planning, and Reconfiguration Subsystem (namely, Network Planner) aims to 

optimize the network resources from two different perspectives: Off-line network design 

algorithms are mainly devoted to capacity planning both for green-field scenarios and partially 

deployed (i.e. brown field) deployments. Once network infrastructure is in production stages and 

operational, on-line resource allocation takes into account flows generated by end-user-oriented 

services that have different requirements in terms of bandwidth, delay and QoS. In this regard, the 

Network Planner enables the optimization of the resource allocation in the optical metro network 

to effectively provision VNFs in specific computing nodes considering heterogeneous requirements. 

3.8.2 Sub-components 

The Network Planner architecture, introduced in Section 3.6 of Deliverable 4.1 [D4.1] and extended 

in Section 2.4 of this document, is divided into front-end and back-end subcomponents as depicts 

Figure 31. 

 

Figure 31: Placement, planning and reconfiguration system. 

3.8.2.1 Front end 

The Front-end contains the necessary clients to enable the interfaces that allow the exchange of 

information necessary for the planning tool (the Back-end) to carry out its operations, Figure 12 

where the Network Planner interacts with the METRO-HAUL Control, Orchestration and 

Management (COM) system. The COM, responsible for the dynamic provisioning of services, 

interacts with the Network Planner via the IPNFVO, IPVIM, and IPSDN interfaces that provide the 

capability to query the Service Platform NFVO, the VIMs, and the WIM in order to plan the network 

properly and to provide network resource allocation and capacity planning solutions. Additional 

details are provided below. In line with the COM description in Section 2.4, the Network Planner 

works across-layers interfacing with SDN controllers at the (Network) Control Layer and 

WIM/VIM/NFVO elements at the MANO Layer. For instance, the Network Planner can assist the 

SDN controllers on path computation while providing indications to the VIM/OSM elements for the 

placement of VNFs.  
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3.8.2.2 Back-end 

The back end consumes the information gathered from the Front-end to execute its algorithms 

with the eventual support/assistance of the ML. The Back-end block has been conceived as a very 

flexible environment that allows easy plug-in of a variety of computation algorithms implemented 

in heterogeneous software environments, provided that they are compatible with the overall 

architecture.  

The front and Back-end modules exchange information by means of native Net2Plan *.n2p files, 

which are XML-based representations of network status. The Back-end module includes: a) a ML-

based RWA algorithm, b) a ML-based VNF-placement algorithm, c) a ML-based algorithm 

integrating VNF placement and RWA. The Back-end module also includes a database to store any 

information consumed and produced by the algorithms (see right side of Figure 31). This permits 

the use of historical datasets that are particularly useful to train the ML algorithms.  

3.8.3 Status 

Regarding the status of the Front-end implementation tasks, the clients to use the IPSDN, IPNFVO, 

and IPVIM interfaces are currently implemented. Additionally, the usage of such clients is tested 

and presented in three demonstrations in International conferences [Mor18a], [Mor18b], and 

[Gar19a]. It is planned for the next stages to create a common framework in terms of a Java-Based 

Library which includes all the available clients to encapsulate all the Network Planner 

communication functionalities in the Front-end module. Moreover, the clients in this future library 

will be adapted to the NIW library to ease the usage in the Back-end module. 

The implementation of the Network Planner interface with the Parent Controller/WIM is 

completed. The usage of the Rest/API related to such interface is presented in [Gar19b] and 

submitted in [Mor19]. The Network Planner-vertical interface is expected to be tested in next 

stages. 

Regarding the implementation status of the Back-end module, the NFV over IP over WDM (NIW) 

library chosen to use in the Back-end module is available in the Net2plan planning tool since 

version 0.6.0. The algorithm to solve the network service /service chain allocation algorithm is 

ready and tested in [Mor18b] and [Gar19a]. The standalone VNF placement and the Network 

Resource and Wavelength Allocation (RWA) algorithms are currently under development. However, 

preliminary versions based on machine learning approaches are analysed in [Tro19]. 

3.8.4 Related testbed and platform 

The platforms used to test the functionality of the placement, planning and reconfiguration 

subsystem are divided in two main testbeds. 

3.8.4.1 Portable testbed 

As shows Figure 32, the portable testbed is composed of a personal laptop, three high-performance 

mini-PCs and two regular auto-configured switches. In particular, the Net2Plan planning tool and 

the ETSI NFV Orchestrator OSM (in a virtual machine) run in the personal laptop. The two mini-PCs 

emulate AMEN/MCEN nodes in a metropolitan network with a VIM OpenStack instance in each of 

them. One mini-PC runs the ONOS SDN controller and a Mininet instance emulated metropolitan 

transport network. This portable platform was used in demonstrations [Mor18a], [Mor18b], and 
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[Gar19a]. This platform was used to test the NPNFVO, NPVIM, and NPSDN interfaces and a heuristic 

approach for solving the network service /service chain allocation problem. 

 

Figure 32: Portable testbed configuration. 

3.8.4.2 Fixed Bristol-Cartagena testbed 

The experimental setup to implement an SDN-NFV WAN architecture has been performed in two 

testbed islands, the two Net2plan instances (a GUI to emulate the vertical role and Tomcat-based 

server to provide Optimization-as-a-Service) were located in a laboratory in Cartagena (Spain) 

whilst the VIMs, the ETSI OSM, WIM, and SDN controllers and a multi-layer topology were placed in 

the High Performance Networks group facilities at the University of Bristol (UK). Both testbeds were 

connected by a private VPN to provide control plane visibility. The multi-layer infrastructure 

consists of two OpenStack datacentres interconnected by a combination of packet switches and 

OXCs, which are SDN-enabled and managed by a combination of SDN controllers as described in the 

functional schema exposed in Figure 33. This testbed was performed in [Mor19] to test the 

WIM/Parent Controller-Network Planner and Vertical-Network Planner Interfaces. 
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Figure 33: Fixed Bristol-Cartagena testbed configuration. 

3.8.5 Functional Tests  

As mentioned in the previous subsection, the portable testbed and the fixed Bristol-Cartagena 

testbed are used to test the following functionalities: 

 Performance of the interfaces related to the network planner tasks: IPSDN, IPVIM, 

IPNFVO, Vertical-Network Planner, and Network Planner-Parent Controller/VIM. The 

Front-End clients and the network Optimization-as-a-Service Server and client are tested.  

 Performance of the Network Planner’s Back-End algorithms: network service/service chain 

allocation, VNF placement algorithm, and Network Resource and Wavelength Allocation 

(RWA). 

3.8.6 KPIs  

The particular KPIs defined for the purposes of the placement, planning and reconfiguration 

subsystem is summarised in the next tables. 

KPI Description NP1: Execution time of each Back-end algorithms.  

Context The execution time of the algorithms depends on the code implementation and 

the size of the problem to be solved in terms of number of nodes of the 

topology, number of links, number of VNFs of the network service, VIMs 

occupation and network load. 

Target To be defined (< 20 ms?, It is depends on the size of the problem…) 

Assessment This is tested by measuring the execution time of the algorithm within the open-

source Net2plan framework as part of the portable and the fixed Bristol-

Cartagena testbeds. 

Relationship to 

project KPIs 

This KPI is related to the global METRO-HAUL KPI MH3. Optimizing the execution 

time of the algorithms are essential to minimize the set-up time of the network 
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service slice.  

 

KPI Description NP2: Interfaces communication delay  

Context Augmenting the number of call procedures in the communication tasks used in 

the corresponding interfaces can result in increasing the end-to-end time in 

functional blocks communications.   

Target To be defined (< 5 ms? it depends on the communication channels…) 

Assessment This is tested by measuring the end-to-end time for all the network planner-

related interfaces in the portable and the fixed Bristol-Cartagena testbeds. 

Relationship to 

project KPIs 

This KPI is related to the global METRO-HAUL KPI MH3. The end-to-end 

communication time between the functional blocks and the network planner is 

an essential part of the total set-up time of network service slices.   

 

3.8.7 Availability 

The source code of both network planner Front-end and Back-end modules will be available at the 

METRO-HAUL GitLab Repository. 

3.8.8 Interfaces 

The interfaces used or expected to be used by the placement, planning, and reconfiguration 

subsystem are: 

 Interface Vertical Network Planner 

 Interface Network Planner – WIM/Parent Controller  

 Interface Network Planner – NFV Orchestrator, IPFVFVO 

 Interface Network Planner – SDN Optical Controller, IPSDN 

 Interface Network Planner – VIM, IPVIM 

Further information about the interfaces is exposed in Section 4.  

3.9 Service and traffic monitoring system 

3.9.1 Description 

This element is in charge of monitoring the system at the packet layer. It is composed of a set of 

network traffic probes watching which service is being provided by the underlying layers. The 

measurements obtained are made available to the monitoring and data analytics system, which can 

also request active measurements. These elements are needed to design a monitoring system with 

big-data analytics framework supporting cognition. 

3.9.2 Sub-components 

 Active Network Probe at 100 Gb/s. 

 Passive Traffic Probe at 100 Gb/s. 

3.9.3 Status 

The development of an active probe at 100 Gb/s in this work package has followed the milestones 

below: 
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 M12: Initial designs; 

 M18: First developments released; 

 M21: Rest API to configure the probe. 

Ongoing work: 

 M24: Integration tests. 

 M30: Migration from development board to production board. 

3.9.4 Related testbed and platform 

The probe is being validated in the Naudit 100G testbed and will be further validated in the Berlin 

Demo testbed, measuring the delays in the network. The integration with Berlin demo is expected 

for M30. 

Joint work with UPC and Telefónica is currently being performed to test the functionality in a more 

integrated scenario, with a demo proposal submitted to ECOC 29019. 

3.9.5 Functional Tests  

1. The active probe receives measurement requests. 

2. The active probe performs active measurements based on the request parameters. 

Measurements are done according to the defined KPIs. 

3. The active probe returns the obtained measurements. 

4. The obtained measurements are sensible with respect to the configured network path. 

The following capabilities have been tested: 

 Sending packet trains from the probe at 100 Gb/s. 

 Receiving packet trains at the probe at 100 Gb/s. 

 Measuring such packet trains (length, interarrival, sequence, errors, etc.) at line rate speed. 

3.9.6 KPIs  

KPI Description Network path capacity 

Context It is useful to know what the achievable network path capacity is, and if an 

optical path has been established according to user-level specifications with 

respect to this KPI. 

Target Capacity in bits per second can be calculated, based on the number of bytes 

transmitted in a sequence of frames, and the time it took to receive them. The 

clock has a frequency of 300 MHz, so the measured time has a precision in the 

order of units of ns. It is expected that 100 Gb/s throughput can be measured. 

Assessment The active probe sends a packet sequence to another active probe at the other 
end. The packets are sent back to back at the source, and the interarrival time is 
measured at the destination, providing an estimation of the network path 
capacity.  

Relationship to 

project KPIs 

This KPI can help to measure the MH6 (Capacity of METRO-HAUL infrastructure) 

KPI and reduce the MH5 (Fault/degradation detection time).  

