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Abstract

This work considers the Expectation Maximization (EM) algorithm in the semi-supervised setting.
First, the general form for semi-supervised version of maximum likelihood is derived from the Latent
Variable Model (LVM). Since the involved integrals are usually intractable, a surrogate objective function
based on the Evidence Lower Bound (ELBO) is introduced. Next, we derive the equations of the semi-
supervised EM. Finally, the concrete equations for a fitting a Gaussian Mixture Model (GMM) using labeled
and unlabeled data are deduced.

1 Introduction

The EM algorithm, first formalized by Dempster et al.| [I], is a statistical method for maximum likelihood
parameter estimation. It is particularly useful when the model contains latent variables. This work derives
the EM equations for the semi-supervised setting, where we can group the set of random variables into fully
and partially observed ones.

Consider a generative latent variable model (LVM) as shown in Figure We assume #id observations
{(xs, ) }i<n and partial observations {Z;};<a. The marginal log-likelihood of the generative probabilistic
model associated with the observations is given by

logp(X, Z,X1|0) = log/p(X, Z,X,Z10)dZ
= 1og/p(X,Z|0)p(X,Z\9) dz
= 1ogp(X,Z|9)/p(X,Z|9) dz
:1ogp(X,Z|9)+1og/p(X,Z|9) dZ, (1)

where we have made use of the independence assumptions of our model, abbreviated {X;};<ny by X and
similar for the other types of random variables. Equation[I]is called the generative approach to semi-supervised
learning. Often, this equation is seen with an additional balancing factor

log p(X, Z|) +A10g/p(X,Z|9) dZ.
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In semi-supervised learning then seeks to maximize the marginal likelihood by estimating # so that

6* = argmax log p(X, Z, X|6) (2)
0

= argmax |logp(X, Z|9) +log/p(X,Z|0) dZ} . (3)
0

In practice the integral of the second term on the right hand side (rhs) is often intractable. We therefore seek
to find a surrogate objective that is tractable—the evidence lower bound (ELBO).
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Figure 1: Generative latent variable model for the semi-supervised case.



2 ELBO in the Semi-Supervised Setting

Consider the following inequality derived from Equation

log (X, 2, X16) = log [ p(X.2,%.216)dZ

" - p(X,Z,X,Z|0)
=1 g/q(Z)q(Z) dz

. X, 2,X,219) .-
> /q(Z) log p(’(’Z)’) az by Jensen’s ineq.
q

-/ o(2)1og PEXZOPXZ10)

by LVM assumptions

q(2)

:/q(Z) logp(X,Z|9)+logp();(’ZZ)|9) dz
_ 2 - = DXL Z10) -
—/q(Z)logp(X,Z|9)dZ+/q(Z)log 2 dz
. iz [ PEZI0)
—logp(X,21) [ a(2)dZ + [ a(2)log i
=1
zlogp(X,Z|9)+/q(Z)logp(i](g~Z)~|9)dZ
zlogp(X,Z|9)+EZNq(2)logW (4)
ELBO(q,0)
= F(g,0). ()

In the above we abbreviated ¢(Z|X, Z, X, 6) by q(Z) to avoid clutter.

3 EM in the Semi-Supervised Setting

The expectation maximization algorithm iteratively maximizes

(4,0) = argmax F(q,0).
q,0

Let us introduce a 'time’ dependency on parameters ' and the form of ¢(Z)*. In the E-step we optimize
¢'™! = argmax F(q,6").
q

It is well known that choosing R : R
¢"N(2)=p(Z2]X,2.X.0")
makes the ELBO tight(i.e turn Inequality |4 into an equality). In the LVM case the above simplifies due to

independence assumptions as follows ~ o
¢"H(Z) = p(2]1X.0"). (6)



Remark Plugging Equation |§| into F(q't1,0") leads to an equality between the marginal log-likelihood and
the left hand side (lhs), i.e. makes the bound is tight. We can also see this by starting from the KL-divergence
as follows

KL(¢"(Z|1X, X, 2,0"),p(Z|X, X, Z,6"))

which leads to
logp(X, Z, X|0") = logp(X, Z|0") + ELBO(¢"*,0") + KL(¢'""(Z|X, X, Z,0"),p(Z| X, X, Z,0")).

Setting ¢'*1(Z) = p(Z|X, X, Z,6") leads to a vanishing KL term and we arrive at F(g'*!, 8%)—therefore
holding with equality.

Remark Note that in the E-Step the term involving supervised data logp(X, Z|0) does not depend on ¢
and thus does not influence the shape of q. Intuitively this happens because (1) we explicity introduce a
distribution ¢ only over the unobserved variables Z and (2) the independence assumptions of the LVM leads
to this specific factorization.

