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1. Polaron binding energy vs. Fock exchange 

To calculate the energy levels of polarons and defects in CH3NH3PbI3, we adopt the grand-

canonical formulation of defects in crystalline materials.1, 2 In this formulation, the formation 

energy of a defect with charge 𝑞, 𝐸𝑓
𝑞

[𝑋], is expressed as a function of the electron chemical 

potential 𝜇: 

                                      𝐸𝑓
𝑞[𝑋] = 𝐸𝑞 [𝑋] − 𝐸[bulk] − ∑ 𝑛𝑖𝜇𝑖 + 𝑞(𝜀V +  𝜇)

𝑖

+ 𝐸corr
𝑞 ,                           (1) 

where 𝐸𝑞 [𝑋] is the total energy of the defect 𝑋 in the charge state 𝑞, 𝐸[bulk] is the total energy of 

the pristine bulk system, 𝜇𝑖 is the chemical potential of the subtracted/added species 𝑖, 𝜀V the 

valence band edge of the pristine system, and 𝐸corr
𝑞

 is a correction term which accounts for 

electrostatic finite-size effects. The charge transition level 𝜇(𝑞/𝑞′) is defined as the electron 
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chemical potential for which the formation energies of a defect 𝑋 in the charge states 𝑞 and 𝑞′ are 

equal (𝐸𝑓
𝑞[𝑋] = 𝐸𝑓

𝑞′[𝑋]). This results in the following expression: 

                                                     𝜇(𝑞/𝑞′) =
𝐸𝑞 [𝑋] − 𝐸𝑞′

[𝑋]

𝑞′ − 𝑞
+

𝐸𝑐𝑜𝑟𝑟
𝑞 − 𝐸𝑐𝑜𝑟𝑟

𝑞′

𝑞′ − 𝑞
− 𝜀V.                              (2) 

 For the localization of the hole, we can write the following reaction: 

                                                               CH3NH3PbI3 + ℎ+ ⟶ ℎloc.                                                             (3) 

 The hole polaron level can then be defined as follows: 

                                𝜇(ℎloc) = 𝐸[ℎloc] − 𝐸[CH3NH3PbI3] + 𝐸𝑐𝑜𝑟𝑟
+1 − 𝜀V,                                                (4) 

where 𝐸[ℎloc] is the total energy of the hole polaron and 𝐸[CH3NH3PbI3] the total energy of the 

pristine perovskite. Analogously, we can write the following reaction for the extra electron: 

                                                               CH3NH3PbI3 + 𝑒− ⟶ 𝑒loc.                                                              (5) 

The respective charge transition level is then given by: 

                                𝜇(𝑒loc) = 𝐸[𝑒loc] − 𝐸[CH3NH3PbI3] + 𝐸𝑐𝑜𝑟𝑟
−1 − 𝜀V,                                                 (6) 

 where 𝐸[𝑒loc] is the total energy of the electron polaron. In order to achieve values referred to the 

respective band edge for both the hole and the electron polaron, we define the polaron binding 

energies as 𝐸𝑏(ℎ+) = 𝜇(ℎloc) and 𝐸𝑏(𝑒−) = 𝜀C −  𝜇(𝑒loc) where 𝜀C is the conduction band edge of 

pristine CH3PbI3. We remark that electrostatic finite size corrections are here taken into account, 

using the Freysoldt-Neugebauer-Van de Walle (FNV) scheme.1, 3 Two terms are included in the 

FNV scheme: (i) the Madelung energy, that correct the interaction of a charge with its periodic 

replica, and (ii) an alignment-like term that takes into account the finite extent of the charge 

distribution. The calculated correction for the 2×2×2 supercell CH3PbI3 considered in this work 

amounts to 0.01 eV and is therefore negligible. 
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In order to evaluate the polaron binding energy as a function of Fock exchange, we perform density 

functional theory calculations on model 3, as defined in the main text. We first employ the PBE0 

functional4, 5 with the fraction of Fock exchange α set to the standard value of 0.25, as this value has 

proved to comply the Koopman condition6 for this material.7 We obtain polaron formation upon 

structural relaxation (cf. main text) with binding energies of 0.09 eV and 0.06  eV for the localized hole 

and electron, respectively. Next, we keep the bulk and polaronic structure fixed and we recalculate 

the total-energy differences of Eqs. (4) and (5), performing (i) PBE0 calculations with two different 

values for the fraction of Fock exchange 𝛼 (0.35 and 0.45) and (ii) calculations at  the semi-local 