 

KPI Description Network Delay 

Context It is useful to know what the latency of the network is, and if an optical path has 

been established according to user-level specifications with respect to this KPI. 
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Target Delay in ns can be measured. The clock has a frequency of 300 MHz, so the 

measured time has a precision in the order of units of ns.  

Assessment Packets in the sequence are timestamped, so it is possible to measure the RTT. 

OWD could also be measured with GPS receivers at the probes (not 

implemented right now). 

Relationship to 

project KPIs 

This KPI can help to measure the MH6 (Capacity of METRO-HAUL infrastructure) 

KPI and reduce the MH5 (Fault/degradation detection time). 

 

KPI Description Network Jitter 

Context It is useful to know the delay variation of the network, and if an optical path has 

been established according to user-level specifications with respect to this KPI. 

Target Delay in ns can be measured. The clock has a frequency of 300 MHz, so the 

measured time has a precision in the order of units of ns. 

Assessment Packets in the sequence are timestamped, so apart from delay, it is also possible 

to know the delay variation, using any of the existing jitter definitions. 

Relationship to 

project KPIs 

This KPI can help to measure the MH6 (Capacity of METRO-HAUL infrastructure) 

KPI and reduce the MH5 (Fault/degradation detection time). 

 

KPI Description Network Packet or Frame Loss 

Context it is useful to know what the PER of the network is, and if an optical path has 

been established according to user-level specifications with respect to this KPI. 

Target Packet sequences of up to 232-1 packets can be transmitted, so packet losses in 

very reliable links can be identified. Note, however that this measurement could 

take several minutes. Different BERT patterns can be used in the test to check 

also the BER and if the FEQ is working properly. 

Assessment Based on the number of packets in the sequence, we can calculate the fraction 

of packets that are not received from those that are transmitted at the sender. 

Accuracy will depend on the number of packets that are sent. For instance, to 

measure a 1% packet loss it will be necessary to send 1000 packets.  

The following BERT types have been implemented in the payload of the packet, 
so it can be checked if the FEQ is working properly: 

 PRBS (Pseudo Random Binary Sequence): binary sequence that is 
difficult to predict and exhibits statistical behaviour similar to a truly 
random sequence. 

 All zeros: A pattern composed of zeros only.  

 All ones: A pattern composed of ones only. This pattern causes the 
repeater to consume the maximum amount of power. 

 [1:7]: Also referred to as "1 in 8” has only a single one in an eight-bit 
repeating sequence. 

 [1:1]: A pattern composed of alternating ones and zeroes. 

 [2:8]: Pattern contains a maximum of four consecutive zeros and only 
two ones. 

 [3:24]: Pattern contains the longest string of 15 consecutive zeros with 
only three ones. 
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Relationship to 

project KPIs 

This KPI can help to measure the MH6 (Capacity of METRO-HAUL infrastructure) 

KPI and reduce the MH5 (Fault/degradation detection time). 

 

3.9.7 Availability 

The hardware development is not publicly available at this moment, but an FPGA bitstream can be 

made available to other partners on request to be used for other project tasks. 

The software development associated to the hardware can be released at the project Gitlab if 

necessary. 

3.9.8 Interfaces 

A REST interface has been implemented in order to be interoperable with the MDA controller. 

3.9.9 Implementation details 

This section dives deep into the hardware active probe. To start with, a Virtex Ultrascale+ FPGA 

device is being used. In particular, the VCU118 development board, which includes two 100 GbE 

interfaces, 8 GB of DDR4 memory, and a XCVU9P-L2FLGA2104E FPGA. The QSFP28+ physical cages 

are mapped directly to the FPGA. An integrated 100G Ethernet is in charge of connecting the FPGA 

side with the physical network. Moreover, a segmented LBUS interface is provided. An adaptor was 

inserted to convert from LBUS to AXI4-Stream, which is the de facto standard for streaming 

applications in the FPGA arena, and vice versa. The AXI4-Stream interface has 512-bit width of data 

and is clocked at 322 MHz (3.1 ns) to reach the needed throughput, even with the smallest frames.  

The packet train technique [Ru16] has been implemented in the FPGA at 100 Gb/s, the 

development is split into two independent designs which could reside in the same FPGA. On one 

hand, the transmitting side, a synthetic packet generator has been developed. On the other hand, 

the receiving side is in charge of filtering the packets, analysing them and generating a summary. In 

what follows, each one of these elements is detailed. 

3.9.9.1 Synthetic Packet Generator 
This piece of hardware is written in Verilog and implemented as a Finite State Machine (FSM) in 

such a way that the behaviour is completely deterministic. This module is in charge of generating 

UDP packets that will carry useful information for the measurement. Therefore, users can configure 

some of the fields in the packet such as source and destination IP addresses, source and destination 

ports, packet size, and Bit Error Rate Test (BERT) type. Moreover, each UDP packet carries a 

payload with a timestamp, identifier, and burst number, that are iperf compatible. As well as that, 

users can configure the number of packets in the burst, the content of the payload based on the 

BERT type, and the inter packet gap. All those configurations are done through an AXI4-Lite 

interface from a program running in the computer hosting the FPGA card. Every burst could have 

different parameters. This module generates packets at the maximum throughput, which is 

extremely close to the theoretical value in 100G Ethernet links. 

The UDP payload content is structured as follows (see Figure 34):  

 Local Timestamp (8 bytes) 

 Extended Identifier (4 bytes) 
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 Total amount of packets configured by the user (4 bytes) 

 Burst ID (2 bytes) 

 4 free bytes reserved for future use. 

 BERT payload. 

 

Figure 34. Packet content 

3.9.9.2 Packet Filter + IPFIX 

In the receiver side, packets are timestamped at the moment they reach the FPGA side. The packet 

handler module is in charge of filtering packets by type. For instance, ARP and UDP packets are 

taken into account in this implementation. After that, UDP packets are inspected and those fields 

that are configurable are verified in order to check if the packet matches with the user 

configuration. If so, the useful information is extracted to compute the packet train parameters. 

This information is fed to the statistics generator, which collects it. The results of the burst can be 

exported as a summary using a message following the IPFIX format. Every burst generates at least 

one IPFIX message. However, depending on packet loss, more than one summary could be 

generated. There are three ways of generating the summary: a) at the end of a burst; b) 

discontinuous incremental identifier; and c) timeout, when after a certain amount of time no 

packet is received, the summary is generated regardless of the number of received packets. 

The format of the IPFIX template is presented in Table 1: 
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Table 1. IPFIX fields used to export active measurements 

TYPE NAME IANA’S ELEMENT ID  

unsigned32 Src_IP 8 
unsigned32 Dst_IP 12 
unsigned16 Src_port 7 
unsigned16 Dst_port 11 
unsigned64 PacketDeltaCount 2 
unsigned64 PacketTotalCount 86 
unsigned64 OctetDeltaCount 1 
unsigned16 EthLength 242 
unsigned32 Jitter 387 
dateTimeNanoseconds Start_Timestamp 156 
dateTimeNanoseconds End_Timestamp 157 
unsigned64 Rtt Custom 
unsigned16 Burst_ID Custom 
unsigned16 Group_ID Custom 

3.10 De-fragmentation app 

As described in Section 2.5.2 the de-fragmentation app is composed of two main components: the 

de-fragmentation tool and a set of REST APIs that extends the features of the Optical SDN 

controller. 

In turn, the de-fragmentation tool architecture is based on three main components: the de-

fragmentation server (Figure 35-A) coordinating the defragmentation procedures, a web page 

(Figure 35-B) used to collect the inputs from the users, and the defragmentation engine (including 

all the executable code and a set of API interfaces).  

The overall software architecture of the defragmentation app follows the scheme shown in Figure 

35 and described hereafter: 

 Defragmentation engine (Figure 35-A) implements the de-fragmentation routine coded in 

C++. This routine takes as input the current network state and provides as output a list of 

actions (i.e., reconfiguration of established lightpaths) to reduce the defragmentation. The 

routine interfaces with the de-fragmentation webserver (Figure 35-B) through a .jar 

executable that shows the Java API.  

 The De-fragmentation Server (Figure 35-B) reads the details about currently established 

lightpaths (i.e., including utilized paths and OChs, flow 2 in Figure 35) through the ONOS 

core REST APIs the underlay network topology (i.e., list of devices and links, flow 1 in Figure 

35), and through the extended ONOS optical-rest application . It then provides the network 

description to the defragmentation engine (flow 4 in Figure 35).  

 Once that the defragmentation routine is executed within the engine, any result (either the 

new spectrum allocation if the process is successful, or an error message in case of 

impossibility of reconfiguration) is returned to the server through Java APIs provided by the 

engine itself (flow 5 in Figure 35). 

 The user can analyse the status of the network after defragmentation and check the new 

optical connection set-up through the Defragmentation Web Page (Figure 35-C). This Web 
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Page allows the user to set some reconfiguration conditions, such as the time frequency 

between two defragmentation operations, or the maximum acceptable network 

fragmentation threshold. As an example, the user can define a maximum fragmentation 

value that can be tolerated in the network, if this value is surpassed a defragmentation 

reconfiguration is automatically run. These settings are provided by the user and taken as 

input from the defragmentation server through flow 3 in Figure 35. The network 

fragmentation threshold is then passed from the server to the Defragmentation engine so 

that a defragmentation operation starts only when the given threshold is surpassed. The 

information flow 7 in Figure 35 allows to graphically show the defragmentation outputs on 

the Defragmentation Web Page (e.g., the new link fragmentation values, the new spectrum 

allocation of optical connections, and so on).  

 The Optical SDN controller is involved in the procedure in two phases. First, it is used to 

retrieve network and lightpaths information (i.e., flows 1 and 2) through GET commands. 

Then it is used to deploy the required re-configurations on the network through POST and 

DELETE commands (i.e., flow 6 in Figure 35). 

 

Figure 35. Overall architecture and data flows for the de-fragmentation procedure 

3.11 SDN application for proactive soft-failure detection 

3.11.1 Description 

The fault detection component is extended with laser degradation failure mode detection. Laser 

degradation analysis is a crucial process for the enhancement of laser reliability. We implemented a 

data-driven fault detection approach based on Long Short-Term Memory (LSTM) to detect the 

different laser degradation modes based on synthetic historical failure data, attaining classification 

accuracy of ~95%. 

3.11.2 Sub-components 

 Database and Parser (SQL DB on ML server) 

 Learning component 
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3.11.3 Status 

We targeted different laser failure modes: namely gradual, rapid, and sudden degradation as well 

as for normal laser operation. The output features, including optical power P, the threshold current 

I0 and temperature T, are extracted from real laser datasheets specifications, whereas the 

underlying coefficients to create these features are generated using normal distributions shown in 

Figure 36. 

  

Figure 36. Coefficients to create output features 

  

      

Figure 37 shows the different laser failure modes patterns after pre-processing, where the x-axis 

represents different time indexes. Normal is category 0, gradual is category 1, rapid is category 2, 

and sudden is category 3.  

