
Supporting Architectural Decision Making on
Data Management in Microservice Architectures

Evangelos Ntentos1, Uwe Zdun1, Konstantinos Plakidas1, Daniel Schall2, Fei Li2,
and Sebastian Meixner2

1 University of Vienna, Faculty of Computer Science, Research Group Software
Architecture, Austria

firstname.lastname@univie.ac.at
2 Siemens Corporate Technology, Vienna, Austria

firstname.lastname@siemens.com

Abstract. Today many service-based systems follow the microservice
architecture style. As microservices are used to build distributed sys-
tems and promote architecture properties such as independent service
development, polyglot technology stacks including polyglot persistence,
and loosely coupled dependencies, architecting data management is cru-
cial in most microservice architectures. Many patterns and practices for
microservice data management architectures have been proposed, but
are today mainly informally discussed in the so-called “grey literature”:
practitioner blogs, experience reports, and system documentations. As
a result, the architectural knowledge is scattered across many knowl-
edge sources that are usually based on personal experiences, inconsistent,
and, when studied on their own, incomplete. In this paper we report
on a qualitative, in-depth study of 35 practitioner descriptions of best
practices and patterns on microservice data management architectures.
Following a model-based qualitative research method, we derived a formal
architecture decision model containing 325 elements and relations. Com-
paring the completeness of our model with an existing pattern catalog, we
conclude that our architectural decision model substantially reduces the
effort needed to sufficiently understand microservice data management
decisions, as well as the uncertainty in the design process.

1 Introduction

Microservice architectures [14,20] have emerged from established practices in
service-oriented computing (cf. [15,18,21]). The microservices approach empha-
sizes business capability-based and domain-driven design, development in inde-
pendent teams, cloud-native technologies and architectures, polyglot technology
stacks including polyglot persistence, lightweight containers, loosely coupled ser-
vice dependencies, and continuous delivery (cf. [12,14,20]). Some of these tenets
introduce substantial challenges for the data management architecture. Notably,
it is usually advised to decentralize all data management concerns. Such an archi-
tecture requires, in addition to the already existing non-trivial design challenges



2 Authors Suppressed Due to Excessive Length

intrinsic in distributed systems, sophisticated solutions for data integrity, data
querying, transaction management, and consistency management [14,20,15,18].

Many authors have written about microservice data management and various
attempts to document microservice patterns and best practices exist [18,8,12,15].
Nevertheless, most of the established practices in industry are only reported in
the so-called “grey literature”, consisting of practitioner blogs, experience reports,
system documentations, etc. In most cases, each of these sources documents a few
existing practices well, but usually they do not provide systematic architectural
guidance. Instead the reported practices are largely based on personal experience,
often inconsistent, and, when studied on their own, incomplete. This creates
considerable uncertainty and risk in architecting microservice data management,
which can be reduced either through substantial personal experience or by a
careful study of a large set of knowledge sources. Our aim is to complement such
knowledge sources with an unbiased, consistent, and more complete view of the
current industrial practices than readily available today.

To reach this goal, we have performed a qualitative, in-depth study of 35
microservice data practice descriptions by practitioners containing informal
descriptions of established practices and patterns in this field. We have based our
study on the model-based qualitative research method described in [19]. It uses
such practitioner sources as rather unbiased (from our perspective) knowledge
sources and systematically codes them through established coding and constant
comparison methods [6], combined with precise software modeling, in order to
develop a rigorously specified software model of established practices, patterns,
and their relations. This paper aims to study the following research questions:

– RQ1 What are the patterns and practices currently used by practitioners
for supporting data management in a microservice architecture?

– RQ2 How are the current microservice data management patterns and
practices related? In particular, which architectural design decisions (ADDs)
are relevant when architecting microservice data management?

– RQ3 What are the influencing factors (i.e., decision drivers) in architecting
microservice data management in the eye of the practitioner today?

This paper makes three major contributions. First, we gathered knowledge
about established industrial practices and patterns, their relations, and their de-
cision drivers in the form of a qualitative study on microservice data management
architectures, which included 35 knowledge sources in total. Our second contribu-
tion is the codification of this knowledge in form of a reusable architectural design
decision (ADD) model in which we formally modeled the decisions based on a
UML2 meta-model. In total we documented 9 decisions with 30 decision options
and 34 decision drivers. Finally, we evaluated the level of detail and completeness
of our model to support our claim that the chosen research method leads to a
more complete treatment of the established practices than methods like informal
pattern mining. For this we compared to the by far most complete of our pool of
sources, the microservices.io patterns catalog [18], and are able to show that our
ADD model captures 210% more elements and relations.



