
Recent Topics of Research
around the YAGO Knowledge Base

Antoine Amarilli1, Luis Galárraga1, Nicoleta Preda2, and Fabian M. Suchanek1

1 Télécom ParisTech, Paris, France
2 University of Versailles, France

Abstract. A knowledge base (KB) is a formal collection of knowledge
about the world. In this paper, we explain how the YAGO KB is con-
structed. We also summarize our contributions to different aspects of KB
management in general. One of these aspects is rule mining, i.e., the iden-
tification of patterns such as spouse(x, y)∧livesIn(x, z) ⇒ livesIn(y, z).
Another aspect is the incompleteness of KBs. We propose to integrate
data from Web Services into the KB in order to fill the gaps. Further, we
show how the overlap between existing KBs can be used to align them,
both in terms of instances and in terms of the schema. Finally, we show
how KBs can be protected by watermarking.

1 Introduction

Recent advances in information extraction have led to the creation of large
knowledge bases (KBs). These KBs provide information about a great variety
of entities, such as people, countries, rivers, cities, universities, movies, animals,
etc. Among the most prominent academic projects are Cyc [12], DBpedia [2],
Freebase3, and our own YAGO [21]. Most of these projects are linked together
in the Semantic Web [5]. KBs find numerous applications in the industry. The
Knowledge Graph released by Google is an example of a large commercial KB
project. It contains linked information about millions of people, places, and or-
ganizations, and helps Google deliver more semantic search results. Facebook
is also building a KB from the information of its users and their interests, and
Microsoft, too, is experimenting with a KB to enhance its search results. These
projects show not just the advances in technology and the growth of semantic
data, but also the rising commercial interest in KBs.

Our work investigates models and algorithms for the automated construction,
maintenance, and application of large-scale KBs. The main project is the YAGO
knowledge base, which we develop jointly at the Télécom ParisTech Institute in
Paris and the Max Planck Institute for Informatics in Germany. YAGO was ex-
tracted automatically from Web sources, and contains around 10 million entities
and 120 million facts. We use YAGO as an example to study different aspects of
KB management in general: how new information can be added automatically

3 http://freebase.com

http://freebase.com

to a KB, how we can protect KBs from plagiarism, how KBs can be integrated
with other KBs, and how we can mine patterns from KBs.

In this paper, we summarize 5 main directions of research. Section 2 describes
our latest efforts in the construction of the YAGO KB. In Section 3, we discuss
our work on automated matching of one KB to another KB. Our system matches
not just instances, but also classes and relations at the same time. In Section 4
we introduce AMIE, a system for mining semantic rules in KBs. Section 5 shows
models and algorithms for the integration of Web services into KBs. Section 6
discusses algorithms to protect KBs against plagiarism. We conclude in Section
7 with an outlook.

2 YAGO: Knowledge à la Carte

The YAGO KB. YAGO [21,10,3] is one of the largest public knowledge bases.
It contains more than 10 million entities (such as people, cities, rivers, or movies),
and more than 120 million facts about them. YAGO knows, e.g., which actors
acted in which movies, which cities are located in which countries, and which
person is married to which other person. YAGO is constructed by extracting
information automatically from Web sources such as Wikipedia. Unlike other
such projects, YAGO has a manually confirmed accuracy of 95%.

Achieving such accuracy is no simple task, because YAGO draws from few,
but very different sources. The system extracts and merges information from
Wikipedia, WordNet, Geonames, the Universal WordNet, and WordNet Do-
mains. Facts have to be extracted from the infoboxes, the categories, and the
full text of Wikipedia, and reconciled with conflicting, duplicate, or complemen-
tary facts from the other sources. Entities have to be mapped and deduplicated,
and class hierarchies have to be merged and combined. In addition, we have to
apply a suite of verifications to make sure that domain and range constraints
are respected, that functional relations have no more than one object for any
given subject, and that the types of an entity are consistent with each other.
This entire process takes several days to run. Furthermore, the YAGO team has
steadily grown, which requires a careful distribution of responsibilities. Apart
from this, more than a dozen researchers work directly or indirectly on the
knowledge base. To adapt to these conditions, we have recently taken a radi-
cal step, and refactored the YAGO system from scratch into a transparent and
modular architecture [3].
The YAGO2s Architecture. The refactored version of YAGO is called
YAGO2s. The main ingredients of the new architecture are themes and extrac-
tors. A theme is a collection of facts, such as all facts extracted from Wikipedia
infoboxes, all facts derived from WordNet, or all facts that concern people. A
theme is stored in a file in the RDF Turtle format.