      

Figure 37. Laser failure modes patterns 

Our preliminary analysis suggests that the LSTM-based model was the best model in terms of all the 

evaluation metrics as expected because LSTM is able to learn long term dependency in a temporal 

pattern. Multi-class logistic regression and "random forest" performed as second and third best 

models, whereas K-nearest neighbours had the worst accuracy.  

Roadmap: 

Core prototype design and development using commercial hardware has already been completed. 

We will continue adding fault management functionalities. 

3.11.4 Related testbed and platform 

The application is developed on ADVA premises using the in-house lab and compute infrastructure. 
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Figure 38. Laser failure modes patterns 

3.11.5 Functional Tests  

How to measure: This stage is carried out in ML model development stage (offline). Figure 39 

reports the confusion matrix (1.00 represents 100% accurate classification), where it can be shown 

that class 2 is sometimes misclassified as class 1, and class 3 is misclassified as class 1, whereas 

other classes are correctly identified. 

 

Figure 39. LSTM Confusion matrix with normalized classification percentages.  

Note the data is based on 6,000 unique laser behaviour responses, of which 20% are used for 

model evaluation and KPI generation, a standard ML approach. For the interested reader, further 

KPIs may be derived from the figure presented in the Status section, and include Precision, Recall, 

and F1 score. 

3.11.6 KPIs  

KPI Description Correct classification rates of failures 

Context Reliability is an important aspect of the developed application 

Target The classification accuracy is ~95%. Note that the gradual and rapid 

degradations may sometimes be misclassified (20%), whereas gradual and 

sudden may also be misclassified by ~5% due to partial pattern match. This is 

expected behaviour due to overall performance generalization across failure 

modes. 

Assessment K. Abdelli, D. Rafique, S. Pachnicke, "Machine Learning for Laser Failure Mode 

Detection," ICTON (2019) 
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Relationship to 

project KPIs 

The measured KPI relates to MH5 (Fault/degradation detection time) KPI, and 

details fault degradation detection rate. 

 

3.11.7 Availability 

The SDN Application for proactive soft-failure detection is made available to use cases (RESTAPI). 
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4 Interfaces 
This section is devoted to describing every interface defined between the components described in 

the previous section. The interfaces are described in terms of the functions that they support and 

how such functions have been implemented. 

4.1 Operator Network Planner 

This interface oversees the Vertical (Operator) and Network Planner procedures. This interface is 

used by the operator to inform the Network Planner about the requirements of the network service 

to be deployed. In the Network Planner side, the information coming from the operator related to 

the network service is received is used to create and complete an ETSI-based Network Service 

Descriptor (NSD) ready to be deployed in the NFV Orchestrator (OSM). This interface is added to 

this document after choosing the less-invasive option exposed in the section 4.1.6 of the previous 

deliverable [D4.1]. 

To this purpose, an Optimization-as-a-Service (OaaS)-based server is implemented in a Tomcat 

server which permits the deployment and execution of JAVA-based applications (.war) that includes 

the Back-End algorithms. To request service chain optimal instantiation, an OaaS-based client must 

be used in the Vertical side. Further explanation of the Network OaaS server and interface 

definition is provided in [Gar19b]. 

Function  Implemented interface 

Authentication This functionality is implemented as follows: 

 The vertical OaaS client requests a token to 

establish a session. This function is accomplished 

by requesting an authentication POST call. 

Network service management This functionality is implemented as follows: 

 The vertical OaaS client requests for the execution 

of an algorithm to solve the VNF placement 

problem. In this execution POST call, a JSON file is 

included with the Network service requirements, 

such as, origin and destination nodes, latency or 

bandwidth. The server receives the JSON, executes 

the corresponding algorithm, and stores the 

results in a database.  

 The network Planner prepares an NSD ready to be 

in instantiated in the NFV Orchestrator with the 

VNFs placement locations. Additionally, if 

necessary, the optimal path in the transport 

network associated to the network service 

instantiation is also stored with a unique NSI ID in 

the database to be requested by the Parent 

Controller/WIM. 
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4.2 Net2plan to Parent Controller/WIM 

In a similar way to the interface defined in section 4.1, this interface uses the concept of network 

Optimization as a Service. This interface will be used in the cases where the Parent Controller/WIM 

wants to request the Network Planner about an optimal path in the transport network associated 

to a Network Service Instantiation. In this case, an OaaS client must be deployed in the Parent 

Controller/WIM module. 

Function  Implemented interface 

Authentication This functionality is implemented as follows: 

 The Parent Controller/WIM OaaS client requests a 

token to establish a session. This function is 

accomplished by requesting an authentication POST 

call. 

Network Service Instantiation 

(NSI) path request 

This functionality is implemented as follows: 

 The vertical OaaS client queries the OaaS module for 

the previously calculated transport path stored in the 

database for a certain NSI.  

 The Network Planner OaaS server retrieves the path 

solution and sends it to the vertical client in a JSON file 

including the origin and destination nodes and the 

ordered set of links to be traverse for the service chain.  

 

4.3 Network Planner IPSDN, IPNFVO, and IPVIM 

The Front-end includes a series of client modules to exchange information with the software 

components of the COM architecture and consume it in the Network Planner framework. This 

information involves the network topology in terms of network nodes, links, and traffic engineering 

attributes, such as occupied optical frequency slots or additive metrics, as well as the status of the 

different hypervisors in computed nodes of the infrastructure. 

In particular, the exchange of information is performed exploiting three interfaces: 

4.3.1 Interface Planner – NFV-O (IPNFVO) 

IPNFVO aims to provision network services composed as an ordered sequence of VNFs through 

network service descriptors (NSD), which are the information models that represent network 

services in Open Source MANO (OSM) terminology. The IPNFVO interface uses the OSM native 

REST/API and a Java-based OSM client is developed within the Front-end module in the network 

planner to enable the connectivity between the network planner and the NFV orchestrator. 

Function  Implemented interface 

Service chain characteristics The network service slice features defined in the NSD are: 

 Start/end points 

 Type and number of VNFs 

 Virtual networks in VIMs to allocate the virtual machines 
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of the VNFs 

 Type of Interconnections (forwarding rules between 

VNFs of the same Service Chains) 

 Specific requirements of the virtual link (data rate, 

tolerated latency) 

 Cost to instantiate a new VNF 

 Disjoint placement of active/standby VNFs on physically 

separated machines 

 VNF Hardware accelerations requirement (hardware 

acceleration mechanisms) 

NVF control The OSM REST/API will be used or adapted for that purpose. The 

NFV-O provides information about virtual resources to the 

planning tool. Providing IT resources information coming from 

the VIMs through this interface is under investigation. 

The control of the VNF VMs is handled by management IPs, 

assigned from OpenStack floating IP pools or fixed IP addresses 

within certain virtual networks in the VIMs. This option is 

configured in the NSD. 

NFV Instantiation Features The results of the execution of the optimal algorithm will be sent 

by the network planner’s Front-end module to the NFV-O. The 

placement of the VNFs to be instantiated in the VIMs are 

determined by the results of the network planner algorithms and 

they are notice to OSM as additional attributes in the query for 

instantiation of the NS. 

 

4.3.2 Interface Planner – SDN controllers (IPSDN)  

IPSDN aims to gather information from the transport infrastructure and provides transport network 

resource allocation in line with the requirements of the network services. Recent demonstrations 

relevant for IPNFVO and IPSDN reported the Planning Tool Net2Plan assisting an OSM instance in 

the optimal allocation and instantiation of network services (NSs) in a simulated transport network 

[Mor18a]. Subsequently, [Mor18b] demonstrated an ONOS controller emulating the packet-layer 

network and considered the end-to-end latency requirements to perform flow allocation jointly 

with the NS allocation and VNF instantiation via OSM. 

In order to permit communication between the SDN optical controller and the network planner, a 

specific client coded in Java has been developed in the Front-end module of the network planner 

based on the native ONOS REST/API. 

Function  Implemented interface 

Topology Information The implementation of the IPSDN permits the network planner 

to retrieve the following information regarding the topology 

necessary for the execution of the Back-end algorithms:  

 Forwarding nodes and NFV-capable Nodes 
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 Transmission delays of physical nodes (e.g., L2/L1 

switches) 

 Physical links in the optical domain and packet domain  

 Bandwidth resources 

 Propagation delay 

Monitoring data management The implementation based on the native ONOS REST/API allows 

retrieving information about monitoring data and management 

of the network: 

 Nodes connectivity status 

 Links load status 

 Failures alert 

 

4.3.3 Interface Planner - VIM (IPVIM)  

IPVIM interacts with the IT resource manager to enable multiple functionalities inherent in the NFV 

technology. In particular, a recent demonstration reported an open-source Net2Plan extension for 

interfacing multiple OpenStack instances, which enables multi-tenant slicing, IT resource 

visualization, and VM migration [Gar19]. 

The implementation of the Front-end module contains a Java-coded client to enable the IPVIM 

between the network planner and the VIMs. This OpenStack client uses the by-default 

functionalities of the native OpenStack client exploited by the open source library OpenStack4J. 

Function  Implemented interface 

Compute/storage/networking 

resource requirements 

The IPVIM exploits the OpenStack REST/API to obtain the 

telemetry service (Gnocchi) the available list of resources that 

generate metrics and measures. 

 VNF resources requirements (CPU cores, RAM, storage) 

 Scaling constraints for the VMs 

 VIM instances real-time status 

VIM control Regarding the VIM control, the current implementation of the 

Front-end OpenStack Client permits: 

 Multitenant IT slicing with control of the IT 

infrastructure by different carriers and according to a set 

of quotas. 

 Intra-cluster VM migration which permits multi-node 

OpenStack cluster instantiation. Additionally, the IT 

resource manager to assess the correct instantiation of 

the VMs. 

4.4 OSM to Parent controller 

The interface from OSM to parent controller is the Or-Wi interface. Here, the parent controller 

refers to the WIM. In Section 3.6.2, the functionality of the WIM connector for OSM was discussed. 

In this section, the detailed implementation of the WIM connector is presented: where the WIM 
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connector is used to contact the relevant WIM to interconnect PoPs hosting VNFs. Currently, the 

WIM connector implementation is based on the ELINE. Some of the functions of the abstract WIM 

connector class in OSM are described in Table 2. 

Table 2: WIM Connector class functions 

Function Description 

Init Initializes the WIM class which includes adding the 

relevant WIM connectivity information and access 

credentials. 

create_connectivity_service Requests the WIM to establish WAN connectivity 

between the specified WAN endpoints. The WIM sends a 

UUID along with some additional information about the 

connection. 

get_connectivity_service_status Monitor the status of the connectivity service established 

using the UUID of the connection 

edit_connectivity_service_status Change an existing connectivity service using its UUID. 

delete_connectivity_service Requests WIM to terminate a WAN connectivity using its 

UUID. 

get_all_active_connectivity_services Gets all active connections provisioned by a WIM. 

