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摘 要

摘 要

随着癌症病例的逐渐增加，对准确的癌症筛查、诊断和治疗的需求也在不断增长，

而癌症发病率只会随着世界人口的增长而不断上升。为了解决这个问题，数字病理学

的发展利用了现代信息技术和先进算法的优势，如今已能够达到与现有人类医务人员

相比近似或更好的水平。促进这种发展需要强大的生物医学数据基础设施以及大规模

数据集和专业知识。通过标注称为全视野数字病理切片的扫描玻璃载片，数字组织病

理学图像蕴含的丰富语义信息得以进行提取，而这需要能够处理这种类型生物医学数

据的软件以及兼容现有病理学程序的数据处理流程。如今人们对大规模标注的组织病

理学数据集的需求正在增加，因为人工智能技术的发展需要它们来推动自动诊断、大

规模筛选和表型 -基因型关联研究的发展。本论文提出了三个主要发现：一个开放的
图像标注软件系统 OpenHI，用于高效地进行组织病理学图像的合作标注，并使标注数
据能够包含标准化的语义和像素级的精度；使用提出的标注软件系统标注来自 TCGA
KIRC项目的透明细胞肾细胞癌（ccRCC）诊断切片；以及通过一个基于对现有分级指
南进行解释而新提出的分析方法，对可行的组织病理学图像分析方法进行探索性分析。

该框架的即时响应处理算法可以执行大规模的组织病理学图像标注，并可作为数

字病理学领域生物医学数据采集的基础。它可以进行进一步拓展以标注各种肿瘤类型

的组织病理学图像。此框架已开源，用于标注 ccRCC组织载玻片的 OpenHI实现源码
位于 https://gitlab.com/BioAI/OpenHI。文中讨论了用于模拟精确的虚拟放大倍数的最佳
实践和方法。试验的标注结果表明，利用预定义的标注区域划分进行多专家标注能够

在一定程度上符合两个标注者的判断标准。最后，一些选定的符合癌症分级指南描述

的图像特征已在一个人工确定细胞核位置的自建数据集中得到测试。这些特征可以在

基于 10倍交叉验证的线性 SVM分类器上达到 71.24％的细胞核级别分类准确度，以及
在基于神经网络的分类器上达到 71.80％（SD = 2.06）的总体准确度。区分来自不同切
片和不同患者的数据的实现也许能够达到更优的性能。

关 键 词：数字病理学；全视野数字病理切片；WSI；图像标注；数字切片；虚拟放大
倍数；组织病理学；癌症诊断；癌症分级；基因型 -表型关联；医学图像分析；透明细
胞肾细胞癌；肾癌

论文类型：理论研究;应用研究
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西安交通大学硕士学位论文

ABSTRACT

A growing demand for accurate cancer screening, diagnosis, and treatment is the result of in-
creasing number of cancer incidence which will only grow with growing world population.
Tackling this problem, development in digital pathology taking advantages of modern era of
information technology and advanced algorithms that may be able to perform at the level sim-
ilar or better than existing human medical personnel. Facilitating such development needs a
strong biomedical data infrastructure as well as large-scale dataset and expert knowledge. Con-
solidating semantically rich digital histopathological image by annotating scanned glass slides
known as whole-slide images requires a software capable of handling this type of biomedi-
cal data and a support for procedures which align with existing pathological routine. Demand
for large-scale annotated histopathological datasets are on the raise because they are needed
for developments of artificial intelligence techniques to promote automatic diagnosis, mass
screening, or phenotype-genotype association study. This thesis presents three main findings:
an open annotation framework for efficient collaborative histopathological image annotation
with standardized semantic enrichment at a pixel-level precision named OpenHI, a demon-
stration using the proposed annotation framework to annotate diagnosis slides of clear cell
renal cell carcinoma (ccRCC) from TCGA KIRC Project, and exploratory analysis on feasible
histopathological image analysis method with a newly proposed analysis approach based on
the interpretation of existing grading guideline.

The framework’s responsive processing algorithm can perform large-scale histopathological
image annotation and serve as biomedical data infrastructure for digital pathology. It could be
extended to annotate histopathological image of various oncological types. The framework is
open-source and available at https://gitlab.com/BioAI/OpenHI. The implementation of OpenHI
for the annotation of ccRCC tissue slides. Best practices and methods for simulating accurate
virtual magnification has been discussed. Annotation results from the trial shows that utilizing
pre-defined clusters for multi-expert annotation somewhat align the opinion of two annotators.
Finally, selected image features that align with the description of grading guideline have been
tested an inhouse dataset with manually localized nuclei. The features can achieve nuclei-
level classification accuracy of 71.24% with 10-fold cross-validation on a linear SVM-based
classifier and overall accuracy of 71.80% (SD = 2.06) on a neural network-based classifier.
Further implementation at a slide-level and patient-level may yield better performance.

KEY WORDS: OpenHI; digital pathology; whole-slide image; WSI; image annotation; vir-
tual slide; virtual magnification; histopathology; cancer diagnosis; cancer grading; genotype-
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1 Introduction

1 Introduction

Cancer diagnosis requires at least a set of histopathological or tissue slides where tissue
samples are acquired by biopsies. The tissue slides are prepared and analyzed by pathologists.
This tedious and repetitive task, together with more demands from growing number of pa-
tients, keeps pathologists occupied, preventing them to perform more meaningful task such as
development of new diagnosis methods and closer examination of rare cases. Maturation of
statistical machine methods fueled with flooding histopathological data creates a unique oppor-
tunity for clinicians, pathologists, and data scientists to collaborate and establish new systems
that can assist medical personnel both in clinical and pathological routine to ensure that all
cancer patients with different ethnicity, race, and geological origin could receive the best of
care. Improvements may derive from more rapid, accurate, or comprehensive diagnosis, more
time spent on rare cases by pathologists, expert systems working as pathologists in rural areas,
and so on. The mentioned systems can be developed based on much needed biomedical in-
frastructure to support various type of data and its meaning in pathology, and even in clinics.
The future of digital pathology would not be made made of machine entirely, but human with
machine working together [1] to battle the deadly disease such as cancer.

1.1 Background and significance

Since cancer is one of a genetic disease, analysis of genetic materials will lead to the diag-
nosis of cancer. Along the way from genetic alterations to manifestation of cancer symptoms
lies many steps which medical tests could unveil the hidden condition within each patient. This
mechanism will be discussed in the following sections along with introduction to histopatho-
logical slide and analysis which is crucial component for all cancer diagnosis and treatments.

1.1.1 General concepts about cancer

Morbidity rate of cancer will only increase in the future with the current stage of global
development in various perspective. In the United States alone, it is projected that there will
be approximately 1,762,450 new cancer case which is the equivalent of more than 4,800 new
cases each day in 2019 and about third of the number will die from cancer [2]. More peo-
ple will develop the disease because of longer life expectancy, deteriorating environments in
developing countries, food and air contaminations, and so on. Generally, the development of
cancer is caused by errors in translation or transcription of genetic materials that cannot be
corrected by natural mechanisms. Those cells with damaged DNA beyond repair are the root
origin of cancer. Factors contributing the mentioned phenomenon could be, but not limited
to, inherited genetic materials, longer lifespan, living conditions—environmental effects, un-
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healthy behaviors—smoking or being exposed to radiations. With the mentioned factors, it can
be predicted the number of cancer patients will grow in the coming decades.

Cancer mortality rate, on the other hand, can be limited thank to new screening, diag-
nosis, and treatment procedure that are more comprehensive and effective in distinguishing
cancer patients from the general population and treat them. As a result of previous develop-
ment in cancer screening and diagnosis, mass screening procedure such as prostate exam of
male aged more than 40 or mammography have proven to be very effective and have pre-
vented many cases of mortalities. Some well-established treatment procedures are effective
to some oncological types or sub-types such as tissue resection, hormone treatments, nephrec-
tomy, chemotherapy, and radiotherapy. A number of emerging treatment methods are being
tested [3] e.g. immunotherapy and personalized approaches. In short, while there is an increas-
ing number of cancer patients, there are more means of treatment and more opportunities to
fully recover from the disease as well.

Cancer is known to be a genetic disease, altering the genetic materials so that tumorous
clump of cells—either benign or malignant—develop into serious condition. Along the way,
the disease can be detected at many levels. Earlier detection of the disease will make it easier to
treat and is the goal of cancer detection. Characteristic of cancer can be recognized at different
levels: genotype, phenotype, and clinics, and useful information can be extracted from each
level at different time of life (or development of cancer) as illustrated in Figure 1-1. The geno-
typic data may include DNA or RNA sequencing, SNP-based platforms, Array-based DNA
methylation sequencing, or Reverse-phase protein array, while phenotypic data may include
tissue slides or radiology scans. From the illustration, it is feasible to predict the tendency
if one is going to have cancer or not since the birth time by analyzing genes. Later in life,
once the cancer has been manifested, early detection using at the phenotypic level can be done.
Nevertheless, most of cancer symptoms will surface once the disease has been developed for
a longer period of time, thus making it harder to treat.

As mentioned, there are many lines of defense before deaths from cancer will occur. How-
ever, there are many steps that the medical procedures could have gone wrong as well. Cur-
rently, cancer diagnosis is the crucial step that clinicians rely on to decide if particular patients
have the disease or not, and decide the following action based on the extent of the disease
diagnosed at this step of the clinical routine. To confirm the diagnosis, a lot of information
and many experts are involved. At this point, clinical or medical records about the symptoms
medical history of the patients is on hands, encouraging clinicians to request further special-
ized tests such as radiology scans for appropriate anatomical part of the body. Finally, to truly
confirm the disease diagnosis, examination of tissue section is needed. This is done with an
invasive procedure called tissue biopsy to cut samples of tissue from patients for closer exam-
ination with light microscope by pathologists. Since the procedure is invasive, clinicians must
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Figure 1-1 The development of cancer at different information level and time of life.

be sure enough to request the test. Histopathological slides acquired from the procedure retain
valuable information about the extent of the disease, if there is any. In this thesis, we will
discuss about the application of artificial intelligence in histopathological analysis because it
could improve the quality of patient’s life with more accurate diagnosis with richer information
extracted from tissue biopsy.

Other than cancer preventions and treatments, after treatments have been administered for
patients, following up the results is needed, this requires additional diagnosis to be made. Some
also need maintenance treatments to keep the system cancer-free since some severe cases are
most likely to have relapses. These aspects will not be discussed in this thesis.

1.1.2 Histopathological image and analysis

At the center of pathology lies histopathology which is the analysis of tissue samples as
a whole. Manual histopathological image analysis by pathologists is the current gold standard
for diagnosing cancer patients. Prognosis and treatment planning also heavily rely on the in-
formation from pathology analysis, often in the form of pathology report. Needless to say,
pathology is a crucial part of any clinical routine involving cancer. Vast amount of information
hidden within the patterns of histology samples was conventionally extracted by pathologists
trained to interpret the meaning of images they saw using light microscopes.

Within the past decade, increasing availability of medical image, especially histopatho-
logical image—namely digital slides enable the accumulation of histopathological data in the
digital form. This pave ways for computer algorithms access this type of data in large quantity
for the first time. Together with cost reduction in digital storage and transmission, digital slides
are capable of being mobile like never before. There have been many approaches to digitized
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glass slides. Popular ones are connecting CCD cameras with microscopes, capturing the tissue
image one diagnostic area at a time and using whole-slide scanners to scan the whole slide.
Whole-slide scanners can capture the content of the whole slide and save the image file known
as whole-slide image (WSI). Since the introduction of this new type of data, many researchers
have tried exploiting it and come up with many new ideas assisting pathologists in diagnosing
the tissue slides.

Reducing the workload of pathologists is important since they can move on and do more
important things. For example, analyze more complex patterns or disease. In other words,
automated systems will replace repetitive routines. At the same time, they will also solve
inter-rater disagreement in tissue slide diagnosis which is high in conventional microscopy.
Using automated systems for analyzing digital slides is a promising way to overcome the over-
whelming need to manually interpret the tissue slides. However, more mature bioinformatic
infrastructure to support this kind of system is much needed.

Preliminary works, findings, and proof of concept relating to automated digital slide anal-
ysis have confirmed that the approach is feasible. Extending those works needs better biomed-
ical infrastructures or platforms. Factors limiting those experimental works in the real-world
application is need for parameter tunings [4] because of high variations in histopathological
images and non-standardized staining methods, result in a lot of noises in final scanned im-
ages. There are no international, or sometimes national, standard for pathological laboratories
around the world to follow. Also, there are no open and standardized datasets for most cases of
cancer and the open ones are not comprehensive enough. Most success in automated systems
are in the area of deep learning where a huge amount of referencing data is needed to train
the artificial neural networks so that it can effectively localize, segment, or classify histologic
slides. The medical data is often not made publicly available from many reasons: patients’
confidentiality, cost of acquiring the data, cost of annotation. Most of experimental tools are
not commercial-ready, thus it is very hard for end-user like pathologists and biologists to use.

1.2 Data acquired from cancer screening, diagnosis, and treatment

The ultimate goal of a medical system is to effectively successfully detect patients with
disease as early as possible which will make it easier to diagnose and treat. Timeline of the
entire process is often consisting of three steps: screening, diagnosis, and treatment. In screen-
ing, the goal is to apply the procedure to the mass public, thus the procedure should be quick
and simple with low cost and minimal burden to patients. Good screening procedure will result
in early detection of the disease and low mortality rate. The diagnosis is close to screening,
this is the step where the patients could get the confirmation if they have the disease or not, and
the extent of the disease they are having. Sometime, the prognosis is made with the diagnosis
to estimate the survival outcome of the patient. The treatment is administered based on the
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diagnosis. There are different type of treatments and each of them are effective to only some
cancer stage. Thus, accurate diagnosis should be carried out to save the patient from burden of
the treatment.

1.2.1 Cancer screening

Cancer is often screened based on the risk according to the age group, demographic, and
genetic inheritance (family history). At the present, only a few types of cancer benefit from
analyzing data acquired during this process such as mammography to look for breast cancer and
MRI brain scan to look for tumors. Medically, symptoms founded at this step is often unreliable
and further tests will be carried out before the diagnosis can be made. The screening method is
also noninvasive since it should not introduce unnecessary risks to the patients. There are some
procedures that cannot yet be digitized such as examination for prostate or self-examination of
breast.

Radiology scans is often used in cancer screening since these scans are noninvasive. Ex-
pertise needed to interpret the scans is also being assisted by computerized system. The devel-
opment of fully automated systems is underway. The data used in cancer screening can only
provide insights at the organ-level to screen for potential patients. It cannot clearly confirm the
presence of the disease.

1.2.2 Cancer diagnosis

A lot of efforts have been focusing on automating cancer diagnosis over the past decade
because this step is a repetitive, time consuming, error prone in term of disagreements between
different raters, and it is predicted that there will only be more and more demand to diagnose
more patients since human is having a longer life-expectancy thus more likely to have cancer.
Conversely, it takes the same or more resource to train experts to recognize the disease and
perform the diagnosis. It is clear that the medical community cannot keep up with this trend,
and automated system or computer-aided diagnosis (CAD) is urgently needed to reduce the
workload. Diagnosis is crucial to the clinical workflow since clinicians rely on the diagnosis
to know the presence and extent of the disease.

Biopsy is the main procedure that doctors use for cancer diagnosis. Performing the biopsy
may result in different type of data for example tissue slides stained with different kind of chem-
icals, gene sequencing, and proteomic analysis. Diagnostic tissue slides or histopathological
slides is the gold-standard where pathologists will examine several slides from one patient
and make the diagnosis. It takes years for pathologist in training to effectively recognize the
patterns in the slides. The diagnosis on some complicated slides must be finalized by senior
pathologists. It may be concluded that, currently, the heart of cancer diagnosis is that the analy-
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sis of histopathological slides. Only recently that these histopathological slides were digitized
using whole-slide scanners and produce an extremely large image, whole-slide image. This
movement has enabled the digital processing and analysis of such type of data.

1.2.3 Cancer treatment

Different kind of treatment will be administered to the patients based on the extent of
the disease. Patients with low-grade and localized tumor tends to receive the treatment where
the cancerous site was surgically removed or resected so that the organ became disease-free.
Resection will be made alone based on the premise that the cancerous cells have not been
spreading to other part of the body. Patients with early stage of the cancer are likely to be treated
this way. Survival rate of the patient with low-grade tumor or early-stage cancer is high. In
the case of high-grade tumor or when it is assessed that the cancerous cells have metastasized,
adjuvant therapy will be administered as the second treatment such as chemo-therapy, radiation
therapy, hormone therapy, or other targeted treatments. These additional therapies are given
to deal with cancerous cells outside the primary site. Deciding the correct type of treatment
is crucial in successful cancer treatment, reducing burden from the treatment and introducing
minimal risks.