An extractor is a module of code, which takes a number of themes as in-
put, and produces a number of themes as output. For example, one extractor
is the deduplicator, which takes a number of themes as input, and produces one
theme with the deduplicated facts as output. Other extractors check types, ver-

ify functional constraints, or merge information. Some extractors also extract
information from an external data source. These extractors take a raw data file
as an additional input. The Wikipedia category extractor, e.g., takes as input
the XML dump of Wikipedia and produces a theme with facts extracted from
Wikipedia categories. Similar extractors exist for WordNet [13], UWN [6], and
Geonames4. We also added an extractor for WordNet domains [11]. The Word-
Net domains give YAGO a thematic structure of topics, such as “music”, “law”,
and “emotions”. Therefore, it is now possible to ask for all entities related to,
e.g., “music”. An extractor can only be run once its input themes have been
produced. This constraint yields a dependency graph, in which some extractors
have to run before others, and some can run in parallel.

We have designed a scheduler that respects the dependencies of extractors
and themes. Of the 40 extractors, up to 16 run in parallel, producing around
80 themes in 4 days on a 8-core machine. The interplay of data extractors and
verification extractors ensures that all facts that make it into the final layer of
the architecture have been checked for consistency and uniqueness. Together,
the themes of the final layer constitute the YAGO KB.
Applications. The new architecture allows us to add new extractors easily. To
exemplify this, we have added a new module to YAGO, which extracts flight
information from Wikipedia. Thanks to this module, YAGO now knows which
airports are connected by direct flights to which other airports. Since YAGO also
has vast data on geographic entities, users can now ask YAGO for flights between
any two cities. Our interface will determine all airports in the vicinity of the
departure city, all airports in the vicinity of the arrival city, and all direct flights
between them [20]. YAGO also finds applications elsewhere. Two of the most
prominent applications are the DBpedia KB [2] and the IBM Watson system [7].
DBpedia uses the taxonomy of YAGO to structure its entities into a hierarchy of
classes. The IBM Watson system uses YAGO (and other KBs) to answer natural
language questions. It has recently beaten the human champion at the US quizz
show Jeopardy!.

YAGO can be downloaded for free from the Web site5. Thanks to the new
architecture, facts about entities, literals, or multilingual labels all appear in
different themes. The themes can be downloaded separately, so that users can
download just what they need. With this concept, called “YAGO à la carte”, we
hope to facilitate further applications of our KB.

3 PARIS: Aligning Instances and Schemas

KB Alignment. The Semantic Web is a large collection of publicly available
knowledge bases (KBs). YAGO is only one of them: there are other KBs, such
as DBpedia, Freebase, or domain-specific KBs, which cover music, movies, ge-
ographical data, scientific publications, and medical or government data. Many
of these KBs are complementary. For instance, a general KB may know who

4 http://geonames.org
5 http://yago-knowledge.org

http://geonames.org
http://yago-knowledge.org

discovered a certain enzyme, whereas a biological database may know its func-
tion and properties. However, since the KBs often use different identifiers for an
entity, their information cannot be joined or queried across KBs. In the example,
we cannot ask who discovered which enzyme with which properties. In addition,
the KBs generally use different relations. For example, YAGO will say that Elvis
Presley wasBornIn Tupelo, whereas another KB could say that Tupelo is the
placeOfBirth of Elvis.

We propose an approach, PARIS [17], that solves both of these alignment
problems. PARIS can match not just the equivalent entities, but also equivalent
classes and relations across two KBs. Since PARIS considers all problems at the
same time, we can benefit from a fruitful interplay between schema and instance
matching, where the alignment of relations helps the alignment of instances, and
the alignment of instances may lead to the alignment of relations.
Model. Our insight is that equalities between instances and relations determine
each other. This link is achieved by using functional relations. A functional rela-
tion is a relation that has at most one second argument for each first argument,
and conversely an inverse functional relation has at most one first argument for
each second argument. Thus, if two instances x and x′ share the same second
argument of an inverse functional relation, then they must be equal:

∃r, y, y′ : r(x, y) ∧ r(x′, y′) ∧ y ≡ y′ ∧ r inv. functional⇒ x ≡ x′

For example, if two instances share an email address, and if each email address
can belong to only one instance, then the two instances must be equal.