 

Based on these functions, TAPI and L2SM based two WIM connectors are proposed for OSM. 

4.4.1 TAPI based WIM connector 

As shown in Section 3.5.2.1, a proof of concept TAPI based WIM connector has been implemented 

which has the capability of only creating a WAN interconnection between two TAPI service 

interface points (SIPs). With the reference scenario of Figure 26, the port mapping is added to OSM 

which is the mapping of the VIM to a TAPI SIP. Once the NS is instantiated, OSM waits for the VLAN 

information at either VIM. This VLAN information along with the TAPI SIPs is sent to the TAPI based 

WIM connector. The TAPI connectivity_service API is accessed from the function is called from the 

create_connectivity_service function in the WIM connector class. The message that is sent as part 

of the API is shown in Figure 40. The endpoints in the message are augmented with the value of the 

VLAN corresponding to the VIMs. The connectivity service is requested based on Ethernet based 

SIPs. 

4.4.2 OSM to Parent Controller via L2SM 

The L2SM WIM plugin allows connecting the OSM with the Parent Controller to handle the lifecycle 

of a layer 2 VPN service, request creation, modification and deletion, by utilizing the service 

delivery model defined in RFC 8466. The service delivery model provides the YANG model. The 

RESTCONF paradigm with JSON encoding will be used for the communication OSM-Parent Parent 

Controller. In this section, the different operations are detailed.  
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Figure 40: TAPI create connection message from OSM to TAPI based WIM 

4.4.2.1 Request Connectivity service creation 

Using the create_connectivity_service method, OSM can request the creation a service between 

two given connection points. For each connection point, the plugin needs to know in advance the 

site and the bearer reference, that is which exact link will be used. Using this method, OSM can 

select if the connection will use encapsulation (VLAN) or not. The workflow for creating the service 

is represented in Figure 41. 

The creation of a L2 VPN service in the Parent controller consists in three calls from OSM. The first 

one (OSM_PC_L2SM_1) is to request the creation of the VPN Service using the POST method. The 

WIM plugin will generate the UUID for each new L2 VPN service that is being requested. The next 

operations (OSM_PC_L2SM_2) are the creation of a site_network_acces over existing sites (one 

operation per end point). In the creation of the site_network_access, all information of the 

connection (e.g. VLAN) is provided. If the operation is successful, the VLAN will be configured for 

the first site and it will be attached to the VPN. If this operation is done without problems, then the 

same operation will be made for the second site. The next tables show how these petitions work. 
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Figure 41: L2VPN creation paradigm 

Table 3. OSM_PC_L2SM_1 

Description Creation of L2 VPN Service in parent controller 

URL  /RESTCONF/data/ietf-l2vpn-svc:l2vpn-svc/vpn-services 

Method POST 

Inputs Information of the vpn-services in the JSON object: 

 svc-topo: Used to identify the type of VPN service topology 

that is required. 

 vpn-svc-type: defines the service type for provider-

provisioned L2VPNs. 

 customer-name: Used to identify the customer 

 vpn-id: VPN UUID. 

Outputs The next HTTP codes can be received from the Parent Controller: 

 201: OK – The service has been created. 

 408: Timeout. 

 409: The service already exists. (uuid exists) 

Example of the JSON 

object 

{ 

'vpn-service': [{ 

'svc-topo': 'any-to-any',  

'vpn-svc-type': 'vpws',  

'customer-name': 'osm', 

 'vpn-id': '9ce50dea-5eeb-412f-ab0f-fcb5c76ec06d' 

} 

} 
 

Table 4. OSM_PC_L2SM_2 

Description VLAN configuration and VPN attachment for a site 

URL  /RESTCONF/data/ietf-l2vpn-svc:l2vpn-svc/sites/site=A/site-network-
accesses/ 

Method POST 
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Inputs Information of the site-network-accesses in the JSON object: 

 vpn-id: VPN UUID. 

 site-role: defines the role of the site in a particular VPN 

topology. 

 network-access-id: ID generated for the new network -access 

of the VPN 

The next parameters (connection) are only filled if the service is 

required to be with encapsulation: 

 encapsulation-type: allows the user to select between 

Ethernet encapsulation (port-based) or Ethernet VLAN 

encapsulation (VLAN-based). 

 cvlan-id: contains the ID of the VLAN. 

Outputs The next HTTP codes can be received from the Parent Controller: 

 201: OK – The service has been created. 

 408: Timeout. 

 409: The service already exists. 

Example of the JSON 

object (Service with 

encapsulation) 

{ 

'site-network-access': [{ 

 'vpn-attachment': { 

  'vpn-id': '9bef07aa-017c-4bd1-966d-a1dcda0318a5',  

  'site-role': 'any-to-any-role' 

  },  

 'network-access-id': 'a9a62e57-e7a8-48b4-bbbf-

d8776fa490d7', 

 'connection': { 

  'encapsulation-type': 'dot1q-vlan-tagged',  

  'tagged-interface': { 

   'dot1q-vlan-tagged': { 

    'cvlan-id': 22 

    } 

   } 

  } 

         }] 

} 
 

4.4.2.2 Requests to delete a service from OSM to Parent Controller 

The WIM plugin also has the capability of deleting an already created service ( 

delete_connectivity_service method) using its UUID. The method uses the OSM_PC_L2SM_3 

operation, which is based on an HTTP DELETE call: 

Table 5. OSM_PC_L2SM_3 

Description Delete a Service in Parent Controller 

URL  /RESTCONF/data/ietf-l2vpn-svc:l2vpn-svc/vpn-services/vpn-service={}/ 

Method DELETE 

Inputs Service UUID: to identify the service the user wants to delete. 

Outputs The next HTTP codes can be received from the Parent Controller: 

 204: NONE – The service has been deleted. 

 408: Timeout. 
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4.4.2.3 Delete all services from OSM to Parent Controller 

There is the possibility to delete all the services created from OSM (clear_all_connectivity_services 

function) with only a call to the Parent Controller from OSM. The WIM Connector communicates 

with the parent controller using the OSM_PC_L2SM_4 operation detailed bellow: 

Table 6. OSM_PC_L2SM_4 

Description Delete all connectivity services 

URL  /RESTCONF/data/ietf-l2vpn-svc:l2vpn-svc/vpn-services 

Method DELETE 

Inputs <NONE> 

Outputs The next HTTP codes can be received from the Parent Controller: 

 204: NONE – All services has been deleted. 

 408: Timeout. 
 

4.4.2.4 Get the status of a service from OSM to Parent Controller 

The WIM Connector function get_connectivity_service_status provides knowledge of the status of 

an existing service, with an operation providing the UUID of the desired service. The function 

retrieves the information from the parent controller using the OSM_PC_L2SM_5 operation detailed 

bellow: 

Table 7. OSM_PC_L2SM_5 

Description Get status of a service 

URL  /RESTCONF/data/ietf-l2vpn-svc:l2vpn-svc/vpn-services/vpn-

service={}/ 

Method GET 

Inputs Service UUID: to identify the desired service. 

Outputs The next HTTP codes can be received from the Parent Controller: 

 200: The service exists. 

 408: Timeout. 

4.4.2.5 Get all services from OSM to SDTN 

A function is also available in the WIM Connector for getting all the existing services: 

get_all_active_connectivity_services. With just the OSM_PC_L2SM_6 operation, the L2SM WIM 

Plugin can get all the created services. 

Table 8. OSM_PC_L2SM_6 

Description Get all existing services 

URL  /RESTCONF/data/ietf-l2vpn-svc:l2vpn-svc/vpn-services 

Method GET 

Inputs <NONE> 

Outputs The next HTTP codes can be received from the Parent Controller: 

 201: OK – Recovers all the existing services. 

 408: Timeout. 
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4.4.2.6 Edit a service from OSM to Parent Controller 

The WIM Connector function edit_connectivity_service allows to modify all the parameters of an 

existing service. For this aim, two calls are made to modify both endpoints with an HTTP PUT 

method. A JSON object with all the new parameters also should be provided.  

Using this method is also possible to transform a non-encapsulated L2VPN into a new VLAN or vice-

versa. The next table gives the information about a PUT call to the Parent Controller, but two 

should be made in the same way. 

Table 9. OSM_PC_L2SM_7 

Description Creation of L2 VPN Service in parent controller 

URL  /RESTCONF/data/ietf-l2vpn-svc:l2vpn-svc/sites/site={}/site-network-

accesses/ 

Method PUT 

Inputs Function parameters: 

 Service_uuid: UUID of the desired service to modify. 

 Conn_info: contains information about the endpoints to 

modify. 

Information of the vpn-services in the JSON object: 

 vpn-id: VPN UUID. 

 site-role: defines the role of the site in a particular VPN 

topology. 

 network-access-id: ID generated for the new network -access 

of the VPN 

The next parameters (connection) are only filled in if the service is 

required to be with encapsulation: 

 encapsulation-type: allows the user to select between 

Ethernet encapsulation (port-based) or Ethernet VLAN 

encapsulation (VLAN-based). 

 cvlan-id: contains the ID of the VLAN. 

Information of the end points (conn_info): 

 site-network-access-id: Network_access_id of the desired 

endpoint connected to the given VPN service. 

Outputs The next HTTP codes can be received from the Parent Controller: 

 201: OK – The service has been created. 

 408: Timeout. 

 400: The service does not exist. 

Example of the JSON 

object 

{ 

'site-network-access': [{ 

  'vpn-attachment': { 

    'vpn-id': '9445cdff-cb56-40bc-8f4b-a73603d21283',  

    'site-role': 'any-to-any-role'},  

    'network-access-id': '7dbd671b-e00f-42ff-a573-

0415adc9f81e',  
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  'connection': {} 

  }] 

} 

4.5 Parent controller to optical SDN 

The need to orchestrate multiple technologies is a key METRO-HAUL requirement. Most SDN 

Controllers offer proprietary interfaces (or, at best, open yet no standardized interfaces) to 

applications (or, more generically, high level controllers or other functional layers referred to as 

Network Orchestrators), and such SDN controllers are arranged following an approach commonly 

referred to as “vendor domains or islands”. This heterogeneity, due to having different controller 

interfaces in a multi-domain context, forces the use of “plugins” and it is difficult and expensive to 

extend (with the so-called umbrella management systems, used by the operators to deploy services 

spanning multiple domains). As a driving motivation and clear problem statement, there is a need 

for a standard interface, with common models, to act as a controller NBI. 

The Transport API (TAPI) [TAPI] published by the ONF meets the main requirements to be a 

protocol and interface used between an orchestrator and multiple domain controllers. A TAPI 

based interface offers multiple services; let us just mention the main key ones, the topology and 

connectivity. The services are modelled in the YANG modelling language. 

Common Context. The TAPI context is the shared information between a TAPI client (user) and the 

TAPI server (SDN controller). The model defines a TAPI domain as being able to provide services 

between Service Interface Points (or SIPs) mainly characterized by their universally unique 

identifiers (UUIDs). A basic operation for a client is to “retrieve” the context in order to obtain the 

list of SIPs, so connectivity services are requested between two (or more) exported SIPs.  