Data Management in Microservice Architectures 3

The remainder of this paper is organized as follows: In Section 2 we compare
to the related work. Section 3 explains the research methods we have applied
in our study and summarizes the knowledge sources. Section 4 describes our
reusable ADD model on microservice data management. Section 5 compares our
study with microservices.io in terms of completeness. Finally, Section 6 discusses
the threats to validity of our study and Section 7 summarizes our findings.

2 Related Work

A number of approaches that study microservice patterns and best practices
exist: The microservices.io collection by Richardson [18] addresses microservice
design and architecture practices. As the work contains a category on data
management, many of them are included in our study. Another set of patterns on
microservice architecture structures has been published by Gupta [8], but those
are not focused on data management. Microservice best practices are discussed
in [12], and similar approaches are summarized in a recent mapping study [15].
So far, none of those approaches has been combined with a formal model; our
ADD model complements these works in this sense.

Decision documentation models that promise to improve the situation exist
(e.g. for service-oriented solutions [21], service-based platform integration [13],
REST vs. SOAP [16], and big data repositories [7]). However, this kind of research
does not yet encompass microservice architectures, apart from our own prior
study on microservice API quality [19]. The model developed in our study can be
classified as a reusable ADD model, which can provide guidance on the application
of patterns [21]. Other authors have combined decision models with formal view
models [9]. We apply such techniques in our work, but also extend them with a
formal modeling approach based on a qualitative research method.

3 Research Method and Modelling Tool

Research Method. This paper aims to systematically study the established
practices in the field of architecting data management in microservice architec-
tures. We follow the model-based qualitative research method described in [19].
It is based on the established Grounded Theory (GT) [6] qualitative research
method, in combination with methods for studying established practices like
pattern mining (see e.g. [4]) and their combination with GT [10]. The method
uses descriptions of established practices from the authors’ own experiences as a
starting point to search for a limited number of well-fitting, technically detailed
sources from the so-called “grey literature” (e.g., practitioner reports, system
documentations, practitioner blogs, etc.). These sources are then used as unbiased
descriptions of established practices in the further analysis. Like GT, the method
studies each knowledge source in depth. It also follows a similar coding process,
as well as a constant comparison procedure to derive a model. In contrast to
classic GT, the research begins with an initial research question, as in Charmaz’s
constructivist GT [3]. Whereas GT typically uses textual analysis, the method



4 Authors Suppressed Due to Excessive Length

uses textual codes only initially and then transfers them into formal software
models (hence it is model-based).

The knowledge-mining procedure is applied in many iterations: we searched
for new knowledge sources, applied open and axial coding [6] to identify candidate
categories for model elements and decision drivers, and continuously compared
the new codes with the model designed so far to incrementally improve it. A
crucial question in qualitative methods is when to stop this process. Theoretical
saturation [6] has attained widespread acceptance for this purpose. We stopped
our analysis when 10 additional knowledge sources did not add anything new to
our understanding of the research topic. While this is a rather conservative oper-
ationalisation of theoretical saturation (i.e., most qualitative research saturates
with far fewer knowledge sources that add nothing new), our study converged
already after 25 knowledge sources. The sources included in the study are sum-
marized in Table 1. Our search for sources was based on our own experience, i.e.,
tools, methods, patterns and practices we have access to, worked with, or studied
before. We also used major search engines (e.g., Google, Bing) and topic portals
(e.g., InfoQ) to find more sources.
Modelling Tool Implementation. To create our decision model, we used our
existing modeling tool CodeableModels3, a Python implementation for precisely
specifying meta-models, models, and model instances in code. Based on Code-
ableModels, we specified meta-models for components, activities, deployments
and microservice-specific extensions of those, as outlined above. In addition,
we realized automated constraint checkers and PlantUML code generators to
generate graphical visualizations of all meta-models and models.