In the M-Step we optimize
0" = argmax F(q'*,0) (7)
0
_ o p(X,219)
= arg znax logp(X, Z|0) + Ej qt+1(2) 108 th(Z)

= arg Tgnax logp(X, Z|0) + Ezqtr1(2) log p(X, Z|0) — Ezqr1(2)log ¢t(2)

H(q*t1)

= arg gnax logp(X, Z|0) + Ezqtr1(2) logp(X, Z|6). (8)

Here we were able to drop the entropy of ¢*!(Z) denoted by H(q'!), because ¢! depends only on #* which
is considered fixed when optimizing for 6. Both steps are iterated until convergence.

Remark Comparing the semi-supervised EM variant to the classical unsupervised one leads to only minor
differences: The E-Step is practically the same, as both construct g over Z. The difference in the M-Step is
that the classical variant misses the additive term log p(z, z|6) in Equation

Remark EM assumes we can compute ~ o

¢N(2) =p(Z]X,0").
If p(Z \X ,0%) is intractable, we can resort to variational EM, that uses an arbitrary distribution ¢ that is
tractable. The E-step then becomes an optimization problem on its own.

3.1 Simplifications by Fully Factorized ¢

Here we want to focus on how F(g, ) simplifies in the E-step and M-step of EM algorithm when we assuming

an LVM model and a fully factorized ¢(Z). The joint distribution in the LVM model, given parameters 6,



factors as follows

N M
p(X,2,X,210) = [ [ p(Xi, Z:16) [ ] »(
i=1 j=1
In addition we assume that q(Z ) factors as
¢ti(Z Hqt+1 Z

To avoid clutter we drop the time index from ¢ in subsequent steps.

3.1.1 M-Step

By Equation [§] the M-Step optimizes

9t+1

Xj72j|9)'

= argmax logp(X, Z|0) + Ezea log p(X, Z|6).
[4

For convenience in the following derivations, we rewrite the above equation using two helper functions

0" = argmax A(0) + B(6).

0

Next, we study the factorization of each function separately. The factorization of function A(#) is trivial as it

does not involve ¢

N
A(6) =logp(X, Z|0) = _ [log p(Zil6) + log p(X;| Z:, 0)] (9)
=1



The simplification of B(#) is more involved
B(0) =E;_,z logp(X, Z|0)

= /Zq(Z) logp(X', Z|0) dz

M M ~ ~ 3 )
:/ / 1 a5(Z)vog [] p(Xs. 2,16) dZs ... d 2,
Zy ZJWj:l j=1
M ~ ~ ~ :
:/~ / qu ')Zlng(XjaZj|9)dZM~-~dZ1
7 Zu i Pt

|
N\N-\

M
/ > (H ax(Zx) ) log p(X;, Z;10) dZnr . .. dZ,
Z

1 M j=1

/Z [ql(Zl)qQ(Zz)-~-qM(ZM)10gp(X1,Zl|9)+
1 M
+q1(Z1)q2(Z2) - - qui(Zar) log p(X s, ZM|9)] dZn ...dZ eXpand
[/ [/ (1) Za) - ane(Zar) log p(Ko, 2210) dZns + -
Z Zn—1 Zn
+/Z 01(21)g2(Zs) - - anr(Z ) Vog p(Xar, Zus6) dZM} dZy—1...dZy distr. integra
ar

:/~ / Q1(21)Q2(22)"'QM—l(ZM—l)IOgP(Xl,Zﬂ@)/ CJM(ZM)dZM+"'
Z1 ZM 1 ZM

=1

+q1(Z1)q2(Zs) - "Q]wfl(ZMfl)[ ani(Zar) log p(Xar, Zar|0) dZM:| dZy—1 ... dZ,
Zn

M-
:/ / I sz {Z log p(X Zj|9)+/~ gvi(Zar) log p(Xar, Zar|6) dZM] dZy-1...dZ
Zy Znm—1 — Znr

j=1

1 M-—1
/ Zlogp 0 Zi|0)dZn 1 ... d 2y
Zy Zy—1 j= 1

"1'/~ anr (Zne) log p(X e, Zar|0) dZM/ [ H 4 (Z))dZy -1 ... dZy
Zn Z1 A

M-1 j=1

=1

:/ / H g5 ( Z Zlogp ',Zj|9)d21\/[—1---d21
Z4 Z

M-1 j=1

+[ anr(Zar) log p(Xar, Zai|0) dZus. (10)
Zn

Equation tells us that the Mth term can be separated from the remaining M — 1 terms. Repeating the



same argument iteratively leads to

M

B(0) =E;_,z logp(X, Z|0) :Z[ i

j=17%;

Nz

i) logp(X;, Z;10) dZ

Finally, we can solve for #'*! by setting the gradient to zero

VoF(¢"™,6) = 0.