Topology context and models. If a given TAPI server supports a topology model, it augments the 

TAPI shared context with a (list of) topologies. Each topology is composed of a list of nodes, which, 

in turn, has Node Edge Points (NEPs). Links connect two NEPs. The model is flexible enough to 

support recursive topologies and different levels of abstraction. The level of detail exported is 

configurable by policy. A client is thus able to obtain an (abstracted) view of the topology and map 

TAPI SIPs to external NEPs.  
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Figure 42. TAPI use case on the orchestration of multiple network domains. 

Connectivity context and models. Finally, the third model augments the shared context in order to 

support Connectivity Services. The instantiation of a connectivity service relies on the instantiation 

of several connections (e.g., one end-to-end connection and connections internal to each TAPI 

node). For this, Connection End Points (CEPs) are instantiated over NEPs (and contain information 

about the connections), and connections involve two or more CEPs. 

The METRO-HAUL implementation is of TAPI 2.1, which includes extensions for the photonic media 

layer. As shown in Figure 43, the basic functions of context and topology retrieval as well as the 

service provisioning and release have been implemented. 
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Figure 43. TAPI Selected YANG models (tree view) 

Function  Implemented interface 

TAPI Context for 

Service Interface 

Points 

 The client or parent controller can perform a GET on the context 

resource, which has been augmented with topology and 

connectivity information.  

 For example, for an SDN controller at IP 10.1.1.146, the parent 

needs to perform a GET resource 

 http://10.1.1.146:8181/onos/RESTCONF/data/tapi-

common:context  

Example The JSON encoded reply encodes the context, including the Service Interface 

Points, which can be either transceiver client side (DSR) or line side 

(PHOTONIC media). An excerpt of the context is as follows: 

    
"service-interface-point" : [ 

         { 

            "uuid" : "c72bbb8a-2fa1-49a7-b248-b7b09375e5d4", 



 METRO-HAUL H2020-ICT-2016-2 / 761727 D4.2 

© METRO-HAUL consortium 2019                                        Page 84 of 107 

            "name" : [ 

               { 

                  "value" : "NETCONF:10.1.1.174:830/101", 

                  "value-name" : "onos-cp" 

               } 

            ], 

            "layer-protocol-name" : "PHOTONIC_MEDIA" 

         }, 

         { 

            "name" : [ 

               { 

                  "value-name" : "onos-cp", 

                  "value" : "NETCONF:10.1.1.174:830/3" 

               } 

            ], 

            "uuid" : "80bd3d6b-1c75-4cd4-9fdc-93c842bbb2fa", 

            "layer-protocol-name" : "DSR" 

         }, 

          

 

Function  Implemented interface 

TAPI Context with 

topology 

 The TAPI context has been augmented with information regarding 

the TAPI topology, following the models 

 Similar to the previous call, we get the list of topologies, links, 

nodes, node edge points, etc. 

 http://10.1.1.146:8181/onos/RESTCONF/data/tapi-

common:context 

Example The JSON encoded reply encodes the topologies, as follows (only a small 

excerpt is shown): 

    
{ 

   "tapi-common:context" : { 

      "tapi-connectivity:connectivity-context" : {}, 

      "tapi-topology:topology-context" : { 

         "topology" : [ 

            { 

               "uuid" : "e3e88aa0-646e-40c2-a06f-174b47062623", 

               "node" : [ 

                  { 

                     "uuid" : "4929bb2d-f82b-45a2-99dd-bbc4adf2acc0", 

                     "name" : [ 

                        { 

                           "value-name" : "device-id", 

                           "value" : "NETCONF:10.1.1.167:830" 

                        } 

                     ], 

                     "owned-node-edge-point" : [ 

                        { 

                           "uuid" : "80ba66c9-b952-457c-9991-93502d4d8271", 

                           "name" : [ 

                              { 

                                 "value-name" : "odtn-port-type" 

                              }, 

                              { 

                                 "value-name" : "odtn-connection-id" 

                              }, 
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                              { 

                                 "value" : "NETCONF:10.1.1.167:830/204", 

                                 "value-name" : "onos-cp" 

                              } 

                           ], 

                           "tapi-connectivity:cep-list" : { 

                              

          

 

Function  Implemented interface 

TAPI Connectivity 

Service Creation 

and deletion 

 The TAPI context has been augmented with information regarding the 

TAPI connections. The Remote Procedure Call method has been 

selected. 

 Create connectivity 

http://10.1.1.146:8181/onos/RESTCONF/operations/tapi-

connectivity:create-connectivity-service 

Example Sample exchange between parent and ONOS controller. The TAPI client 

requests is typically (for the connection request between line ports): 
 

{ 

   "tapi-connectivity:input" : { 

      "end-point" : [ 

         { 

            "role" : "UNKNOWN", 

            "protection-role" : "WORK", 

            "layer-protocol-qualifier" :  

              "tapi-photonic-media:PHOTONIC_LAYER_QUALIFIER_NMC", 

            "local-id" : "c72bbb8a-2fa1-49a7-b248-b7b09375e5d4", 

            "service-interface-point" : { 

               "service-interface-point-uuid" :  

                 "c72bbb8a-2fa1-49a7-b248-b7b09375e5d4" 

            }, 

            "layer-protocol-name" : "PHOTONIC_MEDIA" 

         }, 

         { 

            "layer-protocol-name" : "PHOTONIC_MEDIA", 

            "service-interface-point" : { 

               "service-interface-point-uuid" :  

                 "783d8d9f-b0ed-429b-8380-8c119fd1efd5" 

            }, 

            "local-id" : "783d8d9f-b0ed-429b-8380-8c119fd1efd5", 

            "layer-protocol-qualifier" :  

               "tapi-photonic-media:PHOTONIC_LAYER_QUALIFIER_NMC", 

            "protection-role" : "WORK", 

            "role" : "UNKNOWN" 

         } 

      ] 

   } 

} 

 

If the service is established successfully, ONOS returns: 
 

{ 

   "tapi-connectivity:output" : { 

      "service" : { 

         "connection" : [ 
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            { 

               "connection-uuid" : "1bdd326a-2837-42b2-882d-5fa01e3b589d" 

            } 

         ], 

         "uuid" : "e68ed95b-042b-403c-b30b-060520e82c39", 

         "end-point" : [ 

            { 

               "service-interface-point" : { 

                  "service-interface-point-uuid" :  

                    "c72bbb8a-2fa1-49a7-b248-b7b09375e5d4" 

               }, 

               "local-id" : "76f10c2f-cac3-4339-b86a-734ee3f01811" 

            }, 

            { 

               "local-id" : "722966f3-fc14-449d-84c5-78f2523bd3e8", 

               "service-interface-point" : { 

                  "service-interface-point-uuid" :  

                     "783d8d9f-b0ed-429b-8380-8c119fd1efd5" 

               } 

            } 

         ] 

      } 

   } 

}   

 

4.6 MCOM 

The M-COM interface is devoted to synchronizing information from operational databases from the 

COM module to the monitoring platform. This information can be correlated with monitoring data 

and enables issuing of notifications to the COM module about different events, even providing 

recommended actions. The M-COM interface can also be used to manage telemetry functionalities 

from monitorable network/IT devices; in that regard, the M-COM interface offers methods to 

create/modify/delete OPs referring to telemetry streams in network/IT devices thus, configuring 

them to export telemetry data to the appropriate MDA platform components. 
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Figure 44. Components of the M-COM interface 

Figure 44 illustrates the components belonging to the M-COM interface at both, the MDA controller 

and SDN controller sides. At the COM module side, the M-COM interface is implemented as a 

pluggable application and consists of: i) the REST API NBI block publishes M-COM management 

commands on the COM North Bound Interface (NBI) to receive control commands, ii) the 

Subscribers block keeps track of the subscribers that requested to receive database updates from 
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the COM module and distributes events to them, iii) the Dispatchers block is implemented as a 

thread pool and integrates the logic to process M-COM – related events, iv) the Recommendation 

Service provides a means for other applications in the SDN controller to subscribe to messages 

received from the MDA controller, v) the Topology & Connection Listeners are in charge of 

capturing events from the COM operational databases and triggering the execution of appropriate 

tasks in the Dispatcher block, vi) the MDB block keeps track of the OPs requested by the MDA 

controller and configures the COM Drivers to enable telemetry and send the collected samples 

directly to the MDA controller, vii) the Samples Service enables Drivers to push their telemetry data 

to be received by those Sample Listeners connected to the service, and viii) the Samples Listener 

collects the telemetry samples issued by the COM Drivers and, if configured, forwards them to the 

subscribers of the MDB database. 

At the MDA controller side, the M-COM interface consists of: i) a REST API Client that serves as a 

gateway to issue RPC commands to the COM module, ii) a REST API Listener that receives 

asynchronous messages from the COM module, such as database change events, and iii) a Handler 

block that integrates the logic of the M-COM interface. The latter, in turn, consists of four sub-

blocks: i) the Operational Databases stores a clone of the operational databases in the COM 

module and is updated by database change events from the REST API Listener, ii) the Manage 

Subscriptions block deals with subscriptions handling to receive database changes from the COM, 

iii) the Manage ObsPoints block provides an interface to (de)configure OPs at the COM from the 

MDA controller, and iv) the Send Recommendation block enables the MDA controller to issue 

messages to feed applications in the COM module. 

SDN CtrlMDA Ctrl

Get DB List

DB List: TED, LSP-DB, MDB

Get TED

TED

Get LSP-DB

LSP-DB

Get MDB

MDB

Subscribe TED (ip,port,url,[credent])

TED subscription Id

Subscribe LSP-DB (ip,port,url,[credent])

LSP-DB subscription Id

Subscribe MDB (ip,port,url,[credent])

MDB subscription Id

Notify(event)

OK

MDA Ctrl

M-COM iface

MCOM app

Topo/Conn-Listeners

event

MCOM app

Dispatcher

ManageOP(opId,

devId, rsrcId,

period, active)

OP

MDA Ctrl

M-COM iface

operation

Send(opId, sample)

OK

MDA Ctrl

M-COM iface

M-COM app

Samples Listener

sample

M-COM app

Dispatcher

Device

Driver

sample

e) Send Samples to MDA Controller

d) Create/Delete/Activate/Deactivate OP

b) DB change notificationa) Initial DB sync and subscription

Notify(message)

OK

MDA Ctrl

M-COM iface

MCOM app

Recomm. Service

message

c) Message notification

M-COM app

Samples Service

sample

Device

Driver

M-COM app

MDB

MCOM app

Dispatcher

Driver

Service

driver

Get(devId)

sample

M-COM app

MDB

 

Figure 45. Operations supported by M-COM interface 

Figure 45 illustrates the workflows and messages defined for the M-COM interface. Table 10 

describes the implemented interface. 
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Table 10. M-COM Implemented interface 

Function  Implemented interface 

Get list of databases Returns the list of Database identifiers for those operational databases 

managed by a COM module (i.e., TED and LSP-DB for T-SDN controller). 

