GNU Astronomy Utilities

Astronomical data manipulation and analysis
for version 0.0, 26 September 2015

Mohammad Akhlaghi

This manual documents version 0.0 of the GNU Astronomy Utilities, providing various
individual tools with similar user interface for astronomical data manipulation and analysis.

Copyright (©) 2015 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

For myself, I am interested in science and in philosophy only because I want to
learn something about the riddle of the world in which we live, and the riddle
of man’s knowledge of that world. And I believe that only a revival of interest
in these riddles can save the sciences and philosophy from narrow specialization
and from an obscurantist faith in the expert’s special skill, and in his personal
knowledge and authority; a faith that so well fits our ‘post-rationalist’ and ‘post-
critical” age, proudly dedicated to the destruction of the tradition of rational
philosophy, and of rational thought itself.
—XKarl Popper. The logic of scientific discovery. 1959.

Short Contents

1 Introduction 1
2 Tutorials . ..o e 11
3 Installation 21
4 Common behavior. 31
B Fies. . e 47
6 Image manipulation L. o7
7 Image analysis. e 86
8 Modeling and fitting 108
9 Table manipulation......... i 125
10 Developing.o 126
A GNU Astronomy Utilities list. 140
B Other useful software 141
C GNU Free Documentation License. 145

Table of Contents

1 Introduction.................., 1
1.1 Quick start.o 1
1.2 Science and its tools......... ..o i 2
1.3 Your rights. ... 3
1.4 Naming convention........... ..., 4
1.5 Version numbering 4

1.5.1 GNU Astronomy Utilities 1.0. 5
1.6 New to GNU/Linux?t 5
1.7 Report a bug. .. .o 7
1.8 Suggest new feature....... ... 8
1.9 Announcementsiiiii i 9
110 Conventions.uuu ettt et e 9
1.11 Acknowledgmentsooiiiiiii 9

2 Tutorials 11
2.1 Hubble visually checks and classifies his catalog................ 11
2.2 Sufi simulates a detection i 14

3 Installation...................... 21
3.1 Requirements............ouiiiiiiiii e 21

3.1.1 GNU Scientific library..........ccoooiiiiiiiiiiii i 21

3.1.2 CFITSIO .. e 22

3.1.3 WOCSLIB . .o 22
3.2 Optional requirements. 23

3.2 1 DI Peg e e vttt 23

3.2.2 GPL Ghostscriptcovv 23
3.3 Installing GNU Astronomy Utilitiesou... 23

3.3.1 Configuringoouuiiiiii i 24

3.3.1.1 GNU Astronomy Utilities configure options.......... 24
3.3.1.2 Imstallation directory L. 25
3.3.1.3 Executable names............... ... i 27

3.3.2 TestS. oottt 28

3.3.3 Adprint manual 29

3.3.4 KNOown iSSUES ...t 29

4 Common behavior............................. 31

4.1 Command line..... ... i 31
4.1.1 Arguments and Options............viiiiiiiiit i 31
4.1.2 Arguments...........oii i 32
4.1.3 OptionS . .o eve et e 32
4.1.4 Common OptionSuuiii e 34

4.1.4.1 Input/Output optionscoviiiiiiiiin.. 34

4.1.4.2 Operating modesooviieiiiiieeniinennnnn... 35

4.2 Configuration files. i 37
4.2.1 Configuration file format 38
4.2.2 Configuration file precedence 38
4.2.3 Current directory and User wide.......................... 39
4.2.4 System wide ... 39
4.3 Threads in GNU Astronomy Utilities............... 40
4.3.1 Anoteonthreads............cooiiiiiiiiiiiiiii., 40
4.4 Final parameter values, reproduce previous results............. 41
4.5 Automatic output. 42
4.6 Getting help ... 43
4.6.1 —USAGE ... 43
4.6.2 —mhelp. o 44
4.6.3 Man Pages ... 45
4.6.4 Info... ..o 45
4.6.5 help-gnuastro mailing list............... 46
4.7 Output headerso 46
Files 47
5.1 Header.o 47
5.1.1 Invoking Header.......... i 47
5.2 Convert Type. oo 49
5.2.1 Recognized file types 50
5.2.2 C0lor .o 51
5.2.3 Invoking ConvertType........ccoviiiiiiiiiiiiiiin.. 52
Image manipulation........................... 57
6.1 ImageCropo Y
6.1.1 ImageCrop modes.ouuiiniinininiiiiienan o7
6.1.2 Crop section Syntaxoueiiiiiiiiniinieniean.. 59
6.1.3 Blank pixels..... ..o 59
6.1.4 Invoking ImageCrop.........ooiiiiiiiiiiiiiii . 60
6.1.4.1 ImageCrop optionsovvriieiiiiieeninneannn.. 60
6.1.4.2 ImageCrop output.........ccooeiiiiii .. 62

6.2 ConvolVe. ... 63
6.2.1 Convolution process..........o.ueiiiiiieiniianniea.n. 64
6.2.2 Convolution on the edges............ ...t 65
6.2.3 Spatial vs. Frequency domain 65
6.2.4 Convolution kernel 66
6.2.5 Invoking Convolve.......... ..o, 67
6.3 ImageWarpo o e e 68
6.3.1 Warping basics...... ..o 69
6.3.2 Merging multiple warpingsc.cooviiiiiiiii... 72
6.3.3 Resamplingcooiiiiiiiiiiii i 72
6.3.4 Invoking ImageWarp.......... ... i il 73
6.4 SubtractSKy ..o 75
6.4.1 Sky value ... 75

6.4.1.1 Finding the sky value................ 76

iii

6.4.1.2 Sky value misconceptions..............cooviiiiii.... 7

6.4.2 Tiling an ImMageo 78
6.4.2.1 Quantifying signal in amesh.............. 79
6.4.2.2 Grid interpolation and smoothing.................... 80
6.4.2.3 Checking grid values...................ooiiiiiii.. 81
6.4.2.4 Mesh grid options ..., 82

6.4.3 Maskimage.o 84

6.4.4 Invoking SubtractSky i 84

7 Imageanalysis................... 86
7.1 TImageStatistics.o 86

7.1.1 Histogram and Cumulative Freqency Plot................. 86

7.1.2 Sigma clippingoviiiii 87

7.1.3 Mirror distribution.......... ... o 88

7.1.4 Invoking ImageStatistics............ ..o 89

7.2 NoiseChisel e 94

7.2.1 Invoking NoiseChisel ..., 94
7.2.1.1 NoiseChisel options...........ooiiiiiiiiiian.. 95
7.2.1.2 NoiseChisel output ..., 102

7.3 MakeCatalogot 103

7.3.1 Invoking MakeCatalog it 103

8 Modeling and fitting......................... 108
8.1 MakeProfiles.o 108

8.1.1 Modeling basics........coviiiiiiiiii i 108
8.1.1.1 Defining an ellipse. ..., 108
8.1.1.2 Point Spread function............... L 109
8.1.1.3 Stars. ..o 111
8.1.1.4 Galaxiesouiiiii 111
8.1.1.5 Sampling from a function.................. 112
8.1.1.6 Oversamplingccoiiiiiiiiiiiiiiaann. 113

8.1.2 If convolving afterwards.............. ... i, 113

8.1.3 Profile total magnitude..............l 113

8.1.4 Magnitude to flux conversion.....................oo.... 114

8.1.5 Invoking MakeProfiles............o il 114
8.1.5.1 MakeProfiles catalog L. 115
8.1.5.2 MakeProfiles options 115
8.1.5.3 MakeProfiles output...........ccoiiiiiii 119

8.2 MakeNOISE 120

8.2.1 Noise basiCs.....vuuiiii 120
8.2.1.1 Photon counting noise............ ..ot 120
8.2.1.2 Instrumental noisec.coooiiiiiiiiiii., 121
8.2.1.3 Final noised pixel value............................. 122
8.2.1.4 Generating random numbers........................ 122

8.2.2 Invoking MakeNoise.............ooiiiiiiiiiiiii i, 123

9 Table manipulation 125

10 Developing 126

10.1 Why C programming language? ..., 126
10.2 Design philosophyo 127
10.3 Gnuastro project webpage ... 128
10.4 Version controlled source.............ccoiiiiiiiiiiiiia.... 129
10.5 Internal libraries......... ..o, 131
10.6 Header files.......oooiii 131
10.7 Program SOUICEuueiittennniiiiiiiiiieeeeennnnnns 132

10.7.1 Mandatory source code files.............. 132

10.7.2 Coding conventionsc..coveiiiiiniiennneann.. 134

10.7.3 Multithreaded programming............................ 135

10.7.4 Documentationo, 136
10.8 TSt SCIIPtS . 137
10.9 Buildingo 138
10.10 After making changes........... ... i it 138

Appendix A GNU Astronomy Utilities list .. 140

Appendix B Other useful software........... 141
Bl SAO dS ... 141
B.1.1 Viewing multiextension FITS images.................... 141

B.2 PGPLOT ... 142

Appendix C GNU Free Documentation License
... 145

Chapter 1: Introduction 1

1 Introduction

The GNU Astronomy Utilities (Gnuastro) is an official GNU package consisting of sepa-
rate programs for the manipulation and analysis of astronomical data. See Appendix A
[GNU Astronomy Utilities list], page 140 for the full list. All the various utilities share the
same basic command line user interface for the comfort of both the users and developers.
GNU Astronomy Utilities is written to comply fully with the GNU coding standards so it
integrates finely with the GNU /Linux operating system. This also enables astronomers to
expect a fully familiar experience in the source code, building, installing and command line
user interaction that they have seen in all the other GNU software that they use.

For users who are new to the GNU/Linux environment, unless otherwise specified most
of the topics in chapters 2 and 3 are common to all GNU software, for example installation,
managing command line options or getting help. So if you are new to this environment, we
encourage you to go through these chapters carefully. They can be a starting point from
which you can continue to learn more from each program’s own manual and fully enjoy
this wonderful environment. This manual is written so someone who is completely new to
GNU/Linux can get going very soon, see Section 1.6 [New to GNU/Linux?]|, page 5.

Finally it must be mentioned that in Gnuastro, no change to any program will be released
before it has been fully documented in this manual first. As discussed in Section 1.2 [Science
and its tools|, page 2 this is the founding basis of the GNU Astronomy Utilities.

)

1.1 Quick start

Let’s assume you have just downloaded the gnuastro-0.0.tar.gz in the DOWLD directory
and you already have the requirements (see Section 3.1 [Requirements|, page 21). Running
the following commands will unpack, compile, check and install all the GNU Astronomy
Utilities so you can use them anywhere in your system.

©“%

cd DOWLD

tar -zxvf gnuastro-0.0.tar.gz

cd gnuastro-0.0

./configure

make

make check

sudo make install

cd ../

rm -rf gnuastro-0.0 gnuastro-0.0.tar.gz

€ H P P P P P P

See Section 3.3.4 [Known issues], page 29 if you confront any complications. For each
program there is an ‘Invoke ProgramName’ sub-section in this manual which explains how
the programs should be run on the command line. It can be read on the command line by
running the command $ info astprogname, see Section 1.4 [Naming convention|, page 4
and Section 4.6 [Getting help], page 43. The ‘Invoke ProgramName’ sub-section starts with
a few examples of each program and goes on to explain the invocation details. In Chapter 2
[Tutorials], page 11 some real life examples of how these programs might be used is given.

Chapter 1: Introduction 2

1.2 Science and its tools

History of science indicates that there are always inevitably unseen faults, hidden assump-
tions, simplifications and approximations in all our theoretical models, data acquisition and
analysis techniques. It is precisely these that will ultimately allow future generations to
advance the existing experimental and theoretical knowledge through their new solutions
and corrections.

In the past, scientists would gather data and process them individually to achieve an
analysis thus having a much more intricate knowledge of the data and analysis. The theo-
retical models also required little (if any) simulations to compare with the data. Today both
methods are becoming increasingly more dependent on pre-written software. Scientists are
dissociating themselves from the intricacies of reducing raw observational data in experi-
mentation or from bringing the theoretical models to life in simulations. These ‘intricacies’
are precisely those unseen faults, hidden assumptions, simplifications and approximations
that define scientific progress.

Unfortunately, most persons who have recourse to a computer for statistical
analysis of data are not much interested either in computer programming or in
statistical method, being primarily concerned with their own proper business.
Hence the common use of library programs and various statistical packages. ...
It’s time that was changed.

—F. J. Anscombe. The American Statistician, Vol. 27, No. 1. 1973

Anscombe’s quartet’ demonstrates how four data sets with widely different shapes (when
plotted) give nearly identical output from standard regression techniques. Anscombe argues
that “Good statistical analysis is not a purely routine matter, and generally calls for more
than one pass through the computer”. Anscombe’s quartet can be generalized to say that
users of a software cannot claim to understand how it works only based on the experience
they have gained by frequently using it. This kind of subjective experience is prone to
very serious mis-understandings about what it really does behind the scenes and can be
misleading. This attitude is further encouraged through non-free software®. This approach
to scientific software only helps in producing dogmas and an “obscurantist faith in the

expert’s special skill, and in his personal knowledge and authority”?.

It is obviously impractical for any one human being to gain the intricate knowledge
explained above for every step of an analysis. On the other hand, scientific data can be
very large and numerous, for example images produced by telescopes in astronomy. This
requires very efficient algorithms. To make things worse, natural scientists have generally
not been trained in the advanced software techniques, paradigms and architecture that is
taught in computer science or engineering courses and thus used in most software. The GNU
Astronomy Utilities are an effort to tackle this issue. GNU Astronomy Utilities are built
on the basis of the GNU general public license (GPL), giving the users complete “freedom”
over them, see Section 1.3 [Your rights|, page 3. We further add the requirement (on the
authors of Gnuastro) that an astronomer, who is not necessarily trained in computer science
or engineering, will need minimal requirements and preparations to understand and modify

1 http://en.wikipedia.org/wiki/Anscombe’,27s_quartet
2 https://www.gnu.org/philosophy/free-sw.html

3 Karl Popper. The logic of scientific discovery. 1959. Larger quote is given at the start of the PDF
manual.

http://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://www.gnu.org/philosophy/free-sw.html

Chapter 1: Introduction 3

any step if they feel the need to do so, see Section 10.1 [Why C programming language?],
page 126 and Section 10.2 [Design philosophy], page 127.

Imagine if Galileo did not have the technical knowledge to build a telescope. Astro-
nomical objects could not be seen with the Dutch military design of the telescope. In the
beginning of his “The Sidereal Messenger” (1610) he cautions the readers on this issue and
instructs them on how to build a suitable instrument. Before he actually saw the moons of
Jupiter, the mountains or the Moon or the crescent of Venus, he was an anti-Copernican
and was “evasive” to Kepler®. Science is not independent of its tools.

Bjarne Stroustrup (creator of the C++ language) says: “Without understanding software,
you are reduced to believing in magic”. Ken Thomson (the designer or the Unix operating
system) says “I abhor a system designed for the ‘user’ if that word is a coded pejorative
meaning ‘stupid and unsophisticated’.” Certainly no scientist (user of a scientific software)
would want to be considered as such. Roughly 5 years before special relativity and about
two decades before quantum mechanics fundamentally changed Physics, Kelvin is quoted
as saying’:

There is nothing new to be discovered in physics now. All that remains is more

and more precise measurement.
—William Thomson (Lord Kelvin), 1900

If scientists are considered to be more than mere “puzzle solvers”®, they cannot just
passively sit back and wait for others to build the tools that form the basis of all their
interpretations and working paradigms. Today there is a wealth of raw telescope images
ready (mostly for free) at the finger tips of anyone who is interested with a fast enough
internet connection to download them. The only thing lacking is new ways to analyze them
and dig out the treasure that is lying hidden in them to existing methods and techniques.

New data that we insist on analyzing in terms of old ideas (that is, old models
which are not questioned) cannot lead us out of the old ideas. However many
data we record and analyze, we may just keep repeating the same old errors,
missing the same crucially important things that the experiment was competent
to find.

—E. T. Jaynes, Probability theory, the logic of science. 2003.

1.3 Your rights

The paragraphs below, in this section, belong to the GNU Texinfo” manual and are not
written by us! The name “Texinfo” is just changed to “GNU Astronomy Utilities” or
“Gnuastro” because they are released under the same licenses and it is beautifully written
to inform you of your rights.

4 Galileo G. (Translated by Maurice A. Finocchiaro). The essential Galileo. Hackett publishing company,

first edition, 2008.

Another such quote is from Albert. A. Michelson’s speech at the dedication of Ryerson Physics Lab, U. of
Chicago 1894 saying: “The more important fundamental laws and facts of physical science have all been
discovered, and these are now so firmly established that the possibility of their ever being supplanted in
consequence of new discoveries is exceedingly remote.... Our future discoveries must be looked for in the
sixth place of decimals.”.

6 Thomas S. Kuhn. The Structure of Scientific Revolutions, University of Chicago Press, 1962.
Texinfo is the GNU documentation system. It is used to create this manual in all the various formats.

ot

Chapter 1: Introduction 4

GNU Astronomy Utilities is “free software”; this means that everyone is free to use it
and free to redistribute it on certain conditions. Gnuastro is not in the public domain; it is
copyrighted and there are restrictions on its distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of Gnuastro that they might
get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Gnuastro, that you receive the source code or else can get it if you
want it, that you can change these programs or use pieces of them in new free programs,
and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Gnuastro related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Gnuastro. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to Gnuastro are found in the GNU General Public license that accompany them.
This manual is covered by the GNU Free Documentation License.

1.4 Naming convention

GNU Astronomy Utilities is a package of independent utilities or programs. FEach utility
has an official name which consists of one or two words, describing what they do. The
latter are printed with no space, for example NoiseChisel or ImageCrop. On the command
line, you can run them with their executable names which start with an ast and might
be an abbreviation of the official name, for example astnoisechisel or astimgcrop, see
Section 3.3.1.3 [Executable names|, page 27.

We will use “ProgramName” for a generic official program name and astprogname for
a generic executable name. In this manual, the programs are classified based on what they
do and thoroughly explained. An alphabetical list of the utilities that are installed on
your system with this installation are given in Appendix A [GNU Astronomy Utilities list],
page 140. That list also contains the executable names and version numbers along with a
one line description.

1.5 Version numbering

The general Gnuastro package has a version number. It contains various programs and each
of those also has its own version number. The version numbers for both are two numbers
with a point (.) between them. The left number is the major version number while the
right one is the minor version number. Note that the numbers are not decimals, so version
2.34 of a program is much more recent than version 2.5, which is not equal to 2.50!

The current version of Gnuastro is 0.0 and the version numbers of its various components
are shown in Appendix A [GNU Astronomy Utilities list], page 140. To see the version of

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/fdl.html

Chapter 1: Introduction 5

a program you are using, you can use the --version option, see Section 4.1.4 [Common
options|, page 34.

GNU Astronomy Utilities and all programs within it start with version number 0.1.
For the programs, the minor version number is increased with any few bug fixes or small
improvements which the developers decide is significant for a public release. So minor
releases can be viewed as ad-hoc improvements. The major version number is set by a
major goal which is defined by the developers of that particular program before hand.

For Gnuastro, its minor version number increases by 1 on every release (which contains
an arbitrary number of updated version numbers for the programs or the general package).
You can see the details from the NEWS file that comes with that distribution and is also
available online to view before you download.

1.5.1 GNU Astronomy Utilities 1.0

The major version number of Gnuastro is increased similar to that of each program. Cur-
rently (prior to Gnuastro 1.0), the aim is to have a complete system for data manipulation
and analysis at least similar to IRAF®. So an astronomer can take all the standard data anal-
ysis steps (starting from raw data to the final reduced product and standard post-reduction
tools) with the various programs in Gnuastro.

The maintainers of each camera or detector on a telescope can provide a completely
transparent shell script to the observer for data analysis. This script can set configuration
files for all the required programs to work with that particular camera. The script can then
run the proper programs in the proper sequence. The user/observer can easily follow the
standard shell script to understand (and modify) each step and the parameters used easily.
Bash (or other modern GNU /Linux shell scripts) are very powerful and made for this gluing
job. This will simultaneously improve performance and transparency.

In order to achieve this and allow maximal creativity with the shell, the various programs
have to be very low level programs and completely independent. Something like the GNU
Coreutils.

1.6 New to GNU/Linux?

Some astronomers initially install and use the GNU/Linux operating systems because their
research software can only be run in this environment. This is how the founder of Gnuastro
started using GNU/Linux at least! If this is not the case for you, you can skip this section.
Chapter 2 [Tutorials|, page 11 is a complete chapter with some real world example appli-
cations of Gnuastro making good use of GNU /Linux capabilities written for newcomers to
this environment. It is fully explained and is easy and entertaining to read, we hope you
enjoy it.

You might have already noticed that we are not using the name “Linux”, but
“GNU/Linux”. Please take the time to have a look at the following essays and FAQs for a
complete understanding of this very important distinction.

e https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html
e https://www.gnu.org/gnu/linux-and-gnu.html
e https://www.gnu.org/gnu/why-gnu-linux.html

8 http://iraf .noao.edu/

https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/why-gnu-linux.html
http://iraf.noao.edu/

Chapter 1: Introduction 6

e https://www.gnu.org/gnu/gnu-linux-faq.html

Another thing you will notice is that Gnuastro only has a command line user interface
(CLI) or the ‘shell” as it is referred to in Unix-like systems. This might be contrary to your
mostly graphical user interface (GUI) experience with proprietary operating systems. To a
first time user, the command line does appear much more complicated and adapting to it
might not be easy.

Through GNOME 3°, most GNU /Linux based operating systems now have a very ad-
vanced and useful GUI. Since the GUI was created long after the command line, some
wrongly consider the command line to be obsolete. Both interfaces are very useful for dif-
ferent tasks (for example you can’t view an image, video or web page on the command
line!). Therefore they should not be regarded as rivals but as complementary, here we will
outline how the CLI can be useful in scientific programs.

You can think of the GUI as a veneer over the CLI to facilitate a small subset of all
the possible CLI operations. Each click you do on the GUI, can be thought of as internally
running a different command. So asymptotically (if a good designer can design a GUI
which is able to show you all the possibilities to click on) the GUI is only as powerful as
the command line. In practice, such designers are very hard to come by for every program,
so the GUI operations are always a subset of the internal CLI commands. For programs
that are only made for the GUI, this results in not including lots of potentially useful
operations. It also results in ‘interface design’ to be a crucially important part of any GUI
program. Scientists don’t usually have enough resources to hire a graphical designer, also
the complexity of the GUI code is far more than CLI code, which is harmful for a scientific
software, see Section 1.2 [Science and its tools|, page 2.

For those operations with a GUI, one action on the GUI might be more efficient. How-
ever, if you have to repeat that same action more than once, it will soon become very
frustrating and prone to errors. Unless the designers of a particular program decided to
design such a system for a particular GUI action, there is no general way to run everything
automatically on the GUI.

On the command line, with one command you can run numerous actions which can come
from various CLI capable programs you have decided your self in any possible permutation
with one command!®. This allows for much more creativity than that offered to a GUI user.
For technical and scientific operations, where the same operation (using various programs)
has to be done on a large set of data files, this is crucially important. It also allows exact
reproducability which is a foundation principle for scientific results. The most common CLI
(which is also known as a shell) in GNU/Linux is GNU Bash, we strongly encourage you
to put aside several hours and go through this beautifully explained web page: https://
flossmanuals.net/command-line/. You don’t need to read or even fully understand the
whole thing, only a general knowledge of the first few chapters are enough to get you going.

Since the operations in the GUI are very limited and they are visible, reading a manual
is not that important in the GUI (most programs don’t even have any!). However, to give
you the creative power explained above, with a CLI program, it is best if you first read the
manual of any program you are using. You don’t need to memorize any details, only an
understanding of the generalities is needed. Once you start working, there are more easier

9 http://wuw.gnome.org/
10 By writing a shell script and running it, for example see the tutorials in Chapter 2 [Tutorials], page 11.

https://www.gnu.org/gnu/gnu-linux-faq.html
https://flossmanuals.net/command-line/
https://flossmanuals.net/command-line/
http://www.gnome.org/

Chapter 1: Introduction 7

ways to remember a particular option or operation detail, see Section 4.6 [Getting help],
page 43.

To experience the command line in its full glory and not in the GUI terminal emulator,
press the following keys together: CTRL+ALT+F4!! to access the virtual console. To return
back to your GUI, press the same keys above replacing F4 with F1. In the virtual console,
the GUI, with all its distracting colors and information, is gone. Enabling you to focus
more accurately on your actual work.

For operations that use a lot of your system’s resources (processing a large number of
large astronomical images for example), the virtual console is the place to run them. This
is because the GUI is not competing with your research work for your system’s RAM and
CPU. Since the virtual consoles are completely independent, you can even log out of your
GUI environment to give even more of your hardware resources to the programs you are
running and thus reduce the operating time.

Since it uses far less system resources, the CLI is also very convenient for remote access
to your computer. Using secure shell (SSH) you can log in securely to your system (similar
to the virtual console) from anywhere even if the connection speeds are low. There are apps
for smart phones and tablets which allow you to do this.

1.7 Report a bug

According to Wikipedia “a software bug is an error, flaw, failure, or fault in a computer
program or system that causes it to produce an incorrect or unexpected result, or to behave
in unintended ways”. So when you see that a program is crashing, not reading your input
correctly, giving the wrong results, or not writing your output correctly, you have found a
bug. In such cases, it is best if you report the bug to the developers. If it is an immediate
issue, the developers will work hard to correct it as soon as possible.

Prior to actually filing a bug, it is best to search previous reports. The issue might have
already been found and even solved. Recently corrected bugs are probably not yet publicly
released because they are scheduled for the next Gnuastro stable release. If the bug is solved
but not yet released and it is an urgent issue for you, you can get the version controlled
source and compile that, see Section 10.4 [Version controlled source|, page 129. There are
generally two ways to inform us of bugs:

e Send a mail to bug-gnuastro@gnu.org. Any mail you send to this address will be
distributed through the bug-gnuastro mailing list. This is the simplest and preferred
way to send bug reports. The archives of this mailing list can be found at http://
lists.gnu.org/archive/html/bug-gnuastro/.

e “Submit a new item” to the “Communication tools” section of the Gnuastro project
webpage!?. All the bug reports that are sent for Gnuastro (including the mailing
list) are ultimately stored and managed in the Gnuastro project Bugs tracker!s.
Users can also initiate a bug report from the project webpage directly through the
“Support” — “Submit new” links on the top of the page or the “Submit a new item”

11 Instead of F4, you can use any of the keys from F2 to F6 for different virtual consoles. You can also run
a separate GUI from within this console.

12 https://savannah.gnu.org/projects/gnuastro/
13 https://savannah.gnu.org/bugs/?group=gnuastro

http://lists.gnu.org/archive/html/bug-gnuastro/
http://lists.gnu.org/archive/html/bug-gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/bugs/?group=gnuastro

Chapter 1: Introduction 8

link under the “Tech Support Manager” section (with a red question mark beside it)
of the main Gnuastro project page. You can browse or submit a new item to this
list anonymously. See Section 10.3 [Gnuastro project webpage|, page 128 for more
information about the central management hub of Gnuastro.

Once the items have been gathered from the mailing list or webpage, the developers will
add it to either the “Bug Tracker” or “Task Manager” trackers of the Gnuastro project
webpage. These two trackers can only be edited by the Gnuastro project members, but
they can be browsed by anyone. So prior to filing a bug report please browse and search
these two trackers to see if the issue has already been solved or is being solved.

a)
Individual and independent bug reports: If you have found multiple bugs, please send them
as separate (and independent) mails as much as possible. This will significantly help us in

managing and resolving them sooner.
N /

()
Reproducible bug reports: If we cannot reproduce your bug, then it is very hard to resolve

it. So please send us a Minimal working example!? along with the description. For example
in running a program, please send us the full command line text and the output with the
-P option, see Section 4.4 [Final parameter values, reproduce previous results|, page 41. If
it is caused only for a certain input, also send us that input file. In case the input FITS is
large, please use ImageCrop to only crop the problematic section and make it as small as
possible so it can easily be uploaded and downloaded and not waste the archive’s storage,

see Section 6.1 [ImageCrop|, page 57.
N J

1.8 Suggest new feature

We would always be very happy to hear of suggested new features. For every program there
are already lists of features that we are planning to add. You can see the current list of plans
from the Gnuastro project webpage at https://savannah.gnu.org/projects/gnuastro/
and following “Tasks” — “Browse” at the top of the page. If you want to request a feature to
an existing program, click on the “Display Criteria” above the list and under “Category”,
choose that particular program. Under “Category” you can also see the existing suggestions
for new utilities or other cases like installation.

If the feature you want to suggest is not already listed in the task manager, then inform
us through the bug-gnuastro@gnu.org mailing list or submitting an issue through the
Gnuastro project webpage, see Section 1.7 [Report a bug], page 7. Please have in mind that
the developers are all very busy with their own astronomical research, and implementing
existing “task”s to add or resolving bugs. Gnuastro is a volunteer effort and none of the
developers are paid for their hard work. So, although we will try our best, please don’t
not expect that your suggested feature be immediately included (with the next release of
Gnuastro).

The best person to apply the feature is you, since you have the motivation and need. So
you can read Chapter 10 [Developing], page 126 and start applying your desired feature.
Once you have added it, you can use it for your own work and if you feel you want others

14 http://en.wikipedia.org/wiki/Minimal_Working_ Example

https://savannah.gnu.org/projects/gnuastro/
http://en.wikipedia.org/wiki/Minimal_Working_Example

Chapter 1: Introduction 9

to benefit from your labour, you can request for it to become part of Gnuastro. You can
then join the developers and start maintaining your own part (utility) of Gnuastro. If you
choose to take this path of action please contact us before hand (Section 1.7 [Report a bug]
page 7) so we can avoid possible duplicate activities and get interested people in contact.

9

~
Gnuastro is a collection of low level programs: As described in Section 10.2 [Design phi-

losophy|, page 127, a founding principle of Gnuastro is that each program should be very
basic and low-level. High level jobs should be done by running the separate programs in
succession through a shell script, see the examples in Chapter 2 [Tutorials], page 11. So
please consider how your desired job can best be broken into separate steps.

J

1.9 Announcements

Gnuastro has a dedicated mailing list for making announcements. Anyone that is interested
can subscribe to this mailing list to stay upto date with new releases. To subscribe to this
list, please visit https://lists.gnu.org/mailman/listinfo/info-gnuastro.

1.10 Conventions

In this manual we have the following conventions:

e All commands that are to be run on the shell (command line) prompt as the user start
with a $. In case they must be run as a super-user or system administrator, they will
start with a #. If the command is in a separate line and next line is also in the
code type face, but doesn’t have any of the $ or # signs, then it is the output of the
command after it is run. As a user, you don’t need to type those lines.

e If the command becomes larger than the page width a \ is inserted in the code. If you
are typing the code by hand on the command line, you don’t need to use multiple lines
or add the extra space characters, so you can omit them. If you want to copy and paste
these examples (highly discouraged!) then the \ should stay.

The \ character is a shell escape character which is used commonly to make characters
which have special meaning for the shell loose that special place (the shell will not treat
them specially if there is a \ behind them). When it is a last character in a line (the
next character is a new-line charactor) the new-line character looses its meaning an
the shell sees it as a simple white-space character, enabling you to use multiple lines
to write your commands.

1.11 Acknowledgments

GNU Astronomy Utilities has significantly benefited from the help and support of various
people and institutions. The plain text file THANKS which is distributed along with the source
code has a full list. In particular the role of the Japanese Ministry of Science and Technology
(MEXT) scholarship should be acknowledged for the long term scholarship of Mohammad
Akhlaghi’s Masters and PhD period in Tohoku University Astronomical Insitute in Sendai
city. Gnuastro would not have been possible without the long term learning and planning
that could only be acheived with such a long term scholarship. Tohoku University was the
first institution to sign a copyright disclaimer to the Free Software Foundation for Gnuastro,
allowing it to be freely available for the astronomical community. The very critical view

https://lists.gnu.org/mailman/listinfo/info-gnuastro

Chapter 1: Introduction 10

points of Professor Takashi Ichikawa (at Tohoku University) were also instrumental in the
creation of Gnuastro.

Mohammad-reza Khellat and Alan Lefor kindly studied the manual multiple times and
provided very useful suggestions. Alan and Mohammad-reza also helped in testing Gnuas-
tro on other operating systems. Brandon Invergo, Karl Berry and Richard Stallman also
provided very useful suggestions during the GNU evaluation process. At first we wanted
to submit the programs as independent and individual small programs, but thanks to their
suggestions and ideas, all the separate programs were merged into the complete system that
is now available for the astronomical community. Finally we should thank all the anony-
mous developers in various online forums which patiently answered all our small (but very
important) technical questions.

Chapter 2: Tutorials 11

2 Tutorials

In this chapter we give several tutorials or cookbooks on how to use the various tools in
Gnuastro for your scientific purposes. In these tutorials, we have intentionally avoided too
many cross references to make it more easily readable. To get more information about a
particular program, you can visit the section with the same name as the program in this
manual. Each program section starts by explaning the general concepts behind what it
does. If you only want to see an explanation of the options and arguments of any program,
see the subsection titled ‘Invoking ProgramName’. See Section 1.10 [Conventions|, page 9,
for an explanation of the conventions we use in the example codes through the manual.

The tutorials in this section use a fictional setting of some historical figures in the history
of astronomy. We have tried to show how Gnuastro would have been helpful for them in
making their discoveries if there were GNU/Linux computers in their times! Please excuse
us for any historical inaccuracy, this is not intended to be a historical reference. This form
of presentation can make the tutorials more pleasent and entertaining to read while also
being more practical (explaining from a user’s point of view)!. The main reference for the
historical facts mentioned in these fictional settings was Wikipedia.

2.1 Hubble visually checks and classifies his catalog

In 1924 Hubble? announced his discovery that some of the known nebulous objects are too
distant to be within the the Milky Way (or Galaxy) and that they were probably distant
Galaxies® in their own right. He had also used them to show that the redshift of the nebulae
increases with their distance. So now he wants to study them more accurately to see what
they actually are. Since they are nebulous or amorphous, they can’t be modeled (like stars
that are always a point) easily. So there is no better way to distinguish them than to
visually inspect them and see if it is possible to classify these nebulae or not.

Hubble has stored all the FITS images of the objects he wants to visually inspect in his
/mnt/data/images directory. He has also stored his catalog of extra Galactic nebulae in
/mnt/data/catalogs/extragalactic.txt. Any normal user on his GNU/Linux system
(including himself) only has read access to the contents of the /mnt/data directory. He has
done this by running this command as root:

chmod -R 755 /mnt/data

! This form of presenting a tutorial was influenced by the PGF/TikZ and Beamer manuals. The first
provides graphic capabilities, while with the second you can make presentation slides in TEX and IATEX.
In these manuals, Till Tantau (author of the manual) uses Euclid as the protagonist. There are also some
nice words of wisdom for Unix-like systems called “Rootless Root”: http://catb.org/esr/writings/
unix-koans/. These also have a similar style but they use a mythical figure named Master Foo. If
you already have some experience in Unix-like systems, you will definitely find these “Unix Koans” very
entertaining.

Edwin Powell Hubble (1889 — 1953 A.D.) was an American astronomer who can be considered as the
father of extragalactic astronomy, by proving that some nebulae are too distant to be within the Galaxy.
He then went on to show that the universe appears to expand and also done a visual classification of the
galaxies that is known as the Hubble fork.

Note that at that time, “Galaxy” was a proper noun used to refer to the Milky way. The concept of
a galaxy as we define it today had not yet become common. Hubble played a major role in creating
today’s concept of a galaxy.

http://catb.org/esr/writings/unix-koans/
http://catb.org/esr/writings/unix-koans/

Chapter 2: Tutorials 12

Hubble has done this intentionally to avoid mistakenly deleting or modifying the valuable
images he has taken at Mount Wilson while he is working as an ordinary user. Retaking
all those images and data is simply not an option. In fact they are also in another hard
disk (/dev/sdbl). So if the hard disk which stores his GNU/Linux distribution suddenly
malfunctions due to work load, his data is not in harms way. That hard disk is only mounted
to this directory when he wants to use it with the command:

mount /dev/sdbl /mnt/data

In short, Hubble wants to keep his data safe and fortunately by default Gnuastro allows
for this. Hubble creates a temporary visualcheck directory in his home directory for this
check. He runs the following commands to make the directory and change to it*:

$ mkdir ~/visualcheck

$ cd ~/visualcheck

$ pwd
/home/edwin/visualcheck
$ 1s

Hubble has multiple images in /mnt/data/images, some of his targets might be on
the edges of an image and so several images need to be stitched to give a good view of
them. Also his extra Galactic targets belong to various pointings in the sky, so they are
not in one large image. Gnuastro’s ImageCrop is just the utility he wants. The catalog in
extragalactic.txt is a plain text file which stores the basic information of all his known
200 extra Galactic nebulae. In its second column it has each object’s Right Ascention (the
first column is a label he has given to each object) and in the third the object’s declination.
Having read the Gnuastro manual, he knows that all counting is done starting from zero,
so the RA and Dec columns have number 1 and 2 respectively.