However, real-world KBs are never free from noise. They may contain erro-
neous statements, and functional constraints may not always be respected. This
is why we designed a probabilistic model to relax the hard logical rules. We call
an alignment fact a statement of the form x ≡ x′, where x and x′ are two entities
in the first and second ontology, respectively. We also consider alignment facts
of the form r ⊆ r′, where r and r′ are two relations, and likewise c ⊆ c′, where c
and c′ are classes. For the purposes of our model, we also consider the statement
invfun(r) an alignment fact. It states that r is an inverse functional relation. A
possible world is a set of alignment facts, and we call it simply an alignment.
Our universe Ω is the set of all possible alignments.

The probability function of our model associates a probability P (A) to each
alignment A ∈ Ω, with the constraint that

∑
A∈Ω P (A) = 1. We do not know

what this probability distribution is, but we will never try to manipulate it
directly. Instead, we will study it through the marginal probabilities of the var-
ious alignment facts. Formally, for each alignment fact a, we define a random
variable Xa such that Xa(A) = 1 if a ∈ A, and Xa(A) = 0 otherwise. The
marginal probability of Xa is the total probability of the alignments of Ω where
a holds: P (Xa) =

∑
A∈Ω Xa(A)P (A). For brevity we will write the marginal

probability of Xa as P (a). We impose constraints on the marginal probabilities,
for instance P (x ≡ x) = 1 for every entity x. With the product measure, we
can always construct a probability distribution that respects these constraints:
P (A) =

∏
a∈A P (a)

∏
a/∈A(1 − P (a)). The product measure results in de-facto

independence between the events of all alignment facts. Therefore, we make the
assumption that all the Xa are independent. We can now replace the hard im-
plication rule above by an equation which relates the marginal probabilities for
various alignment facts. Namely, for every two instances x and x′:

P (x ≡ x′) = 1−
∏

r(r,x),r(x′,y′)

(1− P (invfun(r))× P (y ≡ y′)

The equality of instances can help us determine whether a class c of one KB
is a subclass of a class c′ of the other KB. We estimate this probability as the
ratio of instances of c that are instances of c′. Since the instances of c belong
to one KB, and the instances of c′ belong to the other KB, we must count the
overlap of the classes by taking into account the equality of instances that we
have already estimated:

P (c ⊆ c′) =

∑
x∈c(1−

∏
y∈c′(1− P (x ≡ y)))

|c|

The probability that one relation subsumes another relation can be estimated
in a similar manner. This probability is then factored back into the probability
for the equality of instances. This yields a system of equations in which the
probability for the equality of instances, the subsumption of relations, and the
subsumption of classes depend on each other.
Implementation. To bootstrap the dependencies of the probabilities, we make
use of literals. Literals are strings, numbers, and dates. Two identical literals are
always considered equal, so the probability that they are aligned is always 1.
Starting from these probabilities, we implemented an iterative algorithm, which
computes the equalities and relation subsumptions of the current step from the
values of the previous step. Once this process has converged, we output the
marginal probability scores as estimations for the equalities of instances, sub-
sumptions of classes, and subsumptions of relations.

The large number of instances in today’s KBs implies a prohibitively high
number of potential matches. A naive implementation would need a quadratic
number of comparisons per iteration, which would be practically infeasible. We
therefore impose more conditions on the alignment, such as requiring that each
entity is matched to at most one other entity. Since the original publication of
PARIS [17], we have considerably improved the implementation of the system.
We store the KB facts in main memory, and we use a new method to update
probability scores: We simultaneously compute entity and relation alignments,
and run this in parallel across multiple threads. To match YAGO [21] and DB-
pedia [2], two of the largest public KBs on the Semantic Web with several dozen
million facts each, PARIS needs less than 30 minutes.

We have also experimented with refinements of the approach. For instance,
we can align a single relation of one KB with a join of two relations in the
other one, or we can use approximate matches between literals rather than exact
matches. These additional features may help in specific situations. However, for
the scenarios that we considered, our experiments show that the default approach

of PARIS is both simpler and more efficient. What is more, it is parameter-
free: Unlike its competitors, the system has no thresholds to tune, no similarity
functions to design, and no settings to be tried out. In our experiments, the
system was run on all different datasets with the default settings.
Results. To show the practical viability of our approach, we have run PARIS
on the benchmark matching problems of the Ontology Alignment Evaluation
Initiative (OAEI). PARIS outperformed the previously leading system on the
instance alignment test data. In addition, it also computed the alignment be-
tween relations and classes, which was not even requested by the task.