4 Reusable ADD model for data management in
microservice architectures

In this section, we describe the reusable ADD model derived from our study 4.
All elements of the model are emphasized and all decision drivers derived from
our sources in Table 1 are slanted. It contains one decision category, Data
Management Category, relating five top-level decisions, as illustrated in Fig. 1.
These decisions need to be taken for the decision contexts all instances of an
API, Service instances, or the combination of Data Objects and Service instances,
respectively. Note that all elements of our model are instances of a meta-model
(with meta-classes such as Decision, Category, Pattern, AND Combined Group,
etc.), which appear in the model descriptions. Each of them is described in detail
below (some elements may be relevant for more than one decision, but this has
been omitted from the figures for ease of presentation).

Microservice Database Architecture (Fig.2). Since most software relies on
efficient data management, database architecture is a central decision in the design

3 https://github.com/uzdun/CodeableModels
4 Replication package can be found at: https://bit.ly/2EKyTnL

https://github.com/uzdun/CodeableModels
https://bit.ly/2EKyTnL


Data Management in Microservice Architectures 5

Table 1. Knowledge Sources Included in the Study

Name Description Reference

S1 2 Intro to Microservices: Dependencies and Data Sharing https://bit.ly/2YTnolQ

S2 1 Pattern: Shared database https://bit.ly/30L1PW2

S3 4 Enterprise Integration Patterns https://bit.ly/2Wr1OHC

S4 2 Design Patterns for Microservices https://bit.ly/2EBmIcQ

S5 2 6 Data Management Patterns for Microservices https://bit.ly/2K3YMTb

S6 1 Pattern: Database per service https://bit.ly/2EDDici

S7 2 Transaction Management in Microservices https://bit.ly/2XSKhWL

S8 2 A Guide to Transactions Across Microservices https://bit.ly/2WpQN9j

S9 2 Saga Pattern – How to implement business transactions using Mi-
croservices

https://bit.ly/2WpRBuR

S10 2 Saga Pattern and Microservices architecture https://bit.ly/2HF6G3G

S11 2 Patterns for distributed transactions within a microservices architec-
ture

https://bit.ly/2QqZgUx

S12 2 Data Consistency in Microservices Architecture https://bit.ly/2K5G79y

S13 2 Event-Driven Data Management for Microservices https://bit.ly/2WlSKUs

S14 1 Pattern: Saga https://bit.ly/2WpS549

S15 2 Managing Data in Microservices https://bit.ly/2HYIvvY

S16 2 Event Sourcing, Event Logging An essential Microservice Pattern https://bit.ly/2QusIcb

S17 1 Pattern: Event sourcing https://bit.ly/2K62TOn

S18 2 Microservices With CQRS and Event Sourcing https://bit.ly/2JK2IZQ

S19 2 Microservices Communication: How to Share Data Between Microser-
vices

https://bit.ly/2HCR94u

S20 2 Building Microservices: Inter-Process Communication in a Microser-
vices Architecture

https://bit.ly/30OVB7U

S21 1 Pattern: Command Query Responsibility Segregation (CQRS) https://bit.ly/2X80LcM

S22 3 Data considerations for microservices https://bit.ly/2WrLeav

S23 2 Preventing Tight Data Coupling Between Microservices https://bit.ly/2WptQmJ

S24 3 Challenges and solutions for distributed data management https://bit.ly/2wp5YkO

S25 3 Communication in a microservice architecture https://bit.ly/2X7UDkT

S26 2 Microservices: Asynchronous Request Response Pattern https://bit.ly/2WjAFqb

S27 2 Patterns for Microservices Sync vs. Async https://bit.ly/2Ezhsqg

S28 2 Building Microservices: Using an API Gateway https://bit.ly/2EA3AfA

S29 2 Microservice Architecture: API Gateway Considerations https://bit.ly/2YUKWqr

S30 1 Pattern: API Composition https://bit.ly/2WlVqS0

S31 1 Pattern: Backends For Frontends https://bit.ly/2X9I3kQ

S32 3 Command and Query Responsibility Segregation (CQRS) pattern https://bit.ly/2wltdMq