$ astimgcrop --racol=1 --deccol=2 /mnt/data/images/*.fits \
/mnt/data/catalogs/extragalactic.txt
ImageCrop started on Tue Jun 14 10:18:11 1932

-——— ./4_crop.fits 11

-———= ./2_crop.fits 11

-——- ./1_crop.fits 11
[[[Truncated middle of 1list 1]]

-—-- ./198_crop.fits 11

-——— ./195_crop.fits 11

- 200 images created.
- 200 were filled in the center.
- 0 used more than one input.
ImageCrop finished in: 2.429401 (seconds)

Hubble already knows that thread allocation to the the CPU cores is asynchronous, so each
time you run it the order of which job gets done first differs. When using ImageCrop the
order of outputs is irrelevant since each crop is independent of the rest. This is why the
crops are not necessarily created in the same input order. He is content with the default
width of the outputs (which he inspected by running $ astimgcrop -P). If he wanted a
different width for the cropped images, he could do that with the --wwidth option which

4 The pwd command is short for “Print Working Directory” and 1s is short for “list” which shows the
contents of a directory.

Chapter 2: Tutorials 13

accepts a value in arcseconds. When he lists the contents of the directory again he finds his
200 objects as separate FITS images.

$ 1s
1_crop.fits 2_crop.fits ... 200_crop.fits

The FITS image format was not designed for viewing, but mainly for accurate storing
of the data. So he chooses to convert the cropped images to a more common image format
to view them more quickly and easily through standard image viewers (which load much
faster than FITS image viewer). JPEG is one of the most recognized image formats that
is supported by most image viewers. Fortuantely Gnuastro has just such a tool to convert
various types of file types to and from each other: ConvertType. Hubble has already heard
of GNU Parallel from one of his colleagues at Mount Wilson Observatory. It allows multiple
instances of a command to be run simultaneously on the system, so he uses it in conjuction
with ConvertType to convert all the images to JPEG.

$ parallel astconvertt -ojpg ::: *_crop.fits

For his graphical user interface Hubble is using GNOME which is the default in most
distributions in GNU/Linux. The basic image viewer in GNOME is the Eye of GNOME,
which has the executable file name eog®. Since he has used it before, he knows that once it
opens an image, he can use the ENTER or SPACE keys on the keyboard to go to the next image
in the directory or the Backspace key to to go the previous image. So he opens the image
of the first object with the command below and with his cup of coffee in his other hand,
he flips through his targets very fast to get a good initial impression of the morphologies of
these extra Galactic nebulae.

$ eog 1_crop.jpg

Hubble’s cup of coffee is now finished and he also got a nice general impression of the
shapes of the nebulae. He tentatively /mentally classified the objects into three classes while
doing the visual inspection. One group of the nebulae have a very simple elliptical shape
and seem to have no internal special structure, so he gives them code 1. Another clearly
different class are those which have spiral arms which he associates with code 2 and finally
there seems to be a class of nebulae in between which appear to have a disk but no spiral
arms, he gives them code 3.

Now he wants to know how many of the nebulae in his extra Galactic sample are within
each class. Repeating the same process above and writing the results on paper is very time
consuming and prone to errors. Fortunately Hubble knows the basics of GNU Bash shell
programming, so he writes the following short script with a loop to help him with the job.
After all, computers are made for us to operate and knowing basic shell programming gives
Hubble this ability to creatively operate the computer as he wants. So using GNU Emacs®
(his favorite text editor) he puts the following text in a file named classify.sh.

for name in *.jpg
do
eog $name &
processid=$!

5 Eye of GNOME is only available for users of the GNOME graphical desktop environment which is the
default in most GNU/Linux distributions. If you use another graphical desktop environment, replace
eog with any other image viewer.

6 This can be done with any text editor

Chapter 2: Tutorials 14

echo -n "$name belongs to class: "
read class
echo $name $class >> classified.txt
kill $processid

done

Fortunately GNU Emacs or even simpler editors like Gedit (part of the GNOME graph-
ical user interface) will display the variables and shell constructs in different colors which
can really help in understanding the script. Put simply, the for loop gets the name of each
JPEG file in the directory this script is run in and puts it in name. In the shell, the value
of a variable is used by putting a $ sign before the variable name. Then Eye of GNOME
is run on the image in the background to show him that image and its process ID is saved
internally (this is necessary to close Eye of GNOME later). The shell then prompts the
user to specify a class and after saving it in class, it prints the file name and the given
class in the next line of a file named classified.txt. To make the script executable (so
he can run it later any time he wants) he runs:

$ chmod +x classify.sh
Now he is ready to do the classification, so he runs the script:
$./classify.sh

In the end he can delete all the JPEG and FITS files along with ImageCrop’s log file with
the following short command. The only files remaining are the script and the result of the
classification.

$ rm *.jpg *.fits astimgcrop.txt
$ 1s
classified.txt classify.sh

He can now use classified.txt as input to a plotting program to plot the histogram of
the classes and start making interpretations about what these nebulous objects that are
outside of the Galaxy are.

2.2 Sufi simulates a detection

It is the year 953 A.D. and Sufi” is in Shiraz as a guest astronomer. He had come there
to use the advanced 123 centimeter astrolabe for his studies on the Ecliptic. However,
something was bothering him for a long time. While mapping the constellations, there
were several non-stellar objects that he had detected in the sky, one of them was in the
Andromeda constellation. During a trip he had to Yemen, Sufi had seen another such
object in the southern skies looking over the indian ocean. He wasn’t sure if such cloud-like
non-stellar objects (which he was the first to call ‘Sahabi’ in Arabic or ‘nebulous’) were real
astronomical objects or if they were only the result of some bias in his observations. Could
such diffuse objects actually be detected at all with his detection technqgiue?

He still had a few hours left until nightfall (when he would continue his studies on
the ecliptic) so he decided to find an answer to this question. He had thoroughly studied
Claudius Ptolemy’s (90 — 168 A.D) Almagest and had made lots of corrections to it, in

7 Abd al-rahman Sufi (903 — 986 A.D.), also known in Latin as Azophi was an Iranian astronomer. His
manuscript “Book of fixed stars” contains the first recorded observations of the Andromeda galaxy, the
Large Magellanic Cloud and seven other non-stellar or ‘nebulous’ objects.

Chapter 2: Tutorials 15

particular in measuring the brightness. Using his same experience, he was able to measure
a magnitude for the objects and wanted to simulate his observation to see if a simulated
object with the same brightness and size could be detected in a simulated noise with the
same detection technique. The general outline of the steps he wants to take are:

1. Make some mock profiles in an oversampled image. The initial mock image has to
be oversampled prior to convolution or other forms of transformation in the image.
Through his experiences, Sufi knew that this is because the image of heavenly bodies
is actually transformed by the atmosphere or other sources outside the atmosphere
(for example gravitational lenses) prior to being sampled on an image. Since that
transformation occurs on a continuous grid, to best approximate it, he should do all
the work on a finer pixel grid. In the end he can resample the result to the initially
desired grid size.

2. Convolve the image with a PSF image that is oversampled to the same value as the
mock image. Since he wants to finish in a reasonable time and the PSF kernel will be
very large due to oversampling, he has to use frequency domain convolution which has
the side effect of dimming the edges of the image. So in the first step above he also
has to build the image to be larger by at least half the width of the PSF convolution
kernel on each edge.

3. With all the transformations complete, the image should be resampled to the same size
of the pixels in his detector.

4. He should remove those extra pixels on all edges to remove frequency domain convolu-
tion artifacts in the final product.

5. He should add noise to the (until now, noise-less) mock image. After all, all observations
have noise associated with them.

Fortunately Sufi had heard of GNU Astronomy Utilities from a colleague in Isfahan
(where he worked) and had installed it on his computer a year before. It had tools to do all
the steps above. He had used MakeProfiles before, but wasn’t sure which columns he had
chosen in his user or system wide configuration files for which parameters, see Section 4.2
[Configuration files|, page 37. So to start his simulation, Sufi runs MakeProfiles with the
-P option to make sure what columns in a catalog MakeProfiles currently recognizes and
the output image parameters:

$ astmkprof -P

MakeProfiles (GNU Astronomy Utilities 0.1) 0.1
Configured on 21 September 952 at 19:37

Written on Sat Oct 6 15:49:31 953

Output:

naxisl 1000
naxis?2 1000
oversample 5

[[[Truncated middle of list]1]]

Catalog:
xcol 1

Chapter 2: Tutorials 16

ycol
fcol
rcol
ncol
pcol
qcol
mcol
tcol

© 00 N O U b W

[[[Truncated rest of list 111

In particular, Sufi looks at the parameters under the catalog grouping. Fortunately the
columns are naturally numbered such that column 0 can be an ID he specifies for each ob-
ject (which MakeProfiles ignores) and each subsequent column specifies a given parameter.
Fortunately MakeProfiles has the capability to also make the PSF which is to be used on
the mock image and using the --prepforconv option, he can also make the mock image to
be larger by the correct amount and all the sources to be shifted by the correct amount.

For his initial check he decides to simulate the nebula in the Andromeda constellation.
The night he was observing, the PSF had roughly a FWHM of about 5 pixels, so as the
first row, he defines the PSF parameters and sets the radius column (rcol above, fifth
column) to 5.000, he also chooses a Moffat function for its functional form. Remembering
how diffuse the nebula in the Andromeda constellation was, he decides to simulate it with
a mock Sérsic index 1.0 profile. He wants the output to be 500 pixels by 500 pixels, so he
puts the mock profile in the center. Looking at his drawings of it, he decides a reasonable
effective radius for it would be 40 pixels on this image pixel scale, he sets the axis ratio and
position angle to approximately correct values too and finally he sets the total magnitude
of the profile to 3.44 which he had accurately measured. Sufi also decides to truncate both
the mock profile and PSF at 5 times the respective radius parameters. In the end he decides
to put four stars on the four corners of the image at very low magnitudes as a visual scale.

Using all the information above, he creates the catalog of mock profiles he wants in a file
named cat.txt (short for catalog) using his favorite text editor and stores it in a directory
named simulationtest in his home directory®:

$ mkdir ~/simulationtest
$ cd “/simulationtest
$ pwd
/home/rahman/simulationtest
$ emacs cat.txt
$ 1s
cat.txt
$ cat cat.txt

0 0.0000 0.0000 1 5.000 4.765 0.0000 1.000 30.000 5.000
1 250.00 250.00 O 40.00 1.000 -25.00 0.400 3.4400 5.000
2 50.000 50.000 3 0.000 0.000 0.0000 0.000 9.0000 0.000
3 450.00 50.000 3 0.000 0.000 0.0000 0.000 9.2500 0.000
4 50.000 450.00 3 0.000 0.000 0.0000 0.000 9.5000 0.000

8 The cat command prints the contents of a file, short for concatenation.

Chapter 2: Tutorials 17

5 450.00 450.00 3 0.000 0.000 0.0000 0.000 9.7500 0.000

He looked into his observation logs and found that the night he was observing, the zeropoint
magnitude was 18. Now he has all the necessary parameters and runs MakeProfiles with
the following command:

$ astmkprof --prepforconv --naxisl1=500 --naxis2=500 \
--zeropoint=18.0 cat.txt
MakeProfiles started on Sat Oct 6 16:26:56 953
- 6 profiles read from cat.txt in 0.000209 seconds
--—— Row 5 complete, 5 left to go.
---- Row 3 complete, 4 left to go.
---— Row 2 complete, 3 left to go.
--—- Row 4 complete, 2 left to go.
---- ./0.fits created.
-——— Row O complete, 1 left to go.
--—-— Row 1 complete, 0 left to go.
- cat.fits created. in 0.024811 seconds
MakeProfiles finished in: 0.236629 (seconds)
$1s
0.fits astmkprof.log cat.fits cat.txt

The file 0.fits is the PSF Sufi had asked for and cat.fits is the image containing the 5
objects. The PSF is now available to him as a separate file for the convolution step. While
he was preparing the catalog, one of his students came up and was also following the steps.
When he opened the image, the student was surprised to see that all the stars are only one
pixel and not in the shape of the PSF as we see when we image the sky at night. So Sufi
explained to him that the stars will take the shape of the PSF after convolution and this
is how they would look if we didn’t have an atmosphere or an aperture when we took the
image. The size of the image was also surprising for the student, instead of 500 by 500, it
was 2630 by 2630 pixels. So Sufi had to explain why oversampling is very important for
parts of the image where the flux change is significant over a pixel. Sufi then explained to
him that after convolving we will resample the image to get our originally desired size. To
convolve the image, Sufi ran the following command:

$ astconvolve --kernel=0.fits cat.fits
Convolve started on Mon Apr 6 16:35:32 953
Convolving cat.fits (hdu: 0)

with the kernel 0.fits (hdu: 0).

using 8 CPU threads in the frequency domain.

— Input and Kernel images padded. in 0.045576 seconds

- Images converted to frequency domain. in 10.486712 seconds

- Multiplied in the frequency domain. in 0.032780 seconds

- Converted back to the spatial domain. in 5.342335 seconds

- Padded parts removed. in 0.011880 seconds
Convolve finished in: 15.972771 (seconds)

$1s
0.fits astmkprof.log cat_convolved.fits cat.fits cat.txt

Chapter 2: Tutorials 18

When convolution finished, Sufi opened the cat_convolved.fits file and showed the effect
of convolution to his student and explained to him how a PSF with a larger FWHM would
make the points even wider. With the convolved image ready, they were ready to re-sample
it to the orignal pixel scale Sufi had planned. Sufi explained the basic concepts of warping
the image to his student and also the fact that since the center of a pixel is assumed to
take integer values in the FITS standard, the transformation matrix would not be a simple
scaling but would also need translating, see Section 6.3.2 [Merging multiple warpings]
page 72. Then he ran ImageWarp with the following command:

$ astimgwarp cat_convolved.fits --matrix="0.2,0,0.4 0,0.2,0.4 0,0,1"
ImageWarp started on Mon Apr 6 16:51:59 953

ImageWarp finished in: 0.481421 (seconds)

$ 1s

0.fits cat_convolved.fits cat.fits

astmkprof.log cat_convolved_warped.fits cat.txt

)

cat_convolved_warped.fits now has the correct pixel scale. However, the image is still
larger than what we had wanted, it is 526 (500 + 13 + 13) by 526 pixels. The student is
slightly confused, so Sufi also resamples the PSF with ImageWarp and the same warping
matrix and shows him that it is 27 (2 x 13 4+ 1) by 27 pixels. Sufi goes on to explain how
frequency space convolution will dim the edges and that is why he added the —-prepforconv
option to MakeProfiles, see Section 8.1.2 [If convolving afterwards|, page 113. Now that
convolution is done Sufi can remove those extra pixels using ImageCrop:

$ astimgcrop cat_convolved_warped.fits --section=13:%-13,13:%-13
ImageCrop started on Sat Oct 6 17:03:24 953
- Read metadata of 1 images. in 0.000560 seconds
---— cat_convolved_warped_crop.fits 1 1
ImageCrop finished in: 0.018917 (seconds)

$1s
0.fits astmkprof.log cat_convolved_warped.fits
O_warped.fits cat_convolved.fits cat.fits

astimgcrop.log cat_convolved_warped_crop.fits cat.txt

Finally, the cat_convolved_warped.fits has the same dimensionality as Sufi had asked
for in the beginning. All this trouble was certainly worth it because now there is no dimming
on the edges of the image and the profile centers are more accurately sampled. The final
step to simulate a real observation would be to add noise to the image. Sufi set the zeropoint
magnitude to the same value that he set when making the mock profiles and looking again
at his observation log, he found that at that night the background flux near the nebula had
a magnitude of 7. So using these values he ran MakeNoise:

$ astmknoise --zeropoint=18 --background=7 --output=out.fits \
cat_convolved_warped_crop.fits
MakeNoise started on Mon Apr 6 17:05:06 953
- Generator type: mt19937
- Generator seed: 1428318100
MakeNoise finished in: 0.033491 (seconds)
$1s
0.fits cat_convolved.fits cat.txt
O_warped.fits cat_convolved_warped_crop.fits out.fits

Chapter 2: Tutorials 19

astimgcrop.log cat_convolved_warped.fits
astmkprof.log cat.fits

The out.fits file now has the noised image of the mock catalog Sufi had asked for. Seeing
how the —-output option allows the user to specify the name of the output file, the student
was confused and wanted to know why Sufi hadn’t used it before? Sufi then explained to
him that for intermediate steps it is best to rely on the automatic output, see Section 4.5
[Automatic output|, page 42. Doing so will give all the intermediate files the same basic
name structure, so in the end you can simply remove them all with the Shell’s capabilities.
So Sufi decided to show this to the student by making a shell script from the commands he
had used before.

The command line shell has the capability to read all the separate input commands from

a file. This is very useful when you want to do the same thing multiple times, with only the
names of the files or minor parameters changing between the different instances. Using the
shell’s history (by pressing the up keyboard key) Sufi reviewed all the commands and then
he retrieved the last 5 commands with the $ history 5 command. He selected all those
lines he had input and put them in a text file named mymock.sh. Then he used some shell
variables to set the two main constant parts of all the command to generalized variables.

edge=13

base=cat

rm out.fits

astmkprof --prepforconv --naxisl=500 --naxis2=500 \
--zeropoint=18.0 "$base".txt

astconvolve --kernel=0.fits "$base".fits

astimgwarp "$base"_convolved.fits --matrix="0.2,0,0.4 0,0.2,0.4 0,0,1"

astimgcrop "$base"_convolved_warped.fits \
--section=$edge: *-$edge, $edge: *-$edge

astmknoise --zeropoint=18 --background=7 --output=out.fits \

"$base"_convolved_warped_crop.fits
rm Ox.fits catx.fits *.log

Sufi then explained to the eager student that you define a variable by giving it a name,
followed by an = sign and the value you want. Then you can reference that variable from
anywhere in the script by calling its name with a $ prefix. So in the script whenever you
see $base, the value we defined for it above is used. If you use advanced editors like GNU
Emacs or even simpler ones like Gedit (part of the GNOME graphical user interface) the
variables will become a different color which can really help in understanding the script.
We have put all the $base variables in double quotation marks (") so the variable name
and the following text do not get mixed, the shell is going to ignore the " after replacing
the variable value. To make the script executable, Sufi ran the following command:

$ chmod +x mymock.sh
Then finally, Sufi ran the script, simply by calling its file name:
$./mymock.sh

After the script finished, the only file remaining is the out.fits file that Sufi had wanted
in the beginning. Sufi then explained to the student how he could run this script anywhere
that he has a catalog if the script is in the same directory. The only thing the student had

Chapter 2: Tutorials 20

to modify in the script was the name of the catalog (the value of the base variable in the
start of the script) and the value to the edge variable if he changed the PSF size. The
student was also very happy to hear that he won’t need to make it executable again when
he makes changes later, it will remain executable unless he explicitly changes the executable
flag with chmod.

The student was really excited, since now, through simple shell scripting, he could really
speed up his work and run any command in any fashion he likes allowing him to be much
more creative in his works. Until now he was using the graphical user interface which doesn’t
have such a facility and doing repetitive things on it was really frustrating and some times
he would make mistakes. So he left to go and try scripting on his own computer.

Sufi could now get back to his own work and see if the simulated nebula which resembled
the one in the Andromeda constellation could be detected or not. Although it was extremely
faint?, fortunately it passed his detection tests and he wrote it in the draft manuscript that
would later become “Book of fixed stars”. He still had to check the other nebula he saw
from Yemen and several other such objects, but they could wait until tomorrow (thanks to
the shell script, he only has to define a new catalog). It was nearly sunset and they had to
begin preparing for the night’s measurements on the ecliptic.

9 The total flux of a diffuse object is added over all its pixels to give its final magnitude. So although the
magnitude 3.44 (of the mock nebula) is orders of magnitude brighter than 6 (of the stars), the central
galaxy is much fainter. Put another way, the flux is distributed over a large area in the case of a nebula.

Chapter 3: Installation 21

3 Installation

To successfully install Gnuastro you have to have the requirements already installed on
your system. They are very basic for most astronomical programs and you might already
have them installed. To check, try running the $./configure script. If you get no errors,
then you already have them and you can skip Section 3.1 [Requirements]|, page 21. You
can heavily customize your install of Gnuastro, to learn more about them, see Section 3.3
[Installing GNU Astronomy Utilities|, page 23. If you encounter any problems in the in-
stallation process, it is probably already explained in Section 3.3.4 [Known issues|, page 29.
In Appendix B [Other useful software|, page 141 the installation and usage of some other
free software that are not directly required by Gnuastro but might be useful in conjunction

with it is discussed.

3.1 Requirements

GNU Astronomy Utilities 0.0 have several dependencies, they all follow the same basic
GNU based build system (like that shown in Section 1.1 [Quick start], page 1), so even if
you don’t have them, installing them should be pretty straightforward. In this section we
explain each program and any specific note that might be necessary in the installation.

The most basic choice is to build the packages from source your self instead of relying on
your distribution’s pre-built packages. These packages might already be available by your
distribution’s package management system. You can also use those, just note the following
two issues:

1. They might not be the most recent release.

2. For each package, Gnuastro might require certain configuration options that the your
distribution’s package managers didn’t add for you. Those configuration options are
explained below.

3. For the libraries, they might separate the binary file from the header files, see
Section 3.3.4 [Known issues|, page 29.

3.1.1 GNU Scientific library

The GNU Scientific Library is probably already present in your distribution’s package man-
agement system. To install it from source, you can run the following commands after you
have downloaded!' gs1-X.X.tar.gz:

$ tar -zxvf gsl-X.X.tar.gz
cd gsl-X.X

./configure

make

make check

sudo make install

€ H P L P

1 http://www.gnu.org/software/gsl/

http://www.gnu.org/software/gsl/

Chapter 3: Installation 22

3.1.2 CFITSIO

CFITSIO is the closest you can get to the pixels in a FITS image while remaining faithful
to the FITS standard?. It is written by William Pence, the author of the FITS standard?,
and is regularly updated. Setting the definitions for all other software packages using FITS
images.

Some GNU/Linux distributions have CFITSIO in their package managers, if it is avail-
able and updated, you can use it. One problem that might occur is that CFITSIO might
not be configured with the ——enable-reentrant option by the distribution. This option
allows CFITSIO to open a file in multiple threads. If so, upon running, any program which
needs this capability will warn you and abort if you ask for multiple threads. In such cases
you can take the following step.

The best way is that you can install CFITSIO from source. You can download the latest
version of the source code and manual from its webpage?. We strongly recommend that you
have a look through Chapter 2 (Creating the CFITSIO library) of the CFITSIO manual
and understand the options you can pass to $./configure (they aren’t too much). This
is a very basic package for most astronomical software and it is best that you configure
it nicely with your system. Once you download the source and unpack it, the following
configure script should be enough for most purposes. Don’t forget to read chapter two of
the manual though, for example the second option is only for 64bit systems. The manual
also explains how to check if it has been installed correctly.

$ tar -vxzf cfitsio_latest.tar.gz

$ cd cfitsio

$./configure --prefix=/usr/local --enable-sse2 --enable-reentrant
$ make

$ sudo make install

3.1.3 WCSLIB

WCSLIB is also written and maintained by one of the authors of the World Coordinate
System (WCS) definition in the FITS standard®, Mark Calabretta. It might be already
built and ready in your distribution’s package management system. Here installation from
source is explained. To install WCSLIB you will need to have CFITSIO already installed,
see Section 3.1.2 [CFITSIO], page 22. WCSLIB also has plotting capabilities which use
PGPLOT (a plotting library for C). However, if you will not be using its plotting functions,
you can configure it such that pgplot is not required.

If you do want to make plots with WCSLIB, there is an explanation in Section B.2
[PGPLOT], page 142. To disable the dependency on PGPLOT, you have to add the -
-without-pgplot option to the configure script as you can see below. You can get the
most recent source code from the WCSLIB webpage®. In the directory where you have

2 http://fits.gsfc.nasa.gov/fits_standard.html

3 Pence, W.D. et al. Definition of the Flexible Image Transport System (FITS), version 3.0. (2010)
Astronomy and Astrophysics, Volume 524, id.A42, 40 pp.

http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html

Greisen E.W., Calabretta M.R. (2002) Representation of world coordinates in FITS. Astronomy and
Astrophysics, 395, 1061-1075.

http://www.atnf.csiro.au/people/mcalabre/WCS/

http://fits.gsfc.nasa.gov/fits_standard.html
http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html
http://www.atnf.csiro.au/people/mcalabre/WCS/

Chapter 3: Installation 23

downloaded the compressed file, you can take the following steps (the x.xx represents the
version number):

$ tar -jxvf wcslib.tar.bz2

cd weslib-x.xx

./configure --without-pgplot LIBS="-pthread -1lm"
make

make check

sudo make install

€ H H L P

3.2 Optional requirements

Most of the programs in Gnuastro make use of the libraries in Section 3.1 [Requirements],
page 21, therefore if they are not available, the configure script will complain and compiling
the Gnuastro is not possible. The libraries listed in this section are only used for very
specific applications, therefore if you don’t want these operations, they do not need to be
present.

If the ./configure script can’t find these requirements, it will warn you that they are
not present and notify you of the operation(s) you can’t do due to not having them. If
the output you request from a program requires a missing library, that program is going to
warn you and abort. In the case of executables like GPL GhostScript, if you install them
at a later time, the program will run. This is because if required libraries are not present at
build time, the executables cannot be built, but an executable is called by the built program
at run time so if it becomes available, it will be used. If you do install an optional library
later, you will have to rebuild Gnuastro and reinstall it for it to take effect.

3.2.1 libjpeg

libjpeg is only used by ConvertType to read from and write to JPEG images. libjpeg
is a very basic library that provides tools to read and write JPEG images, most of the
GNU/Linux graphic programs and libraries use it. Therefore you most probably already
have it installed. libjpeg-turbo is an alternative to libjpeg. It uses SIMD instructions for
ARM based systems that significantly decreases the processing time of JPEG compression
and decompression algorithms.

3.2.2 GPL Ghostscript

GPL Ghostscript’s executable (gs) is called used by ConvertType to compile a PDF file
from a source PostScript file, see Section 5.2 [ConvertType|, page 49. Therefore its headers
(and libraries) are not needed. With a very high probability you already have it in your
GNU/Linux distribution. Unfortunately it does not follow the standard GNU build style
so installing it is very hard. It is best to rely on your distribution’s package managers for
this.

3.3 Installing GNU Astronomy Utilities

This section is basically a longer explanation to the sequence of commands given in
Section 1.1 [Quick start], page 1. If you want to have all the programs of Gnuastro
installed in your system, you don’t want to change the executable names during or after
installation, you have root access to install the programs in a system wide directory, the

http://www.ijg.org/
http://libjpeg-turbo.virtualgl.org/

Chapter 3: Installation 24

Letter paper size of the print manual is fine for you or as a summary you don’t feel like
going into the details when everything is working seamlessly, you can safely skip this
section. If you have any of the above problems or you want to understand the details for a
better control over your build and install, read along.

In the following it is assumed that you have downloaded the compressed source file,
gnuastro-0.0.tar.gz, to the DOWLD (short for download) directory, replace this name
with the directory that you want to run the installation in. Note that after installation, if
you don’t plan to re-install you no longer need this file or the uncompressed directory, so
you can safely delete both. The first three steps in Section 1.1 [Quick start], page 1 need no
extra explanation. Once you uncompress the source file the directory DOWLD/gnuastro-0.0
will be created.

3.3.1 Configuring

The $./configure step is the most important step in the build and install process. All
the required packages, libraries, headers and environment variables are checked in this step.
The behaviors of make and make install can also be set through command line options to
this command.

The configure script accepts various arguments and options which enable the final user
to highly customize whatever she is building. The options to configure are generally very
similar to normal program options explained in Section 4.1.1 [Arguments and options],
page 31. Similar to all GNU programs, you can get a full list of the options along with a
short explanation by running

$./configure --help

A complete explanation is also included in the gnuastro-0.0/INSTALL file in plain text that
comes with the Gnuastro source. Note that this file was written by the authors of GNU
Autoconf and is common for all programs which use the $./configure script for building
and installing (there is a lot of such programs). Here the most common general usages (not
only Gnuastro) are explained: when you don’t have super-user access to the system and
changing the executable names. But before that a review of the options to configure that
are particular to Gnuastro are discussed.

3.3.1.1 GNU Astronomy Utilities configure options

Most of the options to configure (which are to do with building) are similar for every program
which uses this script. Here the options that are particular to Gnuastro are discussed. The
next topics explain the usage of other configure options which can be applied to any program
using the GNU build system (through the configure script).

--with-numthreads
(=INT) If this option is given an integer value, that value will be used for the
default number of threads to use. If it is not given, then the total number of
threads will be read from the system, see Section 4.3 [Threads in GNU As-
tronomy Utilities], page 40. Specifying -—with-numthreads=no or --without-
numthreads is equivalent to not calling this option it at all.

--enable-progname
Only build and install progname along with any other program that is enabled
in this fashion. progname is the name of the executable without the ast, for

Chapter 3: Installation 25

example imgcrop for ImageCrop (with the executable name of astimgcrop). If
this option is called for any of the programs in Gnuastro, any program which
is not explicitly enabled will not be built or installed.

--disable-progname

--enable-progname=no
Do not build or install the program named progname. This is very similar to the
--enable-progname, but will build and install all the other programs except
this one.

--enable-gnulibcheck

Enable checks on the GNU Portability Library (Gnulib). Gnulib is used by
Gnuastro to enable users of non-GNU based operating systems (that don’t use
GNU C Library or glibc) to compile and use the advanced features that this
library provides. We make extensive use of such functions. If you give this
option to $./configure, when you run $ make check, first the functions in
Gnulib will be tested, then the Gnuastro executables. If your operating system
does not support glibc or has an older version of it and you have problems in the
build process ($ make), you can give this flag to configure to see if the problem
is caused by Gnulib not supporting your operating system or Gnuastro, see
Section 3.3.4 [Known issues|, page 29.

Note: If some programs are enabled and some are disabled, it is equivalent to simply
enabling those that were enabled. Listing the disabled programs is redundant.

Note that the tests of some programs might require other programs to have been installed
and tested. For example MakeProfiles is the first program to be tested when you run $ make
check, it provides the inputs to all the other tests. So if you don’t install MakeProfiles,
then the tests for all the other programs will be skipped or fail. To avoid this, in one run,
you can install all the packages and run the tests but not install. If everything is working
correctly, you can run configure again with only the packages you want but not run the
tests and directly install after building.

3.3.1.2 Installation directory

One of the most commonly used options to configure is the directory that will host all
the files which require installing, for example the actual executable files for the program,
the documentation and configuration files. This is done through the —--prefix option. To
demonstrate its applicability, let’s assume you don’t have root access to the computer you
are using which is one of the most common usage cases.

In case you don’t have super user or root access to the system, you can’t take the
installation steps of the command sequence in Section 1.1 [Quick start], page 1. To be able to
access the Gnuastro executable files from anywhere, you have to specify a special directory in
the directories you have write access in, through the shell’s environment variables. Note that
this explanation can apply to all the requirements in Section 3.1 [Requirements|, page 21
in case the system lacks them or the system wide install was not built with the proper
configuration options. We will start with a short introduction to the shell variables.

Chapter 3: Installation 26

Shell variable values are basically treated as strings of characters. You can define a
variable and a value for it by running $ myvariable=a test value on the command line.
Then you can see the value in the with the command $ echo $myvariable. If a variable
has no value, this command will only print an empty line. This variable will be known
as long as this shell or terminal is running. Other terminals will have no idea it existed.
The main advantage of shell variables is that if they are exported” subsequent programs in
that shell can access their value. So by setting them to any desired value, you can change
the ‘environment’ of the program. The shell variables which are accessed by programs are
therefore known as ‘environment variables’®. You can see the full list of the environment
variables that your shell currently recognizes by running:

$ printenv

One of the most commonly used environment variables is PATH, it is a list of directories
to search for executable names. The most basic way to run an executable is to explicitly
type the full file name (including all the directory information) and run it. This is useful
for simple shell scripts or programs that you don’t use too often. However, when the
program (an executable) is to be used a lot, specifying all those directories will become a
significant burden. The PATH environment variable keeps the address of all the directories
to be searched if directory information is not explicitly given®’. When you don’t have root
access, you need to specify a directory for your self and add that to the PATH environment
variable.

Adding your specified directory to the PATH environment variable each time you want
to run your program is again very troubling and will not be much of an improvement
compared to explicitely calling the executbale with directory information. So there are
standard ‘startup files’ defined by your shell. The commands in these files are run each
time you start your system (/etc/profile and all scripts in /etc/profile.d/), when you
log in (*/.bash_profile) or on each invocation of the shell (the terminal, ~/.bashrc).

HOME is another commonly used environment variable, it is any user’s (the one that is
logged in) top directory. It is used so often that Bash has a special expansion for it: ~,
whenever you see file names starting with the tilde sign, it actually represents the value to
the HOME environment variable. The standard directory where you can keep installed files
for your own user is the “/.local/. You can use this directory as the top directory for

installing all the programs (executables), libraries, manuals and shared data that you need.

Let’s call the directory you have chosen with USRDIR since the standard is just a sug-
gestion. Please replace it with any directory name you choose. To notify the build system
of the program to install the files in this directory, you can add the following option to the
configure script. When you subsequently run $ make install all the installable files will
be put there.

$./configure --prefix=USRDIR

By running $ export myvariable=a test value instead of the simpler case in the text

You can use shell variables for other actions too, for example to temporarily keep some names or run
loops on some files.

This is why in the sequence of commands in Section 1.1 [Quick start], page 1 only $./configure has
directory information. By giving a specific directory (the current directory or ./), we are explicitly telling
the shell to look in the current directory for an executable named configure not in the directories listed
in PATH.

10 These directories are the standard in GNU Bash, other shells might have different startup files.

Chapter 3: Installation 27

The USRDIR/bin directory is the place where the executables (or binary files) are in-
stalled. So you have to add that to your PATH environment variable by placing the following
command in the $HOME/ .bashrc file or any of the startup files discussed above. The direc-
tories listed in $PATH specify the locations that the system will check to find the executable
name you have asked for. Each directory is separated by a colon (:). So through the
command below you will concatenate your directory to the already existing list.

export PATH=$PATH:USRDIR/bin

In case you install libraries (like the requirements of Gnuastro) with this method locally,
you also have to notify the system to search for shared libraries in your installed directory.
To do that add USRDIR/1ib to your LD_LIBRARY_PATH environment variable similar to the
example above for PATH. If you also want to access the Info and man pages documenta-
tions add the USRDIR/share/info and USRDIR/share/man to your INFODIR and MANPATH
environment variables.

A final note is that order matters in the directories that are searched. In the example
above, the new directory was added after the system specified directories. So if the program,
library or manuals are found in the system wide directories, the user directory is no longer
searched. If you want to search your local installation first, put the new directory before
the already existing list like the example below.

export PATH=USRDIR/bin:$PATH

This is good when a library for example CFITSIO is already present on the system but
wasn’t installed with the correct configuration flags discussed above. Since you can’t re-
install, with this order, the system will first find the one you installed with the correct
configuration flags. However there are security problems, because all system wide programs
and libraries can be replaced by non-secure versions if they also exist in USRDIR. So if
you choose this order, be sure to keep it clean from executables with the same names as
important system programs.

3.3.1.3 Executable names

At first sight, the names of the executables for each program might seem to be uncommonly
long, for example astnoisechisel or astimgcrop. We could have chosen terse (and cryptic)
names like most programs do. We chose this complete naming convention (something like
the commands in TEX) so you don’t have to spend too much time remembering what the
name of a specific program was. Such complete names also enable you to easily search for
the programs.

To facilitate typing the names in, we suggest using the shell auto-complete. With this
facility you can find the executable you want very easily. It is very similar to file name
completion in the shell. For example, simply by typing the letters bellow (where [TAB]
stands for the Tab key on your keyboard)

$ ast[TAB] [TAB]

you will get the list of all the available executables that start with ast in your PATH envi-
ronment variable directories. So, all the Gnuastro executables installed on your system will
be listed. Typing the next letter for the specific program you want along with a Tab, will
limit this list until you get to your desired program.

In case all of this does not convince you and you still want to type short names, some
suggestions are given below. You should have in mind though, that if you are writing a shell

Chapter 3: Installation 28

script that you might want to pass on to others, it is best to use the standard name because
other users might not have adopted the same customizations. The long names also serve as
a form of documentation in such scripts. A similar reasoning can be given for option names
in scripts: it is good practice to always use the long formats of the options in shell scripts,
see Section 4.1.3 [Options]|, page 32.

The simplest solution is making a symbolic link to the actual executable. For example
let’s assume you want to type ic to run ImageCrop instead of astimgcrop. Assuming
you installed Gnuastro executables in /usr/local/bin (default) you can do this simply by
running the following command as root:

1n -s /usr/local/bin/astimgcrop /usr/local/bin/ic

In case you update Gnuastro and a new version of ImageCrop is installed, the default
executable name is the same, so your custom symbolic link still works.

The installed executable names can also be set using options to $./configure, see
Section 3.3.1 [Configuring], page 24. GNU Autoconf (which configures Gnuastro for your
particular system), allows the builder to change the name of programs with the three options
—--program-prefix, —-program-suffix and --program-transform-name. The first two
are for adding a fixed prefix or suffix to all the programs that will be installed. This will
actually make all the names longer! You can use it to add versions of program names to
the programs in order to simultaneously have two executable versions of a program.

The third configure option allows you to set the executable name at install time using
the SED utility. SED is a very useful ‘stream editor’. There are various resources on the
internet to use it effectively. However, we should caution that using configure options will
change the actual executable name of the installed program and on every re-install (an
update for example), you have to also add this option to keep the old executable name
updated. Also note that the documentation or configuration files do not change from their
standard names either.