1.3 Milestones of digital pathology

Currently, whole-slide scanner which is a crucial part of producing digital slides is not
a standard equipment in major hospitals. The United States Food and Drug Administration
(US-FDA) has just issued a recommendation document for this type of machine in 2017 [5].
Meanwhile, there are several questions and concerns about the use of whole-slide image system
such as its validity compare to glass slides, the imaging pathway where each image pixels are
being deliver from tissue sample to computer displays, etc. Mainly, whole-slide scanner, at the
moment, are being used for research purposes and not for diagnosis purposes.

1.3.1 Large-scale repositories of digital slides

In 1999, [6] have described the idea of digitizing the tissue slide, paving ways for newer
generations of whole-slide scanners to be developed. The two major milestones that ignite
the research in histopathological analysis are two US government funded projects called The
Cancer Genome Atlas Project (TCGA) [7] in 2005 and Gene-Tissue Expression Project [8] in
2013. TCGA collects tissue samples from individuals that have been diagnosed with various
type of cancer. It accumulates many types of data including RNA sequencing, MicroRNA
sequencing, DNA sequencing, SNP-based platforms, Array-based DNA methylation sequenc-
ing, Reverse-phase protein array (RPPA), and digital tissue slides of the diseased organ. While
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all cases in TCGA are made from individuals with cancer, GTEx cases are obtained from de-
ceased healthy individuals and tissue samples are taken from several anatomical sites. These
are two first large-scale repositories that are freely available to the public and analyses should
go on for years to come.

1.3.2 Tools for whole-slide image

There are a number of tools available for visualizing and primitive annotating WSIs. The
fundamental tool for reading WSI files is OpenSlide [9] developed by a team at Carnegie Mel-
lon University in 2013. It is a library for reading WSI files that can work dynamically to
efficiently read multi-scale mage and is embedded within all software that has been developed
later. OpenSlide has provided mechanisms for researchers to read WSIs in all proprietary for-
mats which in a way broken down the barrier of proprietary file formats. Since OpenSlide does
not have any kind of GUI, two more GUI tools are developed called Automated Slides Analy-
sis Platform (ASAP) [10] and QuPath [11]. The two software can read and annotate WSIs and
they are open source software. Together with the advent of OpenSlide, Gutman D. et al [12]
have developed a web-based digital slide archive (CDSA) where the WSIs can be viewed via
a web browser. The system is made possible by OpenSlide and JavaScript-based multi-scale
image viewer called OpenSeadragon [13]. An extension to popular tool such as ImageJ [14]
called SlideJ [15] was made so that it could support to visualize and analyze WSIs.

1.3.3 Competitions related to digital slide analysis

Within the past 5 years, there are a number of competitions involving analyses of WSI:
Camelyon 16’ and 17’ [16], TUPAC [17], ICIAR BACH [18], and so on. Most of them are
trying to promote the development of artificial intelligence methods to localize tumorous area
of the tissue or assess the extent of the disease for each case. The competitions are only made
on breast cancer, while some are deriving digital slides from TCGA repository. It is clear that
extensions of competitions for other oncological types are needed.

1.3.4 Artificial intelligent systems in digital pathology

Since digital slide repositories were made available to the public, there are many imple-
mentations of statistical machine learning on the data repositories. Recently, deep learning
algorithms are used to classify oncological sub-types and extent of the disease [19–27]. There
are also developments of quantitative or computable phenotypic characteristics e.g. radiomics
[28] in radiology images which is possible to apply the idea to histopathology. Artificial intelli-
gent component can be added to conventional microscope with the help of maturing augmented
reality (AR) technology assisting pathologists in localizing potential tissue area that needs spe-
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cial attention in real-time [29]. Ultimately, a complete biomedical system to interpret particu-
lar patient from all aspects is expected and it needs association studies to computationally link
different data modalities that have been traditionally biologically related since the beginning
[30, 31].

1.4 Outline of this thesis

In general, this work tries to bridge two gaps. First is the biological gap between the cause
of cancer, currently believed to be oncological genes, and its expressions that can be considered
as patterns in histology samples. Acquiring detailed annotation on tissue samples and utilizing
image analysis techniques will help deepening the understanding of underlying cancer mech-
anism. Second is the technological gap between conventional and digital pathology. This
will help us to transfer invaluable knowledge in pathology to machine readable bioinformatic
infrastructure, waiting to be further analyze in the future with emerging techniques.

This thesis is divided into three main sections, building toward the implementation artifi-
cial intelligence techniques in pathology to enhance cancer screening, diagnosis, and treatment.
The development of a new software platform is needed in response to the lack of comprehen-
sive tools to work with histopathological image: especially whole-slide image. Requirements
to create a good tool for this purpose are different from general images and will be discussed
in chapter 2.

As a demonstration, the proposed tool in the second chapter will be used to annotate a
set of diagnostic WSI acquired from TCGA-KIRC project creating multi-expert annotation
according to WHO/ISUP grading system. The annotation is done digitally, utilizing various
functions of the proposed software platform.

In chapter 4, different approaches that researchers are using were discussed and a new
approach is proposed which is analyzing the histopathological image based on underlying bi-
ological understanding. A demonstration of analyzing based on such approach is made on
low-grade renal cancer.

The conclusions and suggestions are summarized in chapter 5. In this chapter, we investi-
gate the potential usage of artificial intelligence in histopathology. Future of digital pathology
and needed preparation are discussed here. Digital pathology is an emerging area of research,
thus there has not been many works focusing in this area.
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2 Framework for annotating large-scale histopathological image
dataset

Large-scale histopathological images hold rich information about the microenvironment
of cancer which are crucial for interpreting the corresponding genotypes in omics data. Pathol-
ogy is one of the last medical specialties to be digitized  [9] there has been limited software
and tools that helps pathologists manage and analyze extra-large digital scans of glass slides—
namely, whole-slide image (WSI). Furthermore, even fewer open-source software may be used
for annotating and analyzing the WSIs. No existing software supports online multi-user an-
notation with detailed spatial resolution and semantic meaning. In this chapter, we present
OpenHI—Open Histopathological Image, a publicly available open-source annotation frame-
work for WSI. It can achieve pixel-level precise boundary and semantic annotation. It also
supports online collaborative annotation. Eventually, the proposed framework will facilitate
the large-scale histopathological image annotation and benefit machine-learning based pheno-
type extraction.

2.1 Background

2.1.1 Large-scale histopathological image dataset

Recent successes in applying statistical machine learning methods to solve real-world
problems such as image recognition, speech recognition, gene expressions association, etc. are
data-driven and thrive on large-scale data, namely big data. Most of them are complex systems
that need tuning, thus require large amount of annotations to learn from [32]. It is expected
that digital pathology can also benefit from this type of artificial intelligence, especially deep
learning. One of the barriers obstructing the advance of such system is the limited size of the
publicly available datasets.

To make a cancer diagnosis in various oncological types, pathologists would need to an-
alyze one or multiple tissue samples from a patient’s biopsy and decide the grading of each
specific sample. This tedious procedure is manually carried out with a bright field light mi-
croscope [33]. In recent years, there has been multiple implementations of machine learning
methods to enhance histopathology image analysis workflow by either assisting pathologists
in image analysis or by establishing automated pipeline to analyze, by detecting and classify-
ing the cancerous area, the WSI with high throughput and high precision to help reduce the
workload of the pathologists [27, 34–36]. However, these works were derived and tested on
datasets with finite size and variability due to limited availability of public datasets. With our
proposed framework, rapid creation of such datasets could be accomplished, thus sophisticate
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computational approach that holistically analyze the WSIs [37] may lead to a better grading
decision.

One of the ingredients for curating annotated histopathological dataset is raw histopatho-
logical image. It is known that medical data is expensive to acquire. Collaborative efforts and
government support are needed to establish one. In cancer research, raw large-scale histopathol-
ogy image repositories have been made publicly available by TCGA [7], GTEx [38], and other
projects. This is tremendous amount of data with different oncological type, but they lack
annotations. In recent years, there are enriched WSI datasets used in different competitions
[17, 39], however, they are limited by public availability, size, variability in cancer type, or
spatially precise annotation. Enriching the images with annotations could greatly benefit the
scientific community.

2.1.2 Efficient annotation

Annotation of medical data is expensive since it demanded labor for manual data annota-
tion from experienced medical personnel [27]. Measures must be taken to reduce the cost of
biomedical data annotation. OpenHI was designed as a collaborative annotation tool, ensuring
that the most efficient annotation is carried out by acquiring only the essential data from the
annotators while maintaining high-quality annotation.

Collaboration between pathologists, as a source of expert knowledge, and data scientists,
who will manage the acquired data, is necessary to complete large-scale histopathological im-
age data annotation and cross-validate the quality, thus the annotation framework would need
to minimize technical configuration at the annotator end (pathologist) and maximize config-
urability at the data scientists end. The ideal software for this application would minimize the
annotators’ effort to annotate the image while capturing high information granularity including
high spatial resolution and standardized semantic meaning. In the meantime, it should support
online collaboration as well.

2.1.3 Related work

An annotation software capable of precise visual annotation and semantic information
enrichment is highly demanded. WSI files are hard to be read efficiently because WSIs cannot
be saved in standard image format due to its unusually high resolution.

1) Existing standards

In response, different whole slide scanner venders have come up with their own pro-
prietary standard and file format. The DICOM or Digital Imaging and Communications in
Medicine standard is the only public and general standard [40] that has been proposed but has
not been adopted or popularized. However, in 2018, a push for utilizing DICOM for digital
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pathology has been demonstrated [41].

2) WSI tools

In 2013, [9] have introduced an open-source library to read the WSIs called OpenSlide
which later become the only available vendor-neutral tool to read the WSIs to date. Many
other WSI visualization and analysis software have adopted the library to create web-based
application [12, 42], stand-alone software such as QuPath [11] and ASAP [10] , and extension,
SlideJ [15] , to ImageJ [43]. Around the same time, OpenSeadragon (OSD) library [13] was
introduced as a web-based viewer for high-resolution zoomable image written in JavaScript. It
is capable of viewing the multi-scale images including WSIs. OSD is then used in web-based
implementation of WSI viewer.

The web-based implementation of OpenSlide with OSD to help visualize the WSIs from
TCGA project on the webpage could be seen in the US National Cancer Institute’s Genomic
Data Commons. It helps the users to visualize the WSIs without downloading the entire large
WSI file, however, it lacks the functionality to modify, annotate, or analyze the WSIs. In 2017,
QuPath [11] was introduced as a cross-platform stand-alone software. It is a tool to view WSIs
on local machine and it is capable of accomplishing many tasks including basic annotation
of the WSIs and locally segmenting the image with superpixel algorithms. The most detailed
annotation method that QuPath can achieve is selecting multiple points in the image to form
a polygon, this approach is good for manually mark a small number of regions for human
references, it is not detailed enough for computers. Furthermore, the annotation data made in
QuPath must be managed manually and it does not provide centralized system to manage the
WSIs or annotation data.

No open-source collaborative annotation software specifically made for histopathologi-
cal image is publicly available at the moment. Besides, such software should allow online-
collaboration to achieve high annotation throughput and maximize the accessibility for the
users since they do not have to download the entire dataset and install additional software. It
should also be able to manage highly detailed annotation with region-specific semantic enrich-
ment. The challenges will be addressed with our proposed framework.

2.2 Challenges in efficient histopathological image annotation

In this section, different approaches that can improve the annotation efficiency will be
discussed. There are examples of efficient annotation in other fields such as natural image [44]
where millions of images were annotated with thousands of labels. However, annotation of
WSI has posed new challenges because of different file size, image dimension (as described in
the introduction), and the type of annotation needed.
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2.2.1 Crowdsourced annotation

Crowdsourcing annotation can accelerate the annotation while keeping high annotation
quality with multi-expert data. Achieving crowdsourcing needs the software to run on web
technology. The current internet infrastructure was not built to support the casual transfer of
relatively large files like WSI files—the size is generally around several hundred megabytes.
This problem is addressed by OpenHI by only transferring the part of the image that the an-
notator is viewing. The platform that supports crowdsourcing should be able to handle simul-
taneous access and annotation. OpenHI utilize relational database server, MySQL, to handle
such traffic.

2.2.2 Insufficient medical personnel

The biomedical annotations are expensive to acquire. The acquisition workflow must be
optimized, easy to follow, and standardized. Thus, most annotation result could be achieved
with least amount of time spent by pathologists (medical personnel). The scarcity of experts is
not the only factor contributing to this problem. Pathologists around the work do not use the
same grading standard to grade the sample. Pathologists in some countries must grade their
sample according to national standard provided by the authorities. Some hospitals are behind
in updating grading standard for some type because of rapid updates and existing personnel
were trained on old systems.

2.2.3 Region boundary delineation

Using freehand selection to draw on the image is not convenient and does not produce
precise boundary selection since the hardware—mouse and keyboard—was not designed for
this purpose. Some works use point-based selection [45, 46] to mark at the center of nuclei,
but this method does not work in the situation where area containing several nuclei must be
selected. Some existing annotation tools [10, 11] support bounding box-based and polygon-
based annotation. Annotations based on bounding boxes have proven itself to be effective in
natural image. It is straight forward for annotators and easy to store the annotation information,
four points. However, this type of annotation is only good for object localization and not mask-
ing since the annotated area will include the background as well. Polygon-based annotation is
better at outlining the boundary of the region but achieving a truly precise outline would need
a lot of vertices.
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2.3 Framework design

The proposed framework was designed to be implemented on a web server therefore it
could be accessed simultaneously via a web-browser by multiple users. To minimize effort
of acquiring most detailed annotations with precise sub-region boundaries and semantic en-
richment, our framework pre-segment the image into semantically meaningful sub-regions as
demonstrated in Figure 2-1 by a widely used graph-based image segmentation method called
SLIC superpixel [47] . In this case, the annotators can quickly select the sub-regions by sim-
ply clicking or dragging mouse through them via the graphic user interface. Additionally, our
framework has the ability to freely access any regions of WSI at will with different zooming
level based on OpenSlide being utilized as the others did [10, 11, 42] .

(a) (b) (c)

Figure 2-1 Comparison of how the intended region for selection (a) can be selected by a tiled-based (b) and
superpixel-based (c) segmentation. Sub-region selection in (c) is more efficient since it needs
less selection and achieve more accurate annotation.

The framework consists of three main components along with a MySQL server to store the
annotation coordinates. The main components include image pre-processing of the WSIs, the
web framework, and the GUI. Three types of data are stored in alongside the framework which
is the WSI files, the sub-region boundary matrices, and the annotation coordinates. Figure 2-2
illustrates each component and the data flow between them.
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Figure 2-2 Structure of the framework with WSI data flow from original image to pre-segmentation and
annotation.

13



西安交通大学硕士学位论文

Figure 2-3 Denotations of terms needed for describing the viewing system of the proposed framework.

2.3.1 Pre-processing and boundary selection

A WSI is a very large 2-dimensional array of data. It is too large to be handled by most
(and in some cases all) of conventional image formats. Furthermore, the conventional formats
are currently not a vendor natural standard for such kind of data [30]. Conventional image
segmentation technique has also faced a challenge in processing this kind of image as well. It
is known that processing WSIs is memory demanding [15]. The SLIC Superpixel [47] seg-
mentation on the WSIs also requires large amount of memory. Thus, it is reasonable to have
memory-consuming processes deployed on a server with relatively larger amount of memory.
To our knowledge, there is currently no practical implementation on superpixel with sufficient
segmentation precision on whole WSIs on a scale of personal computer, however, there are
efforts to alter superpixel algorithm for implementation with large images. Developing a ro-
bust and fast image segmentation method is still a challenge in digital pathology informatics
[48]. By incorporating superpixel segmentation with the WSIs, we have established a new ROI
selection method in digital pathology.

The lasting issue with superpixel algorithm in image segmentation is of making a de-
cision about the number of final segmented sub-region which could lead to under- or over-
segmentation. Tuning for good number of segments to avoid under- and over-segmentation in
superpixel algorithm has been a challenge in utilizing the method. It is even more problematic
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to choose one number for all images. To tackle this problem, we calculate the number of super-
pixeled sub-regions (Nsuperpixel) by specifying desired average sub-region size (Psub), thus the
size of the sub-region will be consistent throughout the annotation project as shown in Equa-
tion (2-1) where Ptotal is the WSI resolution. In practice, this number could range from around
6000 to 50 pixels/sub-region providing that the WSI has been scanned with 20x magnification
lenses and it should increase or decrease with the magnification. The example of a portion of
the image pre-segment with superpixel algorithm is shown in Figure 2-4.

Nsuperpixel = Ptotal

Psub

(2-1)

(a) (b) (c) (d)
Figure 2-4 Parts of a WSI (a) is pre-segmented using SLIC superpixel algorithm at 6100 (b), 610 (c), and

60 (d) pixel/sub-region.