S33 2 Introduction to CQRS https://bit.ly/2HY0sLm

S34 2 CQRS https://bit.ly/2JKI2Rz

S35 2 Publisher-Subscriber pattern https://bit.ly/2JGtqCx

1 denotes a source taken from microservices.io
2 practitioner blog
3 Microsoft technical guide
4 book chapter

https://bit.ly/2YTnolQ
https://bit.ly/30L1PW2
https://bit.ly/2Wr1OHC
https://bit.ly/2EBmIcQ
https://bit.ly/2K3YMTb
https://bit.ly/2EDDici
https://bit.ly/2XSKhWL
https://bit.ly/2WpQN9j
https://bit.ly/2WpRBuR
https://bit.ly/2HF6G3G
https://bit.ly/2QqZgUx
https://bit.ly/2K5G79y
https://bit.ly/2WlSKUs
https://bit.ly/2WpS549
https://bit.ly/2HYIvvY
https://bit.ly/2QusIcb
https://bit.ly/2K62TOn
https://bit.ly/2JK2IZQ
https://bit.ly/2HCR94u
https://bit.ly/30OVB7U
https://bit.ly/2X80LcM
https://bit.ly/2WrLeav
https://bit.ly/2WptQmJ
https://bit.ly/2wp5YkO
https://bit.ly/2X7UDkT
https://bit.ly/2WjAFqb
https://bit.ly/2Ezhsqg
https://bit.ly/2EA3AfA
https://bit.ly/2YUKWqr
https://bit.ly/2WlVqS0
https://bit.ly/2X9I3kQ
https://bit.ly/2wltdMq
https://bit.ly/2HY0sLm
https://bit.ly/2JKI2Rz
https://bit.ly/2JGtqCx


6 Authors Suppressed Due to Excessive Length

Fig. 1. Reusable ADD Model on Microservice Data Management: Overview

of a microservice architecture. Quality attributes such as performance, reliability,
coupling, and scalability, need to be carefully considered in the decision making
process. The simplest decision option is to choose service stores no persistent
data, which is applicable only for services whose functions are performed solely on
transient data, like pure calculations or simple routing functions. By definition, a
microservice should be autonomous, loosely coupled and able to be developed,
deployed, and scaled independently [12]. This is ensured by the Database per
Service pattern [18], which we encountered, either directly or implicitly, in 33 out
of 35 sources: each microservice manages its own data, and data exchange and
communications with other services are realized only through a set of well-defined
APIs. When choosing this option, transaction management between services
becomes more difficult, as the data is distributed across the services; for the same
reason making queries could become a challenge, too. Thus the optional next
decisions on Microservice Transaction Management (see sources [S7, S8, S11]) and
Realization of Queries [18] should be considered (both explained below). The use
of this pattern may also require a next decision on the Need for Data Composition,
Transformation, or Management. Another option, which is recommended only for
special cases (e.g., when a group of services always needed to share a data object),
is to use a Shared Database [18](see sources [S1, S19]): all involved services persist
data in one and the same database.

There are a number of criteria that determine the outcome of this decision.
Applying the Database per Service pattern in a system results in more loosely
coupled microservices. This leads to better scalability than a Shared Database
closer to the service with only transient data, since microservices can scale up
individually. Especially for low loads this can reduce performance, as additional
distributed calls are needed to get data from other services and establish data
consistency. The pattern’s impact on performance is not always negative: for
high loads a Shared Database can become a bottleneck, or database replication
is needed. On the other hand, Shared Database makes it easier to manage
transactions and implement queries and joins; hence the follow-on decisions



Data Management in Microservice Architectures 7

Fig. 2. Microservice Database Architecture Decision

for Database per Service mentioned above. Furthermore, Database per Service
facilitates polyglot persistence. The Shared Database option could be viable only
if the integration complexity or related challenges of Database per Service-based
services become too difficult to handle; also, operating a single Shared Database
is simpler. Though Shared Database ensures data consistency (since any changes
to the data made in a single service are made available to all services at the time
of the database commit), it would appear to completely eliminate the targeted
benefits of loose coupling. This negatively affects both the development and
runtime coupling and the potential scalability.

Structure of API Presented to Clients (Fig.3). When software is decom-
posed into microservices, many major challenges lie in the structure of the API.
This topic has been extensively studied in our prior and ongoing work on API
patterns [19]; here we concentrate only on those decision options relevant to
data management. Many issues in microservice design are resolved at the API
level, such as routing requests to the appropriate microservice, the distribution
of multiple services, and the aggregation of results. The simplest option for
structuring a system is Clients Access Microservices Directly : all microservices
are entry points of the system, and clients can directly request the service they
need (each service offers its own API endpoint to clients). However, all studied
sources recommend or assume the use of the API Gateway pattern [18] as a
common entry point for the system, through which all requests are routed. An



8 Authors Suppressed Due to Excessive Length

alternative solution, for servicing different types of clients (e.g., mobile vs. desk-
top clients) is the Backends for Frontends pattern variant [18], which offers a
fine-grained API for each specific type of client. An API Gateway could also be
realized as an API Composition Service [18], that is a service which invokes other
microservices. Furthermore an API Gateway can have Additional centralized
data-related functions (shown in Fig. 3 and discussed below as decision drivers).