For example, let’s assume that typing ast on every invocation of every program is really
annoying you! You can remove this prefix from all the executables at configure time by
adding this option:

$./configure --program-transform-name=’s/ast/ /’

3.3.2 Tests

After successfully building (compiling) the programs with the $ make command you can
check the installation before installing. To run the tests on your newly build utilities, run

$ make check

For every program some tests are designed to check some possible operations. Running
the command above will run those tests and give you a final report. If everything is ok
and you have built all the programs, all the tests should pass. In case any of the tests fail,
please have a look at Section 3.3.4 [Known issues|, page 29 and if that still doesn’t fix your
problem, look that the ./tests/test-suite.log file to see if the source of the error is
something particular to your system or more general. If you feel it is general, please contact
us because it might be a bug. Note that the tests of some programs depend on the outputs
of other program’s tests, so if you have not installed them they might be skipped or fail.
Prior to releasing every distribution all these tests are checked. If you have a reasonably

Chapter 3: Installation 29

modern terminal, the outputs of the successful tests will be colored green and the failed
ones will be colored red.

These scripts can also act as a good set of examples for you to see how the programs are
run. All the tests are in the gnuastro-0.0/tests directory. The tests for each program
are shell scripts (ending with .sh) in a subdirectory of this directory with the same name as
the program. See Section 10.8 [Test scripts|, page 137 for more detailed information about
these scripts incase you want to inspect them.

3.3.3 A4 print manual

The default print manual is provided in the letter paper size. If you would like to have
the print version of this manual on paper and you are living in a country which uses A4,
then you can rebuild the manual. The great thing about the GNU build system is that the
manual source code which is in Texinfo is also distributed with the program source code,
enabling you to do such customizations (hacking).

In order to change the paper size, you will need to have GNU Texinfo installed.
For simplicity, let’s assume SRCdir is equivalent to DOWLD/gnuastro-0.0. Open
SRCdir/doc/gnuastro.texi with any text editor. This is the source file that created this
manual. In the first few lines you will see this line:

Q@cQ@afourpaper

In Texinfo, a line is commented with @c. Therefore, uncomment this line by deleting the
first two characters such that it changes to:

O@afourpaper
Save the file and close it. You can now run
$ make pdf

and the new PDF manual will be available in SRCdir/doc/gnuastro.pdf. By changing the
pdf in $ make pdf to ps or dvi you can have the manual in those formats. Note that you
can do this for any manual that is in Texinfo format, they might not have @afourpaper
line, so you can add it close to the top of the Texinfo source file.

3.3.4 Known issues

Depending on your operating system and the version of the compiler you are using, you
might confront some known problems during the configuration ($./configure), compila-
tion ($ make) and tests ($ make check). Here, their solutions are discussed.

e $./configure: Configure complains about not finding a library even though you have
installed it. The possible solution is based on how you installed the package:

e From your distribution’s package manager. Most probably this is because your
distribution has separated the header files of a library from the library parts.
Please also install the ‘development’ packages for those libraries too. Just add a
-dev or -devel to the end of the package name and re-run the package manager.
This will not happen if you install the libraries from source. When installed from
source, the headers are also installed.

e From source. Then your linker is not looking where you installed the library. If
you followed the instructions in this chapter, all the libraries will be installed in
/usr/local/lib. So you have to tell your linker to look in this directory. To

Chapter 3: Installation 30

do so, add LDFLAGS=-L/usr/local/1lib to the Gnuastro configure script. If you
want to use the libraries for your other programming projects, then export this
environment variable similar to the case for LD_LIBRARY_PATH explained below.

o $ make: Complains about an unknown function on a non-GNU based operating system.
In this case, please run $./configure with the -—enable-gnulibcheck option to see if
the problem is from the GNU Portability Library (Gnulib) not supporting your system
or if there is a problem in Gnuastro, see Section 3.3.1.1 [GNU Astronomy Utilities
configure options|, page 24. If the problem is not in Gnulib and after all its tests you
get the same complaint from make, then please contact us at bug-gnuastro@gnu.org.
The cause is probably that a function that we have used is not supported by your
operating system and we didn’t included it along with the source tar ball. If the

function is available in Gnulib, it can be fixed immediately.

e $ make: Can'’t find the headers (.h files) of libraries installed from source. Similar to
the case for LDFLAGS (above), your compiler is not looking in the right place, add
CPPFLAGS=-I/usr/local/include to ./configure to re-configure Gnuastro, then re-
run make.

e $ make check: Only one (the first) test passes, all the rest fail. Tt is highly likely that
your distribution doesn’t look into the /usr/local/1ib directory when searching for
shared libraries. To make sure it is added to the list of directories, run the following
command and restart your terminal: (you can ignore the \ and extra space if you
type it, it is only necessary if you copy and paste). See Section 3.3.1.2 [Installation
directory], page 25 for more details.

echo ’export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib’ \
>> ~/.bashrc

e $ make check: The tests relying on external programs (for example fitstopdf .sh fail.)
This is probably due to the fact that the version number of the external programs is
too old for the tests we have preformed. Please update the program to a more recent
version. For example to create a PDF image, you will need GPL Ghostscript, but older
versions do not work, we have successfully tested it on version 9.15. Older versions
might cause a failure in the test result.

e $ make pdf: The PDF manual cannot be made. To make a PDF manual, you need
to have the GNU Texinfo program (like any program, the more recent the better). A
working TEX program is also necessary, which you can get from Tex Live!!.

If your problem was not listed above, please file a bug report (Section 1.7 [Report a bug],
page 7).

1 https://www.tug.org/texlive/

https://www.tug.org/texlive/

Chapter 4: Common behavior 31

4 Common behavior

There are some facts that are common to all the programs in Gnuastro which are mainly
to do with user interaction. In this chapter these aspects are discussed. The most basic
are the command line options which are common in all the programs for a unified user
experience. All Gnuastro programs can use configuration files so you don’t have to specify
all the parameters on the command line each time you run a program. The manner of
setting, checking and using the these files at various levels are also explained. Finally we
discuss how you can get immediate and distraction-free (without taking your hands off the
keyboard!) help on the command line.

4.1 Command line

All the programs in GNU Astronomy Utilities are customized through the standard GNU
style command line options. First a general outline of how to make best use of these options
is discussed and finally the options that are common to all the programs in Gnuastro are
listed.

Your full command line text is passed onto the shell as a string of characters. That
string is then broken up into separate ‘words’ by any ‘metacharacters’ (like space, tab, |,
> or ;) that might exist in the text. See Section “Definitions” in the Bash manual, for the
complete list of meta-characters and other Bash definitions. See Section “Shell Operation”
in the Bash manual, for a short summary of the steps the shell takes before passing the
commands to the program you called.

4.1.1 Arguments and options

On the command line, the first thing you enter is the name of the program you want to run.
After that you can specify two types of input: arguments and options. Arguments are those
tokens that are not preceded by any hyphens (=), the program is suppose to understand
what they are without any help from the user.

Arguments can be both mandatory and optional and since there is no help from you,
their order might also matter (for example in cp which is used for copying). The outputs
of -—usage and --help shows which arguments are optional and which are mandatory, see
Section 4.6.1 [--usage], page 43. As their name suggests, options are only optional and
most of the time you don’t have to worry about what order you specify them in.

In case your arguments or option values contain any of the shell’s meta-characters, you
have to quote them. If there is only one such character, you can use a backslash (\) before
it. If there are multiple, it might be easier to simply put your whole argument or option
value inside of double quotes ("). In such cases, everything inside the double quotes will be
seen as one ‘word’.

For example let’s say you want to specify the Header data unit (HDU) of your FITS file
using a complex expression like 3; images (exposure > 100). If you simply add these after
the --hdu (-h) option, the programs in Gnuastro will read the value to the HDU option
as 3 and run. Then, Bash will attempt to run a separate command images(exposure >
100) and complain about a syntax error. This is because the semicolon (;) is an ‘end of
command’ character in Bash. To solve this problem you can simply put double quotes
around the whole string you want to pass as seen below:

Chapter 4: Common behavior 32

$ astimgcrop --hdu="3; images(exposure > 100)" FITSimage.fits

Alternatively you can put a \ before every metacharacter in this string, but probably
you will agree with us that the double quotes are much more easier, elegant and readable.

4.1.2 Arguments

In GNU Astronomy Utilities, the names of the input data files and ASCII tables are mostly
specified as arguments, you can generally specify them in any order unless otherwise stated
for a particular program. Everything particular about how a program treats arguments, is
explained under the “Invoking ProgramName” section for that program.

Generally, if there is a standard file name extension for a particular format, that filename
extension is used to separate the kinds of arguments. The list below shows what astronom-
ical data formats are recognized based on their file name endings. If the program doesn’t
accept any other data format, any other argument that doesn’t end with the specified ex-
tentions below is considered to be a text file (usually catalogs). For example Section 5.2
[ConvertType|, page 49 accepts other data formats.

e .fits: The standard file name ending of a FITS image.

e .fits.Z: A FITS image compressed with compress.

e .fits.gz: A FITS image compressed with GNU zip (gzip).
e .imh: IRAF format image file.

Through out this manual and in the command line outputs, whenever we want to gen-
eralize all such astronomical data formats in a text place holder, we will use ASTRdata, we
will assume that the extension is also part of this name. Any file ending with these names
is directly passed on to CFITSIO to read. Therefore you don’t necessarily have to have
these files on your computer, they can also be located on an FTP or HT'TP server too, see
the CFITSIO manual for more information.

CFITSIO has its own error reporting techniques, if your input file(s) cannot be opened,
or read, those errors will be printed prior to the final error by Gnuastro.

4.1.3 Options

Command line options allow configuring the behaviour of a program in all GNU/Linux
applications for each particular execution. Most options can be called in two ways: short
or long a small number of options in some programs only have the latter type. In the list
of options provided in Section 4.1.4 [Common options|, page 34 or those for each program,
both formats are shown for those which support both. First the short is shown then the
long. Short options are only one character and only have one hyphen (for example -h) while
long options have two hyphens an can have many characters (for example --hdu).

Usually, the short options are for when you are writing on the command line and want
to save keystrokes and time. The long options are good for shell scripts, where you don’t
usually have a rush and they provide a level of documentation, since they are less cryptic.
Usually after a few months of not running a program, the short options will be forgotten
and reading your previously written script will not be easy.

Some options need to be given a value if they are called and some don’t. You can
think of the latter type of options as on/off options. These two types of options can be
distinguished using the output of the —-help and --usage options, which are common to

Chapter 4: Common behavior 33

all GNU software, see Section 4.6 [Getting help], page 43. The following convention is used
for the formats of the values in Gnuastro:

INT The value is read as an integer. If a float or a string is provided the program
will warn you and abort. In most cases, integers are used for counting variables,
so if they are negative the program will also abort.

4or8 Either the value 4 or 8, any other integer will give a warning and abort.

FLT The value is read as a float. There are generally two types, depending on the
context. If they are for fractions, they will have to be less than or equal to
unity.

STR The value is read as a string of characters (for example a file name) or other

particular settings like a HDU name, see below.

To specify a value in the short format, simply put the value after the option. Note that
since the short options are only one character long, you don’t have to type anything between
the option and its value. For the long option you either need white space or an = sign, for
example -h2, -h 2, --hdu 2 or --hdu=2 are all equivalent.

The short format of on/off options (those that don’t need values) can be concatenated for
example these two hypothetical sequences of options are equivalent: -a -b -c4 and -abc4.
As an example, consider the following command to run ImageCrop:

$ astimgcrop -Dr3 --wwidth 3 catalog.txt --deccol=4 ASTRdata

The $ is the shell prompt, astimgcrop is the program name. There are two arguments
(catalog.txt and ASTRdata) and four options, two of them given in short format (-D, -r)
and two in long format (--width and --deccol). Three of them require a value and one
(-D) is an on/off option.

If an abbreviation is unique between all the options of a program, the long option names
can be abbreviated. For example, instead of typing --printparams, typing --print or
maybe even —-pri will be enough, if there are conflicts, the program will warn you and show
you the alternatives. Finally, if you want the argument parser to stop parsing arguments
beyond a certain point, you can use two dashes: --. No text on the command line beyond
these two dashes will be parsed.

If an option with a value is repeated or called more than once, the value of the last time
it was called will be assigned to it. This very useful in complicated sitations, for example
in scripts. Let’s say you want to make a small modification to one option value. You can
simply type the option with a new value in the end of the command and see how the script
works. If you are satisfied with the change, you can remove the original option. If the
change wasn’t satsifactory, you can remove the one you just added and not worry about
saving the original value. Without this capability, you would have to memorize or save the
original value somewhere else, run the command and then change the value again which is
not at all convenient and is potentially cause lots of bugs.

When you don’t call an option that requires a value, all the programs in Gnuastro will
check configuration files to find a value for that parameter. To learn more about how folder,
user and system wide configuration files can be set, please see Section 4.2 [Configuration
files|, page 37. Another factor that is particular to Gnuastro is that it will check the value
you have given for each option to see if it is reasonable. For example you might mistakenly

Chapter 4: Common behavior 34

give a negative, float or string value for a FITS image extension or column number. As
another example, you might give a value larger than unity for an option that only accepts
fractions (which are always less than unity and positive).

(7
CAUTION: In specifying a file address, if you want to use the shell’s tilde expansion (~)
to specify your home directory, leave at least one space between the option name and your
value. For example use -o “/test, ——output ~/test or ——output= ~/test. Calling them

with 0™ /test or —-—output="/test will disable shell expansion.
- J

()
CAUTION: If you forget to specify a value for an option which requires one, and that

option is the last one, Gnuastro will warn you. But if it is in the middle of the command,
it will take the text of the next option or argument as the value which can cause undefined

behaviour.
_ J
4 N

NOTE: All counting in Gnuastro starts from 0 not 1. So for example the first FITS image
extension or column in a table are noted by 0, not 1. This is the standard in C and all

languages that are based on it (for example C++, Java and Python).
N J

4.1.4 Common options

To facilitate the job of the users and developers, all the programs in Gnuastro share some
basic command line options for the same operations where they are relevant. The list of
options is provided below. It is noteworthy that these similar options are hard-wired into
the programming of all of Gnuastro programs using GNU C Library’s argument parser
merging ability.

For some programs, some of the options, might be irrelevant for example MakeProfiles
creates FITS images based on a given catalog. Therefore no input images (and thus HDUs)
are necessary for it. In such cases, the option is still listed and if a value is given for it, it
is completely ignored.

4.1.4.1 Input/Output options

These options are to do with the input and outputs of the various programs.

-h

--hdu (=STR) The number or name of the desired Header Data Unit or HDU in the
input FITS image or images. A FITS file can store multiple HDUs or extensions,
each with either an image or a table or nothing at all (only a header). Note that
counting of the extensions starts from 0(zero), not 1(one). When specifying the
name, case is not important so IMAGE, image or ImAgE are equivalent.

A # is appended to the string you specify for the HDU! and the result is put in
square brackets and appended to the FITS file name before calling CFITSIO
to read the contents of the HDU for all the programs in Gnuastro. CFITSIO

1 With the # character, CFITSIO will only read the desired HDU into your memory, not all the existing
HDUs in the fits file.

Chapter 4: Common behavior 35

has many capabilities to help you find the extension you want, far beyond the
simple extension number and name. See CFITSIO manual’s “HDU Location
Specification” section for a very complete explanation with several examples.

-0
--output (=STR) The name of the output file or directory. With this option the automatic
output names explained in Section 4.5 [Automatic output], page 42 are ignored.

-D

-—dontdelete
By default, if the output file already exists, it will be silently replaced with
the output of this run of all Gnuastro programs. By calling this option, if the
output file already exists, the programs will warn you and abort.

-K

--keepinputdir

In automatic output names, don’t remove the directory information of the input
file names. As explained in Section 4.5 [Automatic output|, page 42, if no output
name is specified, then the output name will be made in the existing directory
based on your input. If you call this option, the directory information of the
input will be kept and the output will be in the same directory as the input.
Note that his is only relevant if you are running the program from another
directory!

4.1.4.2 Operating modes

Another group of options that are common to all the programs in Gnuastro are those to do
with the general operation of the programs. The explanation for those that are not only
limited to Gnuastro but can be called in all GNU programs start with (GNU option).

-- (GNU option) Stop parsing the command line. This option can be useful in
scripts or when using the shell history. Suppose you have a long list of options,
and want to see if removing some of them (and using the default values) can
give a better result. If the ones you want to remove are the last ones on the
command line, you don’t have to delete them, you can just add -- before them
and if you don’t get what you want, you can remove the —- and get the same
initial result.

--usage (GNU option) Only print the options and arguments. This is very useful for
when you know the what the options do, you have just forgot their names. See
Section 4.6.1 [--usage]|, page 43.

--help (GNU option) Print all options and an explanation. Adding this option will
print all the options in their short and long formats, also displaying which ones
need a value if they are called (with an = after the long format). A short
explanation is also given for what the option is for. The program will quit
immediately after the message is printed and will not do any form of processing.
See Section 4.6.2 [--help], page 44.

Chapter 4: Common behavior 36

-V
--version

--quiet

--cite

-P

(GNU option) Print a short message, showing the full name, version, copyright
information and program authors. On the first line it will print the official
name (not executable name) and version number of the program. It will also
print the version of the Gnuastro that the program was built with. Following
this is a blank line and a copyright information. The program will not run.

Don’t report steps. All the programs in Gnuastro that have multiple major
steps will report their steps for you to follow while they are operating. If
you do not want to see these reports, you can call this option and only error
messages will be printed if the program is aborted. If the steps are done very
fast (depending on the properties of your input) disabling these reports will
also decrease running time.

Print the BibTEX entry for Gnuastro and the particular program (if that pro-
gram comes with a separate paper) and abort. Citations are vital for the
continued work on Gnuastro. Gnuastro started and is continued based on sep-
arate research projects. So if you find any of the tools offered in Gnuastro to
be useful in your research, please use the output of this command to cite the
program and Gnuastro in your research paper. Thank you.

GNU Astronomy Utilities is still new, there is no separate paper only devoted
to Gnuastro yet. Therefore currently the paper to cite for Gnuastro is the paper
for NoiseChisel which is the first published paper introducing Gnuastro to the
astronomical community. Upon reaching a certain point, a paper completely
devoted to Gnuastro will be published, see Section 1.5.1 [GNU Astronomy Util-
ities 1.0], page 5.

--printparams

-3

Print the final values used for all the parameters and abort. See Section 4.4
[Final parameter values, reproduce previous results], page 41 for more details.

—--setdirconf

Update the current directory configuration file from the given command line
options and quit, see Section 4.2 [Configuration files|, page 37. The values of
your options are added to the configuration file in the current directory. If the
configuration file or folder doesn’t exist, it will be created. If it exists but has
different values for those options, they will be given the new values. In any
case, the program will not run, but the contents of its updated configuration
file are printed for you to inspect.

This is the recommended method to fill the configuration file for all future
calls to one of the Gnuastro programs in a folder. It will internally check if
your values are in the correct range and type and save them according to the
configuration file format, see Section 4.2.1 [Configuration file format], page 38.

Chapter 4: Common behavior 37

When this option is called, the otherwise mandatory arguments, for example
input image or catalog file(s), are no longer mandatory (since the program will
not run).

-U

--setusrconf
Update the user configuration file from the command line options and quit. See
explanation under --setdirconf for more details.

--onlydirconf

Only read the current (local) directory configuration file and ignore the rest of
the configuration files, see Section 4.2.2 [Configuration file precedencel, page 38
and Section 4.2.3 [Current directory and User wide|, page 39. This can be
very useful when you want your results to be exactly reproducible. All the
configuration files can be put in the hidden ./.gnuastro/ directory in the
current directory, or the hidden directory can be a symbolic link to the directory
containing the configuration files. Then with this option you can ensure that
no other configuration file is read. So if your local configuration file lacks
some parameters, which ever Gnuastro utility you are using will will warn you
and abort, enabling you to exactly set all the necessary parameters without
unknowningly relying on some user or system wide option values.

onlydirconf can also be used in the configuration files (with a value of 0 or
1), see Section 4.2.1 [Configuration file format|, page 38. If it is present in the
local configuration file, other configuration files will not be read. In the other
configuration files, it is irrelevant.

--onlyversion
(=STR) Only run the program if its version is equal with the string of characters
given to this option. Note that it is not compared as a number, but as a string
of characters, so 0, or 0.0 and 0.00 are different. This is useful if you want
your results to be exactly reproducible and not mistakenly run with an updated
or older version of the program.

-N

—-—-numthreads
(=INT) Set the number of CPU threads to use. See Section 4.3 [Threads in
GNU Astronomy Utilities|, page 40.

4.2 Configuration files

Each program needs a certain number of parameters to run. Supplying all the necessary
parameters each time you run the program is very frustrating and prone to errors. Therefore
all the programs read the values for the necessary options you have not given in the command
line from one of several plain text files (which you can view and edit with any text editor).
These files are known as configuration files and are usually kept in a directory named etc/
according to the file system hierarchy standard?.

The thing to have in mind is that none of the programs in Gnuastro keep any internal
default value. All the values must either be stored in one of the configuration files or explic-

2 http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Chapter 4: Common behavior 38

itly called in the command line. In case the necessary parameters are not given through any
of these methods, the program will list the missing necessary parameters and abort. The
only exception to this is ——numthreads, whose default value is set at $./configure time
internally, see Section 4.3 [Threads in GNU Astronomy Utilities], page 40. Of course, you
can still provide a default value for the number of threads at any of the levels below, but
if you don’t, the program will not abort. Also note that through automatic output name
genertion, the value to the —-output option is also not mandatory on the command line or
in the configuration files for all programs which don’t rely on that value as an input?, see
Section 4.5 [Automatic output], page 42.

4.2.1 Configuration file format

The configuration files for each program have the standard program executable name with a
.conf suffix. When you download the source code, you can find them in the same directory
as the source code of each program, see Section 10.7 [Program source|, page 132.

Any line in the configuration file whose first non-white character is a # is considered to be
a comment and is ignored. The same goes for an empty line. The name of the parameter is
the same as the long format of the command line option for that parameter. The parameter
name and parameter value have to be separated by any number of ‘white-space’ characters:
space, tab or vertical tab. By default several space characters are used. If the value of an
option has space characters (most commonly for the hdu option), then double quotes can
be used to specify the full value.

Any text after the first two words (separated by the above delimiters) in a line is ignored.
If it is an option without a value in the ——help output (on/off option), then the value should
be 1 if it is to be ‘on’ and 0 otherwise. If an option is not recognized in the configuration
file, the name of the file and unrecognized option will be reported and the program will
abort. If a parameter is repeated more more than once in the configuration files and it is
not set on the command line, then only the first value will be used, the rest will be ignored.

You can build or edit any of the directories and the configuration files your self using
any text editor. However, it is recommended to use the --setdirconf and --setusrconf
options to set default values for the current directory or this user, see Section 4.1.4.2 [Oper-
ating modes|, page 35. With these options, the values you give will be checked as explained
in Section 4.1.3 [Options|, page 32 before writing in the current directory’s configuration
file. They will also print a set of commented lines guiding the reader and will also clas-
sify the options based on their context and write them in their logical order to be more
understandable.

4.2.2 Configuration file precedence

The parameter values in all the programs of Gnuastro will be filled in the following order.
Such that if a parameter is assigned a value in an earlier step, any value for that parameter
in a later step will be ignored.
1. Command line options, for this particular execution.
2. Current (local) directory, for all executions in the directory from which any of the
utilities is run (./.gnuastro/).

3 One example of a program which uses the value given to —-output as an input is ConvertType, this value
specifies the type of the output through the value to —-output, see Section 5.2.3 [Invoking ConvertType],
page 52.

Chapter 4: Common behavior 39

3. The user’s home directory, for all the executions of a particular user:
($HOME/ .1ocal/etc/, see below). It is only read if -—onlydirconf is not called, see
Section 4.1.4.2 [Operating modes|, page 35.

4. In a system wide directory for any user on that computer (prefix/etc/, see
Section 3.3.1.2 [Installation directory], page 25 for the value of prefix). It is only
read if ——onlydirconf is not called, see Section 4.1.4.2 [Operating modes|, page 35.

The basic idea behind setting this progressive state of checking for parameter values is
that separate users of a computer or separate folders in a user’s file system might need
different values for some parameters and the same values for others. For example raw
telescope images usually have their main image extension in the second FITS extension,
while processed FITS images usually only have one extension. If your system wide default
input extension is 0 (the first), then when you want to work with the former group of data
you have to explicitly mention it to the programs every time. With this progressive state of
default values to check, you can set different default values for the different directories that
you would like to run Gnuastro in for your different purposes, so you won’t have to worry
about this issue any more.

4.2.3 Current directory and User wide

For the current (local) and user-wide directories, the configuration files are stored in the
hidden sub-directories named ./.gnuastro/ and HOME/.local/etc/ respectively. Unless
you have changed it, the HOME environment variable should point to your home directory.
You can check it by running $ echo $HOME. Each time you run any of the programs in
Gnuastro, this environment variable is read and placed in the above address. So if you
suddenly see that your home configuration files are not being read, probably you (or some
other program) has changed the value of this environment variable.

Although it might cause confusions like above, this dependence on the HOME environ-
ment variable enables you to temporarily use a different directory as your home directory.
This can come in handy in complicated situations. To set the user or current directory
configuration files based on your command line input, you can use the --setdirconf or
--setusrconf, see Section 4.1.4.2 [Operating modes|, page 35

4.2.4 System wide

When Gnuastro is installed, the configuration files that are shipped with the distribution
are copied into the (possibly system wide) prefix/etc/ directory. See Section 3.3.1 [Con-
figuring], page 24 for more details on prefix (by default it is: /usr/local). This directory
is the final place (with the lowest priority) that the programs in Gnuastro will check to
retrieve parameter values.

If you remove a parameter and its value from the files in this system wide directory,
you either have to specify it in more immediate configuration files or set it each time in
the command line. Recall that none of the programs in Gnuastro keep any internal default
values and will abort if they don’t find a value for the necessary parameters (except the
number of threads). So even though you might never use a parameter, it still has to be at
least available in this system-wide configuration file.

In case you install Gnuastro from your distribution’s repositories, prefix will either be
set to / (the root directory) or /usr, so you can find the system wide configuration variables

Chapter 4: Common behavior 40

in /etc/ or /usr/etc/. The prefix of /usr/local/ is conventionally used for programs you
install from source by your self.

4.3 Threads in GNU Astronomy Utilities

Some of the programs benefit significantly when you use all the threads your computer’s
CPU has to offer to your operating system. GNU Astronomy Utilities uses the POSIX
threads library (pthreads) for spinning off threads when the user asks for it. The number
of threads available to your operating system is usually double the number of physical
(hardware) cores in your CPU.

You can find the number of threads available to your system with the command $ nproc,
which is part of GNU Coreutils and is most probably already available on your GNU /Linux
system. If not specified as an option at configure time, Gnuastro finds the number of threads
available to your system (and reports it along with all those other things it checks!). It is
saved internally for all the programs to use by default. To specify the number of threads at
configure time, use the —-with-numthreads option, see Section 3.3.1.1 [GNU Astronomy
Utilities configure options|, page 24. In case your system does not have GNU Coreutils,
currently the only way to proceed is to manually specify the number of threads through
this option.

The number of threads is the only parameter in Gnuastro which is stored internally at
configure time. The implication is that the only option with a value that doesn’t have to be
in any of the configuration files is this, see Section 4.2 [Configuration files|, page 37. Note
that if you do specify it, the value you provided in the most immediate configuration file
will be used, not the internal value.

4.3.1 A note on threads

Spinning off threads internally is not necessarily always the most efficient way to run an
application. Creating a new thread isn’t a cheap operation for the operating system. It is
most useful when the input data are fixed and you want the same operation to be done on
parts of it. For example one input image to ImageCrop and multiple crops from various
parts of it. In this fashion, the image is loaded into memory once, all the crops are divided
between the number of threads internally and each thread cuts out those parts which are
assigned to it from the same image. On the other hand, if you have multiple images and
you want to crop the same region out of all of them, it is much more efficient to set --
numthreads=1 (so no threads spin off) and run ImageCrop multiple times simultaneously.

You can check the boost in speed by first running a program on one of the data sets with
the maximum number of threads and another time (with everything else the same) and
only using one thread. You will notice that the wall-clock time (reported by most programs
at their end) in the former is longer than the latter divided by number of physical CPU
cores available to your operating system. Asymptotically these two can be equal (most of
the time they aren’t). So limiting the programs to use only one thread and running them
independently on the number of available threads will be more efficient.

Note that the operating system keeps a cache of recently processed data, so usually, the
second time you process an identical dataset (independent of the number of threads used),
you will get faster results. In order to make an unbiased comparison, you have to first clean
the system’s cache with the following command between the two runs.

Chapter 4: Common behavior 41

$ sync; echo 3 | sudo tee /proc/sys/vm/drop_caches
The best method to run multiple instances of a command on different threads is to use

GNU parallel. Surprisingly GNU Parallel is one of the few GNU packages that has no
Info documentation but only a Man page, see Section 4.6.4 [Info], page 45. So to see the
documentation after installing it please run

$ man parallel
As an example, let’s assume we want to crop a region fixed on the pixels (500, 600) with
the default width from all the FITS images in the ./data directory ending with sci.fits
to the current directory. To do this, you can run:

$ parallel astimgcrop --numthreads=1 --xc=500 --yc=600 ::: \

./data/*sci.fits

GNU Parallel can help in many more conditions, this is one of the simplest, see the man
page for lots of other examples. For absolute beginners: the backslash (\) is only a line
breaker to fit nicely in the page. If you type the whole command in one line, you should
remove it.

(N
SUMMARY: Should I use multiple threads? Depends:

e If you only have one data set (image in most cases!), then yes, the more threads you
use (with a maximum of the number of threads available to your OS) the faster you
will get your results.

e If you want to run the same operation on multiple data sets, it is best to set the number
of threads to 1 and use GNU Parallel as explained above.

N J

4.4 Final parameter values, reproduce previous results

The input parameters can be specified in many places, either on the command line or
in at least one of several configuration files, see Section 4.2 [Configuration files|, page 37.
Therefore, it often happens that before running a program on a certain data set, you want to
see the values for the parameters that the program will use after it has read your command
line options and all the configuration files in their correct order. You might also want to
save the list with the output so you can reproduce the same results at a later time, this is
very important when you want to use your results in a report or paper.

If you call the —-printparams option, all Gnuastro programs will read your command
line parameters and all the configuration files. If there is no problem (like a missing param-
eter or a value in the wrong format) and immediately before actually running, the programs
will print the full list of parameter names and values sorted and grouped by context and
quit. They will also report their version number, the date they were configured on your
system and the time they were reported.

As an example, you can give your full command line options and even the input and
output file names and finally just add -P to check if all the parameters are finely set. If
everything is ok, you can just run the same command (easily retrieved from the bash history,
with the top arrow key) and simply remove the last two characters that showed this option.

Since no program will actually start its processing when this option is called, the other-
wise mandatory arguments for each program (for example input image or catalog files) are
no longer required when you call this option.

Chapter 4: Common behavior 42

In case you want to store the list of parameters for later reproduction of the same results,
you can do so with the GNU Bash re-direction tool. For example after you have produced
the results you want to store, you can save all the parameters that were used in a file
named parameters.txt in the following manner. Using shell history you can retrieve the
last command you entered and simply add -P > parameters.txt to it, for example:

$ astimgcrop --racol=2 --deccol=3 IN.fits cat.txt -P > parameters.txt

All the parameters along with the extra data explained before will be stored in the plain
text parameters.txt file through the shell’s redirection mechanism (>). The output of —-
printparams conforms with the configuration file formats*. By taking the following steps,
you can use this file as a configuration file to reproduce your results at a later time.

1. Set the file name based on the standard configuration file names, see Section 4.2.1
[Configuration file format], page 38.

2. Later on (when ever you want to re-produce your results), copy the file in the
./ .gnuastro/ directory of your current directory.

In this manner, this file will be read as a current directory configuration file and since all
the parameters are defined in it, no other configuration file value will be used.

4.5 Automatic output

All the programs in Gnuastro are designed such that specifying an output file or directory
(based on the program context) is optional. The outputs of most programs are automatically
found based on the input and what the program does. For example when you are converting
a FITS image named FITSimage.fits to a JPEG image, the JPEG image will be saved in
FITSimage. jpg.

Another very important part of the automatic output generation is that all the directory
information of the input file name is stripped off of it. This feature can be disabled with
the -—keepinputdir option, see Section 4.1.4 [Common options|, page 34. It is the default
because astronomical data are usually very large and organized specially with special file
names. In some cases, the user might not have write permissions in those directories. In
fact, even if the data is stored on your own computer, it is advised to only grant write
permissions to the super user or root. This way, you won’t accidentally delete or modify
your valuable data!

Let’s assume that we are working on a report and want to process the FITS images from
two projects (ABC and DEF), which are stored in the sub-directories named ABCproject/
and DEFproject/ of our top data directory (/mnt/data). The following shell commands
show how one image from the former is first converted to a JPEG image through Convert-
Type and then the objects from an image in the latter project are detected using NoiseChisel.
The text after the # sign are comments (not typed!).

$ pwd # Current location
/home/usrname/research/report

$ 1s # List directory contents
ABCO1. jpg

$ 1s /mnt/data/ABCproject # Archive 1

4 They are both written by the same function.

Chapter 4: Common behavior 43

ABCO1.fits ABCO2.fits ABCO3.fits
$ 1s /mnt/data/DEFproject # Archive 2
DEFO1.fits DEFO2.fits DEFO03.fits
$ astconvertt /mnt/data/ABCproject/ABC02.fits --output=jpg # Prog 1

$ 1s

ABCO1. jpg ABCO2.jpg

$ astnoisechisel /mnt/data/DEFproject/DEFO1.fits # Prog 2
$ 1s

ABCO1. jpg ABCO2.jpg DEFO1_labeled.fits

4.6 Getting help

Probably the first time you read this manual, it is either in the PDF or HTML formats.
These two formats are very convenient for when you are not actually working, but when
you are only reading. Later on, when you start to use the programs and you are deep in
the middle of your work, some of the details will inevitably be forgotten. Going to find the
PDF file (printed or digital) or the HTML webpage is a major distraction.

GNU software have a very unique set of tools for aiding your memory on the command
line, where you are working, depending how much of it you need to remember. In the past,
such command line help was known as “online” help, because they were literally provided
to you ‘on’ the command ‘line’. However, nowadays the word “online” refers to something
on the internet, so that term will not be used. With this type of help, you can resume your
exciting research without taking your hands off the keyboard.

Another major advantage of such command line based help routines is that they are
installed with the software in your computer, therefore they are always in sync with the
executable you are actually running. Three of them are actually part of the executable. You
don’t have to worry about the version of the manual or program. If you rely on external
help (a PDF in your personal print or digital archive or HTML from the official webpage)
you have to check to see if their versions fit with your installed program.

If you only need to remember the short or long names of the options, --usage is advised.
If it is what the options do, then --help is a great tool. Man pages are also provided for
those who are use to this older system of documentation. This full manual is also available
to you on the command line in Info format. If none of these seems to resolve the problems,
there is a mailing list which enables you to get in touch with experienced Gnuastro users.
In the subsections below each of these methods are reviewed.

4.6.1 --usage

If you give this option, the program will not run. It will only print a very concise message
showing the options and arguments. Everything within square brackets ([]) is optional.
For example here are the first and last two lines of ImageCrop’s ——usage is shown:

$ astimgcrop --usage
Usage: astimgcrop [-Do?IPqSVW] [-d INT] [-h INT] [-r INT] [-w INT]
[-x INT] [-y INT] [-c INT] [-p STR] [-N INT] [--deccol=INT]

[--setusrconf] [--usage] [--version] [--wcsmode]
[ASCIIcatalog] FITSimage(s).fits

Chapter 4: Common behavior 44

There are no explanations on the options, just their short and long names shown sep-
arately. After the program name, the short format of all the options that don’t require a
value (on/off options) is displayed. Those that do require a value then follow in separate
brackets, each displaying the format of the input they want, see Section 4.1.3 [Options],
page 32. Since all options are optional, they are shown in square brackets, but arguments
can also be optional. For example in this example, a catalog name is optional and is only
required in some modes. This is a standard method of displaying optional arguments for
all GNU software.

4.6.2 —--help

If the command line includes this option, the program will not be run. It will print a
complete list of all available options along with a short explanation. The options are also
grouped by their context. Within each context, the options are sorted alphabetically. Since
the options are shown in detail afterwards, the first line of the —--help output shows the
arguments and if they are optional or not, similar to Section 4.6.1 [--usage|, page 43.

In the --help output of all programs in Gnuastro, the options for each program are
classified based on context. The first two contexts are always options to do with the input
and output respectively. For example input image extensions or supplementary input files
for the inputs. The last class of options is also fixed in all of Gnuastro, it shows operating
mode options. Most of these options are already explained in Section 4.1.4.2 [Operating
modes|, page 35.