4 Gaussian Mixture Model

In this section we apply the EM to learn a finite Gaussian Mixture Model (GMM) in the semi-supervised setting.

The repository https://github.com/cheind/semi-supervised-em| contains exemplary source code.

The generative process of a GMM with K is

7|0 ~ Cat(ay ... ak)
X|2,0 ~ N(pz, o)

From Figure |1l we see that the above equations are the same for random variables X , Z. The parameters 6 of

the model are
0= {al...aK,pl...,uK,U%...af(}.

4.1 E-Step

By Equation [f] we seek to find . o
¢"H(Z) = p(Z|X,6").

Using the factoring assumptions of ¢, it suffices to find
a7 (Z)) = p(Zj|X;,6").
Recall the joint distribution of partial observed random variables according to our model
p(Z;, X;10") = p(Z;16")p(X;12;,6").

By Bayes rule

p(Z;1X;,0") = e "’t() f)f i12;,6)
_ p(Z;16))p(X;12;,6")
Sy p(Zi=k|0)p(X;| Zu =k, 0")

=q""(Z;1X;,0").

(15)

(16)

(17)

(18)

p(2j|)~( ;,0") is called the responsibility and corresponds to soft-assignments of data to components given the

current parameter estimates.
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4.2 M-Step

In the M-Step we solve for 8! by Equation
VoF(q+,0) = 0.

We consider parameters in the following order pp, J,% and finally ay.

4.2.1 M-Step with respect to uy

Recalling Equation [§ substituting results from Equation [0} Equation [I1] and taking partial derivative with
respect to i and setting to zero, gives

0 5 MK ] )
:%Zlogp()(i:w“zi:zile)—i—37%ZZQJ(Zj:Z)Ing(Xj:jj7Zj:Z|9)
i=1

j=12=1

OF (¢'*1,0)
Opg

M

> 4i(Zj=k)logp(X;=7;|Z;=Fk,0)  (19)
j=1

N
_ 9| 2) =L
St s () g
M
(Z=0) -2 | 10g (/2702 ) — =L (2 — j)?
-I-Jz::lq](Z]—k) 8;%[ log( 27r0k> 57 (%1 uk)} (20)

1 o 1L
= 3 > Oun(ws =) + 5 D0 (Z=R)(E; — ) =
Rt T} =

Ziv:1 02k Ti + Z;Vil qj(Zj =k)z;

= U = N Vi =
> im10zk + Zj:l 4;(Z;=F)

Equation [I9 made use of properties of log and dropping terms that does not depend on py. In Equation [20]
probabilities are substituted for concrete GMM densities.

PR
Z‘Szik logp(X;=2;|Z;=k,0) + D
=1 ok

= O 2

(21)




4.2.2 M-Step with respect to o}

The derivation is similar as for p;. Starting from Equation [20] we have

a]: L 0) 1
Z&Zl {— log <\/27m,%) - ﬂ(xl - uk)2]
+Zq —tog (/2707 ) = (3 — i)?
J k 20_]% J

Qj\

al 0
_ 2
; zik B |:_ IOg(27TUk) 20_]% (xz ,Uk) :|
M 0
+ Z:=k)— {—lo 2102 T 2]
;CIJ( J )5,uk g( i) 202( i = 1)
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N 2 M 2
_ Ok 1 2 5 Ok L. 2
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i=1 j=1
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i=1 i=1 j=1 j=1
2 | & M 1 N M N
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N -
o Doimt Ozk(Ti— f11:)* + Z] 1 4(Zi=k)(Zj — ik )?
< O, = N = (23)
>ict m+Z] 145(Z;=Fk)
In Equation [22] the fourth-power appears because r = o2, %% = 7%2 = f%

4.2.3 M-Step with respect to oy,

When optimizing oy we need to take into account the constraint that «; ... ax needs to be a valid probability
mass function and thus needs to sum to one. By the method of Lagrangian multipliers we have

K
L(g"™,0,0) = F(g"™,0) + A (Z o — 1) ,
z=1

and thus
V{ak,,\}ﬁ(qt+17 6,\) =0.

Note that the PMF of the categorical distribution is given by

=z|0) = Ha =, (24)



Then, the partial derivative with respect to ay is given by
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Equating our original constraint 2521 a, = 1 together with 2521 — ]\)ff = 1 we solve for A as follows

z=1 A
1 K
2N =1
z=1
K
A=-)"N. (26)
z=1
Plugging Equation |26|into Equation |25 yields
N,
= — (27)
Zz:l NZ
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