OUTPUT: List of Database instances and details for each of them, 

including: 

 Database-Identifier: String 

 Database-Name: String 

 Resource-Type list: Enumeration value 

Get database Returns contents of the operational database instance identified by the 

provided inputs. 

INPUT: Database-Identifier (mandatory): String 

OUTPUT: List of Database instances and details for each of them, 

including: 

 Database-Identifier: String 

 Database-Name: String 

 Resource list: List of objects 
or error if some field is invalid. 

Subscribe to database 

changes 

Subscribes the MDA controller to asynchronous notifications of 

database changes to avoid periodic polling processes. 

The requests should carry the endpoint (IP-address, Port, and URL) as 

well as optional credentials (Username and Password) that the M-COM 

application will use to issue the database change notifications. 

INPUT: 

 Database-Identifier (mandatory): String 

 IP-address (mandatory): String 

 Port (mandatory): Integer 

 URL (mandatory): String 

 Username (optional): String 

 Password (optional): String 
OUTPUT: Acknowledgement with the subscription identifier, or error if 

some field is invalid. 

Notify database 

change 

Notifies about changes in a resource within database. 

NOTIFICATION: 

 Database-Identifier: String 

 Time: Integer encoding the timestamp of the change 

 Type: Enumerated value encoding the type of change 

 Resource: List of pointers identifying the resource location 

 Attributes: List of resource attributes 

Notify message Notifies about messages from the MDA controller to the COM 

NOTIFICATION: 

 Time: Integer encoding the timestamp of the change 

 Event-Type: Enumeration value 

 Message: Object 
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Manage observation 

points 

Create/get/update/remove OPs in the COM module and trigger 

appropriate operations in the related network/IT devices through COM 

device drivers. 

INPUT: 

 OP-Identifier (mandatory): Integer 

 Device-Identifier (mandatory): String 

 Resource-Identifier (mandatory): String 

 Period (mandatory): Float 

 Active (mandatory): Boolean 

 Template-Identifier (optional): Integer 

 Driver-Parameters (optional): map with key-value pairs 
OUTPUT: Acknowledgement with the OP attributes, or error if some 
field is invalid or device does not support monitoring configuration 

Send Samples When this functionality is available at a COM’s device driver, the driver 

periodically collects telemetry samples from the device and issues them 

to the MDA controller through the M-COM interface. 

In case this functionality is not available in the driver, the device needs 

to be configured to forward the samples to some component in the 

MDA platform, e.g., an MDA agent or the MDA controller. 

NOTIFICATION: 

 Database-Identifier (mandatory): String (fixed to MDB) 

 Time (mandatory): Integer encoding the timestamp of the sample 

 Template-Identifier (mandatory): Integer 

 Resource (mandatory): list of pointers identifying the resource 

location 

 OP-Identifier (mandatory): Integer 

 Values (mandatory): Object containing the sample values 

 

4.7 IO4 

The IO4 interface is designed to enable an external system, such as an OSS/BSS, to access the 

collected data repository at the MDA controller to retrieve raw data from network/IT devices, i.e., 

for monitoring, billing, or analysing different scenarios. 

Figure 46 illustrates the components belonging to the IO4 interface. From the MDA controller side, 

the interface consists of a REST API server that receives commands from the external system and 

triggers the execution of tasks in a Requests Dispatcher. The Requests Dispatcher accesses to the 

MDB to retrieve OPs and validate the requests, and to the Samples Repository to retrieve the 

samples according to the request parameters, i.e., the time frame and the OP identifier. 

In a generalist way, an external system willing to use the IO4 interface only needs to implement a 

simple REST API Client and a Monitoring Handler block responsible for managing the monitoring 

entities in the MDA controller. That Monitoring Handler needs to implement two databases: an 

MDB to store the attributes retrieved for each OP requested to the MDA controller, and a Samples 

database to store the samples belonging to these OPs. Note that when an OP is requested, the 
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attributes should carry OP’s sampling period; the Monitoring Handler at the external system should 

schedule sample requests with that specific periodicity to prevent flooding the MDA controller with 

unneeded/redundant requests. 
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Figure 46. Components of the IO4 interface 

MDA CtrlOSS/BSS

Get OP List (entity, sampleType)

OP List [<opId, period, entity, sampleType>]

Get OP Data(opId, timeFrame)

Sample List [<opId, timeStamp, {values}>]

 

Figure 47. Operations of the IO4 interface 

Figure 47 illustrates the workflows and messages defined for the IO4 interface while Table 1 

describes the implemented interface. 

Table 11. IO-4 Implemented interface 

Function  Implemented interface 

Get list of OPs Returns the list of OPs that fulfil a set of optional input criteria, i.e., 

entity name and sample type. 

INPUT: 

 Entity-Name list (optional): String to filter returned OPs by entity 
owning the OPs. 

 Observation-Point-Type list (optional): Enumeration value to filter 
returned OPs by type. 

OUTPUT: List of Observation-Point instances and details for each of 

them, including: 

 Observation-Point-Identifier: String 

 Period: Float 

 Entity: String with the device/resource identifier of the OP 

 Sample-Type: Enumeration value 

Retrieve OP data Returns the list of available samples in the repository for a given OP. 

INPUT: 

 Observation-Point-Identifier (mandatory): String 

 Start-Time (optional): Datetime 

 End-Time (optional): Datetime 
o If set Start-Time and/or End-Time, data will be returned only 

for the specified time window 
OUTPUT: Available data in the repository, or error if invalid parameters 

are provided. 



 METRO-HAUL H2020-ICT-2016-2 / 761727 D4.2 

© METRO-HAUL consortium 2019                                        Page 91 of 107 

4.8 MDA controller - MDA agent (SBIm/NBIm) 

Two interfaces are defined between the MDA controller and MDA agents. While SBIm is designed 

for issuing monitoring-related configuration messages from the MDA controller to the MDA agent, 

NBIm deals with asynchronous retrieval of aggregated samples from the MDA agent to the MDA 

controller by means of the IPFIX protocol. 

4.8.1 SBIm 

The SBIm interface is defined for issuing monitoring-related configuration messages to the MDA 

agents from the MDA controller. The interface messages are defined using YANG and transport of 

messages is implemented by means of a RESTCONF API Client and Server. 

Figure 48 presents the structure of the implemented YANG data model that is used between the 

MDA controller and MDA agents. The model defines two differentiated subtrees with the objective 

to separate configuration from monitoring and telemetry responsibilities. The configuration subtree 

includes every programmable or monitorable component in the node, whilst the monitoring 

subtree includes monitoring capabilities and OPs and it is specifically designed to facilitate 

autodiscovery of network device components by MDA agents. 

A key element in the model is the component, representing any configurable or monitorable 

element in the node and is locally identified by its component-id. Nodes are assumed to feed a data 

store compliant with this model during bootstrapping, whereas dissemination towards MDA agents 

and SDN controller can be made per-update notification or by polling. Although components under 

the configuration and monitoring subtrees are related, we relax such conditions to allow obtaining 

only the monitoring subtree during the auto discovery process. In fact, the configuration subtree is 

not stored in the MDA agent to avoid synchronization issues; whenever configuration of some 

component is required by a KDD application, the local configuration module retrieves it directly 

from the node controller. 

Monitoring/telemetry in monitorable components can be activated by creating and enabling OPs 

and deactivated by disabling and/or deleting OPs. Monitorable components include a list of tuples 

with supported monitoring template identifiers (template-id) and the container, e.g., an interface, 

where measurements will be done (container-component-id). Monitoring templates represent 

different measurement methods, so each OP is associated to one single monitoring template and 

interface tuple. We use the template-id field to identify the monitoring method used for the 

measurements, as well as their data structure. Specifically, we define the following identifiers: i) 

template-id 310 identifies monitoring of BER and optical power in the transponders; ii) template-id 

330 identifies optical spectrum monitoring performed by OSAs, which send sequences of tuples 

<frequency, optical power>. 

The monitoring subtree also includes every existing OP (enabled, i.e., performing measurements, or 

disabled). Specifically, the ability to enable and disable existing OPs supports allocation of 

monitoring devices in active monitoring schemes. Nodes are expected to allocate monitoring 

resources by translating tuples <component-id, template-id, container-component-id> into device-

specific commands. Observation domain/point identifiers are internal identifiers used by KDD 

processes inside MDA agents to isolate different datasets, and they are included in monitoring 
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messages. Multiple OPs can be defined for a single component, each reporting monitored data 

formatted as per the selected supported template. 

Figure 48 presents an example for a lightpath (L0-LSP): configuration parameters include, but are 

not limited to, modulation format, bit/baud-rate, and the allocated frequency slot specified by 

central-frequency and slot-width parameters. In the monitoring subtree, components include two 

relevant attributes: i) monitorable-element (“what”), which is used for correlation purposes 

between the operational databases in the SDN controller and the MDA controller; and ii) 

monitorable-capabilities containing a set of pairs with the supported template-id (“how”), 

representing the monitoring method that such component supports in the specific container 

component, identified by its container-component-id in the network node (“where”). 

“L0-LSP0”

component-id: L0-LSP0

component-type: L0-LSP

mod-format: qpsk

bit-rate: 100.0

baud-rate: 28.0
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. . .
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Figure 48. YANG data model (and example values) for SBIm interface 

For illustrative purposes all of the templates have been included in Figure 48, but only those 

supported by the component in the network node will be advertised. Finally, an OP is currently 

active; specifically, L0-LSP0 is being monitored in interface L0-NI/0 using an OSA. 

4.8.2 NBIm 

NBIm deals with asynchronous retrieval of aggregated samples from the MDA agent to the MDA 

controller by means of the IPFIX protocol [RFC7011] extended with [RFC6313] to support encoding 

complex data structures; in particular, BasicList and SubTemplateList are required to enable 

exporting samples containing lists of scalar fields and lists of records, respectively, such as L0 

Optical Spectrum Analyzer samples that are encoded as a list of tuples with the measured optical 

power in dBm for each frequency in the spectrum. In IPFIX, each data record must fulfil an IPFIX 

template that defines the meaning of the binary data carried in data records. Table 12 to Table 14 

details the custom IPFIX fields, templates and sub-templates that have been defined for NBIm. 
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NBIm uses several custom IPFIX fields when a suitable IANA-registered/IETF-standardised one is not 

available. These fields are identified by a field identifier and a Private Enterprise Number (PEN). 

Custom fields defined specifically for NBIm, are identified using UPC’s PEN (25785). Another PEN 

that we use for existing fields defined by other enterprises is VMWARE PEN (6876). Table 12 

describes the list of custom IPFIX fields defined and used in the templates defined in Table 13 and 

Table 14. 