To avoid over-segmentation where an annotator must choose unnecessarily large number
of sub-regions to establish one cancerous region or under-segmentation where a cancerous re-
gion is not cleanly divided from normal regions, our framework provides users an option to
calibrate at multiple pre-segmentation levels and select the most suitable level for the annota-
tion in specific area of the image. During the annotation session, the annotator could switch
back and forth between different pre-segmentation level for a level that a cancerous region
could be accurately separated at the same time with the consideration of the annotator’s con-
venience and efficiency.

At the end of pre-processing, matrices containing sub-region boundary information are
stored using a binary image format. This image with boundary information is large in dimen-
sions but not in file size, therefore it is practical to store them as one continuous image where
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it could be easily loaded into the memory when needed.

2.3.2 Server-end module

The second component of the framework is to interactively respond to the user requests
in real-time. To lower the computational expenses, only the area of a WSI being viewed is
processed. The processing includes the generation of sub-region boundary, visualization of the
annotated sub-regions, and annotation coordinates recording and deletion.

As the use of OSD with OpenSlide has been demonstrated in [9] in 2013, we extend the
usage for WSI annotation. Our framework has attained the capability of OSD and OpenSlide
to view a WSI with smooth zooming and panning experience while adding the customized
annotation capability to the framework. This allows the annotators to easily annotate any part
of WSI they want. When annotating several sub-regions with the same grade, an annotator may
select each individual sub-region by a mouse click. Rather than clicking the sub-regions one
by one, the framework provides an option of clicking then pressing mouse over several sub-
regions to do bulk annotation since the adjacent sub-regions tend to contain the same swamp
of cancerous cells. Aside from conveniently choosing the sub-region, the GUI should provide
some indicator to approximate the zooming power of current digital image state, this is also
called virtual magnification.

1) Slide visualization

Several steps are needed to prepare the image before it can be sent to the viewer in the GUI
according to the requested viewer size and viewing coordinate (see Figure 2-3). Three kind of
image array must be prepared. First is a part of WSI (Figure 2-5 (a))). This can be acquired
from the WSI file directly through OpenSlide. The required part of boundaries (Figure 2-5 (b))
array can be acquired from the cropping the boundary matrix loaded in the memory since the
framework initialization. The boundaries are then mixed with the marked coordinates—this
data was retrieved from MySQL database server—turning into the colored annotations (Figure
2-5 (c)). Creating one cluster of colored annotation requires a closed region and a representing
point. The point acts as a seed point for flood-fill operation to mark the rest of the connected
region, but not beyond the boundary.

The cropped boundary array is embedded into the WSI. The colored annotation is then
alpha blended into the image. The default alpha value used is 0.4, 40% transparency. The final
image is compiled as a single image, compressed in JPEG format and saved to disk. The link
to the image is returned to the GUI and OSD will do a HTTP GET request to download the
image, then display to the user. The overall generation process is illustrated in Figure 2-5.

2) Coordinate recording

The coordinated stored in MySQL database is stored as absolute coordinate according to
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Figure 2-5 Slide visualization process in OpenHI where (b) is the cropped WSI, (c) is the cropped boundary
image loaded from a pre-processed file, (d) is the existing annotation read from (a) MySQL
database and colored using flood-fill operation, and (e) is combined view which is the final
image and will be transferred to the viewer in the GUI.

each of WSI’s dimension. For example, if the WSI has dimensions of 200 by 200, the top-
left, center, and bottom-right coordinate will be (1,1), (100, 100), and (200, 200) respectively.
However, the coordinate system used by OSD are relative coordinates referenced by floating-
point numbers where the top-left, center, and bottom right of the viewer is (0.0), (0.5, 0.5),
and (1,1), thus they must be converted from relative to absolute system according to the top-
left coordinate of the current viewing area. Each point is stored with annotator ID, slide ID,
corresponding PSLV, etc. the details are listed in Table 2-1.

3) Virtual magnification

Since the gradings of some cancer type such as WHO/ISUP kidney clear cell carcinoma
annotation standard [49] (see Table2-1) require the annotators to take magnification power as
a part of decision. This functionality is crucial for the grading system that rely on microscope
magnification. It is also a worthy indicator for the pathologist who is new to digital pathology
as well.

To accurately calculate virtual magnification, we need to understand that real magnifica-
tion in the microscope is the combination of magnification from objective and eye piece lenses
as in Equation (2-2). In virtual slides, the objective magnification Mobj is restrained by mag-
nification factor of the objective lenses used during the scan which is specified in the metadata
of the WSI file. The eye piece magnification Meye is more complicated to calculate, three
parameters are needed for the calculation including scanner sensor pixel size, monitor’s pixel
size, and distance between the monitor and the user. The scanner sensor pixel size is often not
included in the metadata of the WSI file while magnification power is specified, thus it could
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be referenced back to the scanner manufacturer about scanner’s resolving power correspond to
the specific magnification factor, and the sensor pixel size could be calculate the method by T.
Sellaro et al. where there are calculation sample in their work [50] to obtain the objective mag-
nification Mobj . Finally, the total virtual magnification Mtotal could be calculated by Equation
(2-2).

Mtotal = Mobj × Meye (2-2)

To avoid complications in our framework, we simplify the virtual magnification calcula-
tion and focus on three parameters which are the image pixel size (SW SI), the monitor pixel
size (Smonitor), and the digital zooming (Mdigital). The image pixel size can be found in the
metadata of the WSI file and will be given in the unit of length per pixel, often micron/pixel.
This parameter reflects the real-world size of the scanning object which we use as an anchor
or original size and the magnification is the zooming factor based on this size. The moni-
tor size can be calculated by considering the screen resolution and the monitor size. OpenHI
can automatically detect these setting with the standard JavaScript protocol. To calculate the
magnification factor by incorporating the image pixel and screen size can be done by Equa-
tion (2-3). The digital zoom can be calculated by the size of the viewer shown in the GUI
(Sviewer) and the size of images being viewed in the viewer (Sviewing) as shown in Equation
(2-4). Finally, the virtual magnification in OpenHI can be calculated by Equation (2-5).

MW SI−monitor = Smonitor

SW SI

(2-3)

Mdigital = Sviewer

Sviewing

(2-4)

Mtotal = MW SI−monitor × Mdigital (2-5)

2.3.3 Graphic user interface

The web-based GUI of our proposed framework is comprised of the main WSI viewer,
virtual magnification indicator, and menus for annotation configuration as shown in Figure
2-6. The viewer, based-on OSD, enables an annotator to navigate around the WSI and the
menu allows the user to change some configurations to make the annotation easier including
the pre-segmentation level, tumor gradings, undo button, and option to show or hide sub-region
boundaries and existing annotations. An alternative way to adjust these parameters is the us-
age of keyboard hotkeys that could speed up the annotation once the user gets familiar with
the system. The GUI also has indicators which could assist the annotator to make a grading
decision such as current virtual magnification factor, current resolving power, and the basic
information about the tissue slide.
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Figure 2-6 The graphic user interface of the framework with a sample image showing WSI viewer (left),
virtual magnification indicator (bottom-left), control panel (top-right) containing tumor grad-
ing selector, pre-segmentation level selector, and slide information panel where accompanying
information of a slide is shown.

2.3.4 Data model

To maximize the granularity of the annotation and keeping the utility of collected data.
The framework will orient the data collection around the annotation coordinates by their prop-
erties including the exact chosen coordinate x and y, assigned tumor grading, pre-segmentation
level, time of annotation, and the annotator’s ID. The detail data model is described in 2-1. For
full construction of the data model, see Appendix x.

All annotation coordinates are stored based on the level of WSI with the highest resolution
to preserve the precision. Each of the coordinates is paired to the tumor grading and pre-defined
boundary which the annotator has assigned during at the point of annotation.

To maximize the extendibility of this annotation software, it is designed to be highly cus-
tomizable. Some parameters are designed for the annotators (pathologist) and can be switched
during annotation processes. The other parameters are made for the data scientist so that they
can achieve the sufficient annotation quality for further uses.

2.3.5 Software configuration

A successful annotation consists of a set of appropriate configurations to meet the needs
of different annotation settings. We categorize the configuration into two group: annotator
and initial configuration. The annotator configuration is options that can be easily changed
by the end-user of the platform. This type of configuration can be changed back and forth
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Table 2-1 Summary of data fields recorded in MySQL database.

Field name MySQL datatype Description

Point id INT ID of each annotation
point/coordinate (x, y)

x-coordinate INT The coordinate x of the
annotation point.

y-coordinate INT The coordinate y of the
annotation point.

Annotation timestamp DATETIME Timestamp of the annotation
action.

Grading TINYINT Grading of the cluster

PSLV TINYINT The PSLV that has been chosen
by the annotator at the time of

annotation.

Slide ID SMALLINT The unique slide ID indicating
which slide the point belongs to.

Annotator ID SMALLINT The unique annotator ID
specified by login information

of the annotation session.

Region ID INT A unique ID assigned
sequentially to each region.

and is part of the annotation. The user can change them using the control panel or keyboard
hotkeys. Initial configuration must be set during the platform initialization and the parameters
should be decided collaboratively by data scientist and pathologists, ensuring that high-quality
annotation can be acquired.

2.4 Results

The scalability and extendibility of the proposed framework would make large-scale col-
laborative annotation of WSIs possible. It allows users to view WSI scans from multiple ven-
dors and let them navigate around smoothly. Annotation with high information granularity can
be accomplished. The proposed framework can ultimately be a foundation of crowed-sourcing
WSI annotation platform. The enabled online real-time collaboration converges effort from
pathologists to annotate and cross-validate large-scale images.
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Table 2-2 The configurable parameters of OpenHI for extending to different image types and annotation
settings.

Parameter Time of configuration Description

Pre-segmentation level Annotation This parameter determines the
size of the sub-region in

pre-processed

Number of grading level Annotation In different cancer type and
grading standards. The level of

grading is different.

Pre-segmentation sub-region
pixel density

Experiment setup This parameter could be mutual
agreement between the

annotator and the analyst before
the pre-segmentation begins.
Tuning of this parameter will

allow efficient annotation
process.

Grading tier Experiment setup Different cancer sub-type has
different grading system. The

annotation software could
support different grading level.

Viewer size Experiment setup The viewer size could be fixed
to a specific size or make it
adaptive to the annotator’s

monitor screen size.

Fixed magnification zooming
level

Experiment setup OpenHI zooming can be fixed to
different levels. Each level

corresponds to specified down
sampling factor of WSI.

2.4.1 Functionality

The proposed framework offers the freedom of choosing from pre-defined segmentation
levels and switching during annotation. Meanwhile, the pre-defined segmentation levels are
kept consistent on different images. For example, a sub-region in one image would contain
approximately the same number of cells as another sub-region does in a different image, as
long as the two sub-regions comply with the same pre-defined segmentation level. The consis-
tency in the sub-region average size is achieved because the number of segments in superpixel
segmentation was calculated by the desired sub-region size and the image size. The ability
to support multiple pre-defined segmentation level which let the user to interactively switch
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between them during the annotation session can increase annotation efficiency.

Figure 2-7 Comparison of different sub-region selection method where (a) is done by using polygons, (b) is
region-by-region selection, and (c) demonstrate continuous selection across multiple sub-regions
suing hold-and-drag method.

The proposed framework offers two methods of selecting annotation sub-regions which
is a click to select individual sub-region or hold-and-drag over multiple sub-regions to select
as illustrated in Figure 2-7 (b) and (c) respectively. The latter option is useful since a swamp
of cancerous cells is likely to occupy several consecutive sub-regions. Selecting sub-regions
in this manner could be relatively much faster than using relatively more mouse clicks to form
an equivalently precise polygon as shown in Figure 2-7 (a). The comparison can be seen in
Figure 2-7. Besides the easy sub-region selection, the user can also select gradings easily via
the GUI next to the viewer as shown in Figure 2-7 or by hotkeys. Additionally, in the case that
the annotator mistakenly selects the region, the framework can revert to previous step or the
annotator can deselect some sub-regions.

2.4.2 Extendibility

In term of digital slide formats, since we utilize OpenSlide, the proposed framework can
support various WSI formats from different scanner vendor including Aperio (.svs, .tif), Hama-
matsu (.vms, .vmu, .ndpi), Leica (.scn), MIRAX (.mrxs), Philips (.tiff), Sakura (.svslide), Tres-
tle (.tif), Ventana (.bif, .tif), and Generic tiled TIFF (.tif) [9].

Our software is free and open-source, it is available at https://gitlab.com/BioAI/OpenHI
under GNU General Public License v3.0, therefore it can be modified to suit the need in dif-
ferent purposes. The framework is also compatible with general LAMP stack which is widely
available on the could computing platforms or local server environment. For extending usabil-
ity, the framework is fully documented and the docuemtnation is available at https://bioai.gitlab.io
/OpenHI.

2.4.3 Demonstration

1) Testing environment
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In software development and testing, we use WSIs directly downloaded from TCGA data
repository [7] . Thus, the testing environment, WSI format used in our proposed framework
is Aperio (.svs) file. The images are scanned with 20x magnification with resolving power
of 0.5 micron/pixel [30]. In our sample set of data, the average resolution of WSIs is 920
megapixels with the maximum at 11,282 megapixels. The file contains three levels of multi-
scale representation, and the average file size is 202 MB with the maximum of 2GB.

2) Performance

Annotation outcome and processing speed are the two main factors that contribute to the
performance of the framework. The level of precision in annotation could be categorized into
bounding boxes and circles, polygons, and pixel-level annotation as shown in Figure 2-8 (a-
c) respectively. The mentioned annotation methods are ordered from greater simplicity with
less precision to more complexity with more precision. Comparing OpenHI framework to
other similar software, our proposed method can support pixel-level annotation precision while
the other software [12-15] cannot. In comparison, OpenHI could significantly improve the
annotation quality thus achieve better annotation outcome. Other than the annotation quality,
the processing speed which contribute directly to the interactivity of the framework can reflect
annotation efficiency. In our proposed method, the framework will consume more processing
time when large area of the image is needed to be viewed. To demonstrate the robustness of the
proposed method, it was tested based on the real-world usage as described later in this section.

(a) (b) (c)

Figure 2-8 Different level of annotation precision from different image annotation methods from the least
precise to the most precise boundary including (a) bounding box, (b) polygon, and (c) pixel-level
annotation.

The framework was tested on an Intel(R) Xeon(R) CPU E5-2650 v4 (2.20GHz), 1266
MHz with a total of 48 cores and 256 gigabytes of RAM. The current repository occupies 500
gigabytes of storage. The host operating system is Ubuntu 16.04 LTS. However, for single user,
the minimum requirement for the host that we have tested with is Intel Core i7 (1.7GHz) with 2
cores and 8 gigabytes of RAM excluding image pre-processing due to memory limitation (see
image pre-processing section).

The 250 MB WSI was used during the processing speed testing. The test was performed on
a machine with single user requirement. The response time is varied by processing resolution
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which is specified by the zooming level that the user has queried. For instance, if the user
request to view a small area of the WSI or use high magnification, the processing resolution
will be low. To view the image and sub-regions clearly, the user will need to magnify the WSI
so that only less than 15 megapixels of resolution are needed to be processed. The examples of
the viewing image on 800-by-460-pixel viewer at different processing resolution is illustrated
in Figure 2-9. In most cases, comfortable viewing magnification is at 3 to 8 megapixels of
processing resolution where it is suitable for annotation task. The response time is shown in
Figure 2-10 where the average processing time will take around 300 ms with the maximum
at 580 ms which is almost unnoticeable and responsive enough to perform annotation task
efficiently.

(a) (b)

(c) (d)
Figure 2-9 Example of viewing image in different processing solution ranging from 3.3 (a), 5.1 (b), 9.4 (c),

and 15 (d) megapixel.

To conclude about the performance of the framework, in term of annotation outcome,
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Figure 2-10 Processing time in different processing resolution ranging from 3.3 to 15 megapixel, corre-
sponding to images (a) to (d) in Figure 2-9.

the framework can achieve superior annotation precision compare to other similar software
while maintaining decent processing speed. Thus, OpenHI can be used to perform efficiently
in large-scale annotation of WSIs.

2.5 Discussions

Several initial steps are taken in the development of OpenHI toward a histopathological
image platform that can function fully as a part of hospital systems.

2.6 Open system for whole-slide imaging

Radiology imaging machine such as X-ray, CT, MRI, and other systems are offered or
sold as a software and hardware solution—a complete system, but they are not being a fully
closed system. In a sense, a microscope can be considered as a closed system and its compo-
nents are being isolated into whole-slide image scanner and visualization tools. The US-FDA
has approved the WSI imaging system as a whole in 2017, looking at the image pathway or
how each pixel of the image are being taken and deliver to computer displays. It can be inferred
that the quality of WSI viewed on third-party computer displays cannot be guaranteed. This
obstruct the free data sharing of WSI. Several proposals made in section 3.2 about simulating
microscope magnification solve parts of the problem. The open source nature of OpenHI plat-
form also makes every pixel shown on the web browser tracible to its source. To enable crowd
sourcing, telemedicine, and CAD in WSI, open imaging systems is much needed.