The main driver affecting this decision is that API Gateways (and thus API
Composition Service and Backends for Frontends in a more limited capacity) can
provide a number of centralized services. They can work as a proxy service to
route requests to the appropriate microservice, convert or transform requests or
data and deliver the data at the granularity needed by the client, and provide
the API abstractions for the data needed by the client. In addition, they can
handle access management to data (i.e., authentication/authorization), serve
as a data cache, and handle partial failures, e.g. by returning default or cached
data. Although its presence increases the overall complexity of the architecture
since an additional service needs to be developed and deployed, and increases
response time due to the additional network passes through it, an API Gateway
is generally considered as an optimal solution in a microservice-based system.
Clients Access Microservices Directly makes it difficult to realize such centralized
functions. A sidecar architecture [1] might be a possible solution, but if the
service should fail, many functions are impeded, e.g. caching or handling partial
failures. The same problem of centralized coordination also applies to a lesser
extent to Backends for Frontends (centralization in each API Gateway is still
possible). Use API Gateway to cache data reduces the response time, returning
cached data faster, and increases data availability : if a service related to specific
data is unavailable, it can return its cached data.

Data Sharing Between Microservices (Fig.4). Data sharing must be con-
sidered for each data object that is shared between at least two microservices.
Before deciding how to share data, it is essential to identify the information to be
shared, its update frequency, and the primary provider of the data. The decision
must ensure that sharing data does not result in tightly coupled services. The
simplest option is to choose services share no data, which is theoretically optimal
in ensuring loose coupling, but is only applicable for rather independent services
or those that require only transient data. Another option, already discussed above,
is a Shared Database. In this solution services share a common database; a service
publishes its data, and other services can consume it when required. A number of
viable alternatives to the Shared Database exist. Synchronous Invocations-Based
Data Exchange is a simple option for sharing data between microservices. Request-
Response Communication [11] is a data exchange pattern in which a service sends
a request to another service which receives and processes it, ultimately returning
a response message. Another typical solution that is well suited to achieving
loose coupling is to use Asynchronous Invocations-Based Data Exchange. Unlike
Request-Response Communication, it removes the need to wait for a response,
thereby decoupling the execution of the communicating services. Implementation



Data Management in Microservice Architectures 9

Fig. 3. Structure of API Presented to Clients Decision

of asynchronous communication leads to Eventual Consistency [17]. There are sev-
eral possible Asynchronous Data Exchange Mechanisms: Publish/Subscribe [11],
in which services can subscribe to an event; use of a Messaging [11] middleware;
Data Polling, in which services periodically poll for data changes in other services;
and the Event Sourcing [18] pattern that ensures that all changes to application
state are stored as a sequence of events.

The choices in this decision are determined by a number of factors. With a
Shared Database, the system tends to be more tightly coupled and less scalable.
Conversely, an Asynchronous Data Exchange Mechanism ensures that the services
are more loosely coupled, since they interact mostly via events, use message
buffering for queuing requests until processed by the consumer, support flexible
client-service interactions, or provide an explicit interprocess communication
mechanism. It has minimal impact on quality attributes related to network
interactions, such as latency and performance. However, operational complexity is
negatively impacted, since an additional service must be configured and operated.
On the other hand, a Request-Response Communication mechanism does not
require a broker, resulting in a less complex system architecture. Despite this, in a



10 Authors Suppressed Due to Excessive Length

Fig. 4. Data Sharing Between Microservices Decision

Request-Response Communication-based system, the communicating services are
more tightly coupled and the communication is less reliable, as they must both
be running until the exchange is completed. Applying the Event Sourcing pattern
increases reliability, since events are published whenever state changes, and the
system is more loosely coupled. Patterns supporting message persistence such as
Messaging, Event Sourcing, and messaging-based Publish/Subscribe increase the
reliability of message transfers and thus the availability of the system.