The help message will sometimes be longer than the vertical size of your terminal. If
you are using a graphical user interface terminal emulator, you can scroll the terminal with
your mouse, but we promised no mice distractions! So here are some suggestions:

e Shift + PageUP to scroll up and Shift + PageDown to scroll down. For most help
output this should be enough. The problem is that it is limited by the number of lines
that your terminal keeps in memory and that you can’t scroll by lines, only by whole
screens.

e Pipe to less. A pipe is a form of shell re-direction. The less tool in Unix-like systems
was made exactly for such outputs of any length. You can pipe (|) the output of any
program that is longer than the screen to it and then you can scroll through (up and
down) with its many tools. For example:

$ astnoisechisel --help | less
Once you have gone through the text, you can quit less by pressing the q key.

e Redirect to a file. This is a less convenient way, because you will then have to open
the file in a text editor! You can do this with the shell redirection tool (>):

$ astnoisechisel --help > filename.txt

In case you have a special keyword you are looking for in the help, you don’t have to go
through the full list. GNU Grep is made for this job. For example if you only want the list
of options whose --help output contains the word “axis” in ImageCrop, you can run the
following command:

$ astimgcrop --help | grep axis

If the output of this option does not fit nicely within the confines of your terminal, GNU
does enable you to customize its output through the environment variable ARGP_HELP_FMT,

Chapter 4: Common behavior 45

you can set various parameters which specify the formatting of the help messages. For
example if your terminals are wider than 70 spaces (say 100) and you feel there is too much
empty space between the long options and the short explanation, you can change these
formats by giving values to this environment variable before running the program with the
—--help output. You can define this environment variable in this manner:

$ export ARGP_HELP_FMT=rmargin=100,opt-doc-col=20

This will affect all GNU programs using GNU C Library’s argp.h facilities as long as the
environment variable is in memory. You can see the full list of these formatting parameters
in the “Argp User Customization” part of the GNU C Library manual. If you are more
comfortable to read the --help outputs of all GNU software in your customized format,
you can add your customizations (similar to the line above, without the $ sign) to your
~/ .bashrc file. This is a standard option for all GNU software.

4.6.3 Man pages

Man pages were the Unix method of providing command line documentation to a program.
With GNU Info, see Section 4.6.4 [Info], page 45 the usage of this method of documentation
is highly discouraged. This is because Info provides a much more easier to navigate and
read environment.

However, some operating systems require a man page for packages that are installed
and some people are still used to this method of command line help. So the programs
in Gnuastro also have Man pages which are automatically generated from the outputs of
--version and --help using the GNU help2man program. So if you run

$ man programname

You will be provided with a man page listing the options in the standard manner.

4.6.4 Info

Info is the standard documentation format for all GNU software. It is a very useful command
line document viewing format, fully equipped with links between the various pages and
menus and search capabilities. As explained before, the best thing about it is that it is
available for you the moment you need to refresh your memory on any command line tool
in the middle of your work without having to take your hands off the keyboard. This
complete manual is available in Info format and can be accessed from anywhere on the
command line.

To open the Info format of any installed programs or library on your system which has
an Info format manual, you can simply run the command below (change executablename
to the executable name of the program or library):

$ info executablename

In case you are not already familiar with it, run $ info info. It does a fantastic job in
explaining all its capabilities its self. It is very short and you will become sufficiently fluent
in about half an hour. Since all GNU software documentation is also provided in Info, your
whole GNU/Linux life will significantly improve.

Once you’ve become an efficient navigator in Info, you can go to any part of this manual
or any other GNU software or library manual, no matter how long it is, in a matter of
seconds. It also blends nicely with GNU Emacs (a text editor) and you can search manuals

Chapter 4: Common behavior 46

while you are writing your document or programs without taking your hands off the key-
board, this is most useful for libraries like the GNU C library. To be able to access all the
Info manuals installed in your GNU/Linux within Emacs, type Ctrl-H + i.

To see this whole manual from the beginning in Info, you can run
$ info gnuastro

If you run Info with the particular program executable name, for example astimgcrop or
astnoisechisel:

$ info astprogramname

you will be taken to the section titled “Invoking ProgramName” which explains the inputs
and outputs along with the command line options for that program. Finally, if you run Info
with the official program name, for example ImageCrop or NoiseChisel:

$ info ProgramName

you will be taken to the top section which introduces the program. Note that in all cases,
Info is not case sensitive.

4.6.5 help-gnuastro mailing list

Gnuastro maintains the help-gnuastro mailing list for users to ask any questions related to
Gnuastro. The experienced Gnuastro users and some of its developers are subscribed to this
mailing list and your email will be sent to them immediately. However, when contacting
this mailing list please have in mind that they are possibly very busy and might not be able
to answer immediately.

To ask a question from this mailing list, send a mail to help-gnuastro@gnu.org.
Anyone can view the mailing list archives at http://lists.gnu.org/archive/html/
help-gnuastro/. It is best that before sending a mail, you search the archives to see if
anyone has asked a question similar to yours. If you want to make a suggestion or report a
bug, please don’t send a mail to this mailing list. We have other mailing lists and tools for
those purposes, see Section 1.7 [Report a bug], page 7 or Section 1.8 [Suggest new feature]
page 8.

)

4.7 Output headers

The output FITS files created by Gnuastro will have the following two keywords: DATE,
CFITSIO, WCSLIB and GNUASTRO. The first specifies the time in UT of the file being created.
The next three specify the versions of CFITSIO, WCSLIB and Gnuastro that was used to
make the file. Note that WCSLIB has only recently added the version reporting capability.
If you version of WCSLIB doesn’t have this capability, it will not be reported. Some basic
information about Gnuastro is also printed. The example below shows the last few keywords
of one of the outputs of ImageCrop.

/ ImageCrop (GNU Astronomy Utilities 0.1) 0.1:

DATE = ... / file creation date (...)
CFITSIO = ’3.37 g / CFITSIO version.

WCSLIB = ’b.5 g / WCSLIB version.

GNUASTRO= ’0.1 ’ / GNU Astronomy Utilities version.

COMMENT GNU Astronomy Utilities 0.1
COMMENT http://www.gnu.org/software/gnuastro/
END

http://lists.gnu.org/archive/html/help-gnuastro/
http://lists.gnu.org/archive/html/help-gnuastro/

Chapter 5: Files 47

5 Files

This chapter documents the programs in Gnuastro that are provided for getting information
on the contents of a data file or converting a file format. Before working on a FITS file, it
is commonly the case that you are not sure how many extensions it has within it and also
what each extension is (image, table or blank). In other cases you want to use the data in a
FITS file in other programs (for example in reports) that don’t recognize the FITS format.

5.1 Header

The FITS standard requires each extension of a FITS file to have a header, giving basic
information about what is in that extension. Each line in the header is for one keyword,
specifying its name, value and a short comment string. Besides the basic information,
the headers also contain vital information about the data, how they were processed, the
instrument specifications that took the image and also the World Coordinate System that
is used to translate pixel coordinates to sky or spectrum coordinates on the image or table.

5.1.1 Invoking Header

Header can print or manipulate the header information in an extension of an astronomical
data file. The executable name is astheader with the following general template

$ astheader [OPTION...] ASTRdata
One line examples:

$ astheader image.fits

$ astheader --update=0LDKEY,153.034,"01d keyword comment"

$ astheader --remove=COMMENT --comment="Anything you like ;-)."

$ astheader --add=MYKEY1,20.00,"An example keyword" --add=MYKEY2,fd

If no keyword modification options are given, the full header of the given HDU will be
printed on the command line. If any of the keywords are to be modified, the headers of
the input file will be changed. If you want to keep the original FITS file, it is easiest to
create a copy first and then run Header on that. In the FITS standard, keywords are always
uppercase. So case does not matter in the input or output keyword names you specify.

Most of the options can accept multiple instances in one command. For example you can
add multiple keywords to delete by calling delete multiple times, since repeated keywords
are allowed, you can even delete the same keyword multiple times. The action of such
options will start from the top most keyword.

()
FITS STANDARD KEYWORDS: Some header keywords are necessary for later operations

on a FITS file, for example BITPIX or NAXIS, see the FITS standard for their full list. If
you modify (for example remove or rename) such keywords, the FITS file extension might
not be usable any more. Also be careful for the world coordinate system keywords, if
you modify or change their values, any future world coordinate system (like RA and Dec)

measurements on the image will also change.
N J

Chapter 5: Files 48

(7
PRECEDENCE: The order of operations are as follows. Note that while the order within

each class of actions is preserved, the order of individual actions is not. So irrespective of
what order you called --delete and --update. First all the delete operations are going to
take effect then the update operations.

1. --delete
—--rename
—--update
--write

--history

ST el o

--comment
7. —--date

All possible syntax errors will be reported before the keywords are actually written. FITS
errors during any of these actions will be reported, but Header won’t stop until all the
operations are complete. If quitonerror is called, then Header will immediately stop upon

the first error.
K J

If only a certain set of header keywords are desired, it is easiest to pipe the output of
Header to GNU Grep. Grep is a very powerful and advanced tool to search strings which
is precisely made for such situations. For example if you only want to check the size of an
image FITS HDU, you can run:

$ astheader input.fits | grep NAXIS

The options particular to Header can be seen below. See Section 4.1.4 [Common options],
page 34 for a list of the options that are common to all Gnuastro programs, they are not
repeated here.

-d

--delete (=STR) Delete one instance of the desired keyword. Multiple instances of --
delete can be given (possibly even for the same keyword). All keywords given
will be removed from the headers in the opposite order (last given keyword will
be deleted first). If the keyword doesn’t exist, Header will give a warning and
return with a non-zero value, but will not stop.

-r

--rename (=STR) Rename a keyword to a new value. The old name and the new name
should be separated by either a comma (,) or a space character. Note that
if you use a space character, you have to put the value to this option within
double quotation marks (") so the space character is not interpreted as an option
separator. Multiple instances of ——rename can be given in one command. The
keywords will be renamed in the specified order.

-u
--update (=STR) Update a keyword, its value, its comments and its units all defined

separately. If there are multiple instances of the keyword in the header, they
will be changed from top to bottom (with multiple ——update options).

The format of the values to this option can best be specified with an exmaple:

—--update=KEYWORD,value, "comments for this keyword",unit

Chapter 5: Files 49

The value can be any numerical or string value. Other than the KEYWORD, all the
other values are optional. To leave a given token empty, follow the preceding
comma (,) immediately with the next. If any space character is present around
the commas, it will be considered part of the respective token. So if more than
one token has space characters within it, the safest method to specify a value
to this option is to put double quotation marks around each individual token
that needs it. Note that without double quotation marks, space characters will
be seen as option separators and can lead to undefined behavior.

--write (=STR) Write a keyword to the header. For the format of inputing the possible
values, comments and units for the keyword, see the ——update option above.

-H

--history
(=STR) Add a HISTORY keyword to the header. The string given to this keyword
will be separated into multiple keyword cards if it is longer than 70 characters.
With each run only one value for the —-history option will be read. If there
are multiple, it is the last one.

-c

——comment
(=STR) Add a COMMENT keyword to the header. Similar to the explanation for
--history above.

-t

--date Put the current date and time in the header. If the DATE keyword already exists
in the header, it will be updated.

--quitonerror
Quit if any of the operations above are not successful. By default if an error
occurs, Header will warn the user of the faulty keyword and continue with the
rest of actions.

5.2 ConvertType

The formats of astronomical data were defined mainly for archiving and processing. In
other situations, the data might be useful in other formats. For example, when you are
writing a paper or report or if you are making slides for a talk, you can’t use a FITS image.
Other image formats should be used. In other cases you might want your pixel values in
a table format as plain text for input to other programs that don’t recognize FITS, or to
include as a table in your report. ConvertType is created for such situations. The various
types will increase with future updates and based on need.

The conversion is not only one way (from FITS to other formats), but two ways (except
the EPS and PDF formats). So you can convert a JPEG image or text file into a FITS
image. Basically, other than EPS, you can use any of the recognized formats as different
color channel inputs to get any of the recognized outputs. So before explaining the options
and arguments, first a short description of the recognized files types will be given followed
a short introduction to digital color.

Chapter 5: Files 50

5.2.1 Recognized file types

The various standards and the file name extensions recognized by ConvertType are listed

below.

FITS or IMH

JPEG

EPS

Astronomical data are commonly stored in the FITS format (and in older data
sets in IRAF .imh format), a list of file name suffixes which indicate that the
file is in this format is given in Section 4.1.2 [Arguments|, page 32.

Fach extension of a FITS image only has one value per pixel, so when used as
input, each input FITS image contributes as one color channel. If you want
multiple extensions in one FITS file for different color channels, you have to
repeat the file name multiple times and use the --hdu, --hdu2, --hdu3 or
--hdu4 options to specify the different extensions.

The JPEG standard was created by the Joint photographic experts group. It is
currently one of the most commonly used image formats. Its major advantage
is the compression algorithm that is defined by the standard. Like the FITS
standard, this is a raster graphics format, which means that it is pixelated.

A JPEG file can have 1 (for grayscale), 3 (for RGB) and 4 (for CMYK) color
channels. If you only want to convert one JPEG image into other formats, there
is no problem, however, if you want to use it in combination with other input
files, make sure that the final number of color channels does not exceed four. If
it does, then ConvertType will abort and notify you.

The file name endings that are recognized as a JPEG file for input are: . jpg,
.JPG, .jpeg, .JPEG, .jpe, .jif, .jfif and .jfi.

The Encapsulated PostScript (EPS) format is essentially a one page PostScript
file which has a specified size. PostScript also includes non-image data, for ex-
ample lines and texts. It is a fully functional programming language to describe
a document. Therefore in ConvertType, EPS is only an output format and can-
not be used as input. Contrary to the FITS or JPEG formats, PostScript is
not a raster format, but is categorized as vector graphics.

The Portable Document Format (PDF) is currently the most common format
for documents. Some believe that PDF has replaced PostScript and that Post-
Script is now obsolete. This view is wrong, a PostScript file is an actual plain
text file that can be edited like any program source with any text editor. To
be able to display its programmed content or print, it needs to pass through a
processor or compiler. A PDF file can be thought of as the processed output
of the compiler on an input PostScript file. PostScript, EPS and PDF were
created and are registered by Adobe Systems.

With these features in mind, you can see that when you are compiling a doc-
ument with TEX or KTEX, using an EPS file is much more low level than a
JPEG and thus you have much greater control and therefore quality. Since it
also includes vector graphic lines we also use such lines to make a thin border
around the image to make its appearance in the document much better. No
matter the resolution of the display or printer, these lines will always be clear
and not pixelated. In the future, addition of text might be included (for exam-

Chapter 5: Files 51

PDF

blank

Plain text

ple labels or object IDs) on the EPS output. However, this can be done better
with tools within TEX or IXTEX such as PGF/Tikz'.

If the final input image (possibly after all operations on the flux explained be-
low) is a binary image or only has two colors of black and white (in segmentation
maps for example), then PostScript has another great advantage compared to
other formats. It allows for 1 bit pixels (pixels with a value of 0 or 1), this
can decrease the output file size by 8 times. So if a grayscale image is bi-
nary, ConvertType will exploit this property in the EPS and PDF (see below)
outputs.

The standard formats for an EPS file are .eps, .EPS, .epsf and .epsi. The
EPS outputs of ConvertType have the .eps suffix.

As explained above, a PDF document is a static document description format,
viewing its result is therefore much faster and more efficient than PostScript.
To create a PDF output, ConvertType will make a PostScript page description
and convert that to PDF using GPL Ghostscript. The suffixes recognized for a
PDF file are: .pdf, .PDF. If GPL Ghostscript cannot be run on the PostScript
file, it will remain and a warning will be printed.

This is not actually a file type! But can be used to fill one color channel with a
blank value. If this argument is given for any color channel, that channel will
not be used in the output.

Plain text files have the advantage that they can be viewed with any text editor
or on the command line. Most programs also support input as plain text files.
In ConvertType, if the input arguments do not have any of the extensions listed
above for other formats, the input is assumed to be a text file. Each plain text
file is considered to contain one color channel. There is no standard output for
plain text files.

If any of the extension above is mis-spelled, this will result in the output be-
coming a plain text file with that (short) name. If this happens, ConvertType
will warn you and write the output as a plain text file. If you don’t want that
warning, set your plain text output file names longer than 5 characters. When
converting an image to plain text, consider the fact that if the image is large
the number of columns in each line will become very large, possibly making it
very hard to open in some text editors.

5.2.2 Color

An image is a two dimensional array of 2 dimensional elements called pixels. If each pixel
only has one value, the image is known as a grayscale image and no color is defined. The
range of values in the image can be interpreted as shades of any color, it is customary to
use shades of black or grayscale. However, to produce the color spectrum in the digital
world, several primary colors must be mixed. Therefore in a color image, each pixel has
several values depending on how many primary colors were choosen. For example on the
digital monitor or color digital cameras, all colors are built by mixing the three colors of
Red-Green-Blue (RGB) with various proportions. However, for printing on paper, standard

1 http://sourceforge.net/projects/pgf/

http://sourceforge.net/projects/pgf/

Chapter 5: Files 52

printers use the Cyan-Magenta-Yellow-Key (CMYK, Key=black) color space. Therefore
when printing an RGB image, usually a transformation of color spaces will be necessary.

In a colored digital camera, a color image is produced by dividing the pixel’s area between
three colors (filters). However in astronomy due to the intrinsic faintness of most of the
targets, the collecting area of the pixel is very important for us. Hence the full area of the
pixel is used and one value is stored for that pixel in the end. One color filter is used for
the whole image. Thus a FITS image is inherently a grayscale image and no color can be
defined for it.

One way to represent a grayscale image in different color spaces is to use the same
proportions of the primary colors in each pixel. This is the common way most FITS image
converters work: they fill all the channels with the same values. The downside is two fold:

e Three (for RGB) or four (for CMYK) values have to be stored for every pixel, this
makes the output file very heavy (in terms of bytes).

e If printing, the printing errors of each color channel can make the printed image slightly
more blurred than it actually is.

To solve both these problems, the best way is to save the FITS image into the black
channel of the CMYK color space. In the RGB color space all three channels have to be
used. The JPEG standard is the only common standard that accepts CMYK color space,
that is why currently only the JPEG standard is included and not the PNG standard for
example.

The JPEG and EPS standards set two sizes for the number of bits in each channel: 8-bit
and 12-bit. The former is by far the most common and is what is used in ConvertType.
Therefore, each channel should have values between 0 to 28 — 1 = 255. From this we see
how each pixel in a grayscale image is one byte (8 bits) long, in an RGB image, it is 3bytes
long and in CMYK it is 4bytes long. But thanks to the JPEG compression algorithms,
when all the pixels of one channel have the same value, that channel is compressed to one
pixel. Therefore a Grayscale image and a CMYK image that has only the K-channel filled
are approximately the same file size.

5.2.3 Invoking ConvertType

ConvertType will convert any recognized input file type to any specified output type. The
executable name is astconvertt with the following general template

$ astconvertt [OPTION...] InputFile [InputFile2] ... [InputFile4]
One line examples:

$ astconvertt M31.fits --output=pdf

$ astconvertt galaxy.jpg -ogalaxy.fits

$ astconvertt fl.txt f2.txt £3.fits -o.jpg

$ astconvertt M31_r.fits M31_g.fits blank -oeps

The file type of the output will be specified with the (possibly complete) file name given
to the ——output option, which can either be given on the command line or in any of the
configuration files (see Section 4.2 [Configuration files], page 37). Note that if the output
suffix is not recognized, it will default to plain text format, see Section 5.2.1 [Recognized
file types], page 50.

Chapter 5: Files 53

The order of multiple input files is important. After reading the input file(s) the number
of color channels in all the inputs will be used to define which color space is being used for
the outputs and how each color channel is interpreted. Note that one file might have more
than one color channel (for example in the JPEG format). If there is one color channel the
output is grayscale, if three input color channels are given they are respectively considered
to be the red, green and blue color channels and if there are four color channels they are
respectively considered to be cyan, magenta, yellow and black.

The value to ——output (or -o) can be either a full file name or just the suffix of the desired
output format. In the former case, that same name will be used for the output. In the latter
case, the name of the output file will be set based on the automatic output guidelines, see
Section 4.5 [Automatic output|, page 42. Note that the suffix name can optionally start a
. (dot), so for example —-output=. jpg and --output=jpg are equivalent. Be careful that
if you want your output in plain text, you have to give the full file name. So if -otxt or
--output=.txt are given, the output file will be named txt or .txt (the latter will be a
hidden file!).

Besides the common set of options explained in Section 4.1.4 [Common options|, page 34,
the options to ConvertType can be classified into input, output and flux related options.
The majority of the options are to do with the flux range. Astronomical data usually have a
very large dynamic range (difference between maximum and minimum value) and different
subjects might be better demonstrated with a limited flux range.

Input:

--hdu?2 If the second input file is a FITS file, the value to this option will be used to
specify which HDU will be used. Note that for the first file, the (-~hdu or -h
in the common options is used)

--hdu3 The HDU of the third input FITS file.
--hdu4 The HDU of the fourth input FITS file.

Output:

-W

--widthincm
(=FLT) The width of the output in centimeters. This is only relevant for those
formats that accept such a width (not plain text for example). For most digital
purposes, the number of pixels is far more important than the value to this
parameter because you can adjust the absolute width (in inches or centimeters)
in your document preparation program.

-b

--borderwidth

(=INT) The width of the border to be put around the EPS and PDF outputs in
units of PostScript points. There are 72 or 28.35 PostScript points in an inch or
centimeter respectively. In other words, there are roughly 3 PostScript points
in every millimeter. If you are planning on adding a border, its significance is
highly correlated with the value you give to the ——widthincm parameter.

Unfortunately in the document structuring convention of the PostScript lan-
guage, the “bounding box” has to be in units of PostScript points with no

Chapter 5: Files 54

—-hex

-u
--quality

Flux range:

-c
--change

fractions allowed. So the border values only have to be specified in integers.
To have a final border that is thinner than one PostScript point in your docu-
ment, you can ask for a larger width in ConvertType and then scale down the
output EPS or PDF file in your document preparation program. For example
by setting width in your includegraphics command in TEX or IXTEX. Since
it is vector graphics, the changes of size have no effect on the quality of your
output quality (pixels don’t get different values).

Use Hexadecimal encoding in creating EPS output. By default the ASCII85
encoding is used which provides a much better compression rate. When con-
verted to PDF (or included in TEX or BTEX which is finally saved as a PDF
file), an efficient binary encoding is used which is far more efficient than both
of them. The choice of EPS encoding will thus have no effect on the final PDF.

So if you want to transfer your EPS files (for example if you want to submit your
paper to arXiv or journals in PostScript), their storage might become important
if you have large images or lots of small ones. By default ASCII85 encoding is
used which offers a much better compression rate (nearly 40 percent) compared
to Hexadecimal encoding.

(=INT) The quality (compression) of the output JPEG file with values from 0
to 100 (inclusive). For other formats the value to this option is ignored. Note
that only in grayscale (when one input color channel is given) will this actually
be the exact quality (each pixel will correspond to one input value). If it is
in color mode, some degradation will occur. While the JPEG standard does
support loss-less graphics, it is not commonly supported.

(=STR) Change pixel values with the following format "fromil:tol,
from2:to2,...". This option is very useful in displaying labeled pixels (not
actual data images which have noise) like segmentation maps. In labeled
images, usually a group of pixels have a fixed integer value. With this option,
you can manipulate the labels before the image is displayed to get a better
output for print or to emphasize on a particular set of labels and ignore the
rest. The labels in the images will be changed in the same order given. By
default first the pixel values will be converted then the pixel values will be
truncated (see —-fluxlow and --fluxhigh).

You can use any number for the values irrespective of your final output, your
given values are stored and used in the double precision floating point format.
So for example if your input image has labels from 1 to 20000 and you only
want to display those with labels 957 and 11342 then you can run ConvertType
with these options:

$ astconvertt --change=957:50000,11342:50001 --fluxlow=5e4 \
--fluxhigh=1e5 segmentationmap.fits —--output=jpg

Chapter 5: Files 55

-C

While the output JPEG format is only 8 bit, this operation is done in an
intermediate step which is stored in double precision floating point. The pixel
values are converted to 8-bit after all operations on the input fluxes have been
complete. By placing the value in double quotes you can use as many spaces
as you like for better readability.

--changeaftertrunc

-L
——fluxlow

-H

--fluxhigh

-m
--maxbyte

-i

Change pixel values (with --change) after truncation of the flux values, by
default it is the opposite.

(=FLT) The minimum flux (pixel value) to display in the output image, any
pixel value below this value will be set to this value in the output. If the value
to this option is the same as ——fluxmax, then no flux truncation will be applied.
Note that when multiple channels are given, this value is used for all the color
channels.

(=FLT) The maximum flux (pixel value) to display in the output image, see
--fluxlow.

(=INT) This is only used for the JPEG and EPS output formats which have an
8-bit space for each channel of each pixel. The maximum value in each pixel
can therefore be 28 — 1 = 255. With this option you can change (decrease) the
maximum value. By doing so you will decrease the dynamic range. It can be
useful if you plan to use those values for other purposes.

--flminbyte

—a

(=INT) If the lowest pixel value in the input channels is larger than the value
to ——fluxlow, then that input value will be redundant. In some situations it
might be necessary to set the minimum byte value (0) to correspond to that
flux even if the data do not reach that value. With this option you can do
this. Note that if the minimum pixel value is smaller than --fluxlow, then
this option is redundant.

—--fhmaxbyte

-1
--log

(=INT) See --flminbyte.

Display the logarithm of the input data. This is done after the conversion and
flux truncation steps, see above.

Chapter 5: Files 56

-n

—--noinvert
For 8-bit output types (JPEG and EPS for example) the final value that is
stored is inverted so white becomes black and vice versa. The reason for this is
that astronomical images usually have a very large area of blank sky in them.
The result will be that a large are of the image will be black. Therefore, by
default the 8-bit values are inverted so the images blend in better with the text
in a document.

Note that this behaviour is ideal for grayscale images, if you want a color image,
the colors are going to be mixed up. For color images it is best to call this option
so the image is not inverted.

Chapter 6: Image manipulation 57

6 Image manipulation

Images are one of the major formats of data that is used in astronomy. The functions in this
chapter explain the GNU Astronomy Utilities which are provided for their manipulaton.
For example cropping out a part of a larger image or convolving the image with a given
kernel or applying a transformation to it.

6.1 ImageCrop

Astronomical images are often very large, filled with thousands of galaxies. It often happens
that you only want a section of the image, or you have a catalog of sources and you want to
visually analyze them in small postage stamps. ImageCrop is made to do all these things.
When more than one crop is required, ImageCrop will divide the crops between multiple
threads to significantly reduce the run time.

One of the main problems in achieving this goal is that astronomical surveys are usually
extremely large. So large in fact, that the whole survey will not fit into a reasonably sized
file. Because of this surveys usually cut the final image into separate tiles and store each tile
in a file. For example the COSMOS survey’s Hubble space telescope, ACS F814W image
consists of 81 separate FITS images, with each one having a volume of 1.7 Giga bytes.

Even though the tile sizes are chosen to be large enough that too many galaxies don’t fall
on the edges of the tiles, inevitably some do and if you simply crop the image of the galaxy
from that one tile, you will miss a large area of the surrounding sky (which is essential in
estimating the noise). Therefore in its WCS mode, ImageCrop will stitch parts of the tiles
that are relevant for a target (with the given width) from all the input images that cover
that region into the output. Of course, the tiles have to be present in the list of input files.

6.1.1 ImageCrop modes

In order to be as comprehensive as possible, ImageCrop has two major modes of operation
listed below.

Image The image mode uses the pixel coordinates. Depending on your command line
options, this mode consists of three sub-modes. In image mode, only one image
may be input.

e Catalog (multiple crops). Coordinates are read from a text file. The --
xcol and --ycol columns in the catalog are interpreted as the center of
a square crop box whose width is specified with the --iwidth option in
pixels. Since the given pixel has to be on the center, the width has to be an
odd number, so if you give an even number for the width, it will be added
by one. If a catalog file name is provided (with --imagemode activated of
course) this mode will be used.

e Center (one crop). The box center is given on the command line with the
--xc and --yc parameters. The image width is similar to above.

e Section (one crop). You can specify the section of pixels along each axis in
the image which you want to be cropped with the —-section option. See
Section 6.1.2 [Crop section syntax|, page 59 for a full explanation on the
syntax of specifying the desired region.

Chapter 6: Image manipulation 58

WCS

The latter two cases will only have one crop box. In both cases, ImageCrop
will go into the image mode, irrespective of calling --wcsmode or the default
mode. In the first two cases, since you specify a central pixel, the crop box will
be a square with an odd number of pixels on the side, so your desired pixel sits
right in the center, see Section 6.1.3 [Blank pixels|, page 59 on how to disable
this for cases when the box exceeds the image size.

The Right ascension (RA) and Declination (Dec) of the objects in a catalog is
used to define the central position of each postage stamp. In this mode, the
width (--wwidth) is read in units of arc seconds and multiple images (tiles in
a survey) can be input. If the objects are closer to the edge of the image than
half the required width, other tiles (if they are present in the input files) are
used to fill the empty space. The square output cropped box will have an odd
number of pixels on the side.

In this mode, the input images do not necessarily have to be the same size, each
individual tile can even be smaller than the final crop. In any case, any part of
any of the input images which overlaps with the desired region will be used in
the crop. Note that if there is an over lap, the pixels from the last input image
read are going to be used. The input images all just have to be aligned with
the celestial coordinates, see the caution note below.

Similar to the image mode, there are two sub-modes:

e Catalog (multiple crops). Similar to catalog mode in image mode. The
RA and Dec column should be specified in the catalog (--racol and --
deccol).

e Center (one crop). You can specify the center of only one crop box (no
matter how many input images there are) with the options --ra and --dec.
If it exists in the input images, it will be cropped similar to the catalog
mode. If automatic output is triggered (you don’t specify a file name for
--output) and several of the input images are used to stitch and crop the
region around the central point, the name of the first input will be used in
automatic output, see Section 4.5 [Automatic output], page 42.

CAUTION: In WCS mode, the image has to be aligned with the celestial co-
ordinates, such that the first FITS axis is parallel (opposite direction) to the
Right Ascension (RA) while the second FITS axis is parallel to the declination.
If these conditions aren’t met for an image, ImageCrop will warn you and abort.
You have to use other tools to transform the image to the correct directions.

In short, if you don’t specify a catalog, you have to specify box coordinates manually
on the command line. When you do specify a catalog, ImageCrop has to be in one of the
two major modes (--imgmode or --wcsmode). Note that the single crop box parameters
specified in the sub-modes will not be written to or read from the configuration file, they
have to be specified on each execution.

Chapter 6: Image manipulation 59

6.1.2 Crop section syntax

When in image mode, one of the methods to crop only one box from the input image is
to define a section. Instead of defining four parameters for you to specify the corners of
your section, ImageCrop has a powerful syntax to read the box parameters from a string
of characters. If you leave certain parts of the string to be empty, ImageCrop can fill them
for you based on the input image sizes.

To define a box, you need the coordinates of two points: the first pixel in the box at
(X1, Y1) and the pixel which is immediately outside of the box (X2, Y2), four coordinates in
total. The four coordinates can be specified with one string in this format: X1:X2,Y1:Y2.
It is given to the ——section option. Therefore, the pixels along the first axis that are >X1
and <X2 will be included in the cropped image. The same goes for the second axis. Note
that each different term will be read as an integer, not a float (there are no sub-pixels).
Also, following the FITS standard, pixel indexes along each axis start from unity(1) not
zero(0).

You can omit any of the values and they will be filled automatically. The left hand side
of the colon (:) will be filled with 1, and the right side with the image size. So, 2:,: will
include the full range of pixels along the second axis and only those with a first axis index
larger than 2 in the first axis. If the colon is omitted for a dimension, then the full range
is automatically used. So the same string is also equal to 2:, or 2: or even 2. If you want
such a case for the second axis, you should set it to: ,2.

If you specify a negative value, it will be seen as before the indexes of the image which
are outside the image along the bottom or left sides when viewed in SAO ds9. In case you
want to count from the top or right sides of the image, you can use an asterisk (*). When
confronted with a *, ImageCrop will replace it with the maximum length of the image in
that dimension. So *-10:%+10,*-20:*+20 will mean that the crop box will be 20 x 40
pixels in size and only include the top corner of the input image with 3/4 of the image
being covered by blank pixels, see Section 6.1.3 [Blank pixels]|, page 59.

If you feel more comfortable with space characters between the values, you can use as
many space characters as you wish, just be careful to put your value in double quotes, for
example --section="5:200, 123:854". If you forget, anything after the first space will
not be seen by --section, because the unquoted space character is one of the characters
that separates options on the command line.

6.1.3 Blank pixels

The cropped box can potentially include pixels that are beyond the image range. For
example when a target in the input catalog was very near the edge of the input image. The
parts of the cropped image that were not in the input image will be filled with the following
two values depending on the data type of the image. In both cases, SAO ds9 will not color
code those pixels.

e If the data type of the image is a floating point type (float or double), IEEE NaN (Not
a number) will be used.

e For integer types, pixels out of the image will be filled with the value of the BLANK
keyword in the cropped image header. The value assigned to it is the lowest value
possible for that type, so you will probably never need it any way. Only for the

Chapter 6: Image manipulation 60

unsigned character type (BITPIX=8 in the FITS header), the maximum value is used
because it is unsigned, the smallest value is zero which is often meaningful.

You can ask for such blank regions to not be included in the output crop image using the
--noblank option. In such cases, there is no guarantee that the image size of your outputs
are what you asked for.

In some survey images, unfortunately they do not use the BLANK FITS keyword. Instead
they just give all pixels outside of the survey area a value of zero. So by default, when
dealing with float or double image types, any values that are 0.0 are also regarded as blank
regions. This can be turned off with the —-zeroisnotblank option.

6.1.4 Invoking ImageCrop

ImageCrop will crop a region from an image. If in WCS mode, it will also stitch parts from
separate images in the input files. The executable name is astimgcrop with the following
general template

$ astimgcrop [OPTION...] [ASCIIcatalog] ASTRdata ...
One line examples:

$ astimgcrop -I catalog.txt image.fits

$ astimgcrop -W catalog.txt /mnt/data/COSMOS/*_drz.fits

$ astimgcrop --section=10:%-10,10:*-10 --hdu=2 image.fits

$ astimgcrop --ra=189.16704 --dec=62.218203 goodsnorth.fits

$ astimgcrop --xc=568.342 --yc=2091.719 --iwidth=200 image.fits

ImageCrop has one mandatory argument which is the input image name(s), shown above
with ASTRdata You can use shell expansions, for example * for this if you have lots of
images in WCS mode. If the crop box centers are in a catalog, you also have to provide the
catalog name as an argument. Alternatively, you have to provide the crop box parameters
with command line options.

When in catalog mode, ImageCrop will run using any number of threads that you have
specified with the --numthreads option, see Section 4.1.4 [Common options]|, page 34. Note
that when multiple threads are being used, in verbose mode, the outputs will not be in order.
This is because the threads are asynchronous and thus not started in order. When the box
coordinates are given on the command line, no threads will be created.

6.1.4.1 ImageCrop options

The options can be classified into the following contexts: Input, Output and operating
mode options. Options that are common to all Gnuastro program are listed in Section 4.1.4
[Common options|, page 34 and will not be repeated here.

NOTE: The coordinates are in the FITS format. So the first axis is the horizontal axis
when viewed in SAO ds9 and the second axis is the vertical. Also in the FITS standard,
counting begins from 1 (one) not 0 (zero).

Crop box parameters:

-X

--xc (=FLT) The first FITS axis value of central position of the crop box in single
image mode.

Chapter 6:

—-—-gection

--ycol

-a
--iwidth

—--deccol

-W
--wwidth

Image manipulation 61

(=FLT) The second FITS axis value of the central position of the crop box in
single image mode.

(=STR) Section of the input image which you want to be cropped. See
Section 6.1.2 [Crop section syntax|, page 59 for a complete explanation on the
syntax required for this input.

(=FLT) The first FITS axis value of central position of the crop box in single
image mode.

(=FLT) The second FITS axis value of the central position of the crop box in
single image mode.

(=INT) Column number of the first FITS axis position of the box center, starting
from zero. In SAO ds9, the first FITS axis is the horizontal axis.

(=INT) Column number of the second FITS axis position of the box center,
starting from zero. In SAO ds9, the second FITS axis is the vertical axis.

(=INT) Width the square box to crop in image mode in units of pixels. In order
for the chosen central pixel to be in the center of the cropped image, the final
width has to be an odd number, therefore if the width

(=INT) Column number of Right Ascension (RA) in the input catalog, starting
from zero.

(=INT) Column number of declination in the input catalog, starting from zero.

(=FLT) The width of the crop box in WCS mode in units of arc-seconds.

Output options:

-C

—-checkcenter

(=INT) Box size of region in the center of the image to check in units of pixels.
This is only used in WCS mode. Because surveys don’t often have a clean
square or rectangle shape, some of the pixels on the sides of the surveys don’t
have any data and are commonly filled with zero valued pixels.

If the RA and Dec of any of the targets specified in the catalog fall in such
regions, that cropped image will be useless! Therefore with this option, you
can specify a width of a small box (3 pixels is often good enough) around the
central pixel of the cropped image. If all the pixels in this small box have the

Chapter 6: Image manipulation 62

value of zero, no cropped image will be created and this object will be flagged
in the final log file.

Y

--suffix (=STR) The suffix (or post-fix) of the output files for when you want all the
cropped images to have a special ending. One case where this might be helpful
is when besides the science images, you want the weight images (or exposure
maps, which are also distributed with survey images) of the cropped regions
too. So in one run, you can set the input images to the science images and
—-—suffix=_s.fits. In the next run you can set the weight images as input
and --suffix=_w.fits.

-b

—--noblank
Pixels outside of the input image that are in the crop box will not be used. By
default they are filled with blank values (depending on type), see Section 6.1.3
[Blank pixels], page 59.

-z
—--zeroisnotblank
In float or double images, it is common to give the value of zero to blank
pixels. If the input image type is one of these two types, such pixels will also
be considered as blank. You can disable this behavior with this option, see
Section 6.1.3 [Blank pixels], page 59.

Operating mode options:

-I

--imgmode
Operate in Image mode as described above. This option is only useful when
catalog is being provided. If coordinates are given on the command line, the
mode is automatically set based on them.