PBE level of theory.8 The calculated defect levels, aligned through the average electrostatic 

potential, are reported in Fig. S1 as a function of the fraction of Fock exchange introduced in the 

functional. 𝜇(ℎloc) and 𝑒(ℎloc) both show a constant behaviour, except for the PBE values (𝛼 = 0) 

for which the polaron binding energy almost vanishes. This behaviour is typically observed for 

charge transition levels of defects in crystalline materials and redox levels in aqueous solution.9-12 

However, while 𝜇(ℎloc) and 𝑒(ℎloc), remain constant with 𝛼, the valence (conduction) band edge 

moves to lower (higher) energies linearly.13 Therefore, for large values of 𝛼, polaron levels are 

found to be more detached from the respective band edge, a result contrasting with available 

measurements14 and previous theoretical estimates.28  At variance, at the PBE level, polaronic 

structures are found to be only marginally stabilized, as calculated binding energies are below 10 

meV. Therefore, the present results indicate the particular care should be devoted when choosing a 

functional to study the energetics of polarons. In this regard, the choice of a Koopman compliant 

hybrid functional has proved to provide excellent results in the accurate determination of band gaps 

and defect levels for semiconductors and insulators.15, 16 
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Figure S1. 𝜇(ℎ𝑙𝑜𝑐) (purple dotted) and 𝜇(𝑒𝑙𝑜𝑐) (green dashed) the fraction α of Fock exchange, 

aligned through the average electrostatic potential and referred to the VBM calculated at the PBE 

level (α = 0); 𝜀𝑉 and 𝜀𝐶 are also reported as solid black lines. 

 

2. Benchmark of supercell size 

In order to check the accuracy of our approach, we calculate 𝐸𝑠
+ (cf. main text) for supercells of (i) 

larger size and (ii) different shapes. These calculations are performed for the three different models 

described in the main text. Results are reported in Table S1. For structural model 1, the difference in 

the calculated values of 𝐸𝑠
+ is negligible (8 meV), when increasing the supercell size from 2×2×2 to 

2×2×4. Since the charge in this model is essentially delocalized, we do not consider any other 

supercell. In contrast, for structural model 2, we consider 2×2×4, 2×2×6, 2×2×8, and 4×4×4 

supercells and we calculate 𝐸𝑠
+ ranging from 54 meV to 197 meV, with an average of 142 meV, in 

line with the value reported in the main text. We note that the structures are constructed from 

periodic replicas of a configuration achieved with a molecular dynamics simulation performed on 



5 
 

the 2×2×2 supercell. Therefore, the small differences encountered might even reduce if employing 

structural configurations achieved from molecular dynamics for each supercell. Finally, we consider 

structural model 3 for which we observe a continuous increase of 𝐸𝑠
+ from the 2×2×2 supercell to 

the 2×2×8 one. Since this model has been artificially constructed to enhance charge separation, the 

calculated 𝐸𝑠
+ grows as the supercell size is increased along the tetragonal axis. However, we notice 

that, while 𝐸𝑠
+ becomes larger, so does the energy difference among neutral model 1 and 3. In fact, 

since more methylammonium cations are artificially orientated, neutral model 3 becomes more 

energetically unfavourable and the increased 𝐸𝑠
+ does not compensate for it.   

  

 Table S1. Values of stabilization energies (meV) of the hole polaron calculated for different 

supercells of the considered structural models (cf. main text) of tetragonal CH3NH3PbI3. 