Generally, pixels in WSI files produced from whole-slide scanner originate from a light
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source, passing through objective lenses and recorded with an image sensor array. There are
many parameters during each step of the light pathway, and they could be between scanners
from different manufacturer. OpenHI calculates virtual magnification factor based on image
pixel size, 0.25 micron/pixel in our testing dataset. This parameter was not provided in the
metadata of every WSI file format. A recent regulatory guideline for whole-slide imaging
system [51] by the US-FDA does not specify that WSI files should provide this parameter.
Instead, it focuses on a closed whole-slide imaging system spanning from scanners to com-
puter displays which is not good for data interoperability. Furthermore, simulating virtual
magnification should bear in mind that image presented on computer displays and perceived
by annotators may be different.

Currently, OpenHI is based on web technology and crowd sourcing and it will hardly
be a closed system since the platform needs to interact with several different devices, mainly
computer displays. We need to study the effect of using different devices to do the slide in-
terpretation while not strictly controlling the specification of the hardware used. Ensuring the
image pathway stays intact from the beginning (WSI file) to the destination (each pixel lighting
up on computer displays) is complicated since there are many involving factors. In OpenHI,
the image pathway is controlled by the down sampling factor and the viewer size.

2.6.1 Required processing throughput

The baseline of the processing throughput should be considered the image throughput
which conventional microscopes can deliver. Earlier, we discussed about the processing res-
olution where OpenHI can process up to 15 megapixels while maintaining a decent response
time. To translate the conventional sense of analogue to digital resolution, we rely on two
concepts including viewing area and resolving power. The resolving power can be considered
as the smallest visual unit that someone can see using the microscope. Compensating the loss
according to Nyquist sampling theorem, the double of resolving power should be equivalent
to digital resolution. The resolving power in bright field microscope relies on the objective
lenses ranging from around 3 to 0.25 micron. With objective lenses of 100x magnification,
the resolving power is around 0.25 micron. Combined with a typical eye piece lenses with the
field number of 22, the field of view would have a diameter of 550 micron. This would yield
the digital processing resolution of around 8 megapixels.

Noted that current 1920 by 1080 pixels computer display, known commercially as“Full
HD”has around 2 megapixels. Most standard GPUs can support two Full HD display, thus
having the processing power of 4 megapixels at the refresh rate of around 60 frame per second
(fps) or approximately 16 ms response time. Sufficing to say that current computer’s hardware
does not have the capacity to fully process and deliver image with quality as high as what
pathologists can see using microscopes and naked eyes.
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2.6.2 Processing bottlenecks

According to the Performance section, the response time increases when the framework
needs to process larger processing area. This behavior has many contributing factors. From our
observation, we narrow the problem down to WSI loading and boundary image down sampling
operations. Besides the response time, the framework startup time is also long. This is mostly
caused by reading the boundary image into the memory.

1) WSI loading

While OpenSlide can efficiently operate on WSI files written in hierarchical image struc-
ture with multiple pre-process down-sampled layers—typically 3 layers in our work, it still
takes time to perform the down sampling operation according to the input down sampling fac-
tor so that image in the viewing area can fit the required viewer size and be able to work with
other layers of images in OpenHI, boundary and colored annotation for instance. This problem
arises often when the access is needed at higher resolution. Upgrading to better hardware with
faster disk accessing speed may be able to resolve this problem.

2) Boundary image down sampling

Similar to WSI loading, the down sampling operation of a boundary image also increase
the response time of the system. Since the coloring of annotated c-cluster must always be
operated at the highest resolution to avoid errors in flood-fill operation caused by interpolation,
boundary image does not have any pre-processed smaller versions. Requesting large viewing
area translates to cropping large area of the boundary image and down sample it and it takes
time to do so. This problem was partially address in OpenHI by disabling an option the view the
boundary and existing annotations at lower level of zooming—when the magnification power
is not high enough.

3) Boundary image loading during framework startup

It takes several seconds for the framework to startup. This is mostly due to the read
operation of several boundary images since one WSI has many corresponding PSLV and thus
many boundary images. This issue was not dealt with in the current version of OpenHI, but
the remedy may be faster disk read and write speed like in WSI loading.

2.6.3 Comparison of digital resolution in WSI and resolvable unit in micro-
scope

Practicing pathology, especially histopathology heavily relies on the operation of micro-
scope. All pathologists must be trained to use and understand the tool well. Making the tran-
sition from glass slides to virtual slides, comparison should be made clear so that users of the
digital system can interpret image as well as they can when using conventional microscope.
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In conventional microscope, the resolving power was tied to the characteristic of different
objective lenses. This parameter is not the one that pathologists usually rely on; they rely more
on magnification. The resolving power of every lenses can be calculated using Rayleigh’s
resolution limit formula so that, if needed, the users can calculate the resolving power they
are using. This parameter provides insights to how small is the smallest entity that they can
currently observe.

In virtual microscopy, tracing back to identify the current resolving power of image dis-
played is possible. According to Nyquist sampling theorem, it can be calculated from tissue
the half of surface area display in a certain pixel. For example, the displayed pixel has the size
of 0.5 micron can be translated to the resolving power of 1 micron.

2.6.4 Lack of inter-rater reliability tests and multi-expert annotation merging

While OpenHI do support multiple user during the annotation on the same tissue slide,
interpretation of multi-expert annotation has not been included in the framework yet. Methods
to effectively combine multi-expert annotation should be investigated. There are two aspects
consolidate multiple annotations: spatial and grading degree. Similarly, methods to validate
inter-rater reliability should be established as well. Using collaborative platform as an infras-
tructure, real-time validation should be possible. Moreover, discordance between pathologists
do happen even in glass slides setting [33, 52]. Some are caused by pathologists’ experiences
and some do not have clinical consequences, being able to distinguish genuine pathological
disagreements from the ones influenced by the annotation framework should be useful.

2.6.5 Methods to improve annotation efficiency

Further acceleration of annotation can be made by building on OpenHI using different
approaches: provide machine-learning based suggestion, improve segmentation with nuclei
localization, provide basic analysis the slide region, etc. Machine-learning based suggestion
system is a promising approach to improve annotation speed since annotators would only need
to confirm majority of annotations and correct some. But this approach may induce biases
and affect annotation quality. The current pre-segmentation method could be improved by
localizing areas with nuclei and only pre-segment those areas. It could save some efforts since
annotators can only focus on areas with cells. Basic information about the viewing area could
be provided such as nuclei density, nuclei size, or ratio of H&E color.

2.6.6 The distribution of OpenHI as free and open source software

Addressing the problem which is lack of neutral histopathological image platform with
decent usability. OpenHI must be distributed as free and open source software (FOSS), making
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it available to as many users as possible. Releasing the source code to the public available alone
does not solve the entire problem since it would lack (1) usability, (2) documentation, and (3)
extendibility. In this section, strategies and best practices to promote OpenHI to be FOSS is
discussed including (1) use of central git repository, (2) methods for documentation, and (3)
usage of automated tests and automated systems to run them.

1) Central public software repository and version control

First of all, the source code must be available to the public. But the code must be constantly
improving to keep up with new demands and infrastructure updates. Modification by other
volunteering developers should be possible. The solution to these requirements is central public
repository with version control. OpenHI adopts git as a version control system and GitLab to
host the source code. Dealing with legal implications, appropriate license can be applied to
the repository. The distribution of OpenHI as a ready-to-use Python package is possible via
Python Package Index (PyPI), then users can download and install the package using“pip”
command.

2) Standardized documentation

Documentation of the software is important since it provides explanation on both how the
software works and how to use the software. There are several available automatic documen-
tation generation tools. In this work, we use a combination of several popular standardized
tools and formats. The project structure is organized into modules consisting of classes and
functions. Each function will have its own inline-documentation describing the objective of
the function and its input(s) and output(s) parameters. Optional examples can be provided
in the inline-documentation as well. The format of the inline-documentation is reStructured-
Text (RST) (http://docutils.sourceforge.net/rst.html) which is compatible with python-autodoc
module. It is capable of translating text-based content into well-organized and easy-to-read
web-based document. An example of this is shown in Figure 2-11.

The engine of documentation used is called Sphinx which is a tool that can organize inline-
documentation or Python docstring into sections with indexes. The index pages were also
written in RST format. Sphinx tool can build the source files into multiple formats: HTML,
PDF, doctree, etc. The HTML website can be uploaded and used as a reference of the software.
Organizing the documentation in this approach yields many advantages: the documentation
will be updated with the function, the need for arranging the documentation according to the
code is low, it is standardized and can work with other tools like code suggestion, and so on.

3) Utilizing automated testing tools to assist further development and maintenance

Maintaining a working software is a lot of work. Utilizing code tests (or unit test) with
automated testing tools will alleviate some workload and help to maintain the code quality. In
OpenHI project, Python’s“unittest”module is used to test functions. With GitLab’s“CD/CI”
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Figure 2-11 Example of (a) text-based inline documentation written in reStructuredText and (b) output
parsed with autodoc tool.

feature, the tests can be run automatically when changes are pushed to the repository. This way,
maintainers will know almost instantly if there something is wrong with the new code.
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3 Digital tissue slide annotation in clear cell renal cell carcinoma

Different oncology types require different diagnosis methods. They also have different
degree of semantic meaning to each aspect of the annotation. To curate a dataset which captures
all semantic meaning considered by pathologists during the routine diagnosis, the complete
pathological routine must be studied throughout. In this thesis, the annotation of clear cell
renal cell carcinoma (ccRCC) based on WHO/ISUP grading standard will be discussed.

The dataset used in this work is The Cancer Genome Atlas Kidney Renal Cell Carcinoma
(TCGA-KIRC) which has 519 cases. About 80% of the patient in the dataset were diagnosed
with grade 2 and 3 tumor. Each patient has one corresponding diagnosis tissue slide digitally
scanned and saved in whole-slide image format with 40x magnification, 0.25 mpp resolution.
The average size of the whole-slide image in this repository is 0.92 GB (0.46 SD).

3.1 Tissue slide assessment

3.1.1 Grading standard

To reasonably annotate the tissue image of ccRCC type, the widely adopted grading stan-
dard is chosen to be followed. There are several grading guidelines proposed for ccRCC over
the decades. The most well recognized two are Fuhrman [53] and ISUP [49] grading guide-
lines proposed in 1982 and 2013 respectively. Both are 4-tier grading system based on nucle-
olar prominence in grade 1 to 3 and tissue architecture on grade 4. In 2013, the International
Society of Urological Pathology (ISUP) has proposed an international grading system derived
from the consensus decision of an international panel of pathologists which is simpler than and
meant to replace Fuhrman’s system since it disambiguates the grading criteria by discarding
the redundant elements. Later, this grading system is adopted to be the international standard
by the World Health Organization (WHO). The grading system is included in the World Health
Organization (WHO) classification of urogenital tumors book (commonly called WHO’s“blue
book”). In this work, we thus choose to follow the WHO/ISUP grading system.

The WHO/ISUP grading system a 4-tier grading system. Its grading criteria is magnifi-
cation dependent, thus, to strictly follow the guideline, the physical zoom of the microscope is
required. The first three grades are based on the nucleolar prominence. The last and highest
grade is based on the visible patterns embedded in the tissue sample. The fact that pathologists
have to seek for the cell with highest grade implies a throughout search for the entire tissue
slide. The grading standard is shown in Table 3-1.

In practice, searching for particular patterns was not done sequentially due to time con-
strain. Pathologists will examine the slide at the low power field and try to find the diagnostic
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Table 3-1 WHO/ISUP grading standard

Grade Description

Grade 1 Having inconspicuous or absent nucleoli at x400 magnification

Grade 2 Nucleoli should be distinctly visible at x400, but inconspicuous or invisible at
x100 magnification

Grade 3 Nucleoli should be distinctly visible at x100 magnification

Grade 4 Tumors should encompass tumors with rhabdoid or sarcomatoid differentiation or
those containing tumor giant cells or showing extreme nuclear pleomorphism with
clumping of chromatin

regions. These regions of interest normally have high cell density. Pathologists will avoid the
area that has necrosis, hemorrhage, edema, and area with high fibrosis since those areas do not
have useful information that will contribute the diagnosis decision.

To make the decision for the slides which may have grade 1, 2, or 3, pathologists heav-
ily rely on the microscope’s magnification. Since the appearance of the nuclei is different at
low and high-power field. The predominance of the nucleoli would have changed according
to the magnification. The key difference between grade 1 and 2 where, at first, pathologist
would examine certain diagnosis area at 100x magnification, if the nucleoli is inconspicuous
or invisible, higher magnification will be used to confirm the diagnosis of grade 2. However,
if the nucleoli are not distinctly visible at high magnification, the appropriate diagnosis should
be grade 1.

3.1.2 Level of assessment

Tissue slide assessment can be divided into different levels: (1) patient, (2) tissue slide,
(3) diagnostic area, and (4) individual cell. It is important to understand how different level of
assessment affect the final diagnosis for a patient. During the cancer diagnosis, pathologists
will assess several tissue slides to ultimately assign the overall tumor grade for each patient,
this is regarded as patient-level grade. The patient-level grade is likely to be the result of sev-
eral smaller decisions at the smaller level coming from one or more raters. Usually, several
diagnosis slides will be made from one tissue sample or biopsy, the slide can have its own
grade, and will be referred to as slide-level grade. Coming up with the slide-level grade re-
quires a throughout examination of the slide. Pathologists usually will not examine the slide at
every area since it is practically impossible to do so due to the time constrain. They will select
certain areas, diagnostic area, to do the examination after looking through the slide briefly.
At each diagnostic area, a diagnostic region-level grade can be made. Likewise, several di-
agnostic region-level grade will be used to consider the slide-level grade. Depending on the
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Figure 3-1 Illustration of how lower-level assessment affect the overall diagnosis starting from (d) cellular
level, (c) diagnosis area-level, (b) slide-level, and (a) patient-level diagnosis.

grading guideline, average or the maximum grade may be used. In some grading system, in-
cluding WHO/ISUP grading standard, the assessment can be made at the cellular level. The
WHO/ISUP grading system is considered to be a nuclear-based system in in the lower grades
(grade 1 to 3). Thus, grade could be assigned to individual nucleus.

3.2 Simulating microscope magnification using digital images

Accurately displaying the digital tissue image of 100x and 400x magnification to the
pathologists on the computer screen is important especially when the diagnosis for ccRCC
must be made since the WHO/ISUP grading system is magnification dependent. Existing soft-
ware that can visualize whole-slide image such as QuPath [11] and ASAP [10] calculate the
built-in magnification factor based on digital down and up sampling factor which is a totally
different concept from microscope magnification. The awareness of the difference between
digital and microscope magnification should be made in the digital pathology community. In
2013, [50] have addressed and discussed the factors that cause the appearance of the digital
tissue image on different display to be different. In our opinion, the relationship between the
magnification and resolution cannot be fully explained with current knowledge of how human
eyes behave and the unknown relationship between the image which human eyes can observe
and the perceived image. In this work, we utilize the concept of resolving power which is more
straightforward and simpler to implement.

It should be noted that, the perceived image that pathologists can see in the microscope
cannot be digitally displayed using today’s typical equipment due to limited resolution, both at
displays and scanners. There is a possibility that augmented reality technology may be able to
reproduce the experience that pathologist has seen in the microscope, but studies for feasibility
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is needed.

There are several factors which will influence the displayed image quality including im-
age digitization, resolving of microscope (objective lenses), wavelength used, and image down
sampling technique. In this section, we discuss how each factor affect the image reproduction
and what are the optimized solutions that can be used to best reproduce the microscope experi-
ence on the digital displays to best simulate the physical microscope’s magnification and help
the annotators to come up with best judgment.

3.2.1 Magnification and resolving power

Adjusting microscope’s magnification by changing the objective lenses will affect two
factors which are the magnification itself and the resolving power. By definition, magnifica-
tion factor reflects how big or small the object will appear to be. However, the definition for
resolving power is different and defined by a microscope manufacturer (Olympus) as follow:

“The resolving power of an objective lens is measured by its ability to differentiate two
lines or points in an object. The greater the resolving power, the smaller the minimum distance
between two lines or points that can still be distinguished. The larger the N.A., the higher the
resolving power.”(Olympus [54])

Hence using high magnification alone to view the image is not enough to see the specimen
clearly. The object that has been magnified beyond its resolving power will appear big but
blurry, while the object that has been resolved with high resolving power lenses will appear
more clearly.

Preserving the magnification from the slide digitization to image displayed to the pathol-
ogists on the computer displays is challenging since computer displays came in different sizes
and resolutions. Also, the distance between the user and the display cannot be strictly con-
trolled. Nevertheless, resolving power can be carefully calculated and the physically resolved
entities can be deliver from the scanner to the computer displays. The idea is to define the
smallest unit of a scan to be the same level as the resolving power. The minimum digital res-
olution (pixels) covering the area must be double the amount of resolving power unit to avoid
loss in signal sampling according to Nyquist sampling theorem. Finally, each image pixel must
have the corresponding display pixel to fully and independently display its color value.