-W

--wcsmode

Operate in WCS mode. See explanations for —-imgmode.

6.1.4.2 ImageCrop output

When a catalog is given, the value of --output (see Section 4.1.4 [Common options|,
page 34) will be seen as the directory to store the output cropped images. In such cases, the
outputs will consist of two parts: a variable part (the row number of each target starting
from 1) along with a fixed string which you can set with the --suffix option. Note that
in catalog mode, only one image can be input.

When the crop box is specified on the command line, the value to ——output will be used
as a file name. If no output is specified or if it is a directory, the output file name will follow
the automatic output names of Gnuastro, see Section 4.5 [Automatic output|, page 42 for
the input image.

The header of each output cropped image will contain the names of the input image(s) it
was cut from. If a name is longer than the 70 character space that the FITS standard allows
for header keyword values, the name will be cut into several keywords from the nearest slash

Chapter 6: Image manipulation 63

(/). The keywords have the following format: ICFn_m. Where n is the number of the image
used in this crop and m is the part of the name. Following the name is another keyword
named ICFnPIX which shows the pixel range from that input image in the same syntax as
Section 6.1.2 [Crop section syntax|, page 59.

Once done, a log file will be created in the current directory named astimgcrop.log.
This file will keep the names of all the outputs along with the number of images that were
used in them and also whether the central pixels of the cropped image are full. There are
also comments on the top explaining basic information about the run. If the log file cannot
be created (for example you don’t have write permission in the directory you are running
ImageCrop in) it will not be created (unless --individual is called). You can see the same
results in verbose mode on the command line in such cases.

6.2 Convolve

Convolution is the process of changing the value of one pixel to the weighted average of all
the pixels in its neighborhood'. We define the ‘neighborhood’ of each pixel (how many pixels)
and the ‘weight’ function (how much each neighboring pixel should contribute depending
on its position) through a second image which is known as a spatial kernel?>. A nice and
fully illustrated introduction to convolution has been provided by ImageMagick?®.

Convolution of an image will generally result in blurring the image because it mixes pixel
values. In other words, if the image has sharp differences in neighboring pixel values?, those
sharp differences will become smoother. This has very good consequences in detection for
example, because in an actual observed image, the variation in neighboring pixel values due
to noise can be very high. But after convolution, those variations will decrease and we have
a better hope in detecting the possible underlying signal. Another case where convolution
is extensively used is in mock images and modelling in general, convolution can be used to
simulate the effect of the atmosphere or the optical system on the mock profiles that we
create, see Section 8.1.1.2 [Point Spread function], page 109.

Convolution is a very interesting and important topic in any form of signal analysis
(including astronomical observations). So we strongly recommend going through any good
image processing book to get a good understanding of it°. We will just have a fast summary
here. In discussing convolution, understanding the spatial and frequency domains is the key.
An image viewed in the spatial domain is the same image you are observing: each pixel
has a certain flux value and the pixel (which has a fixed spatial position) with the highest
flux value can be seen first’. In the frequency domain, the spatial change of flux values
is emphasized, with the lowest frequency (related to the sum of the pixels in the image)
occupying the first pixel (in FITS on the bottom left of the image) and higher frequencies

1 The definition here is the specific definition that is most commonly used in image processing and astron-

omy. Mathematically speaking, convolution is a far more general process of merging two functions.
Also known as filter, here we will use ‘kernel’.
http://www.imagemagick.org/Usage/convolve/

In astronomy, the only major time we confront such sharp borders in signal are cosmic rays. All other
sources of signal in an image are already blurred by the atmosphere or the optics of the instrument.

Our main reference for this chapter was: Gonzalez, R. C., Woods, R. E., 2008, Digital image processing
(third edition), Pearson Prentice Hall.

Assuming that the highest flux is the easiest to see

http://www.imagemagick.org/Usage/convolve/

Chapter 6: Image manipulation 64

extending outwards™. Removing (filtering) certain frequency ranges is the source of the
term filtering®.

6.2.1 Convolution process

In convolution, the kernel specifies the weight and positions of the neighbors of each pixel.
Visualizing convolution in the spatial domain might be easier. To find the convolved value of
a pixel, the central pixel of the kernel is placed on that pixel. The values of each overlapping
pixel in the kernel and image are multiplied by each other and summed for all the kernel
pixels. To have one pixel in the center, the sides of the convolution kernel have to be an
odd number. This process effectively mixes the pixel values of each pixel with its neighbors,
resulting in a blurred image compared to the sharper input image.

Formally, convolution is one kind of linear ‘spatial filtering’ in image processing texts.
If we assume that the kernel has 2a + 1 and 2b + 1 pixels on each side, the convolved value
of a pixel placed at = and y (C,,) can be calculated from the neighboring pixel values in
the input image (1) and the kernel (K) from

a b
Cx,y = Z Z Ks,t X Ix+s,y+t-

s=—at=—b

Any pixel coordinate that is outside of the image in the equation above will be considered
to be zero. When the kernel is symmetric about its center the blurred image has the same
orientation as the original image. However, if the kernel is not symmetric, the image will
be affected in the opposite manner, this is a natural consequence of the definition of spatial
filtering. In order to avoid this we can rotate the kernel about its center by 180 degrees so
convolution can have the same original orentation. Technically speaking, only if the kernel
is flipped the process is known Convolution. If it isn’t it is known as Correlation.

To be a weighted average, the sum of the weights (the pixels in the kernel) have to be
unity. This will have the consequence that the convolved image of an object and unconvolved
object will have the same total flux, which is natural, because convolution should not eat
up the object photons, it only disperses them.

In the frequency domain, no rotating is necessary. The two images have to be padded
with zero valued pixels such that the number of pixels on the sides of the two images are
identical. The sides of the padded image have to be at least equal to the sum of the sides
of each image minus one. The speed of the algorithms for Fast Fourier Transform (FFT)
depend on the size of the paded images. If the final sides are a factor of 2, 3, 4, 5, 6, 7 the
GNU Scientific Library provides efficient algorithms for the fourier transform. In case the
size is not a multiple of any of these, then it will fall back to the standard Discrete Fourier
Transform which will be slower.

" In the frequency domain of a real image, we will actually be dealing with complex pixel values we can
view either the amplitude or phase.

8 Chapter 4 of Gonzalez and woods (2008) introduces the concepts of sampling and the frequency do-
main very nicely. The nicely illustrated guide by ImageMagick is also very educative: http://www.
imagemagick.org/Usage/fourier/

9 For example “low pass filtering” which refers to removing small frequencies

http://www.imagemagick.org/Usage/fourier/
http://www.imagemagick.org/Usage/fourier/

Chapter 6: Image manipulation 65

6.2.2 Convolution on the edges

In purely ‘linear’ spatial filtering (convolution), there are problems on the edges of the
input image. Explaining the problem in the spatial domain might be easier'?. The problem
originates from the fact that on the edges, in practice!!, the sum of the weights we use
on the actual image pixels is not unity. For example, as discussed above, a profile in the
center of an image will have the same total flux before and after convolution. However, for
a profile on the side of the image, the total flux (sum of its pixels within the image) will
not be equal, some flux is going to be ‘eaten’ by the edges.

If you ran $ make check on the source files of Gnuastro, you can see the this effect by
comparing the convolve_frequency.fits with convolve_spatial.fits in the ./tests/
directory. In the spatial domain, any blank pixel in the image will not be used in the
convolution, see Section 6.1.3 [Blank pixels], page 59, so the problem explained above will
also occur on the sides of blank regions (which might be masked for example). The solution
to this edge effect problem (only in the spatial domain) is to not assume that the sum of
the kernel pixels is unity, so taking W as the sum of the kernel pixels that used non-blank
image pixels, the equation in Section 6.2.1 [Convolution process|, page 64 will become:

a b
o Zs:—a Zt:_b Ks,t X Ix+s,y+t
w

Coy

In this manner, objects which are near the sides of the image or blank pixels will also have
the same flux (within the image) before and after convolution. This correction is applied
by default in Convolve when convolving in the spatial domain. To disable it, you can use
the ——noedgecorrection option. In the frequency domain, there is no way to avoid this
loss of flux near the edges of the image.

Note that the edge effect discussed here is different from the one in Section 8.1.2 [If
convolving afterwards], page 113. In making mock images we want to simulate a real
observation. In a real observation the images of the galaxies on the sides of the CCD are
first blurred by the atmosphere and instrument, then imaged. So light from the parts of a
galaxy which are immediately outside the CCD will affect the parts of the galaxy which are
covered by the CCD. Therefore in modeling the observation, we have to convolve an image
that is larger than the input image by exactly half of the convolution kernel. We can hence
conclude that this correction for the edges is only useful when working on actual observed
images (where we don’t have any more data on the edges) and not in modeling.

6.2.3 Spatial vs. Frequency domain

With the discussions above it might not be clear when to choose the spatial domain and
when to choose the frequency domain. Here we will try to list the benefits of each.

The spatial domain,

e Can correct for the edge effects of convolution, see Section 6.2.2 [Convolution on the
edges|, page 65.

10 Once a good understanding of the frequency domain is achieved the reason in that domain is also very
enlightening, see any image processing book for a good explanation.

I Because we assumed the overlapping pixels outside the input image have a value of zero.

Chapter 6: Image manipulation 66

e Can operate on blank pixels.

e Can be faster than frequency domain when the kernel is small (in terms of the number
of pixels on the sides).

The frequency domain,

e Will be much faster when the image and kernel are both large.

As a general rule of thumb, when working on an image of modelled profiles use the frequency
domain and when working on an image of real (observed) objects use the spatial domain
(corrected for the edges). The reason is that if you apply a frequency domain convolution to
a real image, you are going to loose information on the edges and generally you don’t want
large kernels. But when you have made the profiles in the image your self, you can just make
a larger input image and crop the central parts to completely remove the edge effect, see
Section 8.1.2 [If convolving afterwards], page 113. Also due to oversampling, both the kernels
and the images can become very large and the speed boost of frequency domain convolution
will significantly improve the processing time, see Section 8.1.1.6 [Oversampling], page 113.

6.2.4 Convolution kernel

All the programs that need convolution will need to be given a convolution kernel file
and extension. In most cases (other than Convolve, see Section 6.2 [Convolve|, page 63) the
kernel file name is optional. However, the extension is necessary and must be specified either
on the command line or at least one of the configuration files (see Section 4.2 [Configuration
files|, page 37). Within Gnuastro, there are two ways to create a kernel image:

e MakeProfiles: You can use MakeProfiles to create a parameteric (based on a radial
function) kernel, see Section 8.1 [MakeProfiles], page 108. By default MakeProfiles will
make the Gaussian and Moffat profiles in a separate file so you can feed it into any of
the programs.

e ConvertType: You can write your own desired kernel into a text file table and convert
it to a FITS file with ConvertType, see Section 5.2 [ConvertType|, page 49. Just be
careful that the kernel has to have an odd number of pixels along its two axises, see
Section 6.2.1 [Convolution process|, page 64. All the programs that do convolution will
normalize the kernel internally, so if you choose this option, you don’t have to worry
about normalizing the kernel. Omnly within Convolve, there is an option to disable
normalization, see Section 6.2.5 [Invoking Convolve|, page 67.

The two options to specify a kernel file name and its extension are shown below. These are
common between all the programs that will do convolution.

-k
--kernel (=STR) The convolution kernel file name. The BITPIX (data type) value of this
file can be any standard type and it does not necessarily have to be normalized.
Several operations will be done on the kernel image prior to the program’s
processing:
e It will be converted to floating point type.
e All blank pixels (see Section 6.1.3 [Blank pixels|, page 59) will be set to
Zero.

e It will be normalized so the sum of its pixels equal unity.

Chapter 6: Image manipulation 67

e It will be flipped so the convolved image has the same orientation. This is
only relevant if the kernel is not circular. See Section 6.2.1 [Convolution
process|, page 64.

--khdu (=STR) The convolution kernel HDU. Although the kernel file name is optional,
before running any of the programs, they need to have a value for --khdu even
if the default kernel is to be used. So be sure to keep its value in at least one
of the configuration files (see Section 4.2 [Configuration files|, page 37). By
default, the system configuration file has a value.

—--fullconvolution

Ignore the (possible) channels in the mesh grid when doing spatial convolu-
tion, see Section 6.4.2 [Tiling an image|, page 78. When applied over a mesh
grid, spatial convolution will be done independently on each channel. This is
necessary when the noise properties of each channel are different and so the
pixels should not be mixed. With this option, all channel information is going
to be ignored. Currently this option is not deployed for the frequency space
convolutions.

6.2.5 Invoking Convolve

Convolve an input image with a known kernel. The general template for convolve is:
$ astconvolve [OPTION...] ASTRdata

One line examples:
$ astconvolve --kernel=psf.fits mockimg.fits

The only argument accepted by Convolve is an input image file. Some of the options
are the same between Convolve and some other Gnuastro programs. Therefore, to avoid
repetition, they will not be repeated here. For the full list of options shared by all Gnuastro
programs, please see Section 4.1.4 [Common options]|, page 34. Section 6.4.2.4 [Mesh grid
options|, page 82 lists all the options related to spefiying a mesh grid which is currently
only used in spatial convolution. Note that here, no interpolation or smoothing is defined,
only channels and the mesh size are important. Section 6.2.4 [Convolution kernel], page 66
lists the the convolution kernel options.

It is also possible to specify a mask image for the input. In that case, see Section 6.4.3
[Mask image|, page 84. Here we will only explain the options particular to Convolve. Run

Convolve with —-help in order to see the full list of options Convolve accepts, irrespective
of where they are explained in this manual.

--nokernelflip
Do not flip the kernel after reading it the spatial domain convolution. This can
be useful if the flipping has already been applied to the kernel.

-—-nokernelnorm
Do not normalize the kernel after reading it, such that the sum of its pixels is
unity.

Chapter 6: Image manipulation 68

-f

--frequency
Convolve using discrete fourier transform in the frequency domain: The fourier
transform of both arrays is first calculated and multiplied. Then the inverse
fourier transform is applied to the product to give the final convolved image.
For large images, this process will be more efficient than convolving in the
spatial domain. However, the edges of the image will loose some flux, see
Section 6.2.2 [Convolution on the edges], page 65.

Y

--spatial
Convolve in the spatial domain, see Section 6.2.1 [Convolution process|, page 64.

--viewfreqgsteps

With this option a file with the initial name of the output file will be created
that is suffixed with _freqsteps.fits, all the steps done to arrive at the final
convolved image are saved as extensions in this file. The extensions in order
are:

1. The padded input image. In frequency domain convolution the two images
(input and convolved) have to be the same size and both should be padded
by zeros.

2. The padded kernel, similar to the above.

3. The Fourier spectrum of the forward Fourier transform of the input image.
Note that the fourier transform is a complex operation (and not viewable
in one image!) So we either have to show the ‘Fourier spectrum’ or the
‘Phase angle’. For the complex number a + b, the Fourier spectrum is
defined as v/a? + b? while the phase angle is defined as arctan(b/a).

4. The Fourier spectrum of the forward Fourier transform of the kernel image.

5. The Fourier spectrum of the multiplied (through complex arithmetic)
transformed images.

6. The inverse Fourier transform of the multiplied image. If you open it, you
will see that the convolved image is now in the center, not on one side of
the image as it started with (in the padded image of the first extension). If
you are working on a mock image which originally had pixels of precisely
0.0, you will notice that in those parts that your convolved profile(s) did
not conver, the values are now ~ 107!, this is due to floating-point round
off errors. Therefore in the final step (when cropping the central parts of
the image), we also remove any pixel with a value less than 1077,

6.3 ImageWarp

Image warpring is the process of mapping the pixels of one image onto a new pixel grid.
This process is sometimes known as transformation, however following the discussion of
Heckbert 1989'2 we will not be using that term because it can be confused with only pixel

12 Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at
University of California, Berkely.

Chapter 6: Image manipulation 69

value or flux transformations. Here we specifically mean the pixel grid transformation which
is better conveyed with ‘warp’.

Image wrapping is a very important step in astronomy, both in observational data anal-
ysis and in simulating modeled images. In modelling, warping an image is necessary when
we want to apply grid transformations to the initial models, for example in simulating
gravitational lensing (Radial warpings are not yet included in ImageWarp). Observational
reasons for warping an image are listed below:

e Noise: Most scientifically interesting targets are inherently faint (have a very low Signal
to noise ratio). Therefore one short exposure is not enough to detect such objects that
are drowned deeply in the noise. We need multiple exposures so we can add them
together and increase the objects’ signal to noise ratio. Keeping the telescope fixed on
one field of the sky is practically impossible. Therefore very deep observations have to
put into the same grid before adding them.

e Resolution: If we have multiple images of one patch of the sky (hopefully at multiple
orientations) we can warp them to the same grid. The multiple orientations will allow us
to ‘guess’ the values of pixels on an output pixel grid that has smaller pixel sizes and thus
increase the resolution of the output. This process of merging multiple observations is
known as Mosaicing.

e Cosmic rays: Cosmic rays can randomly fall on any part of an image. If they collide
vertically with the camera, they are going to create a very sharp and bright spot that
in most cases can be separted easily'®. However, depending on the depth of the camera
pixels, and the angle that a cosmic rays collides with it, it can cover a line-like larger
area on the CCD which makes the detection using their sharp edges very hard and
error prone. One of the best methods to remove cosmic rays is to compare multiple
images of the same field. To do that, we need all the images to be on the same pixel
grid.

e Optical distortion: (Not yet included in ImageWarp) In wide field images, the optical
distortion that occurs on the outer parts of the focal plane will make accurate com-
parison of the objects at various locations impossible. It is therefore necessary to warp
the image and correct for those distortions prior to the analysis.

e Detector not on focal plane: In some cases (like the Hubble Space Telescope ACS and
WFC3 cameras), the CCD might be tilted compared to the focal plane, therefore the
recorded CCD pixels have to be projected onto the focal plane before further analysis.

6.3.1 Warping basics

Lets take [u v] as the coordinates of a point in the input image and [z y] as the coordi-
nates of that same point in the output image'*. The simplest form of coordinate transfor-
mation (or warping) is the scaling of the coordinates, lets assume we want to scale the first
axis by M and the second by N, the output coordinates of that point can be calculated by

x| [Mu] [M 0]]u
yl| |[Nv|] |0 NJ||v
13" All astronomical targets are blurred with the PSF, see Section 8.1.1.2 [Point Spread function], page 109,
however a cosmic ray is not and so it is very sharp (it suddenly stops at one pixel).

14 These can be any real number, we are not necessarily talking about integer pixels here.

Chapter 6: Image manipulation 70

Note that these are matrix multiplications. We thus see that we can represent any such
grid warping as a matrix. Another thing we can do with this 2 x 2 matrix is to rotate the
output coordinate around the common center of both coordinates. If the output is rotated
anticlockwise by 6 degrees from the positive (to the right) horizontal axis, then the warping
matrix should become:

m _ [ucose—vsme} _ {cos@ —SinQ] M

Y usint + vcos sinf cosb v

We can also flip the coordinates around the first axis, the second axis and the coordinate
center with the following three matrices respectively:

-1 0

0 -1

o A 0]

The final thing we can do with this definition of a 2 X 2 warping matrix is shear. If we want
the output to be sheared along the first axis with A and along the second with B, then we
can use the matrix:

1 A

B 1

To have one matrix representing any combination of these steps, you use matrix multiplica-
tion, see Section 6.3.2 [Merging multiple warpings], page 72. So any combinations of these
transformations can be displayed with one 2 x 2 matrix:

a b
o
The transformations above can cover a lot of the needs of most coordinate transforma-
tions. However they are limited to mapping the point [0 0] to [0 0]. Therefore they
are useless if you want one coordinate to be shifted compared to the other one. They are
also space invariant, meaning that all the coordinates in the image will recieve the same
transformation. In other words, all the pixels in the output image will have the same area
if placed over the input image. So transformations which require varying output pixel sizes

like projections cannot be applied through this 2 x 2 matrix either (for example for the
tilted ACS and WFC3 camera detectors on board the Hubble space telescope).

To add these further capabilities, namely translation and projection, we use the homo-
geneous coordinates. They were defined about 200 years ago by August Ferdinand Mobius
(1790 — 1868). For simplicity, we will only discuss points on a 2D plane and avoid the com-
plexities of higher dimensions. We cannot provide a deep mathematical introduction here,
interested readers can get a more detailed explanation from Wikipedia'® and the references
therein.

15 http://en.wikipedia.org/wiki/Homogeneous_coordinates

http://en.wikipedia.org/wiki/Homogeneous_coordinates

Chapter 6: Image manipulation 71

By adding an extra coordinate to a point we can add the flexibility we need. The
point [x y] can be represented as [¢Z yZ Z] in homogeneous coordinates. Therefore
multiplying all the coordinates of a point in the homogenous coordinates with a constant
will give the same point. Put another way, the point [z y Z] corresponds to the point
[#/Z y/Z] on the constant Z plane. Setting Z = 1, we get the input image plane, so
[u v 1] corresponds to [u v]. With this definition, the transformations above can be
generally written as:

T a b 0 U
y|l=1c d O v
1 0 0 1 1

We thus acquired 4 extra degrees of freedom. By giving non-zero values to the zero valued
elements of the last column we can have translation (try the matrix multiplication!). In
general, any coordinate transformation that is represented by the matrix below is known as
an affine transformation'®:

a b ¢
d e f
0 0 1

We can now consider translation, but the affine transform is still spatially invariant.
Giving non-zero values to the other two elements in the matrix above gives us the projective
transformation or Homography!” which is the most general type of transformation with the
3 X 3 matrix:

x a b ¢ u
yi=1d e f||v
w g h 1 1

So the output coordinates can be calculated from:

¥ au+tbv+ec y dudev+ f
rT=—= ——- y:izi
w gu+hv+1 w gu+hv+1

Thus with homography we can change the sizes of the output pixels on the input plane,
giving a ‘perspective’-like visual impression. This can be quantitatively seen in the two
equations above. When ¢ = h = 0, the denominator is independent of u or v and thus we
have spatial invariance. Homography preserves lines at all orientations. A very useful fact
about homography is that its inverse is also a homography. These two properties play a very
important role in the implementation of this transformation. A short but instructive and
illustrated review of affine, projective and also bilinear mappings is provided in Heckbert
198918,

16 http://en.wikipedia.org/wiki/Affine_transformation
17 http://en.wikipedia.org/wiki/Homography
18 Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at

University of California, Berkely. Note that since points are defined as row vectors there, the matrix is
the transpose of the one discussed here.

http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Homography

Chapter 6: Image manipulation 72

6.3.2 Merging multiple warpings

In Section 6.3.1 [Warping basics|, page 69 we saw how one basic warping/transformation
can be represented with a 3 by 3 matrix. To make more complex warpings these matrices
have to be multiplied through matrix multiplication. However matrix multiplication is not
commutative, so the order of the set of matrices you use for the multiplication is going to
be very important.

The first warping should be placed as the left-most matrix. The second warping to
the right of that and so on. The second transformation is going to occur on the warped
coordinates of the first. As an example for merging a few transforms into one matrix, the
multiplication below represents the rotation of an image about a point [U V'] anticlockwise
from the horizontal axis by an angle of 6. To do this, first we take the origin to [U V]
through translation. Then we rotate the image, then we translate it back to where it was
initially. These three operations can be merged in one operation by calculating the matrix
multiplication below:

1 0 U cos) —sinf O 1 0 -U
01V sinf cosf O 01 -V
0 0 1 0 0 1 0 0 1

6.3.3 Resampling

A digital image is composed of descrete ‘picture elements’ or ‘pixels’. When a real image
is created from a camera or detector, each pixel’s area is used to store the number of
photoelectrons that were created when incident photons collided with that pixel’s surface
area. This process is called the ‘sampling’ of a continuous or analog data into digital data.
When we change the pixel grid of an image or warp it as we defined in Section 6.3.1 [Warping
basics], page 69, we have to ‘guess’ the flux value of each pixel on the new grid based on
the old grid, or resample it. Because of the ‘guessing’, any form of warping on the data
is going to degrade the image and mix the original pixel values with each other. So if an
analysis can be done on an un-warped data image, it is best to leave the image untouched
and pursue the analysis. However as discussed in Section 6.3 [ImageWarp|, page 68 this is
not possible most of the times, so we have to accept the problem and re-sample the image.

In most applications of image processing, it is sufficient to consider each pixel to be a
point and not an area. This assumption can significantly speed up the processing of an
image and also the simplicity of the code. It is a fine assumption when the signal to noise
ratio of the objects are very large. The question will then be one of interpolation because
you have multiple points distributed over the output image and you want to find the values
at the pixel centers. To increase the accuracy, you might also sample more than one point
from within a pixel giving you more points for a more accurate interpolation in the output
grid.

However, interpolation has several problems. The first one is that it will depend on the
type of function you want to assume for the interpolation. For example you can choose a
bi-linear or bi-cubic (the ‘bi’s are for the 2 dimentional nature of the data) interpolation
method. For the latter there are various ways to set the constants!®. Such functional

19 gee http://entropymine.com/imageworsener/bicubic/ for a nice introduction.

http://entropymine.com/imageworsener/bicubic/

Chapter 6: Image manipulation 73

interpolation functions can fail seriously on the edges of an image. They will also need
normalization so that the flux of the objects before and after the warpings are comparable.
The most basic problem with such techniques is that they are based on a point while
a detector pixel is an area. They add a level of subjectivitiy to the data (make more
assumptions through the functions than the data can handle). For most applications this is
fine, but in scientific applications where detection of the faintest possible galaxies or fainter
parts of bright galaxies is our aim, we cannot afford this loss. Because of these reasons
ImageWarp will not use such interpolation techniques.

ImageWarp will do interpolation based on “pixel mixing”?® or “area resampling”. This

is also what the Hubble Space Telescope pipeline calles “Drizzling”?'. This technique re-
quires no functions, it is thus non-parametric. It is also the closest we can get (make least
assumptions) to what actually happens on the detector pixels. The basic idea is that you
reverse-transform each output pixel to find which pixels of the input image it covers and
what fraction of the area of the input pixels are covered. To find the output pixel value,
you simply sum the value of each input pixel weighted by the overlap fraction (between 0
to 1) of the output pixel and that input pixel. Through this process, pixels are treated as
an area not as a point (which is how detectors create the image), also the total flux of an
object will be left completely unchanged.

If there are very high spatial-frequency signals in the image (for example fringes) which
vary on a scale smaller than your output image pixel size, pixel mixing can cause ailiasing??.
So if the input image has fringes, they have to be calculated and removed separately (which
would naturally be done in any astronomical application). Because of the PSF no astronom-
ical target has a sharp change in the signal so this issue is less important for astronoimcal
applications, see Section 8.1.1.2 [Point Spread function], page 109.

6.3.4 Invoking ImageWarp
The general template for invoking ImageWarp is:

$ astimgwarp [OPTIONS...] [matrix.txt] InputImage
One line examples:

$ astimgwarp matrix.txt image.fits
$ astimgwarp --matrix=0.2,0,0.4,0,0.2,0.4,0,0,1 image.fits
$ astimgwarp --matrix="0.7071,-0.7071 0.7071,0.7071" image.fits

ImageWarp can accept two arguments, one (the input image) is mandatory if any process-
ing is to be done. An optional argument is a plain text file that will keep the warp/transform
matrix, see Section 6.3.1 [Warping basics|, page 69. There is also the --matrix option from
which the matrix can be literally specified on the command line. If both are present when
calling ImageWarp, the contents of the plain text file have higher precedence. The general
options to all Gnuastro programs can be seen in Section 4.1.4 [Common options|, page 34.

By default the WCS (World Coordinate System) information of the input image is going
to be corrected in the output image. WCSLIB will save the input WCS information in the

20 For a graphic demonstration see http://entropymine.com/imageworsener/pixelmixing/.
2 http://en.wikipedia.org/wiki/Drizzle_(image_processing)
22 http://en.wikipedia.org/wiki/Aliasing

http://entropymine.com/imageworsener/pixelmixing/
http://en.wikipedia.org/wiki/Drizzle_(image_processing)
http://en.wikipedia.org/wiki/Aliasing

Chapter 6: Image manipulation 74

PC matrix?®. To correct the WCS, ImageWarp multiplies the PC matrix with the inverse

of the specified transformation matrix. Also the CRPIX point is going to be changed to
its correct place in the output image coordinates. This behavior can be disabled with the
--nowcscorrection option.

To be the most accurate the input image will be converted to double precision floating
points and all the processing will be done in this format. By default, in the end, the output
image will be converted back to the input image data type. Note that if the input type was
not a floating point format, then the floating point output pixels are going to be rounded to
the nearest integer (using the round function in the C programming language) which can
lead to a loss of data. This behavior can be disabled with the --doubletype option. The
input file and input warping matrix elements are stored in the output’s header.

Coordinates of pixel center: Based on the FITS standard, integer values are assigned to the
center of a pixel and the coordinate [1.0, 1.0] is the center of the bottom left (first) image
pixel. So the point [0.0, 0.0] is half a pixel away (in each axis) from the bottom left vertice
of the first pixel*.

-m

--matrix (=STR) The warp/transformation matrix. All the elements in this matrix must
be separated by any number of space, tab or comma (,) characters. If you want
to use the first two, then be sure to wrap the matrix within double quotation
marks (") so they are not confused with other arguments on the command
line, see Section 4.1.3 [Options|, page 32. This also applies to values in the
configuration files, see Section 4.2.1 [Configuration file format]|, page 38. The
transformation matrix can be either 2 by 2 or 3 by 3 array, see Section 6.3.1
[Warping basics], page 69.
The determinant of the matrix has to be non-zero and it must not contain
any non-number values (for example infinities or NaNs). The elements of the
matrix have to be written row by row. So for the general homography ma-
trix of Section 6.3.1 [Warping basics], page 69, it should be called with --
matrix=a,b,c,d,e,f,g,h,1.

-n

—--nowcscorrection
Do not correct the WCS information of the input image and save it untouched
to the output image.

-z
--zerofornoinput

Set output pixels which do not correspond to any input to zero. By default
they are set to blank pixel values, see Section 6.1.3 [Blank pixels|, page 59.

23 Greisen E.W., Calabretta M.R. (2002) Representation of world coordinates in FITS. Astronomy and
Astrophysics, 395, 1061-1075.

2 g0 if you want to warp the image relative to the bottom left vertice of the bottom left pixel, you
have to shift the warping center by [0.5, 0.5], apply your transform then shift back by [-0.5, -0.5].
Similar to the example in see Section 6.3.2 [Merging multiple warpings], page 72. For example see the
one line example above which scales the image by one fifth (0.2). Without this correction (if it was
0.2,0,0,0,0.2,0,0,0,1), the image would not be correctly scaled.

Chapter 6: Image manipulation 75

-b

--maxblankfrac
(=FLT) The maximum fractional area of blank pixels over the output pixel. If
an output pixel is covered by blank pixels (see Section 6.1.3 [Blank pixels],
page 59) for a larger fraction than the value to this option, the output pixel
will be set to a blank pixel its self.

When the fraction is lower, the sum of non-blank pixel values over that pixel
will be multiplied by the inverse of this fraction to correct for its flux and not
cause discontinuties on the edges of blank regions. Note that even with this
correction, discontinuities (very low non-blank values touching blank regions in
the output image) might arise depending on the transformation and the blank
pixels. So if there are blank pixels in the image, a good value to this option has
to be found for that particular image and warp.

-d

—-—-doubletype
By default the output image is going to have the same type as the input image.
If this option is called, the output will be in double precision floating point
format irrespective of the input data type. When dealing with integer input
formats, this option can be useful in checking the results.

6.4 SubtractSky

Raw astronomical images (and even poorly processed images) don’t usually have a uniform
‘sky’ value over their surface prior to processing, see Section 6.4.1 [Sky value], page 75 for
a complete definition of the sky value. However, a uniform sky value over the image is
vital for further processing. For ground based images (particularly at longer wavelengths)
this can be due to actual variations of flux in the atmosphere. Another cause might be
systematic biases in the instrument or prior processing. For example stray light in the
telescope/camera or bad flat-fielding or bias subtraction. The latter is a major issue in
space based images where the atmosphere is no longer a problem.

SubtractSky is a tool to find the sky value and its standard deviation on a grid over the
image. The size of the grid will determine how accurately it can account for gradients in
the sky value. Such that if the gradient (change of sky value) is too sharp, a smaller grid
size has to be chosen. However the results will be most accurate with a larger grid size.

6.4.1 Sky value

The discussion here is taken from Akhlaghi and Ichikawa (2015)?°. Let’s assume that all
instrument defects — bias, dark and flat — have been corrected and the total flux of a detected
object, O, is desired. The sources of flux on pixel i%¢ of the image can be written as follows:

e Contribution from the target object, (O;).
e Contribution from other detected objects, (D;).

25 See the section on sky in Akhlaghi M., Ichikawa. T. (2015). Astrophysical Journal Supplement Series.

26 For this analysis the dimentionality of the data (image) is irrelevant. So if the data is an image (2D)
with width of w pixels, then a pixel located on column z and row y (where all counting starts from zero
and (0, 0) is located on the bottom left corner of the image), would have an index: i =z +y X w.

Chapter 6: Image manipulation 76

e Undetected objects or the fainter undetected regions of bright objects, (U;).
e A cosmic ray, (C;).

e The background flux, which is defined to be the count if none of the others exists on
that pixel, (B;).

The total flux in this pixel, T;, can thus be written as:

T,=B;+D;+ U, + C; + O,.

By definition, D; is detected and it can be assumed that it is correctly subtracted, so that
D, can be set to zero. There are also methods to detect and remove cosmic rays (for
example, van Dokkum (2001)?7) enabling us to set C; = 0. Note that in practice, D; and U;
are correlated, because they both directly depend on the detection algorithm and its input
parameters. Also note that no detection or cosmic ray removal algorithm is perfect. With
these limitations in mind, the observed sky value for this pixel (.S;) can be defined as

Therefore, as the detection process (algorithm and input parameters) becomes more accu-
rate, or U; — 0, the sky value will tend to the background value or S; — B;. Therefore,
while B is an inherent property of the data (pixel in an image), S; depends on the detection
process. Over a group of pixels, for example in an image or part of an image, this equation
translates to the average of undetected pixels. With this definition of sky, the object flux
in the data can be calculated with

T=5+0 — 0,=T,-5,.

Hence, the more accurately S; is measured, the more accurately the flux of the target
object can be measured (photometry). Similarly, any under-(over-)estimation in the sky
will directly translate to an over(under) estimation of the measured object’s flux. In the
fainter outskirts of an object a very small fraction of the photo-electrons in the pixels
actually belong to objects. Therefore even a small over estimation of the sky value will
result in the loss of a very large portion of most galaxies. Based on the definition above,
the sky value is only correctly found when all the detected objects (D; and C;) have been
removed from the data.

6.4.1.1 Finding the sky value

This technique to find the sky value in a distribution was initially proposed in Akhlaghi
and Ichikawa 2015%.

Note that through the difference of the mode and median we have actually ‘detected’
data in the distribution. However this detection was only based on the flux of the data, not

2T van Dokkum, P. G. (2001). Publications of the Astronomical Society of the Pacific. 113, 1420.
28 Akhlaghi M., Ichikawa. T. (2015). Astrophysical Journal Supplement Series.

Chapter 6: Image manipulation 77

its spatial position in each mesh. So we adhere to the definition of Sky value in Section 6.4.1
[Sky value], page 75. Finding the median is very easy, the main problem is in finding the
mode through a robust method. In Appendix C of Akhlaghi and Ichikawa (2015) a new
approach to finding the mode in any astronomically relevant distribution is introduced.

Even when the mode and median are approximately equal, Cosmic rays can significantly
bias the calculation of the average. Even if they are very few. However, usually, Cosmic
rays have very sharp boundaries and do not fade away into the noise. Therefore, when the
histogram of the distribution is plotted, they are clearly separate from the rest of the data.
For example see Figure 15 in Akhlaghi and Ichikawa (2015). In such cases, o-clipping is
a perfect tool to remove the effect of such objects in the average and standard deviation.
See Section 7.1.2 [Sigma clipping], page 87 for a complete explanation. So after asserting
that the mode and median are approximately equal in a mesh (see Section 6.4.2 [Tiling an
image|, page 78), convergance-based o-clipping is also applied before getting the final sky
value and its standard deviation for a mesh.

6.4.1.2 Sky value misconceptions

As defined in Section 6.4.1 [Sky value|, page 75, the sky value is only accurately defined
when the detection algorithm is not significantly reliant on the sky value. In particular its
detection threshold. However, most signal-based detection tools? used the sky value as a
reference to define the detection threshold. So these old techniques had to rely on approx-
imations based on other assumptions about the data. A review of those other techniques
can be seen in Appendix A of Akhlaghi and Ichikawa (2015)3°. Since they were extensively
used in astronomical data analysis for several decades, such approximations have given rise
to a lot of misconceptions, ambiguities and disagreements about the sky value and how to
measure it. As a summary, the major methods used until now were an approximation of
the mode of the image pixel distribution and o-clipping.

e To find the mode of a distribution those methods would either have to assume (or
find) a certain probablity density function (PDF) or use the histogram. But the image
pixels can have any distribution, and the histogram results are very inaccurate (there
is a large dispersion) and depend on bin-widths.

e Another approach was to iteratively clip the brightest pixels in the image (which is
known as o-clipping, since the reference was found from the image mean and its stadard
deviation or o). See Section 7.1.2 [Sigma clipping|, page 87 for a complete explanation.
The problem with o-clipping was that real astronomical objects have diffuse and faint
wings that penetrate deeply into the noise. So only removing their brightest parts is
completely useless in removing the systematic bias an object’s fainter parts cause in
the sky value.