We also conducted large-scale experiments with real KBs on the Semantic
Web. PARIS is able to align YAGO and DBpedia with a precision of 94% on
the instances, 84 % on the classes, and 100% on the relations (weighted by their
number of occurrences). This alignment revealed interesting correspondences
between the KBs, such as different naming policies, different design decisions,
or redundancies within one KB. PARIS was also able to align YAGO with an
ontology built from IMDb (the Internet Movie Database).

All data, alignments, and results, as well as our implementation, are available
on the Web site of the project6. Our alignments have become part of the Semantic
Web, and thus contribute to the vision of a large Web of linked data, where the
KBs truly complement each other.

4 AMIE: Mining Logical Rules

Rules. Knowledge bases can show us which facts are typically true about enti-
ties. For example, we could find:

motherOf (m, c) ∧ marriedTo(m, f)⇒ fatherOf (f, c)

This rule says that the husband of a mother is often the father of her children.
Such a rule does not always hold. Still, such rules can be interesting for several
reasons. First, by applying such rules on the data, new facts can be derived
that make the KB more complete. For example, if we know the mother of a
child and her husband, we can infer the father. Second, such rules can identify
potential errors in the knowledge base. If, for instance, the KB claims that a
totally unrelated person is the father of a child, then maybe this statement is
wrong. Finally, rules about general tendencies can help us understand the data
better. We can, e.g., find out that countries often trade with countries speaking
the same language, that marriage is a symmetric relationship, that musicians
who influence each other often play the same instrument, and so on.

While mining logical rules has been well studied in the Inductive Logic Pro-
gramming (ILP) community, mining logical rules in KBs is different in two as-
pects: First, current rule mining systems are easily overwhelmed by the amount
of data (state-of-the art systems cannot even run on today’s KBs). Second,
ILP usually requires counterexamples. KBs, however, implement the open world

6 http://webdam.inria.fr/paris

http://webdam.inria.fr/paris

assumption (OWA), meaning that absent data cannot be used as counterex-
amples. On that ground, we developed the AMIE approach [9]. AMIE learns a
set of meaningful logical rules from a KB. She uses a new mining model and a
confidence metric, suitable for potentially incomplete KBs under the OWA.
Model. Technically, a Horn rule takes the form

r1(x1, y1) ∧ ... ∧ rn(xn, yn)⇒ r(x, y)

Here, all ri(xi, yi) and r(x, y) are binary atoms, each containing a relation name
ri, and constants or variables xi, yi. The left hand side is called the body and we
abbreviate it by B. r(x, y) is the called the head. AMIE mines only closed rules,
i.e., each variable must appear at least twice in the rule. This constraint ensures
the rule can make concrete predictions as follows: Whenever some facts of the
KB match the body of the rule, the rule predicts the instantiated head atom
as a new fact. For instance, if the KB knows motherOf(Priscilla,Lisa) and mar-
riedTo(Priscilla,Elvis), then our example rule will predict fatherOf(Elvis,Lisa).
Our goal is to find rules that are true for many instances in the KB. We measure
this by the support of the rule:

supp(B ⇒ r(x, y)) := #(x, y) : ∃z1, ..., zm : B ∧ r(x, y)

Here, #(x, y) is the number of pairs x, y that fulfill the condition, and the
z1, ..., zn are the variables of B. We want to count not just the cases where
the rule makes a correct prediction, but also where it makes a wrong prediction.
However, KBs usually do not contain negative information, and so we cannot
say that a prediction is wrong. We can only count the predictions that are not
in the KB. The standard confidence is a measure borrowed from association rule
mining [1], which computes the ratio of predictions that are in the KB:

conf(B ⇒ r(x, y)) :=
supp(B ⇒ r(x, y))

#(x, y) : ∃z1, ..., zm : B

This measure punishes a rule if it makes many predictions that are not in the KB.
However, due to the Open World Assumption, not all absent facts are wrong.
Furthermore, such punishment is even counter-productive, because we want to
use the rule to predict new facts.

To address this problem, AMIE resorts to the Partial Completeness Assump-
tion (PCA). The PCA is the assumption that if the database knows r(x, y) for
some x and r, then it knows all facts r(x, y′). This assumption is sound for func-
tional relations (such as wasBornOnDate, hasCapital). If we reverse all inverse
functional relations (such as creates and owns), the assumption holds also for
them. Even for non-functional relations, the PCA is still reasonable for KBs that
have been extracted from a single source (such as DBpedia and YAGO). These
usually contain either all objects or none for a given entity and a given relation.