For example, the object which has the dimension of 1-by-1 micron scanned using the
lenses with resolving power of 0.5 micron would create four resolving units. To fully display
these units on a computer display, 16 pixels are required.
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3.2.2 The calculation of resolving power

The microscope’s resolving power can be calculated by the Rayleigh resolution limit (R)
[55] as in Equation (3-1).

R = 0.61λ

NA
(3-1)

where λ is the wavelength used to visualize the sample and NA is numerical aperture
value usually specified by the manufacturer of the objective lenses. Table 3-2 shows the typical
parameters of microscope’s objective lenses including the magnification factor and numerical
aperture value.

Table 3-2 Typical bright field microscope’s parameters used by pathologists.

Magnification NA Resolving power [µm]

4x 0.1 3.146

10x 0.25 1.366

40x 0.65 0.526

100x 1.25 0.273

To accurately calculate the resolving power, appropriate wavelength should be used. Gen-
erally, the wavelength of 530 nm is roughly used since it is the average of visible wavelength.
More accurate wavelength can be interpret from the reported spectrometry of H&E stained tis-
sue sample in [56] and the wavelength emitted by such type of specimen is around 530 to 580
nm. In our calculation, we take the full-width half maximum (FWHM) value which is 560 nm.

The resolving power is typically reported in the unit of micron in physical microscope.
This parameter became micron per pixel (mpp) in the whole-slide scanners where a single pixel
represents certain amount of physical area scanned by the scanner.

Using the mentioned parameters, we can calculate the Rayleigh resolution limit for 100x
and 400x magnification used in WHO/ISUP grading system as 1.37 and 0.53 micron respec-
tively. Consequently, the resolved entities in the image must be deliver to the annotator with no
loss of quality. Taking Nyquist sampling theorem into consideration, the required resolution
(P) of the digital slide needed to display the specimen correctly less than half of the resolving
power which is 0.27 mpp (see Equation (3-2)). Thus, the resolution of WSI from TCGA-KIRC
which is 0.25 mpp should be sufficient.

P = R

2
(3-2)
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3.2.3 The calculation of down sampling factor based on resolving power

Image down sampling process reduces square root of pixels to a single pixel. Down sam-
pling a digital image will produce the zoom out effect. For example, the image with the di-
mension of 2 by 2 (4 pixels) can be reduced to 1 by 1 with the down sampling factor (DSF) of
2. DSF used for our annotation can be calculated from Equation (3-3).

DSF = P

S
(3-3)

where S denotes pixel size of the WSI. The minimum DSF is 1. DSF lower than 1 indicates
in sufficient digital image resolution.

The microscope magnifications specified by the WHO/ISUP grading system has encom-
pass us to use the resolving power of 10x and 40x objective lenses. Those resolving power
are 1.37 and 0.53 micron respectively. Using our approach to calculate the DSF required to
process the image that will be displayed to the annotator, we concluded that the appropriate
DSF for both low and high magnification are 2.91 and 1.12 respectively. In practice, however,
we round the DSF of high magnification from 1.12 to 1 since so that the image displayed to the
annotator will have original quality of the digital file and no interpolation would be used. The
calculation details and other parameters used during the annotation is described in Table 3-3.

Table 3-3 Parameters used to set OpenHI low and high magnification.

Source OpenHI Low OpenHI High

Microscope equivalent
[total (objective + eye)]

WHO/ISUP grading
standard

100x(10x + 10x) 400x(40x + 10x)

Wavelength FWHM of H&E curve 560 nm 560 nm

Resolving power [µm] Rayleigh resolution
limit (R)

0.65(0.56)/0.25 =
1.456

0.65(0.56)/0.65 =
0.56

Required digital
resolution [[µm]/pixel]

Nyquist resolution
requirement (P) P = R/2

1.456/2 = 0.728 0.52/2 = 0.28

Available resolution TCGA-KIRC WSI
metadata

0.25 µm/pixel 0.25 µm/pixel

Selected resolution
[µm]

0.728 0.25 (equal to original
scanning resolution to
avoid interpolation)

DSF Equation (3-3) 2.91 1
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3.2.4 Limitations of the resolving power-based approach

The development of resolving power-based approach, we have fixed some ambiguous fac-
tors that may be changed if the hardware specifications changes in the future. The requirements
are as follow. (1) Human annotators must be able to see or resolve every pixel of the display.
At least three factors may cause the annotators to fail this if they are sitting too far from the
display, high-resolution display (such as“retina display”) is used, or they simply have bad
eyesight (and it has not been corrected using glasses etc.). (2) Human annotator can perceive
all the pixel they see regardless of the size. (3) There is no loss during the data acquisition in
the scanner, meaning that the resolving power of the objective lenses in the scanner should be
two times better than the pixel size.

The relationship of the differences between the magnification and resolving power is non-
linear. While the image at 400x magnification will appear 4 times better than the one with 100x.
The resolving power of 400x magnification is not 4 times better than 100x magnification. In
fact, it is only 2.6 times better. Since our approach cannot take magnification into account
during the calculation of the DSF, the difference between any two simulated magnification will
be quite different from what can be seen in the microscope. This factor should be considered
because the FOV usually reflects the amount of image data transmitted to the pathologists, and
our digital system cannot achieve the same throughput.

Due to current display hardware limitation, the entire FOV cannot be fitted on the dis-
play. In the current OpenHI configuration where the viewer size is set to 1200 by 900 pixel,
the viewer can only display 20% and 38% of the tissue surface area compare to what pathol-
ogists can see in the microscope. The detail calculation is summarized in 3-4. Noted that this
calculation is based on the eye piece lenses that has the field number of 22 mm.

Table 3-4 Comparison of surface area shown in the OpenHI viewer and the microscope.

OpenHI low OpenHI high

Area of tissue viewed in the
microscope [µm2]

3,800,000 238,000

Width of the WSI shown in the
viewer [µm]

1200×0.728=873.6 1200×0.25=300

Area of tissue viewed in OpenHI
viewer [µm2]

764,000 90,000

% of microscope FOV 20% 38%

To down sample the image, several interpolation techniques may be used including near-
est neighbor, linear, cubic, bicubic, etc. In our implementation, we utilize nearest neighbor
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interpolation to do the down sampling process since it is the most straightforward method. Al-
though we did not observe any significant changes in appearance of the tissue image once other
methods are used, further investigation into this matter may be needed.

3.3 Annotation of ccRCC using OpenHI annotation framework

In this section, we will demonstrate how OpenHI framework can be used to enrich ccRCC
diagnostic slides retrieved from TCGA-KIRC project. The goal of the annotation is to acquire
high quality annotation from the experts. There are two main topics to be discussed: the frame-
work configuration and guidelines provided to the pathologists or annotators.

3.3.1 OpenHI framework configuration for ccRCC annotation

OpenHI annotation framework should be configured collaboratively between data scien-
tists which will manage the dataset and control the quality of the annotation and pathologists
which are is a source of expert knowledge. Parameters will be set including pre-segmentation
level and computational cluster—pre-segmented sub-regions which have been segmented us-
ing SLIC superpixel segmentation algorithm (c-cluster)—size, grading tier, and viewer size.

1) Pre-segmentation level and c-cluster size

In this work, we arbitrary tried c-cluster sizes ranging from 60 to 20,000 pixel per c-cluster
and decided to use three pre-segmentation level with an average c-cluster size of 2,500, 5,000,
and 10,000 pixel per c-cluster respectively.

2) Grading tier

According to WHO/ISUP grading system which is a 4-tier system. The grading tier is set
to five grades including grade 0 (healthy) and grade 1 through 4 corresponding to the grading
system.

3) Viewer size

Setting the viewer size is more complicated than setting other parameters since the size of
computer displays are generally limited—the number of pixels need to display full field of view
cannot be fitted into the displays. The typical resolution of displays used in this annotation is
1920-by-1080 pixels. We maximize our viewer in the GUI to take up most of the display asset
and end up with the viewer size of 1200-by-900 pixels.

3.3.2 Annotation guideline

1) Annotation procedure

There are two stages of annotation: (1) selecting the diagnostic region and (2) annotate
cancerous regions. Diagnostic regions are selected once by one annotator to reduce the area
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of interest in the WSI. After the diagnostic regions are selected, other annotators will annotate
based on the selected regions. If different annotators can select the diagnostic region of their
own, it is very unlikely that they will choose similar region since there are a lot of possible
and valid diagnostic regions according to the criteria listed in Table 3-5. However, there is one
concern about biases from the annotator that choose the diagnostic region and this concern was
not addressed in this work since several diagnostic regions should provide the areas diverse
enough for machine learning training.

Table 3-5 Criteria of diagnostic regions

Criteria to look for Criteria to avoid

High cell density (cellular area)

Clear image (well-focused)

Necrosis

Hemorrhage

Edema

Fibrosis

Procedures to select the diagnostic region is summarized in Table 3-6. After the diagnostic
regions were selected, there should be around 10 to 20 regions of interest. The annotator was
instructed to select 10 regions for uncomplicated slides including grade 1, 3, and 4. Twenty
regions will be selected if a slide tends to be grade 2 tissue sample to acquire more sample for
training.

Table 3-6 Procedure for selecting diagnostic region.

Step Procedure

1 Go to Magnification Control and select Low.

2 Review the entire slide (under low magnification) to ensure that the slide is of ccRCC1 type
to find the diagnostic region.

3 (optional) select High to examine the tissue closely.

4 Click Add current region to record the region. The regions in“To be annotated list”will
be updated automatically.

5 Repeat until 10-20 regions are saved.

To perform the second step of annotation, annotators will follow the annotation procedure
summarized in Table 3-7.

After the annotation has been made, the annotator has two functions to edit the annotation:
(1) undo the latest action using the“Undo”button and (2) remove the annotation by selecting
“Healthy”from the Tumor grading menu and right-click on the annotated c-cluster.
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Table 3-7 Procedure for selecting diagnostic region.

Step Procedure

1 Select“Region XX”from“To be annotated list”.

2 Examine the tissue at Low magnification.

3 Go to High magnification to perform the annotation.

4 (optional) Change to bigger PSLV if the c-cluster is too small.

5 Select the appropriate Grade according to WHO/ISUP grading standard from Tumor grading
menu.

6 Right-click on the c-cluster to annotate.

7 Repeat from step 5 until the whole diagnostic region is fully annotated.

2) Best practices to resolve conflicting annotation judgment

While our annotation approach where the tissue image is divided into pre-defined regions
can improve the efficiency of the annotation, it has also introduced some problems. Those
problems will be discussed here. Annotators are instructed to consider nuclei as“cancerous
area”in ccRCC grade 1 to 3. In grade 4, cancerous area was not confined to the nuclei since
the decision is made based on the tissue pattern.

(1) C-cluster coverage and feature of interest

To cover all cancerous area, all c-clusters that touches—no matter how small—the cancer-
ous area should be selected. This will ensure that the area that has not been annotated belongs to
the healthy category. The sample is demonstrated Figure 3-2 where the green area is cancerous
area and the yellowed c-clusters should be selected.

Figure 3-2 Example of c-cluster selection where the green area is cancerous area and yellowed c-cluster are
the ones that must be selected.

In grade 1 to 3, annotators should only select the nuclei as shown in Figure 3-3. In some
cases, cancerous nuclei may be divided into two or more c-clusters (Figure 3-4). All c-clusters
containing the nucleus should be annotated.
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Figure 3-3 Example of a proper nucleus selection when c-cluster fits the nucleus.

Figure 3-4 Example of a nucleus that was divided into two c-clusters. The yellow marker indicates the
c-clusters that must be selected.

(2) Grade selection

In uncomplicated cases, the grade of the c-cluster will be assigned according to the grade
of the area inside. In complicated cases, however, the priority of grade selection will be based
on the highest grade in each c-cluster. The examples are shown in Figure 3-5 This may cause
the system trained based on the annotation to over interpret the tissue grade, but it is better for
medical systems to overestimate rather than underestimate the extent of the condition.

Figure 3-5 Example of a nucleus that was divided into two c-clusters. The yellow marker indicates the
c-clusters that must be selected.

(3) PSLV selection

By default, the system will initially set the PSLV to the one with the smallest c-cluster to
maximize annotation granularity. However, the c-cluster may be too small for the job and cause
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unnecessary effort to select all c-cluster. In that case, the annotator can change to the PSLV with
larger c-cluster increase the efficiency of the annotation. In Figure 3-6(a), unnecessary small
c-cluster was illustrated. The most appropriate c-cluster size is shown in Figure 3-6(c) which is
unlikely to happen. Figure 3-6(b) shows the case where appropriate PSLV was selected. Noted
that regardless of PSLV, the annotation should cover similar area and should not affect the
ground truth too much. Selecting appropriate PSLV will increase the annotation efficiency and
save time. However, there could be some cases where c-cluster is too large for the cancerous
area (Figure 3-6(i)) and smaller c-cluster should be selected (Figure 3-6(g, h)).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 3-6 Examples of different PSLV setting with varying size of c-cluster: (a-c) are the cases with smaller

cancerous area and the c-cluster range from smallest to the biggest PSLV respectively. (d-f) are
cases with larger cancerous area. (g-h) are more examples of good PSLV selection while (i)
should be avoided. The green region is area of interest.
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In the case that c-clusters do not fit the cancerous region, PSLV with the smallest c-cluster
should be used to avoid unnecessary annotation of healthy area as demonstrated in Figure 3-7.

(a) (b) (c)
Figure 3-7 The scenario where c-clusters cannot fit the cancerous region and the PSLV with smallest c-

cluster (c) should be used and the bigger ones (a-b) should be avoided.

(4) Down sampling factor for low- and high-power digital magnification

As discussed earlier in section 3.2, the digital definition of low- and high-power mag-
nification in the digital system has not been well-defined yet. In this annotation, the down
sampling factor for low- and high-power field are set to 2.91 and 1 respectively.

3.4 Sample annotation results

This is an ongoing work; the annotation was set to be made by two pathologists. At the
present, annotation on one WSI was complete, resulting in one set of multi-expert annotation.
The statistics of the result is the two annotators have made about 20–50% overlapping anno-
tation, and about 20% of diagnostic regions were annotated. Figure 3-8 shows sample of the
annotated results along with original view of the diagnostic region.

(a) Original diagnostic area (b) Annotator 1 (c) Annotator 2
Figure 3-8 Sample annotation result from two annotators.
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3.5 Discussion

3.5.1 Usage of annotated dataset

The annotated dataset will be useful in many applications including, but not limited to,
nuclei localization, diagnostic area localization, detection of cancerous area—the area with
cancerous cells, tissue classification by grade, and to study disagreements between patholo-
gists. In this section, we will the potential usage of the annotations.

1) Nuclei localization

Since low-grade ccRCC rely on nuclear based grading. Each individual nucleus can be
distinctly identified as different grade. Our annotations at the cellular level can be used to
extract cells and differentiate them from the background: cytoplasm, connective tissues, blood
vessels, and other artifacts. The type of annotation that could be labels driving this such system
should have markings at the nuclei-level which our annotated dataset has. The annotation of
lower grades will benefit this application.

2) Cancerous area detection

The overall detection of cancerous area is also needed to assist pathologists in finding re-
gion of interest or diagnostic area. The benefit of such system is to help pathologists thoroughly
examine the tissue slide while spending less time on finding the diagnostic regions and more
time assessing the grade for the slide. The gist of this kind of system is to assist the pathologists
to make better decision, not making precise decision for them.

3) Tissue classification based on tumor grade

Unlike cancerous area detection, this type of system aims to accurately classify the sample
grade. The most popular approach is to use deep convolutional neural networks-based model to
subsequently classify a small part of the slide. However, it is known that deep neural networks
need huge amount of data for training before it can perform the classification well.

3.5.2 Precautions in utilizing any pathologically annotated datasets

1) Disagreements between pathologists

The overall tissue grading is the result of soft decisions. It is common that graders will
disagree with each other, even with experienced pathologists. Fueling training-based statis-
tical machine learning systems with multi-expert annotation may result in less than optimal
performance as can be seen in (Nir G et al., 2019). Nevertheless, training such system on a
single-expert annotation is not ideal either since biases from that particular annotator will have
a full impact the prediction outcome. Currently, there are no solutions on how to solve this
kind of problem.
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2) Patient-level diagnosis needs several tissue slides

As mentioned earlier, the patient-level diagnosis is typically the result of pathologists
examining several slides from the same biopsy. The dataset that this work is based on only
has one slide per patient. Thus, it may not be appropriate use this dataset for train a system to
predict patient-level diagnosis or to study the effect of how several slide-level diagnoses affect
the patient-level diagnosis.
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4 Whole-slide image analysis for renal cell carcinoma

The current goal of medical image analysis so far is to automate the repetitive tasks which
will reduce the workload of specialists and reduce human errors. After the workflow has been
automated, it could enhance the diagnostic procedure by unraveling novel features or biomark-
ers that could be used as an anchor point for disease severity assessment so that appropriate
treatment could be administered. More intermediate problem in manual image analysis is about
the inter-rater agreement and reliability. A number of investigations [57] have pointed this
problem out by performing retrospective studies. A standardized diagnosis results are accom-
plishable using a single automated system. In short, computers could improve the quality of
the diagnosis by increasing the accuracy, sensitivity, and objectivity [4].