As discussed in Section 6.4.1 [Sky value|, page 75, the sky value can only be correctly
defined as the average of undetected pixels. Therefore all such approaches that try to
approximate the sky value prior to detection are ultimately poor approximations.

29 According to Akhlaghi and Ichikawa (2015), signal-based detection is a detection process that realies
heavily on assumptions about the to-be-detected objects. This method was the most heavily used
technique prior to the introduction of NoiseChisel in that paper.

30 Akhlaghi M., Ichikawa. T. (2015). Astrophysical Journal Supplement Series.

Chapter 6: Image manipulation 78

6.4.2 Tiling an image

Some of the programs in Gnuastro will need to divide the pixels in an image into individual
tiles or a mesh grid to be able to deal with gradients. In this section we will explain
the concept in detail and how the user can check the grid. In the case of SubtractSky, if
the image is completely uniform then one sky value will suffice for the whole image. See
Section 6.4.1 [Sky value|, page 75 for the definition of the sky value. Unfortunately though,
as discussed in Section 6.4 [SubtractSky|, page 75, in most images taken with ground or
space-based telescopes the sky value is not uniform. So we have to break the image up into
small tiles on a mesh grid, assume the sky value is constant over them and find the sky
value on those tiles.

Meshes are considered to be a square with a side of ——-meshsize pixels. The best mesh
size is directly related to the gradient on the image. In practice we assume that the gradient
is not significant over each mesh. So if there is a strong gradient (for example in long
wavelength ground based images) or the image is of a crowded area where there isn’t too
much blank area, you have to choose a smaller mesh size. A larger mesh will give more
pixels and so the scatter in the results will be less.

For raw image processing, a simple mesh grid is not sufficient. Raw images are the
unprocessed outputs of the camera detectors. Large detectors usually have multiple readout
channels each with its own amplifier. For example the Hubble Space Telecope Advanced
Camera for Surveys (ACS) has four amplifiers over its full detector area dividing the square
field of view to four smaller squares. Ground based image detectors are not exempt, for
example each CCD of Subaru Telescope’s Hyper Suprime-Cam camera (which has 104
CCDs) has four amplifiers, but they have the same height of the CCD and divide the width
by four parts.

The bias current on each amplifier is different, and normaly bias subtraction is not
accurately done. So even after subtracting the measured bias current, you can usually
still identify identify the boundaries of different amplifiers by eye. See Figure 11(a) in
Akhlaghi and Ichikawa (2015) for an example. This results in the final reduced data to have
non-uniform amplifier-shaped regions with higher or lower background flux values. Such
systematic biases will then propagate to all subsequent measurements we do on the data (for
example photometry and subsequent stellar mass and star formation rate measurements in
the case of galaxies). Therefore an accurate sky subtraction routine should also be able to
account for such biases.

To get an accurate result, the mesh boundaries should be located exactly on the amplifier
boundaries. Otherwise, some meshes will contain pixels that have been read from two or
four different amplifiers. These meshes are going to give very biased results and the amplifier
boundary will still be present after sky subtraction. So we define ‘channel’s. A channel is
an independent mesh grid that covers one amplifier to ensure that the meshes do not pass
the amplifier boundary. They can also be used in subsequent steps as the area used to
identify nearby neighbors to interpolate and smooth the final grid, see Section 6.4.2.2 [Grid
interpolation and smoothing], page 80. The number of channels along each axis can be
specified by the user at run time through the command line --nch1 and --nch2 options or
in the configuration files, see Section 4.2 [Configuration files|, page 37. The area of each
channel will then be tiled by meshes of the given size and subsequent processing will be
done on those meshes. If the image is processed or the detector only has one amplifier, you
can set the number of channels in both axises to 1.

Chapter 6: Image manipulation 79

Unlike the channel size, that has to be an exact multiple of the image size, the mesh
size can be any number. If it is not an exact multiple of the image side, the last (rightest,
for the first FITS dimention, and highest for the second when viewed in SAO ds9) mesh
will have a different size than the rest. If the remainder of the image size divided by mesh
size is larger than a certain fraction (value to —-lastmeshfrac) of the mesh size along each
axis, a new (smaller) mesh will be put there instead of a larger mesh. This is done to avoid
the last mesh becoming too large compared to the other meshes in the grid. Generally, it
is best practice to choose the mesh size such that the last mesh is only a few (negligible)
pixels wider or thinner than the rest.

The final mesh grid can be seen on the image with the --checkmesh option that is
available to all programs which use the mesh grid for localized operations. When this
option is called, a multi-extension FITS file with a _mesh.fits suffix will be created along
with the outputs, see Section 4.5 [Automatic output], page 42. The first extension will
be the input image. For each mesh grid the image produces, there will be a subsequent
extension. Each pixel in the grid extensions is labled to the mesh that it is part of. You
can flip through the extensions to check the mesh sizes and locations compared to the input
image.

6.4.2.1 Quantifying signal in a mesh

Noise is characterized with a fixed background value and a certain distribution. For example,
for the Gaussian distribution these two are the mean and standard deviation. When we
have absolutely no signal and only noise in a dataset, the mean, median and mode of the
distribution are equal within statistical errors and approximately equal to the background
value. For the next paragraph, let’s assume that the background is subtracted and is zero.

Data always has a positive value and will never become negative, see Figure 1 in Akhlaghi
and Ichikawa (2015). Therefore, as data is buried into the noise, the mean, median and
mode shift to the positive. The mean is the fastest in this shift, since it is most reliant on
the flux values. The median is slower since it is defined based on an ordered distribution
and so is not affected by a small (less than half) number of outliers. Finally, the mode is
the slowest to shift to the positive.

Inversing the argument above provides us with the basis of Gnuastro’s algorithm to
quantify the presence of signal in a mesh. Namely, when the mode and median of a dis-
tribution are approximately equal, we can argue that there is no significant signal in that
mesh. So we can consider the image to be made of a grid and use this argument to ‘detect’
signal in each grid element. The median is defined to be the value of the 0.5 quantile in the
image. So the only necessary parameter is the minimum acceptable quantile (smaller than
0.5) for the mode in a mesh that we deem accurate. See Section 6.4.2.4 [Mesh grid options],
page 82 for an explanation of the options used to customize this behavior.

Since there is sufficient signal in the mesh to bias the analysis on that mesh, any grid
element whose mode quantile is smaller than the minimum acceptable quantile is usually
kept with a blank value and no value is given to it. Finally, when all the grid elements
have been checked, we can interpolate over all the empty elements and smooth the final
result to find the sky value over the full image. See Section 6.4.2.2 [Grid interpolation and
smoothing], page 80.

Convolving a dataset (that contains signal and noise), creates a positive skewness in it
depending on the fraction of data present in the distribution and also the convolution kernel.

Chapter 6: Image manipulation 80

See Section 3.1.1 in Akhlaghi and Ichikawa (2015) and Section 6.2.1 [Convolution process],
page 64. This skewness can be interpreted as an increase in the Signal to noise ratio of the
objects burried in the noise. Therefore, to obtain an even better measure of the presence
of signal in a mesh, the image can be convolved with a given PSF first. This positive
skew will result in more distance between the mode an median thereby enabling a more
accurate detection of fainter signal, for example the faint wings of bright stars and galaxies.
When convolving over a mesh grid, the pixels in each channel will be treated independently.
This can be disabled with the --fullconvolution option. See Section 6.2.4 [Convolution
kernel|, page 66 for the respective options.

6.4.2.2 Grid interpolation and smoothing

On some of the grid elements, the desired value will not be found, for example the Sky
value in Section 6.4.1.1 [Finding the sky value], page 76. This can happen for lots of
reasons depending on the job that was to be done on a mesh, for example when a large
galaxy is present in the image, no Sky value will be found for the grid elements that lie over
it. However, the Sky value should be ‘guessed’ over that part of the image. We cannot just

ignore those regions! To fill in such blank grid elements, we use interpolation.

Parametric interpolations like bi-linear, bicubic or spline interpolations are not used
because they fail terribly on the edges of the image. For example see Figure 16 in Akhlaghi
and Ichikawa (2015). They are also prone to cause significant gradients in the image. So to
find the interpolated value for each grid element, Gnuastro will look at a certain number
of the nearest neighbors. The exact number can be specified through --numnearest. The
median value of those grid elements will be taken as the final value for each mesh. The
median is chosen because on the fainter wings of bright objects, the mean can easily become
biased. If the number of meshes with a good value is less than the value given to --
numnearest, then the program will abort and notify you. In such cases you can either
decrease the value to this option or set less restrictive requirements (for example a smaller
--minmodeq, or larger/smaller meshs) at the expense of less accurate results.

By default the process above will occur on all the grid elements, not just the ones that
are blank. This is done to avoid biased results on the faint wings of bright galaxies and stars
(the PSF). Because their flux penetrates into the noise very slowly, it might not be possible
to completely identify that flux and ignore that mesh. Therefore, if interpolation is only
done on blank pixels, such false positives can cause a bias in the vicinity of bright objects,
particularly after smoothing in the next step. In order to only interpolate over blank meshs
and leave the values of the successful meshs untouched, the -—interponlyblank option can
be used.

Once all the grid elements are filled, the values given to all the meshs should be smoothed.
This is because the median was used in the interpolation. The median is robust in the face
of outliers, but there might be strong differences from one grid element to the next. By
smoothing the grid, the variation between grid element to grid element will be far less.
To smooth the mesh values, Gnuastro uses an average filter. An average filter is just a
convolution of the mesh grid (spatial convolution with edge correction) by a kernel will all
elements having an equal weight, see Section 6.2.1 [Convolution process|, page 64. The
kernel is a square. The length of the kernel edge can be set in units of meshs through the
--smoothwidth option (which has to be an odd number as with any kernel). If a width of
1 is given for the kernel width, then no smoothing will take place.

Chapter 6: Image manipulation 81

By default the interpolation and smoothing explained above are done independently
on each channel. In some circumstances, it might be preferable to do either one of these
two steps on the whole image, independent of the channels. For example when there are
gradients over the image and their variation over the image is stronger than the variation
caused by the channels. Through the two options -—fullinterpolation and --fullsmooth
you can ask for interpolation or smoothing to use all the meshs in the image, not just those
in the same channel of a mesh. Note that it is still very important that no mesh contain
pixels from two channels. Since the pixels have been assigned to a mesh prior to these steps
(see Section 6.4.2 [Tiling an image|, page 78), there is no problem in this regard.

Even after smoothing, a simple visual examination of the values given to the pixels in
each mesh over the image will give a very ‘boxy’ or pixelated impression. To our eyes it
feels that it would be much better if the values could be smoothed in sub-mesh (pixel)
scales to obtain a smooth variation. An example is the results of bi-linear and bi-cubic
interpolations, see Figure 16 in Akhlaghi and Ichikawa (2015) for several examples. The
reasons we are not doing that level of smoothing are two fold:

e The difference in value between neighboring meshs is not statistically significant. After
smoothing, the variation between the neighboring mesh values will be very small. It
does visually appear to be a lot when viewing in image viewers like SAO ds9. This is
because such viewers use the minimum and maximum range of all the pixel values as
a reference to choose the color given to each pixel. However compared to the standard
deviation of the noise in the image, the different values of each mesh are completely
negligible. Please confirm this for your self on your own datasets to clearly understand.

e Such pixel-based (not mesh-based) interpolation will be very time consuming. Since
the difference between the neighboring meshs is statistically negligible, it is simply not
worth the time investment.

6.4.2.3 Checking grid values

Programs that use the mesh grid to calculate some value, also have checking options (that
start with ——check). When such options are called, the program will create a specific output
file depending on what you want to check. When the operation is done on the meshes, this
file shows the values assigned to each mesh grid element. It has three extensions:

1. The value that was initially calculated for each grid element. If a mesh was not suc-
cessful in providing a value, a NaN value is stored for that mesh.

2. The interpolated values, see Section 6.4.2.2 [Grid interpolation and smoothing], page 80.
3. The smoothed values, see Section 6.4.2.2 [Grid interpolation and smoothing], page 80.

If more than one value is calculated for each mesh (for example the mean and its standard
deviation), then each step has that many extensions. By default, these check image outputs
have the same size (pixels) as the input image. So all the pixels within a mesh are given
the same value. This is useful if you want to later apply these values to the image through
another program for example. There is a one to one correspondence between the input
image pixels and the grid showing you the mesh values for that pixel.

In other situations, the input pixel resolution might not be important for you and you
just want to see the relative mesh values over the image. In such cases, you can call the
--meshbasedcheck option so the check image only has one pixel for each mesh. This image
will only be as big as the full mesh grid and there will be no world coordinate system. When

Chapter 6: Image manipulation 82

the input images are really large, this can make a differnence in both the processing of the
programs and in viewing the images.

Another case when only one pixel for each mesh will be useful is when you might want
to display the mesh values in a document and you don’t want the volume of the document
(in bytes) to get too high. For example if the mesh sizes are 30 pixels by 30 pixels, then the
mesh grid created through this option will take 30 x 30 = 900 times less space! You can
resize the standard output, but the borders between the meshs will be blurred. The best
case is to call that program with this option.

6.4.2.4 Mesh grid options

The mesh grid structure defined here (see Section 6.4.2 [Tiling an image|, page 78) is used
by more than one program. Therefore in order to avoid repetition, all the options to do
with the mesh grid (and are shared by all the programs using it) are listed here.

Some programs might define multiple meshs over the image (for example in NoiseChisel,
there is a large and a small mesh for different operations, see Section 7.2 [NoiseChisel],
page 94), in such cases, the options for each mesh are designated by an appropriate prefix.
For example in NoiseChisel the small and large mesh sizes are specified through the --
smeshsize and ——-1meshsize respectively. Both these options are similar to the —-meshsize
option explained below, but for their respective grid. Note that the short option name might
also differ. If such options exist in a program, they are listed in the ‘Invoking ProgramName’
section within the list of options.

-s
--meshsize
(=INT) The size of each mesh, see Section 6.4.2 [Tiling an image|, page 78. If
the width of all channels are not an exact multiple of the specified size, then
the last mesh on each axis will have a different size to cover the full channel.
-a

--nchl (=INT) The number of channels along the first FITS axis (horizontal when
viewed in SAO ds9). If the length of the image is not an exact multiple of
this number, then the program will stop. You can use ImageCrop (Section 6.1
[ImageCrop|, page 57) to trim off or add some pixels (blank pixels if added, see
Section 6.1.3 [Blank pixels|, page 59) to the image if it is not an exact multiple.

--nch2 (=INT) The number of channels along the second FITS axis, (vertical when
viewed in SAO ds9). Similar to --nchi.

-L

--lastmeshfrac
(=FLT) Fraction of extra area on the last (rightest on the first FITS axis
and highest/top on the second) mesh, to define a new (smaller) one. See
Section 6.4.2 [Tiling an image|, page 78.

—--checkmesh

An image with suffix _mesh.fits will be created for you to check the mesh
grid, see Section 6.4.2 [Tiling an image|, page 78. The input image will be the
first extension, followed by an extension, where each pixel is labeled (number

Chapter 6: Image manipulation 83

starting from zero) by the ID of the mesh it belongs to. If the program uses
multiple mesh grids, the output will have more than two extensions. By flipping
through the extensions, you can check the positioning and size of the meshs.

-d

—--mirrordist
(=FLT) The distance beyond the mirror point (in units of the error in the mirror
point) to check for finding the mode in each mesh. This is part of the process
to quantify the presence of signal in a mesh, see Section 6.4.2.1 [Quantifying
signal in a mesh], page 79. See appendix C in Akhlaghi and Ichikawa (2015)
for a complete explanation of the mode-finding algorithm. The value to this
option is shown as « in that appendix.

-Q

--minmodeq
(=FLT) The minimum acceptable quantile for the mode of each mesh. The
median is on the 0.5 quantile of the image and as long as we have positive
signal (all astronomically relevant observations), the mode will be less than the
median. The sky value is only found on meshes where the median and mode
are approximately the same, see Section 6.4.1 [Sky value], page 75.

--interponlyblank
Only interpolate the blank pixels. By default, interpolation will happen on all
the mesh grids, not just the blank ones. See Section 6.4.2.2 [Grid interpolation
and smoothing], page 80.

-n

—-—numnearest
(=INT) The number of nearest grid elements with a successful sky value to
use for interpolating over blank mesh elements (those that had a significant
contribution of flux), see Section 6.4.2.2 [Grid interpolation and smoothing],
page 80.

--fullinterpolation
Do interpolation irrespective of the channels in the image, see Section 6.4.2.2
[Grid interpolation and smoothing], page 80.

-T

—--smoothwidth
(=INT) The width of the average filter kernel used to smooth the interpolated
image in units of pixels. See Section 6.4.2.2 [Grid interpolation and smoothing],
page 80. If this option is given a value of 1 (one), then no smoothing will be
done.

--fullsmoothing
Do smoothing irrespective of the channels in the image, see Section 6.4.2.2 [Grid
interpolation and smoothing], page 80.

--meshbasedcheck
Store the fixed value in each mesh in one check image pixel, see Section 6.4.2.3
[Checking grid values], page 81. Note that this image has no world coordinate
system.

Chapter 6: Image manipulation 84

6.4.3 Mask image

All of the programs in Gnuastro that do processing on the input data can also account for
masked pixels. Particularly in raw data processing, there are usually a set of pixels in the
image that should not be included in any analysis. For example saturated pixels on the
centers of bright objects, or the edges of the image which received no data and were only
used for bias calculation. The detectors or the very early processing that is done on raw
images clearly identifies such cases and usually assigns an integer (or flag or mask value)
to those pixels. Pixels that are good for processing usually have a zero value in the mask
image. It goes without saying that the two images have to have the same size. Note that if
the mask image has blank pixels, then they act like pixels with non-zero values and will be
masked (see Section 6.1.3 [Blank pixels|, page 59).

The integer values in the mask images are usually sums of powers of two. Each power of
two has a specific meaning and since the sum of two different sets of powers of two are never
equal, each mask value identifies a set of different properties for each masked pixels. For
some analysis, some masked properties might not be a problem. Therefore a pixel that only
has that property should be included. In such cases, you can use bit flags to keep some of
the powers of two and remove the rest. The individual Gnuastro programs do not consider
these issues. Therefore, if some masked pixels should be included in the analysis, it is best
to use another tool to set the appropriate mask pixel values to zero prior to running the
analysis program. We are working on such a program as part of Gnuastro. If the data type
(BITPIX) of the input mask image is not an integer type, the programs will print a warning,
but continue on with the analysis. This usually happens because of a mistake in specifying
the file or the HDU.

The programs that accept a mask image, all share the options below. Any masked pixels
will receive a NaN value (or a blank pixel, see Section 6.1.3 [Blank pixels|, page 59) in the
final output of those programs. Infact, another way to notify any of the Gnuastro programs
to not use a certain set of pixels in a dataset is to set those pixels equal to appropriate
blank pixel value for the type of the image, Section 6.1.3 [Blank pixels]|, page 59.

-M

--mask (=STR) Mask image file name. If this option is not given and the --mhdu option
has a different value from --hdu, then the input image name will be used. If
a name is specified on the command line or in any of the configuration files,
it will be used. If the program doesn’t get any mask file name, it will use all
the non-blank (see Section 6.1.3 [Blank pixels|, page 59) pixels in the image.
Therefore, specifying a mask file name in any of the configuration files is not
mandatory.

--mhdu (=STR) The mask image header name or number. Similar to the -~hdu option,
see Section 4.1.4 [Common options|, page 34. Like --mask, this option does not
have to be included in the configuration file or the command-line. However, if
it is present on either of them, it will be used.

6.4.4 Invoking SubtractSky

SubtractSky will find the sky value on a grid in an image and subtract it. The executable
name is astsubtractsky with the following general template:

Chapter 6: Image manipulation 85

$ astsubtractsky [OPTION ...] Image
One line examples:

$ astsubtractsky image.fits

$ astsubtractsky --hdu=0 --mhdu=1 image.fits

$ astsubtractsky --nchl=2 --nch2=2 image.fits

$ astsubtractsky --mask=maskforimage.fits image.fits

The only required input to SubtractSky is the input data file that currently has to be
only a 2D image. But in the future it might be useful to use it for 1D or 3D data too.
Any pixels in the image with a blank value will be ignored in the analysis, see Section 6.1.3
[Blank pixels|, page 59. Alternatively a mask can be specified which indicates pixels to not
be used (see --mask and --mhdu). The common options to all Gnuastro programs can be
seen in Section 4.1.4 [Common options|, page 34 and input data formats are explained in
Section 4.1.2 [Arguments|, page 32.

SubtractSky uses a mesh grid to tile the image. This enables it to deal with possible
gradients, see Section 6.4.2 [Tiling an image|, page 78. The mesh grid options are common
to all the programs using it, and are listed in Section 6.4.2.4 [Mesh grid options|, page 82.
In order to ignore some pixels during the analysis, you can specify a mask image, see
Section 6.4.3 [Mask image|, page 84 for an explanation and the relevant options. For a
more accurate result, a kernel file name can be specified so the image is first convolved,
see Section 6.4.2.1 [Quantifying signal in a mesh], page 79, see Section 6.2.4 [Convolution
kernel|, page 66 for the kernel related options. The --kernel option is not mandatory
and if not specified anywhere prior to running, the original image will be used. Please run
SubtractSky with the --help option to list all the recognized options, irrespective of which
part of the manual they are fully explained in.

-u
--sigclipmultip
(=FLT) The multiple of the standard devation to clip from the distribution in o-
clipping. This is necessary to remove the effect of cosmic rays, see Section 6.4.1
[Sky value], page 75 and Section 7.1.2 [Sigma clipping], page 87.

-t

--sigcliptolerance
(=FLT) The tolerance of sigma clipping. If the fractional change in the standard
deviation before and after o-clipping is less than the value given to this option,
o-clipping will stop, see Section 7.1.2 [Sigma clipping], page 87.

—--checksky
A two extension FITS image ending with _smooth.fits will be created showing
how the interpolated sky value is smoothed.

--checkskystd
In the interpolation and sky checks above, include the sky standard devation
too. By default, only the sky value is shown in all the checks. However with
this option, an extension will be added showing how the standard deviation on
each mesh is finally found too.

Chapter 7: Image analysis 86

7 Image analysis

Astronomical images contain very valuable information, the tools in this section can help
in extracting and quantifying that information. For example calculating image statistics,
or finding the sky value or detecting objects within an image.

7.1 ImageStatistics

The distribution of pixel values in an image can give us valuable information about the
image, for example if it is a positively skewed distribution, we can see that there is significant
data in the image. If the distribution is roughly symmetric, we can tell that there is no
significant data in the image.

On the other hand, in some measurements that we do on the image, we might need to
know the certain statistical parameters of the image. For example, if we have run a detection
algorithm on an image, and we want to see how accurate it was, one method is to calculate
the average of the undetected pixels and see how reasonable it is (if detection is done
correctly, the average of undetected pixels should be approximately equal to the background
value, see Section 6.4.1 [Sky value|, page 75). ImageStatistics is built for precisely such
situatons.

7.1.1 Histogram and Cumulative Freqency Plot

Histograms and the cumulative frequency plots are both used to study the distribution of
data. The histogram is mainly easier to understand for the untrained eye, while the cumula-
tive frequency plot is more accurate, but needs a good level of experience for interpretation.

A histogram shows the number of data points which lie within pre-defined intervals
(bins). It is used to get a genral view of the distribution and its shape. The width of the
bins is one of the most important parameters for a histogram. In the limiting case that
the bin-widths tend to zero (and assuming there is data for each bin), then the normalized
histogram would show the probability distribution function of the distribution. Normalizing
a histogram means to divide the number of data points in each bin by the total number of
data.

In the cumulative frequency plot of a distribution, the x axis is the sorted data values
and the y axis is the index of each data in the sorted distribution. Unlike a histogram, a
cumulative frequency plot does not involve intervals or bins. This makes it less prone to
any sort of bias or error that a given bin-width would have on the analysis. When a larger
number of the data points have roughly the same value, then the cumulative frequency plot
will become steep in that vicinity. This occurs because on the x axis (data values), there is
little change while on the y axis the indexs constantly increase. Normalizing a cumultaive
frequency plot means to divide each index (y axis) by the total number of data points.

Unlike the histogram which has a limited number of bins, ideally the cumulative fre-
quency plot should have one point for every data point. Even in small images (for example
a 200 x 200) this will result in an unreasonably larger number of points to plot (40000)! So
when the cumulative frequency plot of an image is stored in a text file, it is best to only
store its value on a certain number of points (intervals) rather than the whole data. The
number of points to use for the final plot can be specified with the —-cfpnum option.

Chapter 7: Image analysis 87

Note that the interval’s lower value is considered to be part of each interval, but its
larger value is not. Formally, an interval between a and b is represented by [a, b). This is
true for all the intervals except the last one. The last interval is closed or [a, b].

7.1.2 Sigma clipping

Lets assume that you have pure noise (centered on zero) with a clear Gaussian distribution,
see Section 8.2.1.1 [Photon counting noise|, page 120. Now lets assume you add very bright
objects (signal) on the image which have a very sharp boundary. By a sharp boundary, we
mean that there is a clear cutoff at the place the objects finish. In other words, at their
boundaries, the objects do not fade away into the noise. In such a case, when you plot
the histogram (see Section 7.1.1 [Histogram and Cumulative Freqency Plot], page 86) of
the distribution, the pixels relating to those objects will be clearly separte from pixels that
belong to parts of the image that did not have data. In the cumulative frequency plot,
you would observe a long flat region were for a certain range of data (x axis), there is no
increase in the index (y axis).

In cases like the above, o-clipping is a very useful tool to remove the effect (bias) of
such forms of signal from the distribution. In astronomical applications, cosmic rays (when
they collide at a near normal incidence angle) are a very good example of such signals. The
tracks they leave behind in the image are perfectly immune to the blurring caused by the
atmosphere and the aperture. They are also very energetic and so their borders are usually
clearly separated from the surrounding noise. So o-clipping is very useful in removing their
effect on the data. See Figure 15 in Akhlaghi and Ichikawa (2015).

o-clipping is the very simple iteration below. In each iteration, the range of input data
might decrease and so when the data in the image have the conditions above, they will be
removed. The criteria to stop the iteration will be discussed below.

1. Calcuate the mean, standard deviation (o) and median (m) of a distribution.

2. Remove all points that are smaller or larger than m + ao.

The reason the median is used as a reference and not the mean is that the mean is too signifi-
cantly affected by the presence of signal, while the median is less affected, see Section 6.4.1.1
[Finding the sky valuel|, page 76. As you can tell from this algorithm, besides the condition
above (that the signal have clear high signal to noise boundaries) o-clipping is only useful
when the signal does not cover more than half of the full data set. If they do, then the
median will lie over the signal and sigma clipping might remove the pixels with no signal.

In the literature researchers use either one of two criteria to stop this iteration above:
e When a certain number of iterations has taken place.

e When the new measured standard deviation is within a certain tolerance level of the
old one. The tolerance level is defined by:

Oold — Onew

O-’I'LQU)

The standard deviation is heavily influenced by the presence of outliers. Therefore the
fact that it stops changing between two iterations is a sign that we have successfully
removed outliers. Note that in each clipping, the dispersion in the distribution is either
less or equal. So 0414 = Trew-

Chapter 7: Image analysis 88

Other objects in astronomical data analysis like galaxies and stars are blurred by the at-
mosphere and the telescope aperture. Galaxies in particular do not appear to have a clear
high signal to noise cutoff at all. Therefore o-clipping will not be useful in removing their
effect on the data. In astronomy, it is only useful for removing the effect of Cosmic rays.

7.1.3 Mirror distribution

The mirror distribution of a data set was defined in Appendix C of Akhlaghi and Ichikawa
(2015). It is best visiualized by mentally placing a mirror on the histogram of a distribution
at any point within the distribution (which we call the mirror point).

Through the —-mirrorquant in ImageStatistics, you can check the mirror of a distribu-
tion when the mirror is placed on any given quantile. The mirror distribution is plotted
along with the input distribution both as histograms and cumulative frequency plots, see
Section 7.1.1 [Histogram and Cumulative Freqency Plot], page 86. Unlike the rest of the
histograms and cumulative frequency plots in ImageStatistics, the text files created with
the --mirrorquant and --checkmode will contain 3 columns. The first is the horizontal
axis similar to all other histograms and cumulative frequency plots. The second column
shows the respective value for the actual data distribution and the third shows the value
for the mirror distribution.

The value for each bin of both histogram is divided by the maximum of both. For the
cumulative frequency plot, the value in each bin is divided by the maximum number of
elements. So one of the cumulative frequency plots reaches the maximum vertical axis of 1.
The outputs will have the _mirrorhist.txt and _mirrorcfp.txt suffixs respectively. You
can use a simple Python script like the one below to display the histograms and cumulative
frequency plots in one plot:

#! /usr/bin/env python3

Import the necessary modules:
import sys

import numpy as np

import matplotlib.pyplot as plt

Load the two files:
a=np.loadtxt(sys.argv[1]+" _mirrorhist.txt")
b=np.loadtxt(sys.argv[1]+"_mirrorcfp.txt")

Calculate the bin width:
w=a[1,0]-al[0,0]

Plot the two histograms and cumulative frequency plots:
plt.bar(al:,0], al:,1], width=w, color="blue", linewidth=0, alpha=0.6)
plt.bar(al:,0], al[:,2], width=w, color="green", linewidth=0, alpha=0.4)
plt.plot(b[:,0], bl[:,1], linewidth=2, color="blue")

plt.plot(b[:,0], b[:,2], linewidth=2, color="green")

Write the axis labels:
plt.ylim([O,np.amax(al:,1]1)])

Chapter 7: Image analysis 89

plt.xlim([np.amin(a[:,0]) ,np.amax(al:,0]1)])

Save the output to any name from the command line:
plt.savefig(sys.argv[1]+"_plot.pdf")

The output format can be anything that Python’s Matplotlib recognizes (for example png
or jpg are also acceptable). So, if your input data file name was input.fits, and you want
to see how its mirror distribution would look like if the mirror was placed at the 0.8 quantile
(or the value which is above 80 percent of your data) you can run the following sequence
of commands to see the combined cumulative frequency plot and histogram together in one
PDF file. Lets assume you have put the Python script above into the file mirrorplot.py.
The second command makes the Python script an executable file.

$ 1s

input.fits mirrorplot.py

$ chmod +x mirrorplot.py

$ astimgstat input.fits --nohist --nocfp --mirrorquant=0.8

$ 1s

input.fits input_mirrorcfp.txt input_mirrorhist.txt mirrorplot.py
$./mirrorplot.py input

By default, the range of the mirror distribution is set to the 0.01 quantile of the image
to 2 times the distance of the mode to that point. This is done so that the mode (which
will have a value of zero in this plot) is positioned exactly on 1/3rd point of the x axis plot.
The number of bins is the same value as the ——histnumbins option. Alternatively, through
the option —-histrangeformirror, the histogram properties set with the --histmin and
—--histmax can be used. In these mirror plots, the mirror value is going to have the value
of zero and one of the bins is going to start at zero (if -~~histrangeformirror is called, the
given ranges will also shift accordingly).

7.1.4 Invoking ImageStatistics

ImageStatistics will print the major statistical measures of an image’s pixel flux distribution.
The executable name is astimgstat with the following general template

$ astimgstat [OPTION ...] InputImage.fits
One line examples:

$ astimgstat input.fits
$ astimgstat animage.fits --ignoremin --nohist
$ astimgstat anotherimage.fits --mask=detectionlabels.fits --mhdu=1

If ImageStatistics is to do any data processing, an input image should be provided with
the recognized extensions as input data, see Section 4.1.2 [Arguments|, page 32. See
Section 4.1.4 [Common options|, page 34 for the list of options that are shared by all
programs. All the main statistical operations have their specific set of options. If a string is
given to the ——output option, it is used as the base name for the generated files. Without
this option, the input image name is used as the name-base.

Some of the options are necessary and if they are not included in the configuration file,
ImageStatistics will not run, see Section 4.2 [Configuration files|, page 37. However, for
some others this is not so: —-histmin, --histmax, --histquant, ——cfpmin, -—cfpmax, —-
cfpquant. These are options to do with the range of flux in the histogram and cumulative

Chapter 7: Image analysis 90

frequency plots. If no value is given for these options when ImageStatistics is about to
start processing the data, then the full data range will be used. Such that the minimum
image value will be set for the minimums and the maximum image value will be used for
the maximum. The Mask name and HDU are also not mandatory in the configuration file.
By default, in verbose mode!, along with a short summary of the basic data statistics,

a simple ASCII histogram will also be printed. This can be useful for a very quick and
general view of the distribution. An example verbose output of ImageStatistics on one of
the $ make check outputs can be seen below:

$ astimgstat ./tests/convolve_spatial_warped_noised.fits \

--histquant=0.05
ImageStatistics started on AAA BBB CC DD:EE:FF GGGG
- Input read: ./tests/convolve_spatial_warped_noised.fits (hdu: 0)

>k 3k >k 3k 5k 3k 3k %k 5k >k %k 5k %k 5k %k %k %k

—— Number of points 10000
—-- Minimum -38.2066
—-- Maximum 1268.72
-— Sum 154927
-— Mean 15.4927
—-- Standard deviation 60.5407
-- Median 4.82691
-- Mode (quantile, value) 0.4335, 2.90301
-- Mode symmetricity and its cutoff value 0.5909, 17.2507
—-- ASCII histogram in the range: -13.912957 -- 65.058487:
| * %
| *okokokokk kK
| sokkkkkkkk Kok
| Kok ok ok ok ok ok ok ok ok ok ok ok ok
I
I

ok ook ok ok ok ok ok kokok ok ok ok
| skskskokokokok skokok ok ok ok ok ok skok ok ok ok ok
| sk sk sk sk s ok sk sk sk ok ok sk sk sk ok ok sk ok ok ok ok ok ok ok ok ok
| ok sk s ok sk ok ok sk ok ok sk ok sk s ok sk sk ok sk ok ok ok ok ok sk ok ok
[sk ok sk sk s ok ok sk ok ok ok sk sk sk ok ok sk ok ok ok sk ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok
| ok ok sk sk s ok sk sk ok ok ok sk ok ok ok ok sk ok ok sk ok ok ok ok ok s ok ok sk o ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok K

- Sigma clipping results (Median, Mean, STD, Number):
- 4.00 times sigma by convergence (tolerance: 0.2000):

4.826907, 15.492665, 60.540707, 10000
4.665353, 10.117773, 27.793823, 9881
4.433090, 7.458610, 18.510950, 9715
4.216213, 6.176818, 15.231371, 9575
4.088199, 5.679162, 14.183748, 9502
- 4.00 sigma-clipping 5 times:

1: 4.826907, 15.492665, 60.540707, 10000

ad WwN -

L If the -q option is not called then all programs will operate in verbose mode, see Section 4.1.4 [Common
options], page 34.

Chapter 7: Image analysis 91

4.665353, 10.117773, 27.793823, 9881
4.433090, 7.458610, 18.510950, 9715
4.216213, 6.176818, 15.231371, 9575

5: 4.088199, 5.679162, 14.183748, 9502
ImageStatistics finished in: 0.006964 (seconds)

W N

-M

--mask (=STR) The file name of a mask image. If this option is not given on the
command line or in the configuration files and ——mhdu is not given or is identical
to —-hdu, then no mask image will be used.

--mhdu (=STR) The header name of the mask extension.

--ignoremin
Ignore all data elements that have a value equal to the minimum value in the
image. In practice this is like masking those pixels, their values will not be
used.

-1

--lowerbin
Set the first column of the histogram and cumulative frequency plots to the
lower interval boundary. By default (without calling this option), the central
interval value is used.

—--onebinvalue

(=FLT) Make sure that one bin starts with the value to this option. In practice,
this will shift the bins used to find the histogram and cumulative frequency
plot such that one bin’s lower interval becomes this value. For example when
the histogram range includes negative values, but the data doesn’t. If zero is
somewhere between one bin, then the viewers of the plot(s) will think negative
data is also present. By setting ——onebinvalue=0, you can make sure that the
viewers of the histogram will not be confused.

Note that by default, the first row of the histogram and cumulative frequency
plot show the central values of each bin. So in the example above you will not
see the 0.000. To see it, add the ——lowerbin option to show the lower value of
each bin. If you don’t care about the bin positions within the specified range
you can set the value to this option to a Not-a-Number (NaN) value on the
command line (--onebinvalue=nan) or in the configuration files with a nan
following the option name. If the value is not within the specified bin range, it
will be ignored.

--noasciihist
Do not show an ASCII plot on the command line.

--mirrorquant
(=FLT) quantile to put the mirror. A value between 0 and 1. See Section 7.1.3
[Mirror distribution], page 88 for a complete explanation. Outputs two files
with suffixes _mirrorhist.txt and _mirrorcfp.txt.

Chapter 7: Image analysis 92

—--checkmode

The mode of the data is found by comparing the input data distribution with its
mirror distribution. If this option is called, the mirror distribution’s histogram
and cumulative frequency plots will be saved in to plain text files ending with _
modehist.txt and _modecfp.txt. See the explanation for Section 7.1.3 [Mirror
distribution], page 88 for more details about these two files and how you can
easily plot the outputs. This option only works when when ImageStatistics is
in verbose mode. Since otherwise the mode is not calculated.

To draw the plots you can use the script in Section 7.1.3 [Mirror distribution],
page 88. Just change the appended suffixes in the two calls to np.loadtxt in
the Python script.

--histrangeformirror
Use —-histmin and --histmax for the range of the mirror distributions (which
are produced with the —-mirrorquant and --checkmode options).