Microservice Transaction Management (Fig.5). One common problem in
microservice-based systems is how to manage distributed transactions across
multiple services. As explained above, the Database per Service pattern often
introduces this need, as the relevant data objects of a transaction are scattered
across different services and their databases. Issues concerning transaction atom-
icity and isolation of user actions for concurrent requests need to be dealt with.
One of the easiest and most efficient options to solve the problem of distributed
transactions is to completely avoid them. This can be done through a Shared
Database (with all its drawbacks in a microservice architecture) or by service re-
design so that all data objects of the transaction reside in one microservice. If this
is not possible, another option is to apply the Saga Transaction Management [18]
pattern, where each transaction updates data within a single service, in a se-



Data Management in Microservice Architectures 11

quence of local transactions [S9]; every step is triggered only if the previous one
has been completed. The implementation requires an additional decision for the
Saga Coordination Architecture. There are two possible options for implementing
this pattern: Event/Choreography Coordination and Command/Orchestration
Coordination [S9]. Event/Choreography Coordination is a distributed coordination
approach where a service produces and publishes events, that are listened to
by other services which then decide their next action. Command/Orchestration
Coordination is a centralized approach where a dedicated service informs other
involved services, through a command/reply mechanism, what operation should
be performed. Moreover, Saga Transaction Management supports failure analysis
and handling using Event Log and Compensation Action practices [S12]. Imple-
menting this pattern leads also to Eventual Consistency. Another typical option
for implementing a transaction across different services is to apply the Two-Phase
Commit Protocol [2] pattern: in the first phase, services which are part of the
transaction prepare for commit and notify the coordinator that they are ready
to complete the transaction; in the second phase, the transaction coordinator
issues a commit or a rollback to all involved microservices. Here, the Rollback
[S7] practice is used for handling failed transactions.

There are a number of criteria that need to be considered in this decision. When
implementing the Saga Transaction Management pattern, the Event/Choreography
Coordination option results in a more loosely coupled system where the services
are more independent and scalable, as they have no direct knowledge of each
other. On the other hand, the Command/Orchestration Coordination option has
its own advantages: it avoids cyclic dependencies between services, centralizes the
orchestration of the distributed transaction, reduces the participants’ complexity,
and makes rollbacks easier to manage. The Two-Phase Commit Protocol pattern
is not a typical solution for managing distributed transactions in microservices,
but it provides a strong consistency protocol, guarantees atomicity of transac-
tions, and allows read-write isolation. However, it can significantly impair system
performance in high load scenarios.

Realization of Queries (Fig.6). For every data object and data object com-
bination in a microservice-based system, and its services, it must be considered
whether queries are needed. As data objects may reside in different services,
e.g., as a consequence of applying Database per Service, queries may be more
difficult to design and implement than when utilizing a single data source. The
simplest option is of course to implement no queries in the system, but this
is often not realistic. An efficient option for managing queries is to apply the
Command-Query-Responsibility-Segregation (CQRS) pattern [5]. CQRS is a pro-
cess of separation between read and write operations into a “command” and a
“query” side. The “command” side manages the “create”, “update” and “delete”
operations; the “query” side segregates the operations that read data from the
“update” operation utilizing separated interfaces. This is very efficient if multiple
operations are performed in parallel on the same data. The other option is to
implement queries in a API Composition Service or in the API Gateway.



12 Authors Suppressed Due to Excessive Length

Fig. 5. Microservice Transaction Management Decision

A number of criteria determine the outcome of this decision. The Command-
Query-Responsibility-Segregation (CQRS) option increases scalability since it
supports independent horizontal and vertical scaling, improves security since
the read and write responsibilities are separated. It also increases availability :
when the “command” side is down the last data update remains available on the
“query” side. Despite these benefits, using CQRS has some drawbacks: it adds
significant complexity, and is not suitable to every system. On the other hand,
implementing queries in an API Composition Service or API Gateway introduces
an overhead and decreases performance, entails the risk of reduced availability,
and makes it more difficult to ensure transactional data consistency.

5 Evaluation

We used our model-based qualitative research method described in Section 3
because informal pattern mining, or just reporting the author’s own experience in
a field (which is the foundation of most of the practitioner sources we encountered),
entail the high risk of missing important knowledge elements or relations between
them. To evaluate the effect of our method, we measure the improvement yielded
by our study compared to the individual sources; specifically microservices.io [18],
the by far most complete and detailed of our sources. This is an informally
collected pattern catalog based on the author’s experience and pattern mining.
As such, it is a work with similar aims to this study. Of course, our formal model
offers the knowledge in a much more systematically structured fashion; whereas



Data Management in Microservice Architectures 13

Fig. 6. Realization of Queries Decision

in the microservices.io texts the knowledge is often scattered throughout the text,
requiring careful study of the entire text to find a particular piece of knowledge.
For this reason, we believe the formal ADD model to be a useful complement to
this type of sources, even if the two contain identical information.