The PCA can be used to infer negative information. For instance, if the
database knows the citizenship of a person, then any other statement about her
citizenship is assumed to be false. The PCA confidence normalizes the support

of the rule only against the facts that are known to be true or false according to
the PCA.

pcaconf(B ⇒ r(x, y)) :=
supp(B ⇒ r(x, y))

#(x, y) : ∃z1, ..., zm, y′ : B ∧ r(x, y′)

The denominator of the PCA confidence expression includes all pairs x, y for
which the r values of x are in the KB. If the relation is incomplete, those gaps
are not used as counter-evidence.
Results. Our experiments compare the usability and running times of AMIE
against two state-of-the-art systems: WARMR and ALEPH7. Since these ap-
proaches are designed to serve more general purposes, they require additional
input such as a language bias and, in some cases, output post-processing. In con-
trast, AMIE runs out of the box with her default setting. Furthermore, AMIE
runs several orders of magnitude faster. For example, AMIE can mine rules on
the entity-entity facts of the YAGO2 KB (approx. 1M facts) in only 4 minutes.
The other systems did not terminate or failed to start on this KB due to its size.
Since the original publication [9], we have further improved our implementa-
tion by means of fine-grained optimizations such as query rewriting and smarter
query plans. This has improved the running time significantly. The latest version
can run on YAGO2 in approximately 30 seconds.

We used the rules mined by AMIE on YAGO2 to predict new facts, and
evaluated the facts by comparing to the newer version of the KB (YAGO2s), or
by manually comparing to Wikipedia. Our results show that the PCA confidence
outperforms the standard confidence in terms of precision and recall. The top
rules ranked by PCA confidence produce many more predictions than the top
rules ranked by standard confidence, while at the same time the aggregated
precision of the results is higher. Our predictions beyond YAGO2 have an overall
precision of 40%. While the rules cannot be used directly to infer new facts for
KBs, they still provide a signal that can be used, e.g., in conjunction with other
rules or with other prediction mechanisms. Furthermore, we show that the PCA
confidence is a better estimate of the actual precision of rules. All results are
available on the Web site of the project8.
Ontology Alignment. Rule mining can be used not just to mine Horn rules,
but also to align two KBs. In Section 3, we have already seen an approach
that can align the instances, classes, and relations of two KBs. Unfortunately,
there are cases where a simple 1:1 alignment of relations is not enough. For
instance, KB K may express the relation between a person and their native
land by the relationship k:wasBornInCountry, while K′ may require a join of
the relationships k’:wasBornInCity and k’:locatedInCountry. Here, a “one-hop”
relation of one KB has to be aligned with a “two-hop” relation in the other. In [8],
we propose to discover such alignments by rule mining. As input, the approach
requires two KBs whose instances have already been aligned. We coalesce the
KBs into a single KB, where facts about the same entity use the same entity

7 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html
8 http://mpi-inf.mpg.de/departments/ontologies/projects/amie

http://www.cs.ox.ac.uk/activities/machlearn/ Aleph/aleph_toc.html
http://mpi-inf.mpg.de/departments/ontologies/projects/amie

identifier. This coalesced KB mixes the facts from one KB with the facts of the
other. Then we use AMIE to mine rules in which the body atoms are restricted
to relation names from the first KB, and the head atom must use a relation from
the second KB. In the example, we could mine

k’:wasBornInCity(x, z) ∧ k’:locatedInCountry(y, z)⇒ k:wasBornInCountry(x, z)

We call these expressions rules for ontological schema alignment, ROSA rules
for short. They express common structural mappings between two ontologies,
such as relation subsumptions, class subsumptions, relation equivalences, two-
hop subsumptions, and predicate-object translations, among others. However,
ROSA rules define just a subset of all the possible mappings required for the
alignment of ontologies in the Semantic Web, and thus give us room for further
research.

5 SUSIE: Integrating Web Services

Web Services. A growing number of data providers let us access
their data through Web services. There are Web services about books
(isbndb.org, librarything.com, Amazon, AbeBooks), about movies (api.
internetvideoarchive.com), about music (musicbrainz.org, lastfm.com),
and about a large variety of other topics. We have studied Web services under
a variety of aspects [14,4,16].