Supercell Structure 1 Structure 2 Structure 3 

2x2x2 

2x2x4 

2x2x6 

2x2x8 

4x4x4 

13 

20 

- 

- 

- 

140 

54 

197 

192 

132 

110 

174 

238 

331 

- 

 

3. Calculation of the energy barriers 

The coordinates of the two neighbouring polaronic structures 𝑅𝑖 and 𝑅𝑗  are linearly interpolated17 

according to the following expression: 𝑅𝜆 = 𝜆𝑅𝑖 + (1 − 𝜆)𝑅𝑗 where 𝜆 is the coupling parameter 

connecting the two models. For the hole polaron, we consider five intermediate values of 𝜆 (0.25, 

0.375, 0,5, 0.675, 0.75), and three values (0.25, 0.5, 0.75) for the electron polaron. The achieved 

structures are then allowed to undergo structural relaxation in which the organic cations are free to 

relax. In contrast, the positions of the atoms belonging to the inorganic sub-lattice are fixed. In this 
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way, we avoid unstable and highly energetic structures due to linear interpolation of the coordinates 

of the freely-rotating organic cations. In order to test the accuracy of the employed method, we 

perform an additional nudge elastic band calculation (NEB) for the electron polaron. We consider 

the same initial and final model used for the linear transit calculation and we provide the structural 

configuration at 𝜆 = 0.5, as a starting guess of the intermediate structure. The calculation is carried 

out with the improved tangent (IT) method,18 considering five replicas between the initial and final 

configurations. The energy barrier achieved with the NEB method is 110 meV, a value larger by 

only 20 meV than that calculated with the linear transit method reported in the main text, thus 

ensuring that the discussion is not affected by the use of a simplified computational protocol. 

Inspection of the wave-function of the saddle point confirms that the transition state is a band-like 

semi-localized state. 

4. Time-evolution of CH3NH3
+ orientation for regular and “heavy” CH3NH3PbI3 

We here analyse the evolution of the CH3NH3
+ orientation during the molecular dynamics (MD) 

simulation in presence of an extra positive charge for (i) regular CH3NH3PbI3 and (ii) for a system 

in which hydrogen atoms of the CH3NH3
+ cations are substituted with artificial isotopes of atomic 

mass equal to 12 atomic mass units. We consider the same CH3NH3
+ cation picked from structural 

model 1 and we follow the time-evolution of the of 𝜙 angle (cf. main text for definition) during the 

MD simulations for both system. The results shown in Fig. S2 clearly highlight the different behaviour of 

the normal and weighted cation. In fact, the former is found to undergo large fluctuations in the 

orientation, evidenced by the wide fluctuations of 𝜙 angle during the MD. At variance, only moderate 

fluctuations of the 𝜙 angle are observed for the weighted CH3NH3
+ cation. The same considerations 

are found to apply also for the 𝜃 angle (not shown). 
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Figure S2. Time-evolution of the 𝜙 angle of regular (blue dotted) and “heavy”(red solid) CH3NH3
+ 

in CH3NH3PbI3 for a selected CH3NH3
+ cation. 

 

5.Time-dependent orientation of CH3NH3
+ in CH3NH3PbI3 and of CH(NH2)2

+ in 

CH(NH2)2PbI3 

We here report on the comparison between the time-evolution of the orientation for CH3NH3
+ in 

CH3NH3PbI3 and of CH(NH2)2
+ in CH(NH2)2PbI3. For both systems, we carry out a molecular 

dynamics simulation of the neutral system at room temperature at the PBE level of theory.8 The 

sampling of the NVT ensemble is ensured by the use of a Nosé-Hoover thermostat18, 19 and simulations 

are carried out for 12 picoseconds. For CH3NH3PbI3, we consider structural model 1 (cf. main text), 

as the starting point of the MD simulation. For CH(NH2)2PbI3, we consider a 288-atoms 2×2×2 

supercell at the experimental density.20  

Then, we analyse the time-dependent orientation of the cations, by following the time-evolution of 

the average values for 𝜙 and 𝜙 angles. For the CH(NH2)2
+ cation, the angle 𝜙 is formed by the CH 
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axis with the ab plane and the angle 𝜃 is given by the projection of the CH axis on the ab plane and the a 

axis. The results depicted in Fig. S3 highlight a remarkable difference between CH3NH3
+ and 

CH(NH2)2
+, with the latter being capable of larger reorientations in a shorter time. 

 

 

Figure S3. Time-evolution of the average value of 𝜙 (a) and 𝜃 (b) angle for CH3NH3
+ in 

CH3NH3PbI3 (blue dashed lines) and CH(NH2)2
+ in CH(NH2)2PbI3 (orange dotted). 
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