Histogram: The stored histogram is stored in a text file ending with _hist.txt.
--nohist Do not calculate or save the histogram.

--normhist
Make a normalized histogram, see Section 7.1.1 [Histogram and Cumulative
Freqgency Plot], page 86.

-—-maxhistone
Divide all histogram bins by the number in the bin with the most data points.
This is very useful if you want to plot the histogram along with a normalized
cumulative frequency plot in one plot. Note that if the histogram numbers are
important in showing along with the cumulative frequency plot, you can use
--maxcfpegmaxhist, see below.

-n
--histnumbins
(=INT) The number of bins in the histogram. Note that in practice, this is also
equivalent to the number of rows in the output text file.
-i
--histmin
(=FLT) The minimum value to use in the histogram. If --histquant is given,
then any value given —-histmin or --histmax is ignored.

-x

—--histmax
(=FLT) The maximum value to use in the histogram. Similar to -~histmin.

-Q

--histquant
(=FLT) Set the range of the histogram based on the image quantile. So --
histquant=0.05 is given, all the data from the 0.05 quantile to 0.95 quantile
will be used in the histogram. This is useful when there is a small number of
outliers in the image. Note that if this option is given, any (possible) value
given to —-histmin or —-histmax are ignored.

Chapter 7: Image analysis 93

Cumulative Frequency Plot: The cumulative frequency plot will be stored in a text file
ending with _cfp.txt. To be more realistic, the average of the indexs in each interval is
used as the second column, see Section 7.1.1 [Histogram and Cumulative Freqency Plot],
page 86.

—--nocfp Do not calculate or store the cumulative frequency plot.

—--normcfp
Normalize the cumulative frequency plot, see Section 7.1.1 [Histogram and Cu-
mulative Freqency Plot], page 86.

--maxcfpegmaxhist
Set the maximum cumulative frequency plot value to the maximum value in
the histogram (if it is to be created). This is a useful in plotting the histogram
and cumulative frequency plots together when the histogram numbers are im-
portant.

--cfpsimhist
Set the range of the cumulative frequency plot and the number of points to
store to the same range as the histogram. If the two are to be plotted together,
this is very useful, since the first axis (column) of the two will become identical.

Y

-—cfpnum (=INT) The number of points to store the cumulative frequency plot. They will
be evenly distributed between the range of flux values.

-a
-—cfpmin (=FLT) The minimum value to use for the cumulative flux range. If -~—cfpquant
is given, then any value given --cfpmin or --cfpmax is ignored.

-n

--cfpmax (=FLT) The maximum value to use for the cumulative flux range. Similar to
--cfpmin.

-U

--cfpquant
(=FLT) Similar to —~histquant but for the cumulative frequency plot.

o-clipping: The result of each iteration of o-clipping will be printed in the terminal for
both types of sigma clipping: A certain number of times and convergence of the standard
deviation.

--nosigclip
If this option is called, no o-clipping will take place.

-u

--sigclipmultip
(=FLT) The multiple of the standard deviation above which to clip. This value
is demonstrated by « in Section 7.1.2 [Sigma clipping], page 87.

-t

--sigcliptolerance

(=FLT) If the fractional difference of the standard deviation becomes less than
this value, then o-clipping will halt, see Section 7.1.2 [Sigma clipping], page 87.

Chapter 7: Image analysis 94

g

-—-sigclipnum
(=INT) The number of iterations for the case where the o-clipping iteration
stops after a certain number of runs.

7.2 NoiseChisel

Once raw data have gone through the initial reduction process (through the programs in
Chapter 6 [Image manipulation], page 57). We are ready to derive scientific results out of
them. Unfortunately in most cases, the scientifically interesting targets are deeply drowned
in a sea of noise. NoiseChisel is Gnuastro’s tool to detect signal in noise. Infact, NoiseChisel
was the motivation behind creating Gnuastro and has a full journal article? devoted to
its techniques. Following the explanations for the options in Section 7.2.1.1 [NoiseChisel
options|, page 95 should also give you a relatively good idea of the steps. Currently the
paper does a very thorough job at explaining the concepts and methods of NoiseChisel with
abundant demonstrations for each step. However, the paper cannot undergo any futher
updates, so as the development of NoiseChisel evolves, this section will grow.

Detection is the process of separating signal from noise. In other words, after detection
is complete, one set of data elements (pixels in an image) will be distinguished as signal
and another set of the data elements will be noise. Segmentation is the process of labeling
the detected pixels into possibly multiple components (objects). For example when two
galaxies lie sufficiently close to each other to be detected as one object.

NoiseChisel was the first software to make use of a noise-based concept to detection and
segmentation. In this method, instead of emphasizing on the signal and trying to guess the
properties of the to-be-detected targets prior to detection (for example assuming that it is an
ellipse), the emphasis is put on the noise in the image and it imposes statistically negligible
requirements on the signal. The name of NoiseChisel is derived from the first thing it does
after thresholding the image: to erode it. In mathematical morphology, erosion on pixels
can be pictured as carving off boundary pixels. So what NoiseChisel does is similar to what
a wood chisel or stone chisel does. It is just not a hardware but software.

7.2.1 Invoking NoiseChisel

NoiseChisel will detect signal in noise. The executable name is astnoisechisel with the
following general template

$ astnoisechisel [OPTION ...] InputImage.fits
One line examples:

$ astnoisechisel input.fits
$ astnoisechisel --nchi=4 --lmesh=256 input.fits
$ astnoisechisel field.fits --mask=badpixels.fits --mhdu=1

If NoiseChisel is to do processing, an input image should be provided with the recognized
extensions as input data, see Section 4.1.2 [Arguments|, page 32. The options that are
shared by all Gnuastro programs can be seen in Section 4.1.4 [Common options|, page 34.
In order to ignore some pixels during the analysis, you can specify a mask image, see

2 It is currently under production by the Astrophysical Journal Supplement Series. It can also be read in
arXiv: http://arxiv.org/abs/1505.01664.

http://arxiv.org/abs/1505.01664
http://arxiv.org/abs/1505.01664

Chapter 7: Image analysis 95

Section 6.4.3 [Mask image|, page 84 for an explanation and the relevant options. A masked
pixel is treated as being above the threshold in detection and is assumed to have the largest
possible flux during the definition of clumps. The reason for this is that the centers of
bright stars and galaxies are often masked (due to saturation). It causes no problems when
other parts of the image are masked, for example cosmic rays or the edges of raw images.
No flux is ever assigned to any masked pixel and it is not counted in any of the areas. In
short masked pixels in a detection or clump are ignored while calculating the Signal to noise
ratio.

A convolution kernel can also be optionally given. If a value (file name) is given to --
kernel on the command line or in a configuration file (see Section 4.2 [Configuration files],
page 37), then that file will be used to convolve the image prior to thresholding. Otherwise
a default kernel will be used. The default kernel is a 2D Gaussian with a FWHM of 2
pixels truncated at 5 times the FWHM. See Section 3.1.1 of Akhlaghi and Ichikawa (2015)
to learn why this particular kernel was chosen as default. See Section 6.2.4 [Convolution
kernel|, page 66 for kernel related options.

NoiseChisel uses a mesh grid to tile the image. This enables it to deal with possible
gradients, see Section 6.4.2 [Tiling an imagel|, page 78. The mesh grid options are common
to all the programs using it, and are listed in Section 6.4.2.4 [Mesh grid options|, page 82.
In particular, NoiseChisel uses two mesh grids: a large and a small one. The sizes of the
meshs in each grid can be specified with the following two options (the --meshsize option
is not recognized by NoiseChisel). The rest of the options explained in Section 6.4.2.4 [Mesh
grid options|, page 82 apply to both grids.

-s
--smeshsize
Similar to --meshsize in Section 6.4.2.4 [Mesh grid options|, page 82, but for
the smaller mesh grid, which is most dependent on the gradients in the image.
-1
-—lmeshsize

Similar to —-meshsize in Section 6.4.2.4 [Mesh grid options|, page 82, but for
the larger mesh grid, used for detection and segmentation Signal to noise ratio
analysis.

Please run NoiseChisel with the -—-help option to list all the recognized options with a short
explanation, irrespective of which part of the Gnuastro manual they are fully explained in,
see Section 4.6 [Getting help], page 43.

7.2.1.1 NoiseChisel options

The options particular to NoiseChisel are listed below. They are classified by context and
also sorted in the same order that the operations are done on the image. See Akhlaghi
and Ichikawa (2015) for a very complete, detailed and illustrated explanation of each step.
Reading through the option explanations should be enough to optain a general idea of how
NoiseChisel works. Before the procedures explained by these options begin, the image is
convolved with a kernel. The first group of options listed below are those that apply to
both the detection and the segmentation processes.

Chapter 7: Image analysis 96

-E

--skysubtracted
If this option is called, it is assumed that the image has already been sky
subtracted once. Knowing if the sky has already been subtracted once or not
is very important in estimating the Signal to noise ratio of the detections and
clumps. In short an extra o2, must be added in the error (noise or denominator
in the Signal to noise ratio) for every flux value that is present in the calculation.
This can be interpreted as the error in measuring that sky value when it was
subtracted by any other program. See Section 3.3 in Akhlaghi and Ichikawa
(2015) for a complete explanation.

-B

--minbfrac
(=FLT) Minimum fraction (value between 0 and 1) of blank (undetected) area
in a mesh for it to be considered in measuring the following properties.

e Measuring the Signal to noise ratio of false detections during the false
detection removal.

e Measuring the sky value (average of undetected pixels). Both before the
removal of false detections and after it.

e Clump Signal to noise ratio in the blank regions.

Because of the PSF, astronomical objects, other than cosmic rays, never have
a clear cutoff and commonly sink into the noise very slowly. Even below the
very low thresholds used by NoiseChisel. So when a large fraction of the area of
one mesh is covered by detections, it is very probable that their faint wings are
present in the undetected regions. Therefore, to get an accurate measurement
of the above parameters over the full mesh grid, meshs that harbor too many
detected regions should be excluded.

-F

--minnumfalse
(=INT) The minimum number of ‘psudo-detections’ (in identifying false detec-
tions) or clumps (in identifying false clumps) in each large mesh grid. If their
number is less than this value, this mesh will be left blank and filled during mesh
interpolation, see Section 6.4.2.2 [Grid interpolation and smoothing], page 80.

The Signal to noise ratio of false detections and clumps in each mesh is found us-
ing the quantile of the Signal to noise ratio distribution of the psudo-detections
and clumps over the undetected pixels in each mesh. If the number of Signal
to noise ratio measurements in each mesh is not enough, the quantile will not
be accurate. For example if you set -—detquant=0.99 (or the top 1 percent),
then it is best to have at least 100 Signal to noise ratio measurements.

Detection is the process of separating the pixels in the image into two groups: 1) Signal
and 2) Noise. Through the parameters below, you can customize the detection process in
NoiseChisel.

Chapter 7: Image analysis 97

-t
--gqthresh

(=FLT) The quantile threshold to apply to the convolved image. The detection
process begins with applying a quantile threshold to each of the small mesh
grid elements, see Section 6.4.2 [Tiling an image|, page 78. The quantile is only
calcuated for those meshs that don’t have any significant signal within them,
see Section 6.4.2.1 [Quantifying signal in a mesh], page 79.

The quantile value is a floating point value between 0 and 1. Assume that we
have sorted the N data elements of a distribution (the pixels in each mesh on
the convolved image). The quantile (¢g) of this distribution is the value of the
element with an index of (the nearest integer to) ¢ x N in the sorted data set.
After thresholding is complete, we will have a binary (two valued) image. The
pixels above the threshold are known as foreground pixels (have a value of 1)
while those which lie below the threshold are known as background (have a
value of 0).

—-checkthreshold

—-—erode

--erodengb

P
--opening

Check the quantile threshold values on the mesh grid. A file suffixed with _
thresh.fits will be created, see Section 6.4.2.3 [Checking grid values|, page 81.

(=INT) The number of erosions to apply to the binary thresholded image. Ero-
sion is simply the process of flipping (from 1 to 0) any of the foreground pixels
that neighbor a background pixel. In a 2D image, there are two kinds of neigh-
bors, 4-connected and 8-connected neighbors. You can specify which type of
neighbors should be used for erosion with the -—erodengb option, see below.

Erosion has the effect of shrinking the foreground pixels. To put it another way,
it expands the holes. This is a founding principle in NoiseChisel: it exploits the
fact that with very low thresholds, the holes in the very low surface brightnesss
regions of an image will be smaller than regions that have no signal. Therefore
by expanding those holes, we are able to separate the regions harboring signal.

(=40r8) The type of neighborhood (structuring element) used in erosion, see --
erode for an explanation on erosion. In 4-connectivity, the neighbors of a pixel
are defined as the four pixels on the top, bottom, right and left of a pixel that
share an edge with it. The 8-connected neighbors on the other hand include
the 4-connected neighbors along with the other 4 pixels that share a corner
with this pixel. See Figure 6 (a) and (b) in Akhlaghi and Ichikawa (2015) for a
demonstration.

(=INT) Depth of opening to be applied to the eroded binary image. Opening is
a composite operation. When opening a binary image with a depth of n, n ero-
sions (explained in —-erode) are followed by n dilations. Simply put, dilation is
the inverse of erosion. When dilating an image any background pixel is flipped
(from 0 to 1) to become a foreground pixel. Dilation has the effect of fattening
the foreground. Note that in NoiseChisel, the erosion which is part of opening

Chapter 7: Image analysis 98

is independent of the initial erosion that is done on the thresholded image (ex-
plained in --erode). The structuring element for the opening can be specified
with the --openingngb option. Opening has the effect of removing the thin
foreground connections (mostly noise) between separate foreground ‘islands’
(detections) thereby completely isolating them. Once opening is complete, we
have nitial detections.

--openingngb

-u

(=40r8) The structuring element used for opening, see —-erodengb for more
information about a structuring element.

--sigclumpmultip

-r

(=FLT) The multiple of the standard deviation during o-clipping. NoiseChisel
uses o-clipping to remove the effect of cosmic rays when calculating the average
and standard deviation of the undetected regions.

Since cosmic rays have sharp boundaries and are usually small, the erosion
and opening might put them within the undetected pixels. Although they
might cover a very small number of pixels, they usually have very large flux
values which can easily bias the average and standard devation measured on
a mesh. Their effect can easily be removed by o-clipping, see Section 7.1.2
[Sigma clipping], page 87. NoiseChisel uses the convergence of the value of the
standard deviation as the criteria to stop the o-clipping iteration.

--sigcliptolerance

(=FLT) The tolerance level to stop o-clipping. The iteration is stopped when
(0otd — Onew)/Onew becomes smaller than the value given to this option. Note
that 0,4 will always be larger than o,.,. Only statistical scatter (error) can
cause it to be smaller, in which case they can be considered to be approximately
equal.

—--checkdetectionsky

-R
——-dthresh

Check the initial approximation of the sky value and its standard deviation
in a FITS file ending with _detsky.fits. See Section 6.4.2.3 [Checking grid
values|, page 81 for more information. If --meshbasedcheck is not called, then
the first extension will be the the binary image with initial detections labeled
one and background labeled zero. The mesh values will be in the subsequent
extensions.

(=FLT) The detection threshold: a multiple of the initial sky standard deviation
added with the initial sky approximation. This flux threshold is applied to the
initially undetected regions on the unconvolved image. The background pixels
that are completely engulfed in a 4-connected foreground region are converted
to background (holes are filled) and one opening (depth of 1) is applied over
both the initially detected and undetected regions. The Signal to noise ratio of
the resulting ‘psudo-detections’ are used to identify true vs. false detections.

Chapter 7: Image analysis 99

See Section 3.1.5 and Figure 7 in Akhlaghi and Ichikawa (2015) for a very
complete explanation.

-i

--detsnminarea
(=INT) The minimum area to calculate the Signal to noise ratio on the psudo-
detections of both the initially detected and undetected regions. When the area
in a psudo-detection is too small, the Signal to noise ratio measurements will
not be accurate and their distribution will be heavily skewed to the postive. So
it is best to ignore any psudo-detection that is smaller than this area.

-—-detsnhistnbins

(=INT) If not equal to zero, a histogram of the Signal to noise ratios of the
psudo-detections will be stored in a text file for every large mesh grid element
which is successful in defining a Signal to noise ratio in the grid. The number
of bins in this histogram is specified by the value given to this option. This
is good for inspecting the best possible value to --detsnminarea. The best
values are obtained when the distribution is not skewed significantly. Note that
when correlated noise is present (processed images) a certain level of skewness
will be present in any case.

-c
--detquant
(=FLT) The quantile of the Signal to noise ratio distribution of the psudo-
detections in each mesh to use for filling the large mesh grid. Note that this
is only calculated for the large mesh grids that satisfy the minimum fraction
of undetected pixels (value of --minbfrac) and minimum number of psudo-
detections (value of --minnumfalse).

—-—checkdetectionsn
Check the Signal to noise ratio value on each large mesh grid in a file ending
with _detsn.fits, see Section 6.4.2.3 [Checking grid values|, page 81 for more
information.

-1

--dilate (=INT) Number of times to dilate the final true detections. See the explanations
in --opening for more information on dilation. The structuring element for
this final dilation is fixed to an 8-connected neighborhood. This is because
astronomical objects, except cosmic rays, never have a clear cutoff, so all the
8-pixels connected to the border pixels of a detection might harbor data.

—--checkdetection
Every step of the detection process will be added as an extension to a file with
the suffix _det.fits. Going through each would just be a repeat of the expla-
nations above and also of those in Akhlaghi and Ichikawa (2015). The extension
label should be sufficient to recognize which step you are observing. Viewing
all the steps can be the best guide in choosing the best set of parameters. Note
that calling this function will significantly slow NoiseChisel.

Chapter 7: Image analysis 100

—--checksky
Check the final sky and its standard deviation values on the mesh grid. Similar
to ——checkdetectionsky.

--saveskysubed
Save the sky subtracted image (where the sky was calculated from the average
of undetected pixels, see Section 6.4.1 [Sky value|, page 75) into a file ending
with _skysubed.fits.

--checkmaskdet
Mask (set to NaN) the undetected pixels in one extension and the detected
pixels in the next extension of a file ending with _maskdet.fits.

Segmentation is the process of possibly breaking up a detection into multiple objects and
clumps. In deep surveys segmentation becomes particularly important since galaxies might
fall along the same line of sight or they might be merging. It is thus very important to
be able separate the pixels within a detection if it is necessary. After segmentation, such a
detected region will get different labels.

In NoiseChisel, segmentation is done by first finding the ‘true’ clumps over a detection
and then expanding those clumps to a certain flux limit. True clumps are found in a process
very similar to the true detections explained above, see Akhlaghi and Ichikawa (2015) for
more information. If the connections between the grown clumps are weaker than a given
threshold, the grown clumps are considered to be separate objects. Otherwise, the are
considered to be part of the same object.

--detectonly

If this option is called, no segmentation will be done. The object labels exten-
sion in the output will simply be the detection (connected components) labels
and the clumps image will be blank (see Section 7.2.1.2 [NoiseChisel output],
page 102).

This option can result in faster processing when only the noise properties of the
image are desired for a catalog using another image’s labels. A common case
is when you want to measure colors or SEDs in several images. Let’s say you
have images in two colors: A and B. For simplicity also assume that they are
exactly on the same position in the sky with the same pixel scale.

You choose to set A as a reference, so you run the full NoiseChisel on A.
Then you run NoiseChisel on B with this option since you only need the noise
properties of B (for the signal to noise column in its catalog). You can then run
MakeCatalog on A normally, see Section 7.3 [MakeCatalog], page 103. To run
MakeCatalog on B, you simply set the object and clump labels images to those
that NoiseChisel produced for A, see Section 7.3.1 [Invoking MakeCatalog],
page 103.

-m
--segsnminarea
(=INT) The minimum area which a clump in the undetected regions should have
in order to be considered in the clump Signal to noise ratio measurement. If
this size is set to a small value, the Signal to noise ratio of false clumps will
not be accurately found. Note that this has to be larger than the value to

Chapter 7: Image analysis 101

--detsnminarea. Because the clumps are found on the convolved (smoothed)
image while the psudo-detections are found on the input image.

—--checkclumpsn
Check the limiting clump Signal to noise ratio for true detections in a file
ending with _clumpsn.fits, see Section 6.4.2.3 [Checking grid values]|, page 81
for more information on checking values on the mesh grid.

g

--segquant
(=FLT) The quantile of the noise clump Signal to noise ratio distribution. This
value is used to identify true clumps over the detected regions.

--segsnhistnbins
(=INT) Similar to --detsnhistnbins, but for the distribution of the Signal to
noise ratio of clumps over the undetected regions.

-v

--keepmaxnearriver
Keep a clump whose maximum flux is 8-connected to a river pixel. By default
such clumps over detections are considered to be noise and are removed irre-
spective of their flux. Over large profiles, that sink into the noise very slowly,
noise can cause part of the profile (which was flat without noise) to become a
very large and with a very high Signal to noise ratio. In such cases, the pixel
with the maximum flux in the clump will be immediately touching a river pixel.

-G

--gthresh
(=FLT) Threshold (multiple of the sky standard deviation added with the sky)
to stop growing true clumps. Once true clumps are found, they are set as
the basis to segment the detected region. They are grown until the threshold
specified by this option.

-y

--minriverlength
(=INT) The minimum length of a river between two grown clumps for it to be
considered in Signal to noise ratio estimations. Similar to --segsnminarea and
--detsnminarea, if the length of the river is too short, the Signal to noise ratio
can be noisy and unreliable. Any existing rivers shorter than this length will
be considered as non-existant, independent of their Signal to noise ratio. Since
the clumps are grown on the input image, this value should best be similar
to the value of -—-detsnminarea. Recall that the clumps were defined on the
convolved image so --segsnminarea was larger than --detsnminarea.

-0

--objbordersn
(=FLT) The maximum Signal to noise ratio of the rivers between two grown
clumps in order to consider them as separate ‘objects’. If the Signal to noise
ratio of the river between two grown clumps is larger than this value, they
are defined to be part of one ‘object’. Note that the physical reality of these
‘objects’ can never be established with one image, or even multiple images from

Chapter 7: Image analysis 102

one broad-band filter. Any method we devise to define ‘object’s over a detected
region is ultimately subjective.

Two very distant galaxies or satellites in one halo might lie in the same line
of sight and be detected as clumps on one detection. On the other hand, the
connection (through a spiral arm or tidal tail for example) between two parts
of one galaxy might have such a low surface brightness that they are broken up
into multiple detections or objects. Infact if you have noticed, exactly for this
purpose, this is the only Signal to noise ratio that the user gives into NoiseChisel.
The ‘true’ detections and clumps can be objectively identified from the noise
characteristics of the image, so you don’t have to give any hand input Signal
to noise ratio.

--checksegmentation
A file with the suffix _seg.fits will be created. This file keeps all the relevant
steps in finding true clumps and segmenting the detections in various extensions.
Having read the paper or the steps above, the extension name should be enough
to understand which step each extension is showing. Examing this file can be
an excellent guide in choosing the best set of parameters. Note that calling this
function will significantly slow NoiseChisel.

7.2.1.2 NoiseChisel output

The default name and directory of the outputs are explained in Section 4.5 [Automatic
output], page 42. NoiseChisel’s default output (when none of the options starting with
--check or the --output option are called) is one file ending with _labeled.fits. This
file has the extensions listed below:

1. A copy of the input image, a copy is placed here for the following reasons:

e By flipping through the extensions, a user can check how accurate the detection
and segmentation process was.

e All the inputs to MakeCatalog (see Section 7.3 [MakeCatalog|, page 103) are in-
cluded in this one file which makes the running of MakeCatalog after NoiseChisel
very easy.

e All masked pixels given to NoiseChisel will have a value of NaN in this image. So
if you decide to run MakeCatalog after NoiseChisel, there is no more need to feed
the mask image to MakeCatalog too.

2. The object labels. Each pixel in the input image is given a label in this extension, the
labels start from one. The total number of labels is stored as the value to the NOBJS
keyword in the header of this extension. It is also printed in verbose mode.

3. The clump labels. All the pixels in the input image that belong to a true clump are
given a positive label in this extension. The detected regions that were not a clump
are given a negative value to clearly identify the noise from the detections. The total
number of clumps in this image is stored in the NCLUMPS keyword of this extension and
printed in verbose output.

4. The final sky value on each pixel. See Section 6.4.1 [Sky value|, page 75 for a complete
explanation. See Section 6.4.2.2 [Grid interpolation and smoothing], page 80 for an
explanation on the boxy appearance of this image.

5. Similar to the previous mesh but for the standard deviation on each pixel.

Chapter 7: Image analysis 103

7.3 MakeCatalog

Detecting and segmenting signal over an image results in labeled images where each pixel is
labeled with the ID (an integer) that is specified by the detector program. But this labeled
image by its self can hardly be of any scientific use. The job of MakeCatalog is to combine
the input image, the noise properties and the labels of pixels into a catalog (a text file table)
which can easily be used for high-level scientific interpretations.

NoiseChisel (Gnuastro’s signal detection tool, see Section 7.2 [NoiseChisel], page 94)
does not produce any catalog of the detected objects by its self. Only a labeled FITS image
is output, see Section 7.2.1.2 [NoiseChisel output], page 102. The output of NoiseChisel can
be directly fed into MakeCatalog to generate the catalog. Some of the reasons for making
the catalog in a separate program? are listed below:

e Complexity: Adding in a catalog functionality to the detector program will add several
more steps (and options) to its processings that can equally well be done outside of
it. This makes following the code harder for a curious reader and also potentially adds
bugs.

Another advantage of less complexity is when the parameter you want to measure over
one profile is not provided by the developers of MakeCatalog. You can simply open
this tiny little program and add your desired calculation easily. However, if making a
catalog was part of NoiseChisel, it would require a lot of energy to understand all the
steps in order to add desired parameter.

e Low level nature of Gnuastro: Making catalogs is a separate process from labeling
(detecting and segmenting) the pixels. A user might want to do certain operations on
the labed regions before creating a catalog for them. Another user might want the flux
properties of the same pixels in another image (possibly from another broadband filter)
for measuring the colors or SEDs for example.

Here is an example of doing both: suppose you have images in various broad band
filters at various resolutions and orientations. The image of one color will thus not lie
exactly on another or even be in the same scale. However, it is imperative that the
same pixels be used in measuring the colors of galaxies.

Therefore NoiseChisel can be run on the reference image and ImageWarp (Section 6.3
[ImageWarp|, page 68) can be applied to the labeled images to find the pixels to use in
the other image. Then MakeCatalog can generate the final catalog for both targets. It
is currently customary to warp the images to the same pixel grid, however, this is very
harmful for the data and creates correlated noise. It is much more accurate to do the
transformations on the labeled image.

7.3.1 Invoking MakeCatalog

MakeCatalog will make a catalog from an input image and a labeled image. The executable
name is astmkcatalog with the following general template

$ astmkcatalog [OPTION ...] InputImage.fits
One line examples:

$ astmkcatalog -mdri input.fits

3 Most existing software that do object detection also output a catalog, so this is not a common practice.

Chapter 7: Image analysis 104

$ astmkcatalog --floatprecision=5 input.fits

$ astmkcatalog --output=cat input_labeled.fits

$ astmkcatalog --objlabs=K_labeled.fits --objhdu=1 \
--clumplabs=K_labeled.fits --clumphdu=2 i_band.fits

If MakeCatalog is to do processing, an input image should be provided with the recognized
extensions as input data, see Section 4.1.2 [Arguments|, page 32. Optionally a mask file
can be specified to ignore some of the pixels in the image, see Section 6.4.3 [Mask image],
page 84. Note that if you generated the labeled image using NoiseChisel with a mask image
as input, there is no more need to inform MakeCatalog of the mask image, see Section 7.2.1.2
[NoiseChisel output], page 102. The options common to all Gnuastro programs are explained
in Section 4.1.4 [Common options|, page 34.

By default two catalogs will be made: one for the objects (suffixed with _o.txt) and
another for the clumps (suffixed with _c.txt). Therefore if any value is given to the --
output option, MakeCatalogs will simply append the two suffixes to it as the output file
names. So if you want to specify an output name, it is best that it not have any suffix. If no
value is given to the ——output option, MakeCatalog will use the input name, see Section 4.5
[Automatic output], page 42.

The first set of options specify the properties of the inputs. Other necessary input images
are treated very much like a mask image, see Section 6.4.3 [Mask image|, page 84. If no
name is specified for them, their HDU is checked and if that differs from the input HDU,
then there is no need to specify a file name for them. The object and column label images
or segmentation maps should not be of a floating point type (BITPIX).

-0

--objlabs
(=STR) The file name of the object labels, if in the same file as input, it is not
mandatory.

--objhdu (=STR) The HDU of the object labels image, the header keyword NOBJS must be
present in this extension. The value to this keyword is used as the final number
of objects and the number of rows in the output objects catalog. Only pixels
with values above zero will be considered.

-c

—--clumplabs
(=STR) Similar to -—objlabs but for the labels of the clumps.

—--clumphdu
(=STR) Similar to -—objhdu, but for the clumps. The NCLUMPS keyword in this
header specifies the number of recognized clumps.

-s

--skyfilename

(=STR) File name of an image keeping the Sky value for each pixel.
--skyhdu (=STR) The HDU of the Sky value image.
-t
-—stdfilename

(=STR) File name of image keeping the Sky value standard deviation for each
pixel.

Chapter 7: Image analysis 105

--stdhdu (=STR) The HDU of the Sky value standard deviation image.

-z

—--zeropoint
(=FLT) The zero point magnitude for the input image, see Section 8.1.4 [Mag-
nitude to flux conversion|, page 114.

-E

—--skysubtracted
If the image has already been sky subtracted by another program, then you
need to notify MakeCatalog through this option. Note that this is only relevant
when the Signal to noise ratio is to be calculated.

Through the next group of options, you can customize the general appearence of the output
plain text catalog. The basic idea behind these options is for customization for all forms
of input and the fact that some columns don’t need too much space, while some do. The
width is the number of text columns given to data of each type in the output plain text
catalog.

The precision is the number of digits to show after the decimal point in floating point
numbers. We have defined two types of floating point numbers here, one is for less accurate
precision, like magnitude, while the other is used when more accuracy is necessary. A
common example of the latter is right ascension and declination. These variables usually
need to be printed with more than 6 point accuracy. Note that all the values are calculated
and stored internally as double precision floating point numbers, the distinction made here
is only for printing them.

--intwidth
(=INT) The width of printing the integer values. In MakeCatalog, all IDs,
numbers and areas are considered to be an integer.

-—floatwidth
(=INT) The width of a normal precision floating point column. Any column that
is not designated in —-intwidth or -—accuwidth is considered to be a normal
precision floating point.

—-—accuwidth
(=INT) The width columns to be printed with extra accuracy. In MakeCata-
log, all the right ascensions, declinations, river pixel fluxes (see Akhlaghi and
Ichikawa 2015 for the definition of river pixels), the sky and the sky standard
deviation.

--floatprecision
(=INT) The number of digits to the right of the decimal point in normal floating
point display.

—--accuprecision
(=INT) The number of digits to the right of the decimal point in more accurate
floating point display.

The final group of options particular to MakeCatalog are those that specfy which columns
should be displayed in the output catalogs. For each column there is an option, if it has
been called on the command line or in any of the configuration files, it will included as

Chapter 7: Image analysis 106

a column in the output catalog. Some of the options apply to both objects and clumps
and some are particular to only one of them. The latter cases are explicitly marked with
[Objects] or [Clumps] to specify the catalog they will be placed in.

The order of the columns in the output catalog is the inverse of the order their options
are read in. For example see the following command®:

$ astmkcatalog --magnitude --dec --ra --id input.fits

If no columns are specified in any of the configuration files (see Section 4.2 [Configuration
files], page 37), then the columns in the output catalogs will have the following order: ID,
RA, Dec and Magnitude. Contrary to what it looks like, this is done to make life easier
for the users. The configuration files can also keep any of the columns (so you don’t have
to specify your desired columns every time). This inverse ordering thus comes from their
precedence, see Section 4.2.2 [Configuration file precedence], page 38.

For example catalogs usually have atleast an ID column and position columns (in the
image and/or the world coordinate system). By reading the order of the columns in reverse
you can have your fixed set of columns in your system wide configuration file and in any
particular run, if you want some other information about objects or clumps, you can add
those columns on the command line. Through the user and current directory configura-
tion files, you can also have custom catalogs in each of your working directories, without
bothering to specify the columns every time.

—-i
--id The ID of the clump or object.
=]
hostobjid
[Clumps] The ID of the object which hosts this clump.
-1
—--idinhostobj
[Clumps| The ID of this clump in its host object.
-C
—--numclumps
[Objects] The number of clumps in this object.
-a
--area The area (number of pixels) in any clump or object.
--clumpsarea
[Objects] The total area of all the clumps in this object.
-X
--x The flux weighted center of all objects and clumps along the first FITS axis
(horizontal when viewed in SAO ds9).
-y
-y The flux weighted center of all objects and clumps along the second FITS axis

(vertical when viewed in SAO ds9).

4 This command is practically identical to the first command in the one-line examples, see Section 4.1.3
[Options], page 32 for an explanation of the concatenation of the on/off options.

Chapter 7: Image analysis 107

—--clumpsx
[Objects] The flux weighted center of all the clumps in this object along the
first FITS axis.

--clumpsy

[Objects] The flux weighted center of all the clumps in this object along the
second FITS axis.

-r

--ra Right ascension of all objects or clumps.

-d

--dec Declination of all objects or clumps.

--clumpsra
[Objects] Right ascension of all clumps in this object.

—--clumpsdec
[Objects] Declination of all clumps in this object.

-f

—-flux The flux (sum of pixel values) in all clumps or objects.

--clumpsflux
[Objects] The flux in all clumps of this object.

-m

--magnitude
The magnitude of all clumps or objects.

—--clumpsmagnitude
[Objects] The magnitude of all clumps in this object.

--riverflux
[Clumps] The average flux of the river pixels of this clump. River pixels were
defined in Akhlaghi and Ichikawa 2015, in short they are right on the boundaries
of the clumps. This value is used internally to find the signal to noise ratio of
the clumps and can also be used as a scale to guage the base flux of the clump.

--rivernum
[Clumps| The number of river pixels around this clump, see —-riverflux.

-n

--sn The Signal to noise ratio (S/N) of all clumps or objects. See Akhlaghi and
Ichikawa (2015) for the exact equations used.

—--sky The sky value under this object or clump. This is actually the mean value of
all the pixels in the sky image that lie on the same position as the object or
clump.

--std The sky value standard deviation for this clump or object. Like --sky, this is

the average of the values in the input sky standard image pixels that lie over
this object.

Chapter 8: Modeling and fitting 108

8 Modeling and fitting

In order to fully understand observations after initial analysis on the image, it is very
important to compare them with the existing models to be able to further understand both
the models and the data. The tools in this chapter create model galaxies and will provide
2D fittings to be able to understand the detections.

8.1 MakeProfiles

MakeProfiles will create mock astronomical profiles from a catalog, either individually or
together in one output image. In data analysis, making a mock image can act like a
calibration tool, through which you can test how successfully your detection technique is
able to detect a known set of objects. There are commonly two aspects to detecting: the
detection of the fainter parts of bright objects (which in the case of galaxies fade into the
noise very slowly) or the complete detection of an over-all faint object. Making mock galaxies
is the most accurate (and idealistic) way these two aspects of a detection algorithm can be
tested. You also need mock profiles in fitting known functional profiles with observations.

MakeProfiles was initially built for extra galactic studies, so currently the only astro-
nomical objects it can produce are stars and galaxies. We welcome the simulation of any
other astronomical object. The general outline of the steps that MakeProfiles takes are the
following:

1. Build the full profile out to its truncation radius in a possibly over-sampled array.

2. Multiply all the elements by a fixed constant so its total magnitude equals the desired
total magnitude.

3. If ——individual is called, save the array for each profile to a FITS file.

4. If --nomerged is not called, add the overlapping pixels of all the created profiles to the
output image and abort.

Using input values, MakeProfiles adds the World Coordinate System (WCS) headers of
the FITS standard to all its outputs (except PSF images!). For a simple test on a set of
mock galaxies in one image, there is no need for the third step or the WCS information.

However in complicated simulations like weak lensing simulations, where each galaxy
undergoes various types of individual transformations based on their position, those trans-
formations can be applied to the different individual images with other programs. After
all the transformations are applied, using the WCS information in each individual profile
image, they can be merged into one output image for convolution and adding noise.

8.1.1 Modeling basics

In the subsections below, first a review of some very basic information and concepts behind
modeling a real astronomical image is given. You can skip this subsection if you are already
sufficiently familiar with these concepts.

8.1.1.1 Defining an ellipse

The PSF, see Section 8.1.1.2 [Point Spread function], page 109, and galaxy radial profiles
are generally defined on an ellipse so in this section first defining an ellipse on a pixelated
2D surface is discussed. Labeling the major axis of an ellipse a, and its minor axis with b,

Chapter 8: Modeling and fitting 109

the axis ratio is defined as: ¢ = b/a. The major axis of an ellipse can be aligned in any
direction, therefore define the angle of the major axis to the horizontal axis of the image is
defined to be the position angle of the ellipse and in this manual, we show it with 6.