The API of a Web service restricts the types of queries that the service can
answer. For example, a Web service might provide a method that returns the
songs of a given singer, but it might not provide a method that returns the
singers of a given song. If the user asks for the singer of some specific song, then
the Web service cannot be called – even though the underlying database might
have the desired piece of information. This problem is particularly pronounced if
multiple Web services have to be combined in order to deliver the answer to the
user query. In this case, it may happen that the API restrictions force the query
answering system into an infinite series of attempts to orchestrate the services
to no avail.
The Web as an Oracle. With the SUSIE project [15], we propose to use
Web-based information extraction (IE) on the fly to determine the right input
values for asymmetric Web services. For example, assume that we have a Web
service getSongsBySinger, which returns the songs of a given singer. Now assume
that the user wishes to find the singer of the song Hallelujah. This query cannot
be answered directly with the service getSongsBySinger. Therefore, we issue a
keyword query “singers Hallelujah” to a search engine. We extract promising
candidates from the result pages, say, Leonard Cohen, Lady Gaga, and Elvis
Presley. Next, we use the existing Web service to validate these candidates. In the
example, we would call getSongsBySinger for every candidate, and see whether
the result contains Hallelujah. This confirms the first singer and discards the
others. This way, we can use an asymmetric Web service as if it allowed querying
for an argument that its API does not support.

isbndb.org
librarything. com
api.internetvideoarchive.com
api.internetvideoarchive.com
musicbrainz.org
lastfm.com

We show how such functions can be integrated into a Web orchestration sys-
tem, and how they can be prioritized over infinite chains of calls. For this purpose,
we define the notion of smart service calls. These are those calls for which we
can guarantee an answer under certain conditions. We have implemented our
system, and shown in experiments with real-world Web services that SUSIE can
answer queries on which standard approaches fail.

With SUSIE, we have opened the door to an interesting suite of research
questions: How can promising calls be prioritized over less promising calls? Un-
der which assumptions can we give guarantees that a call composition will be
successful? We plan to investigate these questions in future work.

6 Watermarking

Licensing. Most KBs on the Internet are available for free. However, in most
cases, their use is governed by a license: If a user re-publishes the data or part of
the data, he has to give credit to the creators of the original KB. If he does not,
then this constitutes plagiarism. In some cases, re-publication may be prohibited
completely (e.g., for commercially licensed KBs).

This raises the question of how we can prove if someone re-published the
data. Since ontological statements are usually world knowledge, there is no way
we can show that someone took the data from us. The other person might as well
have taken the data from a different source. He might even claim that we took
the data from him. We propose to address this problem through watermarking.
We developed two approaches: Additive Watermarking and Subtractive Water-
marking.
Additive Watermarking. Additive Watermarking works by adding a small
number of wrong statements to the KB (”fake facts”). If these fake facts appear
in another KB, then the other KB most likely took the data from our KB. The
fake facts have to be plausible enough in order not to be spotted by a machine
or by a human. At the same time, they may not be so plausible that they are
correct. We provide a theoretical analysis of how many facts we have to add in
order to ensure plausibility and security at the same time.

The main objection to this approach is that it compromises the data quality
of the KB. It is true that watermarking is always a trade-off between data quality
and the ability to prove provenance. However, our technique has to add only very
few fake facts, usually a handful or a dozen. Large, automatically constructed
KBs contain anyway several thousands of wrong facts. YAGO, for example, one
of the KBs with a particularly rigorous quality assessment, has a guaranteed
correctness of 95%. Since YAGO contains millions of facts, thousands are wrong.
Adding a few more might be a valuable trade-off.

We show in a system demonstration of our approach how fake facts can be
generated in such a way that most of them go undetected by a human [18].
Subtractive Watermarking. Subtractive Watermarking works by removing
a small number of statements from the KB. The KB is then published without
these statements. This creates a pattern of “holes” in the KB, which we can

imagine like holes in a cheese. If this pattern of holes appears in another KB,
then the data has likely been taken from the source KB.

The main advantage of this approach is that it does not compromise the
precision of the data. It just removes statements. The Semantic Web is governed
by the Open World Assumption, which states that the absence of a statement
implies neither its truth nor its falsehood. Thus, the removal of a statement
does not influence the correctness of the data. It does influence its completeness,
though. As always, watermarking remains a trade-off between the quality of the
data and the ability to prove provenance.