To make medical image analysis work, appropriate working environment including the
digitization, storage, and processing is needed. For histology slides, the digitization process has
been maturing in the past decade with the advance of whole-slide scanners. Before the whole-
slide scanner has become widely available, images are taken from the microscope viewing
head using a CCD camera. Taking images using the mentioned technique can only acquire
a section, as far as the field of view (FOV) of the microscope, of the tissue slide where the
area was selected based on the pathologist taking that particular image. Thus, it is technically
impossible to acquire the image of the whole tissue slide and get an overview of how the slide
may look like. At this technological stage, holistic analysis of the tissue slide is possible and
often called whole-slide image (WSI) analysis.

4.1 Problem with medical image analysis on renal cell carcinoma

In the same way as other kind of cancer, renal cell carcinoma can benefit from robust and
accurate medical image analysis system. In this study, we specifically study the clear cell renal
cell carcinoma (ccRCC). Grading system for tissue sample for this oncological type is strictly
magnification-dependent, pathologists were asked to use specific power field in the decision-
making process. While the development of digital pathology has introduced digital slides,
which is a tissue sample scanned into a digital image and viewed using computer displays, the
effect of microscope’s magnification has not been proven to be reproducible with digital image
processing on computer displays yet. The grading of ccRCC is also controversial (not clear-cut
grade description), known to be subjective (but somewhat effective), and requires throughout
examination of the slide (not partial examination) [58–61]. Therefore, it is complicate to estab-
lish discrete annotation class and analyze them. Furthermore, he current grading standard for
ccRCC is created by International Society of Urological Pathology (ISUP) and is not compati-
ble with conventional way of image analysis—extracting a number of comprehensive features
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for classification. In short, there are three main problem regarding the current grading system
of ccRCC: (1) reliance on microscope’s magnification mechanism, (2) subjectivity of current
grading system, and (3) lack of underlying biological explanation for each grade. It is urgent
that we establish the diagnosis method for ccRCC that works in digital pathology. In this the-
sis chapter, we will discuss our approach to discover basic parameters or computational visual
features that could effectively distinguish the differences among each grade of ccRCC and can
directly describe the underlying biological process—such as cell cycle—in cancerous tissue.
Our aim is to work with H&E stained image since it is a principle stain for all tissue samples.

4.2 Type of data used in histology image analysis

The current widely used histologic slides for cancer diagnosis is H&E stained slides be-
cause of several reasons e.g. being the pathological gold-standard for diagnosis decision, lower
cost of preparation, the ability to visualize important pathological features. As a result, there
are efforts to put together a competitions such as Camelyon [16], TUPAC [17], ICIAR [18]
and public repositories such as TCGA and GTEx regarding this type of data.

4.2.1 H&E staining

H&E stained slides consist of two chemicals and is necessary for all tissues that will be
used in cancer diagnosis. Hematoxylin stain binds to nuclei thus make them appear blue or
purple. Eosin stain binds to connective tissues surrounding nuclei appear in red, pink, and
orange. Although the staining chemicals does not unveil special substances or biochemical
interactions. Nevertheless, it provides insights about the morphological changes in the tissue
sample. These changes can be both at the cellular, arrangement of the chromatin in the nuclei
or overall shape of the cell, or inter-cellular level, structure of how a group of cells arrange
themselves. These fundamental characteristics have enabled pathologists to tap into the vast
underlying information within the tissue and interpret stages of the disease from biological
ques. As well as pathologists, automated analysis framework has also been taking advantage
from these visual features.

4.2.2 Immunohistochemistry staining

Immunohistochemistry (IHC) is a type of immunostaining used to highlight specific pro-
teins in the tissue. This is not used in a mainstream clinical routine. Since it is used only in
some specific patient cases, small research projects, and clinical trials in precision medicine,
large-scale dataset for this type of image has not yet been widely adopted by the machine learn-
ing community. Some work has proven that additional information in IHC image can enhance
the performance of the automated analysis but further biological explanation of how it can im-
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prove the performance beside the fact that it provides additional information is needed. The
protein could be selected based on associative studies that indicate correlations between the
protein and the oncological sub-type or the stage of the disease. Thus, the way IHC image im-
proves prediction performance can come from the presence, density, or pattern of some stain
features and this research question has not been answered at the present.

4.2.3 Tissue microarray

Another popular source of data that could provide specific patterns representing different
stage or type of the disease is the tissue microarray (TMA). Compare to WSIs, major difference
in the TMAs is the high variety of the patterns since many cases or cores can be fitted to the same
slide. Nevertheless, what cores in TMA lack is size. The original purpose of TMA is to perform
simultaneous analysis of different molecular targets. Currently, there is one popular TMA
repository named The Stanford Tissue Microarray Repository [62]. The information in this
repository has enhanced some analysis algorithms [21] to yield better results. Considering the
practical situations, TMA is not a standard practice to diagnose the patient. Thus, training the
system to recognize specific patterns in the tissue slides cannot rely on this type of information
alone.

4.2.4 Use of different data type

In recent years, a number of analysis frameworks have demonstrated that it is possible
to construct automated systems to perform pathologists’ repetitive tasks with a decent perfor-
mance [19, 20, 29]. It should be noted that without advance staining, automated analysis can
further exploit the underlying information in the tissue slide even with basic staining since the
usual routine has time constrain and pathologist cannot fully examine the slide fully. Systems
that aim to achieve the mass screening or alleviate pathologists’ workload should be able to
perform the prediction based on H&E stained whole-slide image.

4.3 Different approaches in tissue slide analysis

Histopathological features can often be quantified into a digitally computable morphological-
or texture-based features as decades of conventional machine learning and engineered features
has thrived on. Each oncological type has its own characteristic that pathologist could exploit
to accurately and conveniently determine the severity of the disease e.g. nuclear-based grad-
ing approach is effective and widely used in kidney cancer, mitotic count works well in breast
cancer, and determining the number of neurofibrillary tangles in tauopathy. In some sub-type,
focusing on the relationship between the cellular activity (disease extent) in cancerous cells
and its morphological alterations within the nuclei area should provide insights to engineer
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quantitative features that can be utilize the benefit the digital image analysis. Recognition
of visual features is crucial to identify oncological type/sub-type and severity of the disease.
Changes in visual features are caused by morphological changes in the at the cellular level.
This is the result of genotype-tissue expression where various coding DNA strands influence
the development and functions of the cell. In cancerous area of the tissue where certain genes
are altered, the behavior of the cell would have been changed, so as the morphology of the
cell and its nucleus. Some grading standards rely on those cellular patterns. While [63] sug-
gest that the architectural pattern of the cells may also contribute to the assessment. Spotting
these features and associating the features with tumor grade are the ultimate goal of automated
systems. There are different approaches to perform such tasks. Three major approaches in-
cluding manual feature engineering, detection and counting, and tissue classification will be
discussed in this section along with their advantages and disadvantages. In this thesis, a new
approach to analyze the tissue image based on biological comprehension is proposed. Distinct
morphological changes at the cellular level can cause the cell to appear differently under the
microscope with different staining techniques. Pathologists have exploited these changes so
that they could spot unusual activities. Data scientists could use similar approach to craft fea-
tures that would reflect variation that they wish to spot. The research community has been
experimenting with this type of measurement for a long time. As a result, there are thousands
of methods to extract features, however the ability to quantify the visual information was not
satisfactory. Recent developments in deep learning has unlock this technical bottleneck with
the ability of deep learning models to learn complex functions and extract effective features.
Nevertheless, the transparency of system is being questioned since intelligence used in the
clinic should be explainable.

4.3.1 Analysis based on feature engineering

So far, there have been two approach to come up with good manually crafted features.
The first is to directly measure the changes according to biological behavior e.g. measuring
the nuclei size and shape using principle component analysis, determining the cell density by
measuring the distance between nuclei, and directly determine the amount of stained color
in the tissue. In this approach, the analysts need to understand the biological features that
pathologists often use to identify the cancerous region in the tissue. The second is to utilize
known image processing features to quantify the visual appearance and associate those fea-
tures with the desired outcome (e.g. grade, severity, and survival outcome). Some researchers
[60, 64] have demonstrated this approach and successfully create a system to identify oncolog-
ical sub-type. In 2016, Yu k. et al. [64] extracted 9,879 quantitative image features from WSIs
and TMA slides and successfully use the extracted features to train the regularized machine-
learning model and effectively predict the patient’s survival outcome. Most of the important
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features are texture-based is expected because texture features are highly sensitive to the visual
pattern in tissue images. In 2017, an effort to organize the set of image features for 3D radiol-
ogy scans has been made [28]. A set of quantitative image features has been established and
they are grouped into first-order statistics, shape-based (2D and 3D), gray-level cooccurrence
matrix (GLCM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLZM),
neighboring gray tone difference matrix, and gray-level dependence matrix (GLDM) with an
average of 15 features per group.

4.3.2 Analysis based on detection and counting

In some oncological type such as breast cancer, the grade of the disease is assigned based
on the occurrence of specific entity in the image in a limited area. An example would be the
mitotic count in breast biopsy where there are grade 1 to 3 and the count for each grade is
less than 7, 8 to 15, and more than 16 at high power fields. In this case, pathologists would
have to identify all cells at a mitotic state and count them. The challenge for human interpreter
for this kind of task is counting and keeping track of which cell has been counted, while the
challenge for machine is to correctly identify the cell that comprise with features that should
be recognized as mitotic cells. Another occasion where the detection and counting approach
is needed is when special stains are used, and the instance of stained objects must be counted.
The automated system that work based on detection and counting should perform better than
human by having the ability to keep track of what have been counted and covering more area
of the tissue slide, not just some sampled area. It should be noted that the occurrence that were
counted has a well-defined boundary or can appear in the tissue independently. Otherwise the
counting process would be ambiguous.

4.3.3 Analysis based on tissue classification

Successful application of statistical machine learning, both shallow and deep, is in this
area where the analysis pipeline will predict or score each part of the image to reflect the
severity of the region. The area of the image fed to the model is arbitrary sectioned. Two
popular method to break the WSI down into parts are sliding window and tiling method. In
sliding window, arbitrary sub-window size is set along with step size. Sub-windows will be
highly overlapped if the step size is relatively small compare to the sub-window size and will
have less overlapping area otherwise. This method may generate unnecessary amount of data
to interpret. Tiling method is similar to the sliding window, but the step size is equal to the tile
size. This sectioning method is somewhat popular and effective, it is used in many recent works
[19, 21, 65, 66]. Logically, this approach would be appropriate for applying to grading standard
with complex pathological description for each grade e.g. Gleason’s pattern and WHO/ISUP
grading system since there are pathological terms such as stroma between glands, irregular
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masses of neoplastic glands, rhabdoid and sarcomatoid differentiation, nuclear pleomorphism,
acinar pattern, eosinophilic hyaline globule pattern, or lymphatic invasion that are too complex
to be broken down into a set of interpretable features.

4.3.4 Analysis based on biological comprehension

In this thesis, we propose a novel approach to analyze histopathological image. To pro-
mote the transparency of the machine learning system and engineer an explainable system, the
machine should analyze the image in the same way that pathologist do. To goal is to engineer
an ability for the system to directly quantify the extent of the disease. To do so, the mechanism
of how cancer works must be understood. The general characteristics of cancer cells is that
the cluster of cancerous cells will have a heightened cellular activity, consuming more energy
and nutrients, and create more cells rapidly since the regulation system has been broken. The
heightened cellular activity causes the irregular arrangement of euchromatin and heterochro-
matin in the nucleus which can be spotted using H&E staining and is the histopathological
feature that some grading system are built upon. In ISUP grading system for clear cell renal
cell carcinoma, the feature is then technically termed“nucleolar prominence”which has high
degree of subjectivity.

4.4 Case study: visible nuclear characteristics in H&E stained tissue sample
image of low-grade clear cell renal cell carcinoma

In this case study, we hypothesized that the visual effect that WHO/ISUP grading system
referred to as“nucleolar prominence”is the combination of nuclei size and intensity contrast
within the nuclei surface. After preliminary investigation on the appearance of nuclei from
tissue slide with different grade confirmed by pathologists, manually engineered features are
then selected and used to determine the extent of the disease for the sample, then the features
were used to classify the nuclei grade and the performance was compared to the actual ISUP
grading. The WHO/ISUP grading standard for renal cell carcinoma is analyzed according to
underlying biological cellular activity.

4.4.1 Materials and methods

1) Data collection

Digital images of diagnostic slides are acquired via Olympus BX41 light microscope with
a smartphone model vivo X6D at the resolution of 8320 by 6240 pixels ( 50 megapixels) saved
in JPEG format from the First Affiliated Hospital of Xi’an Jiaotong University. The image is
taken when the microscope is configured to 40x objective lenses and 10x eyepiece lenses (400x
magnification). Twenty-three digital images were acquired from 17 tissue slides of 8 patients
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that has been diagnosed with ccRCC with pathological grade 1 to 3. The slide-level patho-
logical grade was made by two experienced pathologists. In the case of conflicting grading
decision, the highest grade was selected for that specific slide.

2) Motivation and pilot study

Based on our hypothesis that nuclei’s size and surface color contrast contribute to nucle-
olar prominence, we manually extract nuclei from tissue image and arrange them according to
the confirmed grade of the tissue slide. Noted that this step is proceed by non-expert. Obser-
vation of the extracted nuclei in the pilot study has confirmed our hypothesis that the size and
color contrast are the contributing factors to nucleolar prominence. The sample of extracted
nuclei according to the slide-level grade is shown in Figure 4-1 and full images can be seen in
Appendix B.

(a) ISUP grade 1 (b) ISUP grade 2 (c) ISUP grade 3
Figure 4-1 Sample of extracted nuclei by non-expert according to confirmed slide-level grade from grade 1

(a), 2 (b), and 3 (c). The image of each nuclei has dimension of 91 by 91 pixels.

According to the WHO/ISUP grading standard, there may be some lower-grade nuclei in
the tissue slide with higher grade in this set of extracted nuclei since there the slide is graded
based on the nuclei with the highest grade. Also, there may be some nuclei with higher grades
in lower-grade slide since the slide is very large and pathologists may miss some nuclei. The
problem has led us to the design of the study where pathologists will grade each single nucleus
individually.

3) Method

One experienced pathologist examined one portion of the image (800-by-600 pixels) at
a time and assigned each cancerous nucleus a pathological grade based on ISUP grading system
from 1 to 3 using an open source MATLAB script called image-marker (https://gitlab.com/BioAI/image-
marker) for the entire field of view (diameter = 550 micron). The marked nuclei are then ex-
tracted and grouped based on their grade. Two manually selected features are calculated for
each nucleus which are size of surface area as well as the color contrast using root-mean-square
(RMS) method (see Equation (4-1)).
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√√√√√ 1
MN

N−1∑
i=0

M−1∑
j=0

(
Iij − Ī
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(1) Feature selection

The size of the nuclei is selected as one of the features since we can observe clearly from
the sample nuclei that they have different sizes in different grades. Nuclei of grade 1 is signif-
icantly smaller than the ones in grade 2 and 3. The size of the nuclei has been studied before
in [60] and it has positive relationship with the grade. In this study, we calculate the size of
the nuclei by segmenting the nuclei and count the pixels. The second selected feature is color
contrast within the nuclei, this is a novel feature. This feature relies on the condensation of
heterochromatin—appear blue or purple in the center of nuclei. As cell activity increases, het-
erochromatin will be condensed into nucleoli and some is pushed to the edge of the nucleus,
clearing ways for euchromatin to expand and replicate more DNA strands. The H&E stain does
not bind to euchromatin, thus create clear nuclei which is also the origin of the oncological type,
“clear cell”.

(2) Nuclei segmentation

Since the nuclei are manually localized, segmentation can be made via a set of simple
image processing operations. In our segmentation process, we do the following: (1) convert
RGB image to grayscale image, (2) binarize the image using global Otsu thresholding, (3)
dilate the image (kernel is disk-shaped with r = 5 pixels), (4) flood-fill the image, (5) erode
the image using the same kernel as step 3, (6) clear connected components that are connected
to the border, (7) select the largest connected component as the segmented nuclei. Regions of
interest are then used to calculate nuclei size and color contrast. Example of overall process is
shown in Figure 4-2. The segmentation process is implemented in MATLAB. Noted that this
segmentation process does not work for all nuclei, thus there are smaller number of segmented
nuclei which are 766, 175, and 242 nuclei for grade 1, 2, and 3 respectively.