For evaluation of our results, we studied the microservices.io texts in detail a
second time after completing the initial run of our study, to compare which of the
model elements and relations we found are also covered by microservices.io. Some
parts of this comparison might be unfair in the sense that the microservices.io
author does not present a decision model and covers the topic in a broad manner,
so that some elements or relations may have been excluded on purpose. In
addition, there may be some differences in granularity between microservices.io
and our model, but we tried to maintain consistency with the granularity in
the analysis and coding during the GT process. Considering the relatively high
similarity of those microservices.io parts that overlap with the results of our
study, and the general goal of pattern mining of representing the current practice
in a field correctly and completely, we nevertheless believe that our assumption
that the two studies are comparable is not totally off.

Table 2 shows the comparison for all element and relation types in our
model. Only 105 of the 325 elements and relations in our model are contained
in microservices.io: a 210% improvement in completeness has resulted from
systematically studying and formally modeling the knowledge in the larger set
of knowledge sources summarized in Table 1. Apart from the trivial Categories
element type, most elements and relation types display high improvement, most
notably, the Decision driver to patterns/practices relations. That is mainly because
design options (and consequently their relations) are missing entirely. Apart from
Categories, only the Domain model elements type shows no improvement, because
we only considered those domain elements directly connected to our decisions



14 Authors Suppressed Due to Excessive Length

here. In the larger context of our work, we use a large and detailed microservice
domain object model, but as there is nothing comparable in the microservice
patterns, we only counted the directly related contexts here (else the improvement
of our model would be considerably higher).

Table 2. Comparison of number of found elements and relation types our ADD model
and microservices.io

Element and Relation Types ADD Model microservices.io Improvement

Domain model elements 4 4 0%

Decisions 9 4 125%

Decision context relations 6 3 100%

Patterns/practices 32 15 113%

Decision to option relations 30 13 131%

Relations between patterns/practices 10 4 150%

Patterns/practices to decision relations 12 4 200%

Categories 1 1 0%

Category to decision relations 5 3 67%

Unique decision drivers 34 17 100%

Decision drivers to patterns/practices relations 182 37 392%

Total number of elements 325 105 210%

6 Threats to Validity

To increase internal validity we used practitioner reports produced independently
of our study. This avoids bias, for example, compared to interviews in which the
practitioners would be aware that their answers would be used in a study. This
introduces the internal validity threat that some important information might
be missing in the reports, which could have been revealed in an interview. We
tried to mitigate this threat by looking at many more sources than needed for
theoretical saturation, as it is unlikely that all different sources miss the same
important information.

The different members of the author team have cross-checked all models
independently to minimize researcher bias. The threat to internal validity that
the researcher team is biased in some sense remains, however. The same applies
to our coding procedure and the formal modeling: other researchers might have
coded or modeled differently, leading to different models. As our goal was only
to find one model that is able to specify all observed phenomena, and this was
achieved, we consider this threat not to be a major issue for our study.

The experience and search-based procedure for finding knowledge sources
may have introduced some kind of bias as well. However, this threat is mitigated
to a large extent by the chosen research method, which requires just additional
sources corresponding to the inclusion and exclusion criteria, not a specific
distribution of sources. Note that our procedure is in this regard rather similar



Data Management in Microservice Architectures 15

to how interview partners are typically found in qualitative research studies in
software engineering. The threat remains that our procedures introduced some
kind of unconscious exclusion of certain sources; we mitigated this by assembling
an author team with many years of experience in the field, and performing very
general and broad searches. Due to the many included sources, it is likely our
results can be generalized to many kinds of architecture requiring microservice
data management. However, the threat to external validity remains that our
results are only applicable to similar kinds of microservice architectures. The
generalization to novel or unusual microservice architectures might not be possible
without modification of our models.