We show in theoretical analyses that only a few hundred facts have to be
removed in order to protect the KB effectively from plagiarism. If this number
is slightly increased, then the method can work even if only part of the KB is
plagiarized [19]. Further information on watermarking KBs can be found on the
Web page of our project9.

7 Outlook

In this paper, we have summarized approaches that address challenges in the
mining, linking, and extension of knowledge bases (KBs). Research in these ar-
eas has made huge progress during the last decade. However, many challenges
remain. One issue is making those methods run at Web scale. Computers be-
come ever more powerful, but we also produce ever more data. Currently, the
growth rate of data outpaces the advancement rate of computers. Therefore,
new methods will have to be developed to extract information at scale, to inte-
grate it with existing information, and also to make use of large-scale semantic
data. It is not just the size of the data that poses a challenge, but also the dif-
ferent types of information that we encounter. Social media, such as Twitter,
Blogs, or Facebook, have seen a rise in recent years. The public parts of these
sources could be harvested for KBs. Finally, new applications for semantic data
will be explored. This includes its use in search, translation, decision making,
or education. Ultimately, our goal is to make computers ever more useful for
mankind.

References

1. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. SIGMOD Rec., 22(2), June 1993.

2. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary G. Ives. DBpedia: A Nucleus for a Web of Open Data. In ISWC,
2007.

3. Joanna Biega, Erdal Kuzey, and Fabian M. Suchanek. Inside YAGO2s: A trans-
parent information extraction architecture. In Proc. WWW (Companion volume),
2013.

9 http://mpi-inf.mpg.de/departments/ontologies/projects/watermarking

http://mpi-inf.mpg.de/departments/ontologies/projects/watermarking

4. Meghyn Bienvenu, Daniel Deutch, Davide Martinenghi, Pierre Senellart, and
Fabian Suchanek. Dealing with the deep web and all its quirks. In VLDS workshop,
2012.

5. Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked data
on the Web. In WWW, 2008.

6. Gerard de Melo and Gerhard Weikum. Towards a universal wordnet by learning
from combined evidence. In CIKM. ACM, 2009.

7. David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg,
John M. Prager, Nico Schlaefer, and Christopher A. Welty. Building Watson:
An Overview of the DeepQA Project. AI Magazine, 31(3), 2010.

8. Luis Galárraga, Nicoleta Preda, and Fabian M. Suchanek. Mining rules to align
knowledge bases. In AKBC workshop, 2013.

9. Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. AMIE:
Association Rule Mining under Incomplete Evidence in Ontological Knowledge
Bases. In WWW, 2013.

10. Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Artif.
Intell., 194, 2013.

11. Bernardo Magnini and Gabriela Cavaglia. Integrating subject field codes into
wordnet. In LREC, 2000.

12. Cynthia Matuszek, John Cabral, Michael Witbrock, and John Deoliveira. An
introduction to the syntax and content of cyc. In AAAI Spring Symposium, 2006.

13. George A. Miller. WordNet: An Electronic Lexical Database. MIT Press, 1998.
14. N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann, W. Yuan, and G. Weikum.

Active Knowledge : Dynamically Enriching RDF Knowledge Bases by Web Ser-
vices. (ANGIE). In SIGMOD, 2010.

15. Nicoleta Preda, Fabian M. Suchanek, Wenjun Yuan, and Gerhard Weikum. Susie:
Search using services and information extraction. In ICDE, 2013.

16. Fabian Suchanek, Alessandro Bozzon, Emanuele Della Valle, Alessandro Campi,
and Stefania Ronchi. Towards an Ontological Representation of Services in Search
Computing. LNCS vol. 6585. Springer, April 2011.

17. Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS: Probabilistic
Alignment of Relations, Instances, and Schema. PVLDB, 5(3), 2011.

18. Fabian M. Suchanek and David Gross-Amblard. Adding fake facts to ontologies.
In WWW (Companion volume), 2010.

19. Fabian M. Suchanek, David Gross-Amblard, and Serge Abiteboul. Watermarking
for ontologies. In ISWC, 2011.

20. Fabian M. Suchanek, Johannes Hoffart, Erdal Kuzey, and Edwin Lewis-Kelham.
YAGO2s: Modular High-Quality Information Extraction with an Application to
Flight Planning. In German Database Symposium (BTW 2013), 2013.

21. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A core of
semantic knowledge - unifying WordNet and Wikipedia. In WWW, 2007.

	Recent Topics of Researcharound the YAGO Knowledge Base