Figure 4-2 Example of segmentation process including thresholding.

(3) Nuclei classification based on selected features

Two experiments were conducted to train models for nuclei classification to demonstrate
capabilities of the two features. The first experiment is based on a multi-class linear support
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vector machine (SVM) classifier model in MATLAB version 9.4.0 (R2018a) with Statistics and
Machine Learning Toolbox Version 11.3. The second experiment is based on a fully-connected
neural networks from MATLAB Neural Network Toolbox version 11.1 where the configuration
2-layer network with 10 nodes in the hidden layer and 3 in the output layer as is illustrated in
Figure 4-3.

Figure 4-3 Configuration of artificial neural networks for the second experiment.

The input data used and its distribution for training of the two models is plotted in Figure
4-4. The total of 525 nuclei were randomly selected from the segmented nuclei, 175 nuclei for
each grade, thus the training data is balanced. In both experiments, the classifiers were trained
to predict 3 classes which are nuclei of grade 1, 2, and 3. Distribution of the features from
nuclei of different grades are shown in Figure 4-4.
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Figure 4-4 Nuclei surface size and intensity contrast of different grade.

4.4.2 Result

1) Annotated nuclei dataset

The dataset is annotated based on the procedure described in the materials and methods
section. We have obtained 3,552 nuclei annotated on 66 selected images. In all annotations,
2,619, 723, and 201 nuclei were assigned grade 1, 2, and 3 respectively. It is worth mentioning
that in the nuclei in that have been annotated as grade 3, only 15 nuclei came from grade 2
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slide and 2 nuclei from grade 1 slide. Examples of graded nuclei are shown in Figure 4-5.
It is noticeable that quality of annotation is better than the pilot study. More examples are in
Appendix B.

(a) ISUP grade 1 (b) ISUP grade 2 (c) ISUP grade 3
Figure 4-5 Example of nuclei graded by experienced pathologist at nuclei level from grade 1 to 3 (a-c)

respectively. The image of each nuclei has dimension of 151 by 151 pixels.

2) Feature analysis

Nuclei size and intensity contrast of the training set are digitally calculated. The statistics
of those features are summarized in Table x1. From the digital measurement, the average
surface area and normalized RMS value of the nuclei marked with different grade is shown in
table x1. It can be seen that nuclei with larger size tend to be assigned higher grades. Similarly,
the nuclei with more intensity contrast are likely have higher grade.

Table 4-1 Averaged nuclei surface area and intensity contrast of the training set

Grade Averaged nuclei surface area
(SD) [pixels]

Averaged nuclei intensity
contrast (SD)

1 2744 (753) 0.1164 (0.0292)

2 4710 (1049) 0.0990 (0.0174)

3 4797 (1082) 0.1212 (0.0235)

3) Classification result

The combination of nuclei size and intensity contrast used as digital image features can
correctly identify the grade of single nuclei with 71.24% (10-fold cross validation) and 71.80%
(overall) accuracy by SVM-based and neural network-based classifiers respectively. Similar
performance in the two experiments shows that these classifiers have utilize the full potential
of the given features and cannot be further optimized. In the second experiment with neural
networks, classifier has better performance in classifying grade 1 nuclei than grade 2 and 3, as
the accuracy of classification for different grades are 80.00%, 69.70%, and 65.70% respectively
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as shown in confusion matrices in Figure 4-7. Better classification performance on grade 1
versus grade 2 and 3 can also be seen in receiver operating characteristic (ROC) curve for both
classifiers as shown in Figure 4-6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
po

si
tiv

e 
ra

te

ROC for Classification by SVM-based classifier

grade 1
grade 2
grade 3

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
Po

si
tiv

e 
R

at
e

ROC for classification by neural networks

Class 1
Class 2
Class 3

(a) ROC of linear SVM (b) ROC of neural networks
Figure 4-6 Receiver operating characteristic curve for (a) SVM and (b) ANN based classifiers with grade

1, 2, and 3 as a positive class.

4.5 Discussion

4.5.1 Underlying biological process

Based on close examination of nuclei and quantitative analysis, comparing to ultrastruc-
ture study using electron microscopy of ccRCC tissue, H&E stained sample examined under
light microscope have similar characteristics, only with lower resolution. The fact that euchro-
matin will get enlarged during heightened cell activity and result in larger nuclei with more
densely packed heterochromatin can be seen in electron microscope [67] as well as in H&E
stained tissue. In H&E stained tissue, the eosin is stained specifically to the heterochromatin
that consist of histone protein. Therefore, the darker area in the H&E image represents hete-
rochromatin and the lighter area represents euchromatin.

4.5.2 Performance of proposed features

Two classifiers chosen to utilize the proposed features have different computational com-
plexity where linear SVM classifier have less complexity and ANN-based classifier has suffi-
ciently complex structure. Yet, they preform similarly in with the proposed features and both
have positive results. The evidences should be adequate to conclude that these two features
do reflect the nucleolar prominence mentioned in the WHO/ISUP grading standard. The fact
that two classifiers have similar performance suggests that features have been used at its full
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Figure 4-7 Confusion matrices from the artificial neural networks experiment.

potential and the classifiers cannot be further optimized to improve the performance.

4.5.3 Evaluation of the artificial technique on digital pathology

Currently, there are two widely adopted techniques to demonstrate the interoperability
and robustness of machine learning models which are unique cross-validation technique and
validation on other datasets from completely new sources—hospitals, patient groups, and ge-
ographical area. The special property of cross-validation technique used in medicine is often
called leave-patient/case-out cross-validation as mentioned by [65]. The gist of this method is
to test the variability of data at the patient level since it is known to have high variation. For
example, cross-validating the model should completely hold all data from one or more indi-
vidual patient out during the training period and test using the held-out data. Using different
datasets may also be effective in validating machine learning models. [68] have demonstrated
associating multi-omics features from two datasets including TCGA cohort and Mayo Clinic
cohort.
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4.5.4 Usage of prediction results and analysis results

Prediction results from automated systems can be utilized in many ways and there are pros
and cons in each approach. While the ultimate goal of automatically grading histopathological
slides is to achieve patient-level diagnosis which could be done by fully automated systems,
other usage of predictions is also useful. For instance, computer-assisted diagnosis could shave
some repetitive and simple tasks off, and let the pathologists focuses on harder part of the di-
agnosis. A fully automated system to predict patient-level diagnosis is ideal. However, it is
not considered safe to utilize such system since any number of preventable false negatives is
not acceptable. Moreover, a patient-level diagnosis could be considered as a complex decision
since it involves multiple source of data—parts of slides, this makes the demand for even larger
amount of data and researchers have agreed that current magnitude of data is not enough. For
example, number of cases in top 6 sub-projects in TCGA are around 500 cases. This number is
far from enough since there could be thousands of new cancer cases just in the US every day.
Compiling medical records from every day’s diagnosis in hospitals would requires standard-
ization and it is not feasible to do so at the moment due to lack of international standards and
biomedical infrastructure. More imminent use of automated systems falls in the area where
low-level decisions are made. These are spotting cancerous segments of a slide—without pre-
dicting grades, localize and count certain indicative elements—reduce repetitive tasks, and find
similar area of interest. However, CAD should be evaluated if the systems cause biases in the
diagnosis.

4.5.5 Risks in utilizing machine learned information in the pathological di-
agnosis

All automated systems are somehow derived from a training, development, and testing
datasets. Those could be different by randomization, held-out methods, or originating sources.
A system designed for certain type of disease may assumed that it would work with data from
any settings. This assumption should be ceased until it is proven that data used has similar or
same characteristics. For example, tissue stained by the same staining technique may appear
differently. Immediate response to tackle this problem is to release datasets used in the devel-
opment process, thus users could have ideas if their input data is compatible with the system.
A more long-term solution may be to develop tissue characteristic similarity tests, and they
should be able to spot the difference between patients, data cohorts, hospitals, and geograph-
ical areas. Performance matrices for this kind of automated systems should be evaluated as
well. Conventional methods to report machine learning models such as accuracy, sensitivity,
specificity, precision, recall, etc., may not be enough to evaluate medical systems. The use
of patient survival analysis: disease-free survival and overall survival, using hazard ratio or
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Kaplan–Meier estimator may be more appropriate. Finally, users of automated systems should
understand these matrices and know how they are developed to avoid pitfalls that would make
their use of artificial intelligent system fail and cause erroneous diagnosis.
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5 Conclusions and suggestions

In this thesis, we proposed three main topics including an introduction to histopatholog-
ical image annotation platform—OpenHI, a discussion on best practices for annotating clear
cell renal cell carcinoma, and a new approach to analyze tissue slides based on underlying bi-
ological interpretation with preliminary demonstration. This is done in response to the need
for semantic understanding of histopathological pattern which will drive the development of
artificial intelligence techniques in digital pathology. In addition, this chapter also provides a
solution on how to keep up with cancer research which is a fast-growing research area. Digital
pathology is a relatively new area of study within cancer research. We believe that addition of
our annotation software and creation of large-scale annotated dataset may induce many new
ideas and lines of work, these are discussed in the outlook section.

5.1 Rapid development in cancer research

Cancer research is a fast growing and has become multidisciplinary research area. It is
challenging to keep up with all literatures published recently and sort things out. Figure 5-1
shows the number of publications according to Clarivate Analytics in the past 25 years based
on three keywords: cancer, whole-slide image, and histopathological image.

It is crucial to study and follow international/national organizations and their standards.
The example of main organizations for cancer in general and for some particular oncological
type including renal and lung cancer in Table 5-1. Noted that there are no main and universal
organization responsible for all types of cancer nor all regions in the world. Intelligent systems
that aims to assist cancer screening and diagnosis should comply with the existing standards
and flexible enough to adjust to new guidelines.

5.2 Histopathological image platform

Digitalized histopathological images are increasing in a fast pace with continuous health
informatics development around the world. The images present phenotypes of tumors at cel-
lular level and may support the association study with genotypes from sequence data. OpenHI
may accelerate precise creation of phenotype annotations with semantic meaning in the im-
ages. Additionally, the framework utilizes web technology, therefore is capable of collabora-
tive annotation which is a foundation of crowed-sourcing to create large-dataset. As a result,
large-scale datasets with precise and semantically rich annotations which is suitable for training
computational model could be efficiently created. The framework is open source and could be
easily extended and implemented into a clinical decision-making workflow [48]. It also can be
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(a) keyword: cancer

(b) keyword: whole-slide image

(c) keyword: histopathological image
Figure 5-1 Trend of publications in the past 25 years based on three keywords: (a) cancer, (b) whole-slide

image, (c) histopathological image.

easily configurable at the back-end for the data scientist to adapt different diagnosis standards,
e.g., various cancer sub-types or gradings.
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Table 5-1 International organizations responsible for regulating medical procedures and guidelines related
to cancer. Noted that this is not an exhaustive list.

Name
[Abbreviation]

Disease
area

Target Responsibility Resources

World Health
Organization

[WHO]

General General
population

Identify and maintain a list of
carcinogenic substances and

provide guidelines for the
general population. WHO
cancer report International
Agency for Research on
Cancer [IARC] General

General population Work as
part of WHO to collect and
publish global statistics on

cancer situation.

WHO“Blue
Book”: overview

guideline to
various cancer

types

American Joint
Committee on
Cancer [AJCC]

General Clinicians Maintain cancer staging
guideline.

Cancer staging
guideline

US National
Institute of Health

and National
Cancer Institute

[US NIH & NCI]

General US
population

and re-
searchers

Provide funding for research
activity promoting well-being

in the US.

TCGA Project,
GTEx Project,
Genomic data

commons (GDC)
repository, etc.

International
Society of
Urological

Pathology [ISUP]

Urology Pathologists Maintain cancer grading
guideline for urinary system.

ISUP grading
guideline for
kidney and

prostate cancer

The United States &
Canadian Academy

of Pathology
[USCAP]

General Experts Maintain guidelines related to
pathology

USCAP
pathology report

for renal cell
carcinoma, etc.

International
Association for the

Study of Lung
Cancer [IASLC]

Thoracic Experts
and

patients

Enhance the understanding of
lung cancer among scientists,

members of the medical
community and the public

Classification
guideline for lung
adenocarcinoma,

etc.

This work does not only propose a framework for annotating WSI which overcomes tech-
nological challenges to read and store extremely large histopathological image, but also discuss
procedures to combine semantic meaning within existing cancer grading systems onto digital
slides. The proposed process along with the framework complies with usual pathological rou-
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tine thus pathologists can effectively, efficiently annotate using the framework to achieve high
quality biomedical datasets.

Large-scale datasets with precise annotations may be efficiently created by the framework.
Artificial intelligent methods, for example, based on statistical machine learning, could benefit
from the rich features in the data and move forward to practically assist the pathologist’s routine
laboratory work. Such pipeline could also provide a solution to imminent issue such as mis-
grading which could lead to misdiagnosis and to provide a good foundation for the future
development of phenotype-genotype or multi-omics associations [30].

5.2.1 Current problem on inter-rater reliability test

In renal cancer, the grading system is based on nucleolar prominence which is a highly
subjective and controversial criteria. Nevertheless, the prominence of the nucleoli has proven
itself to be useful and be able to distinguish patients of different grades [60]. Discordance
between pathologists is not a problem specific to raters in the virtual slide environment [69].
The problem also exists in the setting of conventional glass slides as can be seen in the study for
breast cancer [57]. Introducing more than one annotator to establish multi-expert annotation
does not entirely solve the disagreements between pathologists since there are no best way to
combine the multi-expert annotation. This problem can be divided into two parts: defining
the spatial boundary of regions from multiple sources and deciding the final grade for the
same region. It can be claimed that no two annotators can select the exact same region down
to the pixel-level based on freehand region selection and often the degree of differences is
large. Negotiating the middle ground between multiple annotations is hectic. Selecting the
maximum coverage is good for minimizing false negatives but increase the chance of false
positives. Similarly, in deciding the final grade, maximum grade can be selected and increase a
risk to produce false positive results. In different situations, less experienced raters may under
or overestimate the grade of the tissue [45, 57]. It is proven that machine has a better time
understanding single-expert annotation [65]. An automated system with good performance
trained with single-expert annotation might be the result of non-generalized system.

5.2.2 Effect of image digitization and digital visualization on annotator’s
judgements

As mentioned earlier, in Section 2.5.2, the digital representation of WSI is far from per-
fect and not equivalent to an image that pathologists would experience via conventional mi-
croscopes. Magnification-dependent grading systems may suffer further irreproducibility from
this matter. The effect of resolving power on the judgement of pathologists needs further study.
The problem regarding this matter could be broken down into three aspects including digital
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image production (scanning), storing file format, and visualization.

1）Glass slide image acquisition

Whole-slide images are scanned by whole-slide scanner. Only some part of information
stating the components used during the scan was recorded to the digital file as metadata. The
crucial piece of information used in this project is the pixel size. This parameter state how
large is the pixel in the WSI on the physical glass slide. However, this important parameter is
the result of magnifications from objective lenses and scanner sensor size. Since whole-slide
scanner is a closed system, further analysis on the effect of objective lenses’ resolving power
and the scanning sensor size cannot be studied and users of WSIs must blindly trust scanner’s
manufactures that they have deliver the pixel value according to the real physical color on
the glass slide without any compromises in quality. The effect of resolving power on image
digitization should be closely studied and the parameter pixel size should work in the same
way as Rayleigh resolution limit.

2) Whole-slide image file storage

Usually digital files do not deteriorate. But the loss in quality occur when the image is
first saved from raw files to compressed format. Since WSIs generally have large file size,
it is necessary to save WSI files in economical ways. JPEG-2000 compression algorithm is
usually used to compress histological slides since they are considered to be natural image (not
computer graphics where PNG format is more suitable). There are degrees of compression in
both bit-depth and resolution. So far, there are no evidences that WSIs are compressed in term
of resolution, but only bit-depth. One study [70] has investigated in this matter and find out that
the compression does not affect the interpretation of deep learning algorithms. Nevertheless,
further study on the effect of JPEG compression should be made, finding optimized point of
compression to store the file [71]. Alternative lossless compression algorithm should also be
explored as [72] suggested.

3) Whole-slide image visualization

Recently, US-FDA has published a regulatory guideline for whole-slide imaging system
[51]. The guideline emphasizes on delivering physical color of glass slides to the monitor, the
idea was named imaging pathway. However, the system does not take how the user of the
system will perceive the image into consideration. This effect is hard to study since the effect
may vary from person to person. According to [50], the size of computer display has a lot
of effect on the magnification of the image itself. Human eye’s resolution and field of vision
should also be taken into consideration.
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5.2.3 Performance of the software

Regarding the performance of the annotation framework, most of the processing time is
spent on retrieving and compiling different layers of images to visualize the current state of
a particular part of the WSI. The pre-loading operations also take long time since the entire
boundary matrix must be loaded into the memory, larger WSI will cause longer loading time,
thus more framework initialization time and more memory needed. Part of the reason causing
this bottleneck is that conventional image file format and read/write operations were used to
accomplish these tasks and they were not designed for images with such large dimensions. The
process is illustrated in Figure 5-2.