7 Conclusion

In this paper, we have reported on an in-depth qualitative study of existing prac-
tices in industry for data management in microservice architectures. The study
uses a model-based approach to provide a systematic and consistent, reusable
ADD model which can complement the rich literature of detailed descriptions of
individual practices by practitioners. It aims to provide an unbiased and more
complete treatment of industry practices. To answer RQ1 we have found in 32
common patterns and established practices. To answer RQ2, we have grouped 5
top-level decisions in the data management category and documented in total 9
decisions with 6 decision context relations. Further we were able to document 30
decision to option relations and 22 (10+12) further relations between patterns
and practices and decisions. Finally, to answer RQ3, we have found 34 unique
decision drivers with 182 links to patterns and practices influencing the decisions.
The 325 elements in our model represent, according to our rough comparison
to microservices.io, an 210% improvement in completeness. We can conclude
from this that to get a full picture of the possible microservice data management
practices, as conveyed in our ADD model, many practical sources need to be
studied, in which the knowledge is scattered in substantial amounts of text. Al-
ternatively, substantial personal experiences need to be made to gather the same
level of knowledge. Both require a tremendous effort and run the risk that some
important decisions, practices, relations, or decision drivers might be missed. Our
rough evaluation underlines that the knowledge in microservice data management
is complex and scattered, and existing knowledge sources are inconsistent and
incomplete, even if they attempt to systematically report best practices (such as
microservices.io, compared to here). A systematic and unbiased study of many
sources, and an integration of those sources via formal modeling, as suggested
in this paper, can help to alleviate such problems and provide a rigorous and
unbiased account of the current practices in a field (like presently on microservice
data management practices).

Acknowledgments. This work was supported by: FFG (Austrian Research
Promotion Agency) project DECO, no. 864707; FWF (Austrian Science Fund)
project ADDCompliance: I 2885-N33



16 Authors Suppressed Due to Excessive Length

References

1. Sidecar pattern (2017), https://docs.microsoft.com/en-us/azure/

architecture/patterns/sidecar

2. Al-houmaily, Y., Samaras, G.: Two-phase commit. In: Encyclopedia of Database
Systems, pp. 3204–3209 (2009)

3. Charmaz, K.: Constructing grounded theory. Sage (2014)
4. Coplien, J.: Software Patterns: Management Briefings. SIGS, New York (1996)
5. Fowler, M.: Command and Query Responsibility Segregation (CQRS) pattern

(2011), https://martinfowler.com/bliki/CQRS.html
6. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for

Qualitative Research. de Gruyter (1967)
7. Gorton, I., Klein, J., Nurgaliev, A.: Architecture knowledge for evaluating scalable

databases. In: Proc. of the 12th Working IEEE/IFIP Conference on Software
Architecture. pp. 95–104 (2015)

8. Gupta, A.: Microservice design patterns. http://blog.arungupta.me/

microservice-design-patterns/ (2017)
9. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-

tecture decisions. J. Syst. Softw. 85(4), 795 – 820 (2012)
10. Hentrich, C., Zdun, U., Hlupic, V., Dotsika, F.: An Approach for Pattern Mining

Through Grounded Theory Techniques and Its Applications to Process-driven SOA
Patterns. In: Proc. of the 18th European Conference on Pattern Languages of
Program. pp. 9:1–9:16 (2015)

11. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley (2003)

12. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term.
http://martinfowler.com/articles/microservices.html (2014)

13. Lytra, I., Sobernig, S., Zdun, U.: Architectural Decision Making for Service-
Based Platform Integration: A Qualitative Multi-Method Study. In: Proc. of
WICSA/ECSA (2012)

14. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
(2015)

15. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: 6th In-
ternational Conference on Cloud Computing and Services Science. pp. 137–146
(2016)

16. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. Big Web
Services: Making the right architectural decision. In: Proc. of the 17th World Wide
Web Conference. pp. 805–814 (2008)

17. Perrin, M.: Overview of existing models. In: Perrin, M. (ed.) Distributed Systems,
pp. 23–52. Elsevier (2017)

18. Richardson, C.: A pattern language for microservices. http://microservices.io/
patterns/index.html (2017)

19. Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., Lübke, D.: Supporting
Architectural Decision Making on Quality Aspects of Microservice APIs. In: 16th
International Conference on Service-Oriented Computing. Springer (2018)

20. Zimmermann, O.: Microservices tenets. Computer Science - Research and Develop-
ment 32(3), 301–310 (2017)

21. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. J. Syst. Softw. 82(8), 1249–1267 (2009)

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://martinfowler.com/bliki/CQRS.html
http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html

	Supporting Architectural Decision Making on Data Management in Microservice Architectures