Table 12. Custom IPFIX fields used in NBIm interface 

Field Id – Name (PEN Id – Name) Encoding Description 

893 – tunnelSourceIPv4Address 

(6876 – VMWARE) 

unsigned32 see Open vSwitch Manual [OVS] 

894 – tunnelDestinationIPv4Address 

(6876 – VMWARE) 

unsigned32 see Open vSwitch Manual [OVS-manual-ref] 

1002 – layer2BitDeltaCount 

(25785 – UPC) 

unsigned64 Number of L2 octets (headers + payload) 

since the previous report (if any) in incoming 

packets for this flow at the Observation 

Point/Group. 

1003 – ber 

(25785 – UPC) 

float64 Measured Bit Error Rate since the previous 

report (if any) in incoming packets for this 

flow at the Observation Point/Group. 

1006 – direction 

(25785 – UPC) 

unsigned8 Direction of the flow: ingress (0x00) / egress 

(0x01), bidirectional (0x02). 

1007 – observationGroupId 

(25785 – UPC) 

unsigned64 An identifier of an Observation Group that is 

unique per network slice. Typically used for 

limiting the scope of other Information 

Elements. 

1008 – rxPowerDecibelMilliwatts 

(25785 – UPC) 

float64 
Received optical power in dBm. 

1009 – txPowerDecibelMilliwatts 

(25785 – UPC) 

float64 
Transmitted optical power in dBm. 

1014 – frequencyGigaHertz 

(25785 – UPC) 

float64 
Frequency in GHz. 

1015 – stlPaginationIndex 

(25785 – UPC) 

unsigned16 Index of the page of the STL that follows 

these pagination fields. 

1016 – stlPaginationTotal 

(25785 – UPC) 

unsigned16 Total number of the pages for the STL that 

follows these pagination fields. 

 

Table 13 summarizes the IPFIX templates used at the NBIm interface. For each field, a comment 

was added specifying if the field is a custom field defined in Table 12 (Custom) or a SubTemplateList 

(STL, sub-template-id). No comment is included for IANA-registered/IETF-standardised fields. For 

STLs, the sub-template-id is a reference to a sub-template defined in Table 14. 
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Note that each IPFIX message requires a mandatory header containing the observation domain 

identifier that is used as a network slice identifier and the timestamp in seconds since UNIX epoch 

for the message. These fields have been deliberately avoided in the following template definitions 

to keep them as comprehensive as possible. 

Since a SubTemplateList could contain huge number of records, the concept of pagination of an STL 

has been defined. Each STL not fitting in a single IPFIX message can be split in several separate STL 

records by the IPFIX Exporter process to be sent in different IPFIX messages by adding the fields 

stlPaginationIndex and stlPaginationTotal to the subTemplateList field. Upon reception of the IPFIX 

messages, the IPFIX collector process (or another process taking the role of processing these IPFIX 

messages) should reconstruct the STL pages into a single STL. 

Table 13. IPFIX Templates used in NBIm interface 

Template Id / Name (Kind) Field (Comment, if any) 

300 

L0 Link Power in dBm 

(Collector) 

observationPointId 

rxPowerDecibelMilliwatts (Custom) 

301 

L0 Link Power in dBm 

(Exporter Sliced) 

originalObservationDomainId 

observationGroupId (Custom) 

rxPowerDecibelMilliwatts (Custom) 

302 

L0 Link Power in dBm 

(Exporter Not Sliced) 

observationGroupId (Custom) 

rxPowerDecibelMilliwatts (Custom) 

310 

L0 Transponder BER, 

Tx and Rx Power in dBm 

(Collector) 

observationPointId 

tunnelSourceIPv4Address (Custom) 

tunnelDestinationIPv4Address (Custom) 

direction (Custom) 

ber (Custom) 

rxPowerDecibelMilliwatts (Custom) 

txPowerDecibelMilliwatts (Custom) 

311 

L0 Transponder BER, 

Tx and Rx Power in dBm 

(Exporter Sliced) 

originalObservationDomainId 

observationGroupId (Custom) 

direction (Custom) 

ber (Custom) 

rxPowerDecibelMilliwatts (Custom) 

txPowerDecibelMilliwatts (Custom) 
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Template Id / Name (Kind) Field (Comment, if any) 

flowDurationMilliseconds 

312 

L0 Transponder BER, 

Tx and Rx Power in dBm 

(Exporter Not Sliced) 

observationGroupId (Custom) 

direction (Custom) 

ber (Custom) 

rxPowerDecibelMilliwatts (Custom) 

txPowerDecibelMilliwatts (Custom) 

flowDurationMilliseconds 

330 

L0 OSA Optical Spectrum in dBm 

(Collector) 

observationPointId 

stlPaginationIndex (Custom) 

stlPaginationTotal (Custom) 

subTemplateList (STL, 10000) 

paddingOctets 

331 

L0 OSA Optical Spectrum in dBm 

(Exporter Sliced) 

originalObservationDomainId 

observationGroupId (Custom) 

stlPaginationIndex (Custom) 

stlPaginationTotal (Custom) 

subTemplateList (STL, 10000) 

paddingOctets 

332 

L0 OSA Optical Spectrum in dBm 

(Exporter Not Sliced) 

observationGroupId (Custom) 

stlPaginationIndex (Custom) 

stlPaginationTotal (Custom) 

subTemplateList (STL, 10000) 

paddingOctets 

256 

L2 Traffic OpenVSwitch Ethernet Flows w/o L3 w/o 

L4 

(Collector) 

observationPointId 

flowDirection 

sourceMacAddress 

destinationMacAddress 

ethernetType 

ethernetHeaderLength 

flowStartDeltaMicroseconds 

flowEndDeltaMicroseconds 
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Template Id / Name (Kind) Field (Comment, if any) 

packetDeltaCount 

layer2OctetDeltaCount 

flowEndReason 

264 

L2 Traffic OpenVSwitch Ethernet Flows w/IPv4 

w/TCP-UDP-SCTP 

(Collector) 

observationPointId 

flowDirection 

sourceMacAddress 

destinationMacAddress 

ethernetType 

ethernetHeaderLength 

ipVersion 

ipTTL 

protocolIdentifier 

ipDiffServCodePoint 

ipPrecedence 

ipClassOfService 

sourceIPv4Address 

destinationIPv4Address 

sourceTransportPort 

destinationTransportPort 

flowStartDeltaMicroseconds 

flowEndDeltaMicroseconds 

packetDeltaCount 

layer2OctetDeltaCount 

flowEndReason 

octetDeltaCount 

octetDeltaSumOfSquares 

minimumIpTotalLength 

maximumIpTotalLength 

266 

L2 Traffic OpenVSwitch Ethernet Flows w/IPv4 

w/ICMP 

observationPointId 

flowDirection 

sourceMacAddress 
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Template Id / Name (Kind) Field (Comment, if any) 

(Collector) destinationMacAddress 

ethernetType 

ethernetHeaderLength 

ipVersion 

ipTTL 

protocolIdentifier 

ipDiffServCodePoint 

ipPrecedence 

ipClassOfService 

sourceIPv4Address 

destinationIPv4Address 

icmpTypeIPv4 

icmpCodeIPv4 

flowStartDeltaMicroseconds 

flowEndDeltaMicroseconds 

packetDeltaCount 

layer2OctetDeltaCount 

flowEndReason 

octetDeltaCount 

octetDeltaSumOfSquares 

minimumIpTotalLength 

maximumIpTotalLength 

321 

L2 Traffic Ethernet Flows 

(Exporter Sliced) 

originalObservationDomainId 

observationGroupId 

packetDeltaCount 

layer2BitDeltaCount 

flowDurationMilliseconds 

322 

L2 Traffic Ethernet Flows 

(Exporter Not Sliced) 

observationGroupId 

packetDeltaCount 

layer2BitDeltaCount 

flowDurationMilliseconds 
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Table 14 summarizes the IPFIX sub templates used in NBIm interface. For each field, a comment 

was added specifying if the field is a custom field defined in Table 12 (Custom). 

Table 14. IPFIX SubTemplates used in NBIm interface 

SubTemplate Id / Name Field (Comment, if any) 

10000 

L0 OSA Optical Spectrum tuple in dBm 

frequencyGigaHertz (Custom) 

rxPowerDecibelMilliwatts (Custom) 

 

4.9 Network Devices to MDA agent MONp/MONo 

In METRO-HAUL, two different approaches for performing and collecting measurements from the 

devices have been considered: monitoring and telemetry. While monitoring is focused on 

performing measurements at regular intervals, e.g., every minute, telemetry is intended for the 

continuous measurement that is sent as a data stream, and no regular intervals are needed, i.e., 

measurements are sent as soon they are available or at a rate much shorter than for the monitoring 

approach, e.g., one per second. For both, monitoring and telemetry, every measurement might 

convey values for a set of parameters that are collected simultaneously and have a complete 

meaning. Therefore, measurements are defined as data records that follow a given data structure 

defined as a template, i.e., different templates are defined for different measurements to be 

collected. 

Two different interfaces have been defined for network device monitoring: monitoring of packet 

devices (MONp) and monitoring for optical devices (MONo). Table 15 presents the template 

(templateId: 256) defined for MPLS-TP LSPs under MONp interface, where number of packets and 

number of bytes are measured. 

Table 15 Template 256 for MPLS-TP LSPs 

Field Name Description 

packetDeltaCount Number of packets since the previous report. 

layer2OctetDeltaCount Number of L2 octets since the previous report. 

 

For the optical later, two different templates have been defined under the MONo interface so far 

for BER and optical power measured at the optical transponders (templateId: 310) and for the 

spectrum acquired by Optical Spectrum Analysers (templateId: 330). Table 16 presents templateId 

310, where BER and optical power are metered. Finally, Table 17 defines templateId 330 for optical 

spectrum monitoring. 

Table 16 Template 310 for Lightpaths at the transponders 

Field Name Description 

Ber Bit error rate 
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rxPowerDecibelMilliwatts Received optical power (dBm) 

txPowerDecibelMilliwatts Transmitted optical power (dBm) 

 

Table 17 Template 330 for optical spectrum 

Field Name Description 

opticalSpectrum Ordered vector of tuples <frequencyGigaHertz, powerDecibelMilliwatts> 

 

Although the previous templates are defined to be protocol independent, other fields are needed 

to be included when monitoring is used, since individual messages are sent for every measurement. 

Specifically, the Observation Point (OP) id and the direction in which the measurement has been 

performed are commonly needed, as defined in Table 18. 

Table 18 Additional fields for monitoring messages 

Field Name Description 

observationPointId Id of the observation point 

direction Direction of the connection / link 

 

4.10 Optical SDN to OpenROADM and OpenConfig 

This section provides details on the ONOS drivers implemented to support optical devices modelled 

with the OpenROADM and the OpenConfig standard. Both drivers implement a NETCONF 

southbound interface that interacts with NETCONF server agents residing on the data plane 

devices. Specifically, in line with the work of the ODTN group, the OpenROADM driver is devoted to 

communicating with ROADM devices while the OpenConfig driver is devoted to communicating 

with transponder devices.  