Figure 5-2 Schema of whole-slide image file reading and visualization.

Tackling this problem, we suggest that a new file format with support to store annotation
data is needed. This could be a completely new file format based on multi-scale image tech-
niques or deep zooming technology [73]. It could also be an implementation of long proposed,
but not popularized, DICOM standard for light microscopy, specifically for WSIs [74]. To-
gether with the file format, tools with programmatic interface similar to OpenSlide should be
provided, ensuring that the tool can be used on all computing platforms. The two new compo-
nents of the system would replace complicate low-level operations for prospective users. As
in Figure 5-2, it could be noticed that this is one-way operation, writing back to original WSI
files is not possible at the moment. It is suggested that new systems should support writing and
modification as well.
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5.3 Annotated dataset

The proposed annotation framework was used to annotate WSIs from TCGA-KIRC project.
The annotation was made according to WHO/ISUP grading standard at the c-cluster level—
adjustable by annotator. Digital tissue slides are shown to annotators on computer displays with
certain resolutions for low- and high-power field. The appropriate down-sampled version of
original WSIs are processed by our method based on microscopes’ resolving power, Rayleigh
resolution limit, and Nyquist sampling theorem. Annotations were made by two experienced
pathologists.

The developing dataset with annotations provided by experts would not only be able to
drive the development of statistical machine learning algorithms, but also be a gold-standard
for more annotations for histopathological slides to be made. Annotations can also be used for
pathologist training purposes, providing interactive training where students could trace how
professional pathologists interact with slides and discover important features. The tracing is
possible by looking into log files and reproduce annotation events.

Digital tissue slides with granular annotations of digital tissue slides could be utilized to
solve many problems including, but not limited to, cancerous nuclei and region localization,
nuclei or cell segmentation, tissue grade classification, and patients’ cancer diagnosis predic-
tion. Diagnosis discordance is a known problem among pathologists grading tissue slides, but
the disagreement occurs at the patient- or slide-level. Granular digital annotation may be able
to provide insights to where were disagreements originated.

5.4 Whole-slide image analysis for renal cell carcinoma

The analysis of renal cell carcinoma can be established in many ways depends on type of
input data and analysis approach. Input data in the form of WSI could be H&E stained slides,
IHC slides, or a bunch of TMAs. Each of these has its own characteristics, and the most popu-
lar one is H&E slides which is considered to be a principle stain and all tissue samples must go
through this staining procedure. It is easier to acquire large-scale data of the staining type and
mass analysis would make a better impact to the society. Different analysis approaches have
been tested out in the past years. They are based on feature engineering, detection and count-
ing, and tissue classification. The latter two could benefit from a rapid development of deep
learning algorithms. Nevertheless, in this thesis, we demonstrate a relative new approach based
on biological comprehension; examining the underlying cellular phenomenon based on exist-
ing pathological grading systems then find appropriate visual features to quantize the visual
information according to the extent of the disease. With only two manually selected features
based on underlying cellular biological process, a simple statistical machine learning models
can achieve the classification accuracy of 70%. At the end, we discuss about the advantages of
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the proposed approach to analyze histopathological images. There are also discussions about
usage of machine learning techniques in clinical settings and risks involved and how to avoid
them.

5.5 Outlook

5.5.1 Visible cellular patterns semantic networks

We believe that cellular patterns seen by pathologists do have meanings. They could be
translated into different forms: tumor grades, certain pathological terms, indicators for biolog-
ical processes, etc.

5.5.2 Association of histopathological patterns with patient’s outcome and
oncological sub-types.

Although biological explanation on relationship between cancer causing genes and visi-
ble visual patterns and identification in histopathological analysis. The conventional method
for establishing grading systems involve retrospective study with a sizable study cohort from
different hospitals focusing on patient survival analysis, often by Kaplan–Meier estimator and
hazard ratio. Grading systems are settled by grouping pathologically identified patterns and
associate them with severity level, thus creating a tiering systems, this process could be seen
clearly in [63]. Visual cellular patterns may be extracted with a more complex and computable
techniques such as deep learning, and it may yield better results. Similar approach can be
seen in [68] with non-small cell lung adenocarcinoma. This could be done instead of training
classifiers against conventional grading systems, but the effects on diagnosis should be further
studied.

Similar association has been made by [20, 64], associating sub-types of non-small cell
lung cancer (NSCLC) which could only be identified by genetic tests with histopathologi-
cal patterns. Both experiments show positive result and proof the feasibility of the fact that
there are hidden patterns that are indicative of cancer sub-types and they have not been ex-
ploited in conventional pathological analysis yet. Besides discovering new visual features,
cellular histopathological features may be established into computable or quantizable amount
by gathering well-established image features summarized in Table 5 2 by feature category in
for radiology scans [28]. Similar approach could be organized to work with histopathological
images.
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Table 5-2 Samples of radiomic features that works with 2-dimensional images categorized by image pro-
cessing techniques [28]

Category Sample features Number of total features

First order statistics Entropy

Minimum

ith percentile

Mean

Median

Root mean squared

Standard deviation

19

Shape-based Perimeter

Sphericity

Major Axis Length

Elongation

10

Gray level cooccurrence matrix Correlation

Difference average

Contrast

Difference entropy

24

Gray level run length matrix Gray Level Non-Uniformity (GLN)

Long Run Emphasis (LRE)

16

Gray level size zone matrix Zone Percentage (ZP)

Gray Level Variance (GLV)

Large Area High Gray Level Emphasis (LAHGLE)

16

Gray level dependence matrix Large/Small Dependence Emphasis (LDE/SDE)

High Gray Level Emphasis (HGLE)

Dependence Variance (DV)

14

5.5.3 Association of digital slides with other data modalities

Three categories of data have always been biologically connected: genotype, phenotype,
and clinical records. They have influence on one another. Digital slides are part of phenotype,
derived from tissue samples extracted from patients by biopsies. They could be seen by pathol-
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ogists under light microscope or digitally recorded as WSIs. Different tissue slide preparation
would yield different appearance such as different tissue cutting and staining techniques. After
all, the emerged visible patterns are the result of gene—normal or cancerous—expressions. The
expressed patterns would also have influenced how a group of cells or an organ works, which
could be observed externally or experienced by the patients as symptoms. A more crude but
effective method to examine patient’s internal organs is radiology scans where tumors could
be detected, yet it is caused by unusual growth of cells accumulated into tissue. Clearly, they
are all connected as shown in Figure 5-3.

Figure 5-3 Illustration of connections within different data modalities in medicine.

Biologists would have a relatively crude understanding of how this mechanism works in
detail compare to what could be achieved by machine. This is the case because human can only
perceive limited amount of information at a given time, leading to either close examination of
one particular part of the data and ignoring holistic view or vice versa. Examples of data that
human cannot perceive are raw DNA/RNA sequence, subtle patterns in histology slides, and
clinical records over a long time. Computer systems, on the other hand, can perceive and
analyze an entire set of data, the remaining problem is what do we—the user of the systems—
want to do—extract, interpret, analyze, etc.—with the data.
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A.1 Codes

Code A-1 Code for OpenHI data model construction
1 −− Create the schema version 4
2
3 CREATE DATABASE ‘db_wsi4−1_dev‘ ; −− OR ‘db_wsi1‘
4
5 USE ‘db_wsi4−1_dev‘;
6
7 CREATE TABLE ‘annotator‘ (
8 ‘annotator_id‘ smallint (5) unsigned NOT NULL AUTO_INCREMENT,
9 ‘password‘ varchar (45) COLLATE utf8_unicode_ci DEFAULT ’NA’,

10 PRIMARY KEY (‘annotator_id‘)
11 ) ENGINE=InnoDB ;
12
13 −− Insert annotator default password (2 annotators )
14 INSERT INTO annotator(password) values (’123456’);
15 INSERT INTO annotator(password) values (’123456’);
16
17 CREATE TABLE ‘patient‘ (
18 ‘patient_id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,
19 ‘tcga_case_id‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
20 ‘patient_info‘ JSON,
21 PRIMARY KEY (‘patient_id‘),
22 INDEX(tcga_case_id)
23 ) ENGINE=InnoDB ;
24
25 CREATE TABLE ‘biospecimen‘ (
26 ‘bio_id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,
27 ‘tcga_case_id‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
28 ‘bio_info‘ JSON,−− end editing
29 PRIMARY KEY (‘bio_id‘),
30 CONSTRAINT ‘tcga_case_id_in_bio‘ FOREIGN KEY (‘tcga_case_id‘) REFERENCES

‘patient‘ (‘tcga_case_id‘) ON DELETE CASCADE ON UPDATE CASCADE
31 ) ENGINE=InnoDB ;
32
33 CREATE TABLE ‘wsi‘ (
34 ‘slide_id‘ smallint (6) unsigned NOT NULL AUTO_INCREMENT,
35 ‘tcga_wsi_id‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
36 ‘tcga_case_id‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
37 ‘tcga_wsi_slide_id‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
38 ‘uuid‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
39 ‘filename‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
40 # ‘bio_id‘ int (10) unsigned NOT NULL,
41 PRIMARY KEY (‘slide_id‘),
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42 CONSTRAINT ‘tcga_case_id_in_wsi‘ FOREIGN KEY (‘tcga_case_id‘) REFERENCES
‘patient‘ (‘tcga_case_id‘) ON DELETE CASCADE ON UPDATE CASCADE

43 # CONSTRAINT ‘bio_id_in_wsi‘ FOREIGN KEY (‘bio_id‘) REFERENCES ‘biospecimen‘ (
‘bio_id‘) ON DELETE CASCADE ON UPDATE CASCADE

44 ) ENGINE=InnoDB AUTO_INCREMENT=1 ;
45
46 # −− Insert mock−up wsi list with a loop
47 # drop procedure if exists load_foo_test_data ;
48 #
49 # USE ‘db_wsi4−1_dev‘;
50 # delimiter #
51 # create procedure load_foo_test_data ()
52 # begin
53 #
54 # declare v_max int unsigned default 1000;
55 # declare v_counter int unsigned default 0;
56 # while v_counter < v_max do
57 # INSERT INTO ‘db_wsi4−1_dev‘.‘wsi‘ (‘tcga_wsi_id‘, ‘tcga_case_id‘ , ‘uuid‘ )

VALUES (’123456’, ’123’, ’123’) ;
58 # set v_counter=v_counter+1;
59 # end while;
60 # commit;
61 # end #
62 #
63 # delimiter ;
64 #
65 # call load_foo_test_data () ;
66
67
68 CREATE TABLE ‘grading‘ (
69 ‘grading_id‘ tinyint (3) unsigned NOT NULL AUTO_INCREMENT,
70 ‘grading_std_name‘ varchar (255) COLLATE utf8_unicode_ci DEFAULT ’NA’,
71 PRIMARY KEY (‘grading_id‘)
72 ) ENGINE=InnoDB ;
73
74 −− Insert ISUP grading system
75 INSERT INTO ‘db_wsi4−1_dev‘.‘grading‘ (‘grading_std_name‘) VALUES (’ISUP1’);
76 INSERT INTO ‘db_wsi4−1_dev‘.‘grading‘ (‘grading_std_name‘) VALUES (’ISUP2’);
77 INSERT INTO ‘db_wsi4−1_dev‘.‘grading‘ (‘grading_std_name‘) VALUES (’ISUP3’);
78 INSERT INTO ‘db_wsi4−1_dev‘.‘grading‘ (‘grading_std_name‘) VALUES (’ISUP4’);
79
80 CREATE TABLE ‘pslv‘ (
81 ‘pslv_id‘ tinyint (3) unsigned NOT NULL AUTO_INCREMENT,
82 ‘subregion_density‘ int (10) unsigned DEFAULT NULL,
83 PRIMARY KEY (‘pslv_id‘)
84 ) ENGINE=InnoDB ;
85
86 −− Insert sub−region density
87 INSERT INTO ‘db_wsi4−1_dev‘.‘pslv‘ (‘subregion_density‘) VALUES (5000);
88 INSERT INTO ‘db_wsi4−1_dev‘.‘pslv‘ (‘subregion_density‘) VALUES (1000);
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89 INSERT INTO ‘db_wsi4−1_dev‘.‘pslv‘ (‘subregion_density‘) VALUES (60);
90
91 CREATE TABLE ‘point‘ (
92 ‘pt_id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,
93 ‘x‘ int (10) unsigned NOT NULL,
94 ‘y‘ int (10) unsigned DEFAULT NULL,
95 ‘annotation_ts‘ datetime NOT NULL, −− Annotation timestamp
96 ‘grading_id‘ tinyint (3) unsigned NOT NULL,
97 ‘slide_id‘ smallint (6) unsigned NOT NULL,
98 ‘annotator_id‘ smallint (5) unsigned NOT NULL,
99 ‘pslv_id‘ tinyint (3) unsigned DEFAULT NULL,

100 −− keep adding code
101 ‘region_id‘ int (10) unsigned NOT NULL,
102 ‘selected‘ tinyint (2) unsigned NOT NULL,
103 ‘anno_batch‘ int (10) unsigned NOT NULL,
104 −− end editing
105 PRIMARY KEY (‘pt_id‘),
106 KEY ‘INDEX‘ (‘x‘,‘y‘) USING BTREE,
107 KEY ‘annotator_id_idx‘ ( ‘annotator_id‘ ) ,
108 KEY ‘slide_id_idx‘ ( ‘slide_id‘ ) ,
109 KEY ‘grading_id_idx‘ ( ‘grading_id‘ ) ,
110 KEY ‘pslv_id_idx‘ ( ‘pslv_id‘ ) ,
111 CONSTRAINT ‘annotator_id‘ FOREIGN KEY (‘annotator_id‘) REFERENCES ‘annotator‘ (

‘annotator_id‘) ON DELETE CASCADE ON UPDATE CASCADE,
112 CONSTRAINT ‘grading_id‘ FOREIGN KEY (‘grading_id‘) REFERENCES ‘grading‘ (

‘grading_id‘) ON DELETE CASCADE ON UPDATE CASCADE,
113 CONSTRAINT ‘pslv_id‘ FOREIGN KEY (‘pslv_id‘) REFERENCES ‘pslv‘ (‘pslv_id‘) ON

DELETE CASCADE ON UPDATE CASCADE,
114 CONSTRAINT ‘slide_id‘ FOREIGN KEY (‘slide_id‘) REFERENCES ‘wsi‘ (‘slide_id‘) ON

DELETE CASCADE ON UPDATE CASCADE
115 ) ENGINE=InnoDB ;
116
117 −− To be annotated ( tba ) list support
118 CREATE TABLE ‘tba_list‘ (
119 ‘sw_id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,
120 ‘slide_id‘ smallint (6) unsigned NOT NULL,
121 ‘center_x‘ int (10) unsigned NOT NULL,
122 ‘center_y‘ int (10) unsigned NOT NULL,
123 PRIMARY KEY (‘sw_id‘),
124 KEY ‘slide_id_idx‘ ( ‘slide_id‘ ) ,
125 CONSTRAINT ‘slide_id_in_tba‘ FOREIGN KEY (‘slide_id‘) REFERENCES ‘wsi‘ (‘slide_id‘)

ON DELETE CASCADE ON UPDATE CASCADE
126 ) ENGINE=InnoDB ;
127
128 CREATE TABLE ‘annotator_sw_mark‘ (
129 ‘mark_id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,
130 ‘sw_id‘ int (10) unsigned NOT NULL,
131 ‘annotator_id‘ smallint (5) unsigned NOT NULL,
132 PRIMARY KEY (‘mark_id‘),
133 KEY ‘sw_id_idx‘ (‘sw_id‘) ,
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134 KEY ‘annotator_id_idx‘ ( ‘annotator_id‘ ) ,
135 CONSTRAINT ‘sw_id_in_mark‘ FOREIGN KEY (‘sw_id‘) REFERENCES ‘tba_list‘ (‘sw_id‘)

ON DELETE CASCADE ON UPDATE CASCADE,
136 CONSTRAINT ‘annotator_id_in_mark‘ FOREIGN KEY (‘annotator_id‘) REFERENCES

‘annotator‘ (‘annotator_id‘) ON DELETE CASCADE ON UPDATE CASCADE
137 ) ENGINE=InnoDB ;
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Appendix B Image of ccRCC Nuclei Samples

WHO/ISUP Grade 1:

Figure B-1 Graded 1 nuclei according to WHO/ISUP grading standard fro clear cell renal cell carcinoma.

WHO/ISUP Grade 2:

Figure B-2 Graded 2 nuclei according to WHO/ISUP grading standard fro clear cell renal cell carcinoma.
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WHO/ISUP Grade 3:

Figure B-3 Graded 3 nuclei according to WHO/ISUP grading standard fro clear cell renal cell carcinoma.
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