Key implementation files for the OpenROADM driver are available at the link below. It has been 

tested with ONOS 1.12 in a collaborative work among TIM, CTTC, and CNIT, and was published at 

ECOC 2018. The plan is to contribute them to the ODTN group in the next weeks. 

https://gitlab.com/METRO-HAUL/optical-controller/tim-controller/tree/onos-

1.12/drivers/metrohaul  

Key implementation files for the OpenConfig driver have been already contributed to the ODTN 

group and are currently in a revision phase. Code is currently available at the link below. It has been 

tested with ONOS 2.1 in a collaborative work among CNIT and PoliMi, and was published at OFC 

2019.  

https://gerrit.onosproject.org/#/c/21550/ 
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The OpenConfig driver has been tested in conjunction with the OpenConfig agent developed at 

CNIT. Besides virtual hardware, that agent (based on ConfD tool, please refer to D3.2 for additional 

details) current supports Ericsson transponders; moreover, it is in test with transponders provided 

by other METRO-HAUL partners. 

The OpenROADM driver has been tested in conjunction with the OpenROADM agents developed at 

TIM (based on the Net2peer tool) and at CTTC (based on the ConfD tool).  Please refer to D3.2 for 

additional details of the agents. Besides virtual hardware, the TIM agent is currently supporting an 

experimental ROADM device deployed at TIM, and it is in test with other ROADM devices provided 

by other METRO-HAUL partners. In particular, an agent is in development in collaboration between 

CNIT and Ericsson for the support of the IRIS device matrix developed by Ericsson (please refer to 

D3.1 for additional details). 

Function  Implemented interface 

DeviceDescription 

Discovery 

 Driver Implementation of the DeviceDescription discovery for 

both OpenROADM and OpenConfig YANG 

 Implemented methods discover device details interfacing with 

the device via NECONF calls, for both OpenROADM and 

OpenConfig YANG 

 Implemented method to discover device ports and features 

discoverPortDetails abstract methods, for both OpenROADM 

and OpenConfig YANG 

 Implemented method to support unidirectional ports and 

associate them with its counterpart partner-port, for 

OpenROADM YANG 

Lambda 

Query 

 Implemented methods discover tunability requirements for 

each of the OLS ports, in order to ensure an end-to-end path 

computation with optical wavelength continuity, for both 

OpenROADM and OpenConfig YANG 

FlowRule 

Programmable 

 Driver implementation of the FlowRuleProgrammable behaviour 

for both OpenROADM and OpenConfig YANG 

 Implemented methods: getFlowEntries, applyFlowRules, 

removeFlowRules, etc. 

4.11 Optical SDN to OLS 

For this interface, the implemented driver behaves as if the OLS was an ONOS device.  In short, the 

driver implements a RestSB (A South bound interface that interacts with an OLS using a REST 

interface) that also relies on the TAPI models. Key implementation files are in the repository 

https://github.com/opennetworkinglab/onos/tree/master/drivers/odtn-

driver/src/main/java/org/onosproject/drivers/odtn/tapi 

Note that this interface complements the one described in Section 4.4 regarding the use of TAPI, 

when applied recursively to control an OLS subsystem in such disaggregation model. Much like in 

similar drivers, 3 main behaviours are implemented: discovery (to discover a device capability, 
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ports, etc), lambda query (to discover tunability capabilities), and flow rule programmable (to 

configure the connections and forwarding behaviour of the devices). 

Function  Implemented interface 

TapiDeviceDescription 

Discovery 

 Driver implementation of the DeviceDescription discovery for 

ONF TransporTAPI (TAPI) v2.1 based open line systems (OLS) 

 Implemented methods discover device details interfacing with 

the device via REST calls 

 Implemented method to discover device ports and features 

discoverPortDetails abstract methods, retrieve TAPI Service 

Interface Points and inform the ONOS controller about the 

mappings 

TapiDeviceLambda 

Query 

 Driver implementation of the TAPI Device Lambda query   

discovery for ONF TransporTAPI (TAPI) v2.1 based open line 

systems (OLS) 

 Implemented methods discover tunability requirements for 

each of the OLS ports, in order to ensure an end-to-end path 

computation with optical wavelength continuity 

 Implemented method to discover device ports and features 

queryLambdas per port number, manage the mapping 

TapiFlowRule 

Programmable 

 Driver implementation of the FlowRuleProgrammable behaviour 

for ONF TransporTAPI (TAPI) v2.1 based open line systems (OLS) 

 Implemented methods discover device details interfacing with 

the device via REST calls 

 Implemented methods: getFlowEntries, applyFlowRules, 

removeFlowRules, etc. 

 

4.12 De-fragmentation app 

As described in Section 2.5.2 the de-fragmentation app is composed of two main components: the 

de-fragmentation tool, and a set of REST APIs that extends the features of the Optical SDN 

controller. 

The de-fragmentation tool reads the network topology and the information about currently 

established lightpaths from the ONOS-based Optical SDN controller through the following 

commands: 

Table 19 Defragmentation Server Main Functions – Interface toward ONOS controller 

Main Functions ONOS REST APIs commands 

ImportNetwork 

ONOS Core REST APIs 

(Flow 1 in Figure 35) 

This functions imports the network topology and Optical connections set-

ups from ONOS through the following gets: 

 GET /topology/clusters 

 GET /topology/clusters/{id}/devices 



 METRO-HAUL H2020-ICT-2016-2 / 761727 D4.2 

© METRO-HAUL consortium 2019                                        Page 102 of 107 

 GET /topology/clusters/{id}/links 

UpdateNetworkStatus 

ONOS optical-rest app 

REST APIs 

(Flow 2 in Figure 35) 

 GET /onos/optical/intents 

ModifyNetworkStatus 

(Flow 6 in Figure 35) 

 POST /onos/optical/intents 

 DELETE /onos/optical/intents 

 

Table 20 Defragmentation engine Main Functions 

Main Functions API 

Import Network 

(Flow 4 in Figure 35) 

 addWdmNode() 

o addAddDropNode() 

 addOms() 

o addWdmLinkSpectrumGo()/Ret() 

o setOmsLabel(String Label) 

o setOmsCost(int cost) 

 addService(int idCount) 

o setLabel(String Label) 

o addSource(Int IdSource) 

o addDestination(Int IdDest) 

o addServicePath(ServicePath servicePath) 

o setServiceRate(Int rate) 

 addDefragmentation() 

o setActive(bool active) 

o setDefragmentationOption(Enum option) 

Return Defragmentation 

(Flow 5 in Figure 35) 

 getDefragmentationMessage() 

 getOpticalReconfiguration() 

 getFragmentationValue() 
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5 Conclusions 
This deliverable D4.2 reports the final architecture of the METRO-HAUL COM system from their 

initial design in D4.1; note that the COM architecture is aligned with related initiatives, projects and 

standards developing organizations (SDO), like the 5GPPP, OpenConfig, OpenROADM, ODTN, and 

the IETF, thanks to the involvement of METRO-HAUL partners. The document also includes the 

status and assessment of the final implementation of METRO-HAUL functional components, 

including control plane validation of relevant performance indicators and the designed tests. The 

description of each functional component in the COM includes the list of subcomponents and their 

status. The functional tests carried out to validate and integrate the subcomponents are described 

together with the testbeds used. The definition of the specific KPIs in which the component is 

involved are defined and measured. Finally, the interfaces connecting functional components of the 

COM are defined in terms of functions with regard to requirements in D4.1 and new functions. 

Precisely, the alignment of the interfaces defined between components in the COM architecture 

with other projects and SDOs ensure inter-operability. Details of the implementation of every 

function are reported. 

The components including in the final METRO-HAUL COM architecture show high innovative and 

ground-breaking features related to industry key factors, like end-to-end network services, optical 

disaggregation, monitoring, machine learning, and network planning, as proved by the high number 

of accepted top-ranked conferences and journal contributions. 

In addition to the successful preliminary tests, several public demonstrations have been carried out 

focused on the single components and partial integration of a subset of components, see, e.g., 

[Ca19], [Es19], [Mo18], [Tro19b] [Mor18a], [Mor18b] and [Gar19a]. Note that the demonstrations 

have been carried out during top-ranked conferences in the field of optical communications and 

networking (like OFC and ECOC), as well as during EuCNC. Of particular interest are demonstrations 

of the integration between the NFVO and the network planner, between the NFVO and the parent 

controller, between the optical SDN controller and the MDA controller, and between the MDA 

controller and the traffic monitoring system. Such demonstrations probe the maturity level 

achieved by the components, some of which have been opened as METRO-HAUL contributions to 

other projects. In particular, several developments based on ONOS have been merged to the ONOS 

Main release, as well as released in the framework of the ODTN project. 

Interestingly, the evaluated KPIs show excellent performance, and are in-line with the METRO-

HAUL project KPIs. Note that the per-component KPIs defined and measures in this deliverable are 

the most meaningful to meet the project KPIs. 

The main work now is devoted to the integration of the components for the METRO-HAUL Control 

Plane Demo that will be reported in deliverable D5.3. This deliverable is the demo of the control 

plane aspects of the METRO-HAUL project, and it will use the first releases of the developed 

software. 
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6 List of acronyms 
 

ACTN Abstraction and Control of Traffic-Engineered Networks  

AMEN Access-Metro Edge Node 

API Application Programming Interface 

BER Bit Error Rate 

CO Central Office 

COM Control, Orchestration and Management 

CRUD Create, Retrieve, Update and Delete 
DWDM Dense Wavelength Division Multiplexing 

GPON Gigabyte Passive Optical Network 

KDD Knowledge Discovery from Data 
KPI Key Performance Indicator 

LSP Label Switched Path 

MANO Management and Network Orchestration 

MCEN Metro Core Edge Node 

MDA Monitoring and data analytics 

ML Machine Learning 

NBI North-bound Interface 

NFV Network Functions Virtualization 

NFVI NFV Infrastructure 

NFVO NFV orchestrator 

NIW NFV over IP over WDM 

NMC Network Media Channel 

NPSO Placement and Scaling Optimizer 

NRAO Network Resource Allocation Optimizer 

NS Network Service 

NSD Network Service Descriptor 

OaaS Optimization as a Service 

OLS Open Line System 

OLT Optical Line Terminal 

O-NE Optical Network Elements  

ONOS Open Network Operating System 

ONU Optical Network Units 

OP Observation Points 

OXC Optical cross-connect 

OVS Open Virtual Switch 

PCA PON Configuration Agent 

PNFA PON Network Flow Agent 

PON Passive Optical Network 

PoP Point of presence 

QoS Quality of Service 

RPC Remote Procedure Calls 

SBI South-bound Interface 

SDO Standards Developing Organizations 
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SIP Service interface point 

SSH Secure Shell 

SWI Single Wavelength Interface 

TAPI Transport API 

VIM Virtual Infrastructure Managers 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VNF Virtualized Network Function 
VPN Virtual Private Network 

WIM WAN Infrastructure Manager 
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