Our aim is to put a radial profile of any functional form f(r) over an ellipse. Let’s define
the radial distance r.; as the distance on the major axis to the center of the ellipse which is
located at z. and y.. We want to find the elliptical distance of a point located at (i, 75), in
the image coordinate system, from the center of the ellipse. First the coordinate system is
rotated by 6 to get the new rotated coordinates of that point (i,, j,):

ir(i,) = (ic — i) cos(6) + (jo — j) sin(0)
jT(Z,]) = (]c - .7) COS(H) - (Zc - Z) Sil’l(e)

The elliptical distance of a point located at (z,) can now be defined as: 1% = \/i2 + j2/q>.
To place the radial profiles explained below over an ellipse, f(r(4,7)) is calculated based
on the functional radial profile desired.

The way MakeProfiles builds the profile is that the nearest pixel in the image to the
given profile center is found and the profile value is calculated for it, see Section 8.1.1.5
[Sampling from a function|, page 112. The next pixel which the profile value is calculated
on is the next nearest neighbor of the initial pixel to the profile center (as defined by 7).
This is done fairly efficiently using a breadth first parsing strategy®' which is implemented
through an ordered linked list.

Using this approach, we only go over one layer of pixels on the circumference of the profile
to build the profile. Not one more extra pixel has to be checked. Another consequence of
this strategy is that extending MakeProfiles to three dimensions becomes very simple: only
the neighbors of each pixel have to be changed. Everything else after that (when the pixel
index and its radial profile have entered the linked list) is the same, no matter the number
of dimensions we are dealing with.

8.1.1.2 Point Spread function

Assume we have a ‘point’ source, or a source that is far smaller than the maxium resolution
(a pixel). When we take an image of it, it will ‘spread’ over an area. To quantify that
spread, we can define a ‘function’. This is how the point spread function or the PSF of
an image is defined. This ‘spread’ can have various causes, for example in ground based
astronomy, due to the atmosphere. In practice we can never surpass the ‘spread’ due to the
diffraction of the lens aperture. Various other effects can also be quantified through a PSF.
For example, the simple fact that we are sampling in a discrete space, namely the pixels,
also produces a very small ‘spread’ in the image.

Convolution is the mathematical process by which we can apply a ‘spread’ to an image,
or in other words blur the image. The total flux of an object should remain unchanged after
convolution. Therefore, it is important that the sum of all the pixels of the PSF be unity.
The image also has to have an odd number of pixels on its sides so one pixel can be defined
as the center. In MakeProfiles, the PSF can be set by the two methods explained below.

1 http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Breadth-first_search

Chapter 8: Modeling and fitting 110

Parametric functions

A known mathematical function is used to make the PSF. In this case, only the
parameters to define the functions are necessary and MakeProfiles will make a
PSF based on the given parameters for each function. In both cases, the center
of the profile has to be exactly in the middle of the central pixel of the PSF
(which is automatically done by MakeProfiles). When talking about the PSF,
usually, the full width at half maximum or FWHM is used as a scale of the
width of the PSF.

Gaussian

Moffat

In the older papers, and to a lesser extent even today, some re-
searchers use the 2D Gaussian function to approximate the PSF of
ground based images. In its most general form, a Gaussian function
can be written as:

f(r)=aexp (—(x—,u)2> +d

202

Since the center of the profile is pre-defined, p and d are con-
strained. a can also be found because the function has to be nor-
malized. So the only important parameter for MakeProfiles is the o.
In the Gaussian function we have this relation between the FWHM
and o:

FWHM, = 2v2In 20 ~ 2.354820

The Gaussian profile is much sharper than the images taken from
stars on photographic plates or CCDs. Therefore in 1969, Moffat
proposed this functional form for the image of stars:

278
r
1+ ()]
e
Again, a is constrained by the normalization, therefore two param-

eters define the shape of the Moffat function: « and 8. The radial
parameter is « which is related to the FWHM by

FWHM,, = 2aV2V/F — 1

flr)=a

Comparing with the PSF predicted from atmospheric turbulence
theory with a Moffat function, Trujillo et al.? claim that 8 should
be 4.765. They also show how the Moffat PSF contains the Gaus-
sian PSF as a limiting case when 5 — oo.

2 Trujillo, I, J. A. L. Aguerri, J. Cepa, and C. M. Gutierrez (2001). “The effects of seeing on Sérsic profiles
- II. The Moffat PSF”. In: MNRAS 328, pp. 977—985.

Chapter 8: Modeling and fitting 111

An input FITS image
An input image file can also be specified to be used as a PSF. If the sum of its
pixels are not equal to 1, the pixels will be multiplied by a fraction so the sum
does become 1.

While the Gaussian is only dependent on the FWHM, the Moffat function is also de-
pendent on 8. Comparing these two functions with a fixed FWHM gives the following
results:

e Within the FWHM, the functions don’t have significant differences.
e For a fixed FWHM, as increases, the Moffat function becomes sharper.

e The Gaussian function is much sharper than the Moffat functions, even when g is large.

8.1.1.3 Stars

In MakeProfiles, stars are generally considered to be a point source. This is usually the
case for extra galactic studies, were nearby stars are also in the field. Since a star is only a
point source, we assume that it only fills one pixel prior to convolution. In fact, exactly for
this reason, in astronomical images the light profiles of stars are one of the best methods to
understand the shape of the PSF and a very large fraction of scientific research is preformed
by assuming the shapes of stars to be the PSF of the image.

8.1.1.4 Galaxies

Today, most practitioners agree that galaxy profiles can be modeled with one or a few
generalized de Vaucouleur’s (or Sérsic) profiles.

I(r) = I.exp (—bn [(;)1/" — 11)

Gérard de Vaucouleurs (1918-1995) was first to show in 1948 that this function best fits
the galaxy light profiles, with the only difference that he held n fixed to a value of 4. 20
years later in 1968, J. L. Sérsic showed that n can have a variety of values and does not
necessarily need to be 4.

This profile depends on the effective radius (r.) which is defined as the radius which
contains half of the total brightness of the object. The total profile flux is defined as the
integration of the profile to infinity. I. is the surface brightness at the effective radius.
The Sérsic index n is used to define the concentration of the profile within r, and b, is a
constant dependent on n. MacArthur et al.> show that for n > 0.35, b,, can be accurately
approximated using this equation:

b 9 1 n 4 n 46 n 131 2194697
n = &N — = -
3 405n 25515n% 1148175n3 30690717750n%

3 MacArthur, L. A.; S. Courteau, and J. A. Holtzman (2003). “Structure of Disk-dominated Galaxies. I.
Bulge/Disk Parameters, Simulations, and Secular Evolution”. In: ApJ 582, pp. 689—722.

Chapter 8: Modeling and fitting 112

8.1.1.5 Sampling from a function

A pixel is the ultimate level of accuracy to gather data, we can’t get any more accurate
in one image, this is known as sampling in signal processing. However, the mathematical
profiles which describe our models have infinite accuracy. Over a large fraction of the area
of astrophysically interesting profiles (for example galaxies or PSFs), the variation of the
profile over the area of one pixel is not too significant. In such cases, the elliptical radius (r;
of the center of the pixel can be assigned as the final value of the pixel, see Section 8.1.1.1
[Defining an ellipse|, page 108).

As you approach their center, some galaxies become very sharp (their value significantly
changes over one pixel’s area). This sharpness increases with smaller effective radius and
larger Sérsic values. Thus rendering the central value extremely inaccurate. The first
method that comes to mind for solving this problem is integration. The functional form
of the profile can be integrated over the pixel area in a 2D integration process. However,
unfortunately numerical integration techniques also have their limitations and when such
sharp profiles are needed they can become extremely inaccurate.

The most accurate method of sampling a continuous profile on a discrete space is by
choosing a large number of random points within the boundaries of the pixel and taking
their average value (or Monte Carlo integration). This is also, generally speaking, what
happens in practice with the photons on the pixel. The number of random points can be
set with —-numrandom.

Unfortunately, repeating this Monte Carlo process would be extremely time and CPU
consuming if it is to be applied to every pixel. In order to not loose too much accuracy,
in MakeProfiles, the profile is built using both methods explained above. The building of
the profile begins from its central pixel and continues outwards. Monte Carlo integration is
first applied (which yields F.), then the central pixel value (F.) on the same pixel. If the
fractional difference (|F, — F.|/F,) is lower than a given tolerance level we will stop using
Monte Carlo integration and only use the central pixel value.

The ordering of the pixels in this inside-out construction is based on
r = (.—9)*+ (J.—J)? mnot 7y, see Section 8.1.1.1 [Defining an ellipse],
page 108. When the axis ratios are large (near one) this is fine. But when they are small
and the object is highly elliptical, it might seem more reasonable to follow r.; not r. The
problem is that the gradient is stronger in pixels with smaller r (and larger r.;) than those
with smaller r.. In other words, the gradient is strongest along the minor axis. So if the
next pixel is chosen based on 7., the tolerance level will be reached sooner and lots of
pixels with large fractional differences will be missed.

Monte Carlo integration uses a random number of points. Thus, everytime you run it,
by default, you will get a different distribution of points to sample within the pixel. In the
case of large profiles, this will result in a slight difference of the pixels which use Monte
Carlo integration each time MakeProfiles is run. To have a deterministic result, you have to
fix the random number generator properties which is used to build the random distribution.
This can be done by setting the GSL_RNG_TYPE and GSL_RNG_SEED environment variables
and calling MakeProfiles with the ——envseed option. To learn more about the process of
generating random numbers, see Section 8.2.1.4 [Generating random numbers|, page 122.

The seed values are fixed for every profile: with ——envseed, all the profiles have the same
seed and without it, each will get a different seed using the system clock (which is accurate

Chapter 8: Modeling and fitting 113

to within one microsecond). The same seed will be used to generate a random number for
all the sub-pixel positions of all the profiles. So in the former, the subpixel points checked
for all the pixels undergoing Monte carlo integration in all profiles will be identical. In other
words, the subpixel points in the first (closest to the center) pixel of all the profiles will be
identical with each other. All the second pixels studied for all the profiles will also receive
an identical (different from the first pixel) set of sub-pixel points and so on. As long as the
number of random points used is large enough or the profiles are not identical, this should
not cause any systematic bias.

8.1.1.6 Oversampling

The steps explained in Section 8.1.1.5 [Sampling from a function], page 112 do give an
accurate representation of a profile prior to convolution. However, in an actual observation,
the image is first convolved with or blurred by the atmospheric and instrument PSF in a
continuous space and then it is sampled on the discrete pixels of the camera.

In order to more accurately simulate this process, the unconvolved image and the PSF
are created on a finer pixel grid. In other words, the output image is a certain odd-integer
multiple of the desired size, we can call this ‘oversampling’. The user can specify this
multiple as a command line option. The reason this has to be an odd number is that the
PSF has to be centered on the center of its image. An image with an even number of pixels
on each side does not have a central pixel.

The image can then be convolved with the PSF (which should also be oversampled on
the same scale). Finally, image can be sub-sampled to get to the initial desired pixel size
of the output image. After this, mock noise can be added as explained in the next section.
This is because unlike the PSF, the noise occurs in each output pixel, not on a continuous
space like all the prior steps.

8.1.2 If convolving afterwards

In case you want to convolve the image later with a given point spread function, make sure
to use a larger image size. After convolution, the profiles become larger and a profile that
is normally completely outside of the image might fall within it.

On one axis, if you want your final (convolved) image to be m pixels and your PSF is
2n + 1 pixels wide, then when calling MakeProfiles, set the axis size to m + 2n, not m. You
also have to shift all the pixel positions of the profile centers on the that axis by n pixels
to the positive.

After convolution, you can crop the outer n pixels with the section crop box specification
of ImageCrop: --section=n:*-n,n:*-n assuming your PSF is a square, see Section 6.1.2
[Crop section syntax], page 59. This will also remove all discrete Fourier transform artifacts
(blurred sides) from the final image. To facilitate this shift, MakeProfiles has the options --
xshift, --yshift and --prepforconv, see Section 8.1.5 [Invoking MakeProfiles|, page 114.

8.1.3 Profile total magnitude

It is customary to use the 2D integration to infinity of a profile as its total magnitude.
However, in MakeProfiles, we do not follow this idealistic approach and apply a more
realistic method to find the total magnitude: the sum of all the pixels belonging to a
profile within its predefined truncation radius. Note that if the truncation radius is not
large enough, this can be significantly different from the total integrated light to infinity.

Chapter 8: Modeling and fitting 114

An integration to infinity is not a realistic condition because no galaxy extends indef-
initely (important for high Sérsic index profiles), pixelation can also cause a significant
difference between the actual total pixel sum value of the profile and that of integration
to infinity, especially in small and high Sérsic index profiles. To be safe, you can specify a
large enough truncation radius for such compact high Sérsic index profiles.

If oversampling is used then the total flux is calculated using the over-sampled image, see
Section 8.1.1.6 [Oversampling], page 113 which is much more accurate. The profile is first
built in an array completely bounding it with a normalization constant of unity. Taking F’
to be the desired total flux and S to be the sum of the pixels in the created profile, every
pixel is then multiplied by F'/S so the sum is exactly F.

If the -—individual option is called, this same array is written to a FITS file. If not,
only the overlapping pixels of this array and the output image are kept and added to the
output array.

8.1.4 Magnitude to flux conversion

The total brightness of the object is not specified in units of flux, but in magnitudes. The
magnitude scale is a relative measure of brightness. When a reference object has magnitude
m,. with flux F,., then the magnitude of an object with a flux of F' is calculated by:

F
m —m, = —2.5log,, (F)

The zero-point magnitude (m,) is defined as the magnitude in which F,. = 1. So when
you specify the magnitude of your desired object in the --mcol of your input catalog, then
it will have a total flux of:

my—m

m, —m
1 F=—"2 s F=10 23
Oglo 25

8.1.5 Invoking MakeProfiles

MakeProfiles will make any number of profiles specified in a catalog either individually or
in one image. The executable name is astmkprof with the following general template

$ astmkprof [OPTION ...] [BackgroundImage] Catalog
One line examples:

$ astmkprof background.fits catalog.txt
$ astmkprof --xcol=0 --ycol=1 catalog.txt
$ astmkprof --individual --oversample 3 -x500 -y500 catalog.txt

If mock galaxies are to be made, the catalog (which stores the parameters for each mock
profile) is the mandatory argument. The input catalog has to be a text file formatted in
a table with columns separated by space, tab or comma (,) characters. See Chapter 4
[Common behavior|, page 31 for a complete explanation of some common behaviour and
options in all Gnuastro programs including MakeProfiles.

If a data image file (see Section 4.1.2 [Arguments|, page 32) is given, that image is used

as the background. The flux value of each profile pixel will be added to the pixel in that

Chapter 8: Modeling and fitting 115

background value. In this case the values to all options relating to the output size and WCS
will be ignored if specified (for example --naxis1, --naxis2 and --prepforconv) on the
command line or in the configuration files. The profiles will be made on the background
image (their values will be added to the background image pixels). Note that -—oversample
will remain active even if a background image is specified.

8.1.5.1 MakeProfiles catalog

The catalog is a text file table. Its columns can be ordered in any desired manner, you can
specify which columns belong to which parameters using the set of options ending with col,
for example —--xcol or --rcol, see Section 8.1.5.2 [MakeProfiles options|, page 115.

The value for the profile center in the catalog (in the --xcol and --ycol columns) can
be a floating point number so the profile center can be on any sub-pixel position. Note that
pixel positions in the FITS standard start from 1 and an integer is the pixel center. So a
2D image actually starts from the position (0.5, 0.5). In MakeProfiles profile centers do not
have to be in the image. Even if only one pixel of the profile within the truncation radius is
within the output image, that pixel is included in the image. Profiles that are completely
out of the image will not be created. You can use the output log file to see which profiles
were within the image.

If PSF profiles (Moffat or Gaussian) are in the catalog and the profiles are to be built in
one image (when --individual is not used), it is assumed they are the PSF(s) you want
to convolve your created image with. So by default, they will not be built in the output
image but as separate files. The total flux of these separate files will also be set to unity (1)
so you are ready to convolve. As a summary, their position and magnitude will be ignored.
This behaviour can be disabled with the ——psfinimg option. If you want to create all the
profiles separately (with -—individual) and you want the total flux of your PSF profiles to
be unity, you have to set their magnitudes in the catalog to the zero-point magnitude and
be sure that the central positions of the profiles don’t have any fractional part (the PSF
center has to be in the center of the pixel).

8.1.5.2 MakeProfiles options

The common options that are shared by Gnuastro programs, are fully explained in
Section 4.1.4 [Common options|, page 34 and are not repeated here. Since there are no
image inputs, the--hdu option is ignored. The options can be classified into the following
categories: Output, Profiles, Catalog and WCS. Below each one is reviewed.

Output:

-X

--naxisl (=INT) The number of pixels in the output image along the first FITS axis (hor-
izontal when viewed in SAO ds9). This is before over-sampling. For example if
you call MakeProfiles with -—naxis1=100 --oversample=5 (assuming no shift
due for later convolution), then the final image size along the first axis will be
500. If a background image is specified, any possible value to this option is
ignored.

Ty

--naxis2 (=INT) The number of pixels in the output image along the second FITS axis
(vertical when viewed in SAO ds9), see the explanation for —-naxis1.

Chapter 8: Modeling and fitting 116

-s
—--oversample
(=INT) The scale to over-sample the profiles and final image. If not an odd
number, will be added by one, see Section 8.1.1.6 [Oversampling], page 113.
Note that this -—oversample will remain active even if an input image is spec-
ified. If your input catalog is based on the background image, be sure to set
—--oversample=1.

——psfinimg
Build the possibly existing PSF profiles (Moffat or Gaussian) in the catalog
into the final image. By default they are built separately so you can convolve
your images with them, thus their magnitude and positions are ignored. With
this option, they will be built in the final image like every other galaxy profile.
To have a final PSF in your image, make a point profile where you want the
PSF and after convolution it will be the PSF.

-1

—--individual
If this option is called, each profile is created in a separate FITS image named
with the row number of the profile in the catalog. In this case, only the sub-pixel
position of the profile center is important.

The output will have an odd number of pixels. If there is no oversampling,
the central pixel will contain the profile center. If the value to -—-oversample is
larger than unity, then the profile center is on any of the central -—oversample’d
pixels depending on the fractional value of the profile center.

If the fractional value is larger than half, it is on the bottom half of the central
region. This is due to the FITS definition of a real number position: The center
of a pixel has fractional value 0.00 so each pixel contains these fractions: .5 —
.75 — .00 (pixel center) — .25 — .5.

-m
—--nomerged
Don’t make a merged image. By default after making the profiles, they are
added to a final image with sides of -—naxisl and --naxis2 if they overlap
with it.

Profiles:

-r
—--numrandom
The number of random points used in the central regions of the profile, see
Section 8.1.1.5 [Sampling from a function|, page 112.

-e
--envseed
Use the value to the GSL_RNG_SEED environment variable to generate the ran-
dom Monte Carlo sampling distribution, see Section 8.1.1.5 [Sampling from a
function], page 112 and Section 8.2.1.4 [Generating random numbers|, page 122.

Chapter 8: Modeling and fitting 117

-t

--tolerance
(=FLT) The tolerance to switch from Monte Carlo integration to the central
pixel value, see Section 8.1.1.5 [Sampling from a function], page 112.

%

-—tunitinp
The truncation column of the catalog is in units of pixels. By default, the
truncation column is considered to be in units of the radial parameters of the
profile (--rcol). Read it as ‘t-unit-in-p’ for ‘truncation unit in pixels’.

-X

--xshift (=INT) Shift all the profiles and enlarge the image along the first FITS axis, see
n in Section 8.1.2 [If convolving afterwards|, page 113. This is useful when you
want to convolve the image afterwards. If you are using an external PSF, be
sure to oversample it to the same scale used for creating the mock images. If a
background image is specified, any possible value to this option is ignored.

-Y
--yshift (=INT) Similar to --xshift for the second FITS axis.

-c

—--prepforconv
Shift all the profiles and enlarge the image based on half the width of the first
Moffat or Gaussian profile in the catalog, considering any possible oversampling
see Section 8.1.2 [If convolving afterwards|, page 113. --prepforconv is only
checked and possibly activated if ——xshift and --yshift are both zero (after
reading the command line and configuration files). If a background image is
specified, any possible value to this option is ignored.

--magatpeak
Use the flux specified by the magnitude column in the catalog (see
Section 8.1.5.1 [MakeProfiles catalog], page 115) only for the peak profile pixel,
not the full profile. Note that this is the flux of the profile’s peak pixel in the
final output of MakeProfiles. So the specified oversampling, see Section 8.1.1.6
[Oversampling], page 113 has no affect.

)

This option can be useful if you want to check a mock profile’s total magnitude
at various truncation radii. Without this option, no matter what the truncation
radius is, the total magnitude will be the same as that given in the catalog. But
with this option, the total magnitude will become brighter as you increase the
truncation radius.

In sharper profiles, sometimes the accuracy of measuring the peak profile flux
is more than the total profile flux. In such cases, with this option, the final
profile will be built such that its peak has the given magnitude, not the total
profile.

Chapter 8: Modeling and fitting 118

(7
CAUTION: If you want to use this option for comparing with observations,

please note that MakeProfiles does not do convolution. Unless you have decon-
volved your data, your images are convolved with the instrument and atmo-
spheric PSF, see Section 8.1.1.2 [Point Spread function], page 109. Particularly
in sharper profiles, the flux in the peak pixel is strongly decreased after convo-
lution. Also note that in such cases, besides deconvolution, you will have to set
--oversample=1 otherwise after resampling your profile with ImageWarp (see

Section 6.3 [ImageWarp], page 68), the peak flux will be different.
N J

-M

--setconsttomin
For profiles that have a constant value (no variation from pixel to pixel), set
the constant value to the minimum value in the image. This is very useful if
the profiles with constant value are to be used as masks. When displaying the
images in a document (and inverting the images as is automatically done in
ConvertType), the masked pixels will become white.

-R

--replace
Do not add pixel values to each other, replace them. By default, when two
profiles overlap, the final pixel value is the sum of all the profiles that overlap
on that pixel. When this option is given, the pixels are not added but replaced
by newer profiles.

When order does matter, make sure to use this function with ——numthreads=1.
When multiple threads are used, the separate profiles are built asynchronously
and not in order. Since order does not matter in an addition, this causes no
problems by default but has to be considered when this option is given. Using
multiple threads is no problem if the profiles are to be used as a mask (with
--setconsttomin) since all their pixel values are the same.

-W
--circumwidth
(=FLT) The width of the circumference if the profile is to be an elliptical cir-
cumference or annulus. See the explanations for this type of profile in --fcol.

-z
—--zeropoint

(=FLT) The zero-point magnitude of the image.

Catalog: The value to all of these options is considered to be a column number, where
counting starts from zero.

--fcol (=INT) The functional form of the profile with one of the values below. Note
that this value will be converted to an integer before analysis using the internal
type conversion of C. So for example 2.80 will be converted to 2.

e 0: Sérsic.
e 1: Moffat.
e 2: Gaussian.

e 3: Point source (a star).

Chapter 8: Modeling and fitting 119

e 4: Flat profile: all pixels have same value.

e 5: Circumference: same value for all pixels between the truncation radius
(r¢) and r; — w where w is the value to the ——circumwidth. Currently this
is only intended to be used for making an elliptical annulus (with a width
of 1 or 2 pixels).

--xcol (=INT) The center of the profiles along the first FITS axis (horizontal when
viewed in SAO ds9).

--ycol (=INT) The center of the profiles along the second FITS axis (vertical when
viewed in SAO ds9).

--rcol (=INT) The radius parameter of the profiles. Effective radius (r.) if Sérsic,
FWHM if Moffat or Gaussian.

--ncol (=INT) The Sérsic index (n) or Moffat (.

--pcol (=INT) The position angle (in degrees) of the profiles relative to the first FITS
axis (horizontal when viewed in SAO ds9).

--qcol (=INT) The axis ratio of the profiles (minor axis divided by the major axis).

--mcol (=INT) The total pixelated magnitude of the profile within the truncation radius,
see Section 8.1.3 [Profile total magnitude], page 113.

--tcol (=INT) The truncation radius of this profile. By default it is in units of the radial
parameter of the profile (the value in the --rcol of the catalog). If ——tunitinp
is given, this value is interpreted in units of pixels (prior to oversampling)
irrespective of the profile.

WCS:

--crpixl (=FLT) The pixel coordinates of the WCS reference point on the first (horizontal)
FITS axis (counting from 1).

--crpix2 (=FLT) The pixel coordinates of the WCS reference point on the second (vertical)
FITS axis (counting from 1).

--crvall (=FLT) The Right Ascension (RA) of the reference point.

--crval2 (=FLT) The Declination of the reference point.

--resolution
(=FLT) The resolution of the mnon-oversampled image in units of
arcseconds,/pixel.

8.1.5.3 MakeProfiles output

Besides the final merged image of all the profiles or individual profiles that can be built
based on the input options, MakeProfiles will also create a log file in the current directory
(where you run MockProfiles). The values for each column are explained in the first few
commented (starting with # character). The log file includes the following information:

e The total magnitude of the profile in the image. This will be different from your input
magnitude if the profile was not completely in the image.

Chapter 8: Modeling and fitting 120

e The number of pixels (in the oversampled image) which used Monte Carlo integration
and not the central pixel value.

e The fraction of flux in the Monte Carlo integrated pixels.

e If an individual image was created or not.

8.2 MakeNoise

Real data are always burried in noise, therefore to finalize a simulation of real data (for
example to test our observational algorithms) it is essential to add noise to the mock profiles
created with MakeProfiles, see Section 8.1 [MakeProfiles|, page 108. Below, the general
principles and concepts to help understand how noise is quantified is discussed. MakeNoise
options and argument are then discussed in Section 8.2.2 [Invoking MakeNoise|, page 123.

8.2.1 Noise basics

Deep astronomical images, like those used in extragalactic studies seriously suffer from noise
in the data. Generally speaking, the sources of noise in an astronomical image are photon
counting noise and Instrumental noise which are discussed in detail below. We finish with a
short introduction on how random numbers are generated and how you can determine the
random number generator and seed value.

8.2.1.1 Photon counting noise

Thanks to the very accurate electronics used in today’s detectors, this type of noise is the
main cause of concern for extra galactic studies. It can generally be associate with the
counting error that is known to have a Poisson distribution. The Poisson distribution is
about counting. But counting is a discrete operation with only positive values, for example
we can’t count 3.2 or —2 of anything. We only count 0, 1, 2, 3 and so on. Therefore the
Poisson distribution is also a discrete distribution, only applying to whole positive integers.

Let’s assume the mean value of counting something is known. In this case, the number of
electrons that are produced by photons in the CCD. Let’s call this mean A. Let’s take k to
represent the result of counting in one particular time we attempt to count. The probability
density function of k can be written as:

)\k
f(k) = 75e7 ke{0,1,2,3,..}

Because the Poisson distribution is only applicable to positive values, it is by nature very
skewed when A is near zero. One qualitative way to imagine it is that there simply aren’t
enough integers smaller than A, than there are larger integers. Therefore to accommodate
all possibilities, it has to be skewed when A is small.

But as A becomes larger and larger, the distribution becomes more and more symmetric.
One very useful property of the Poisson distribution is that the mean value is also its
variance. When \ is very large, say A > 1000, then the normal (Gaussian) distribution,
see Section 8.1.1.2 [Point Spread function], page 109, is an excellent approximation of the
Poisson distribution with mean y = A and standard deviation o = /.

Chapter 8: Modeling and fitting 121

We see that the variance or dispersion of the distribution depends on the mean value, and
when it is large it can be approximated with a Gaussian that only has one free parameter
(= X and ¢ = V/)\) instead of two that it originally has.

The astronomical objects after convolution with the PSF of the instrument, lie above a
certain background flux. This background flux is defined to be the average flux of a region
in the image that has absolutely no objects. The physical origin of this background value
is the brightness of the atmosphere or possible stray light within the imagining instrument.
It is thus an ideal definition, because in practice, what lies deep in the noise far lower than
the detection limit is never known*. However, in a real image, a relatively large number of
very faint objects can been fully buried in the noise. These undetected objects will bias the
background measurement to slightly larger values. The sky value is therefore defined to be
the average of the undetected regions in the image, so in an ideal case where all the objects
have been detected, the sky value and background value are the same.

As longer wavelengths are used, the background value becomes more significant and also
varies over a wide image field. Such variations are not currently implemented in Make-
Profiles, but will be in the future. In a mock image, we have the luxury of setting the
background value.

In each pixel of the canvas of pixels the flux is the sum of contributions from various
sources after convolution. Let’s name this flux of the convolved sum of possibly overlapping
objects, I,,,. nn representing ‘no noise’. For now, let’s assume the background is constant
and represented by B. In practice the background values are larger than ~ 1,000 counts.
Then the flux after adding noise is a random value taken from a Gaussian distribution with
the following mean (x) and standard deviation (o):

M:B+Inn7 J:VB+Inn

Since this type of noise is inherent in the objects we study, it is usually measured on
the same scale as the astronomical objects, namely the magnitude system, see Section 8.1.4
[Magnitude to flux conversion|, page 114. It is then internally converted to the flux scale
for further processing.

8.2.1.2 Instrumental noise

While taking images with a camera, a dark current is fed to the pixels, the variation of the
value of this dark current over the pixels, also adds to the final image noise. Another source
of noise is the readout noise that is produced by the electronics in the CCD that attempt to
read the amount of flux that was recorded. In deep extra-galactic studies these sources of
noise are not as significant as the noise of the background sky. Let C represent the combined
standard deviation of all these sources of noise. If only this source of noise is present, the
noised pixel value would be a random value chosen from a Gaussian distribution with

M:Inn7 U:VCQ+Inn

4 See the section on sky in Akhlaghi M., Ichikawa. T. 2015. Astrophysical Journal Supplement Series.

Chapter 8: Modeling and fitting 122

This type of noise is completley independent of the type of objects being studied, it is
completely determined by the instrument. So the flux scale (and not magnitude scale) is
most commonly used for this type of noise. In practice, this value is usually reported in
ADUs not flux or electron counts. The gain value of the device can be used to convert
between these two.

8.2.1.3 Final noised pixel value

Depending on the values you specify for B and C from the above, the final noised value for
each pixel is a random value chosen from a Gaussian distribution with

uw=B+1,,, c=+C*+B+1,,

8.2.1.4 Generating random numbers

As discussed above, to generate noise we need to make random samples of a particular dis-
tribution. So it is important to understand some general concepts regarding the generation
of random numbers. For a very complete and nice introduction we strongly advise reading
Donald Knuth’s “The art of computer programming”, volume 2, chapter 3°. Quoting from
the GNU Scientific Library manual, “If you don’t own it, you should stop reading right
now, run to the nearest bookstore, and buy it”°!

Using only software, we can only produce what is called a psudo-random sequence of
numbers. A true random number generator a hardware (lets assume we have made sure it
has no systematic biases), for examle throwing dice or flipping coins (which have remained
from the ancient times). More modern hardware methods use atmospheric noise, thermal
noise or other types of external electromagnetic or quantum phenomena. All psudo-random
number generators (software) require a seed to be the basis of the generation. The advantage
of having a seed is that if you specify the same seed for multiple runs, you will get an identical
sequence of random numbers which allows you to reproduce the same final noised image.

The programs in GNU Astronomy Utilities (for example MakeNoise or MakeProfiles)
use the GNU Scientific Library (GSL) to generate random numbers. GSL allows the user
to set the random number generator through environment variables, see Section 3.3.1.2
[Installation directory|, page 25 for an introduction to environment variables. In the chapter
titled “Random Number Generation” they have fully explained the various random number
generators that are available (there are a lot of them!). Through the two environment
variables GSL_RNG_TYPE and GSL_RNG_SEED you can sepecify the generator and its seed
respectively.

If you don’t specify a value for GSL_RNG_TYPE, GSL will use its default random number
generator type. The default type is sufficient for most general applications. If no value is
given for the GSL_RNG_SEED environment variable and you have asked Gnuastro to read the
seed from the environment (through the -—envseed option), then GSL will use the default
value of each generator to give identical outputs. If you don’t explicitly tell Gnuastro
programs to read the seed value from the environment variable, then they will use the

5 Knuth, Donald. 1998. The art of computer programming. Addison—Wesley. ISBN 0-201-89684-2
6 For students, running to the library might be more affordable!

Chapter 8: Modeling and fitting 123

system time (accurate to within a microsecond) to generate (apparently random) seeds.
In this manner, every time you run the program, you will get a different random number
distribution.

There are two ways you can specify values for these environment variables. You can call
them on the same command line for example:

$ GSL_RNG_TYPE="taus" GSL_RNG_SEED=345 astmknoise input.fits

In this manner the values will only be used for this particular execution of MakeNoise. To
define them for the full period of your terminal session or script length, you can use the
shell’s export command (for a script remove the $ signs):

$ export GSL_RNG_TYPE="taus"
$ export GSL_RNG_SEED=345

The subsequent programs in the particular terminal (or script) that you ran these commands
on which use of GSL’s random number generators (including the Gnuastro programs) will
hence forth use these values. Finally, in case you want set fixed values for these variables
every time you use the GSL random number generator, you can add these two lines to your
.bashrc startup script’.

e)
NOTE: If the two environment variables GSL_RNG_TYPE and GSL_RNG_SEED are defined,

GSL will report them by default, even if you don’t use the ——envseed option. For example
you can see the top few lines of the output of MakeProfiles:

$ export GSL_RNG_TYPE="taus"

$ export GSL_RNG_SEED=345

$ astmkprof catalog.txt --envseed

GSL_RNG_TYPE=taus

GSL_RNG_SEED=345

MakeProfiles started on AAA BBB DD EE:FF:GG HHH
- 6 profiles read from catalog.txt 0.000236 seconds
- Random number generator (RNG) type: taus
- RNG seed for all profiles: 345

The first two output lines (showing the names of the environment variables) are printed
by GSL before MakeProfiles actually starts generating random numbers. The Gnuastro
programs will report the values they use independently, you should check them for the final
values used. For example if --envseed is not given, GSL_RNG_SEED will not be used and
the last line shown above will not be printed. In the case of MakeProfiles, each profile will

get its own seed value.
- J

8.2.2 Invoking MakeNoise

MakeNoise will add noise to an existing image. The executable name is astmknoise with
the following general template

$ astmknoise [OPTION ...] InputlImage.fits

" Don’t forget that if you are going to give your scripts (that use the GSL random number generator)
to others you have to make sure you also tell them to set these environment variable separately. So
for scripts, it is best to keep all such variable definitions within the script, even if they are within your
.bashrc.

Chapter 8: Modeling and fitting 124

One line examples:
$ astmknoise --background=1000 --stdadd=20 mockimage.fits

If actual processing is to be done, the input image is a mandatory argument. The full list
of options common to all the programs in Gnuastro can be seen in Section 4.1.4 [Common
options|, page 34. The output will have the same type as the input image, however the
internal processing is done on a double precision floating point format. If the input values
were integer types, then each floating point number will be rounded to the nearest integer
away from zero. This might cause integer overflow if types with small ranges are used (for
example images with a BITPIX of 8 which can only keep 256 values). This can be disabled
with the doubletype option. The header of the output FITS file keeps all the parameters
that were influential in making it. This is done for future reproducability.

-b

--background
(=sFLT) The background value for the image in units of magnitudes, see
Section 8.2.1.1 [Photon counting noise], page 120 and Section 8.1.4 [Magnitude
to flux conversion], page 114.

-z

—--zeropoint
(=FLT) The zeropoint magnitude used to convert the value of --background (in
units of magnitude) to flux, see Section 8.1.4 [Magnitude to flux conversion],
page 114.

-s

--stdadd (=FLT) The instrumental noise which is in units of flux, see Section 8.2.1.2
[Instrumental noise|, page 121.

-e

-—envseed
Use the GSL_RNG_SEED environment variable for the seed used in the random
number generator, see Section 8.2.1.4 [Generating random numbers], page 122.
With this option, the output image noise is always going to be identical (or
reproducable).

-d

—--doubletype
Save the output in the double precision floating point format that was used
internally. This option will be most useful if the input images were of integer
types.

Chapter 9: Table manipulation 125

9 Table manipulation

The FITS standard also specifies tables as a form of data that can be stored in the extensions
of a FITS file. These tables can be ASCII tables or binary tables. The utilities in this section
provide the tools to directly read and write to FITS tables.

The software for this section have to be added

Chapter 10: Developing 126

10 Developing

The basic idea of GNU Astronomy Utilities is for an interested astronomer to be able to
easily understand the code of any of the programs, be able to modify the code if she feels
there is an improvement and finally, to be able to add new programs to the existing utilities
for their own benefit, and the larger community if they are willing to share it. In short, we
hope that at least from the software point of view, the “obscurantist faith in the expert’s
special skill and in his personal knowledge and authority” can be broken, see Section 1.2
[Science and its tools|, page 2. The following software architecture can be one of the most
basic and easy to understand for any interested inquirer.

First some general design choices are tackled. It is followed by a short explanation of
the version controlled source. The libraries and headers in their respective directories are
then explained. Later the the basic conventions for managing the code in each program to
facilitate reading the code by an outside inquirer is discussed. Finally some notes on the
building process are given.

10.1 Why C programming language?

Currently the programming language that is most commonly used in scientific applications is
C++, and more recently Python. One of the main reasons behind this choice is that through
the Object oriented programming paradigm, they offer a much higher level of abstraction.
However, GNU Astronomy Utilities are written in the C programming language. The
reasons can be summarized with simplicity and speed. Both are extremely important in a
scientific software.

A simple comparison of the main books of C++ and C can act as a guide. The “C
programming language”! book, written by the authors of C, is only 286 pages and covers a
very good fraction of the language, it has also remained unchanged from 1988. C is the main
programming language of nearly all operating systems and there is no plan of any significant
update. The most recent “C++ programming language”? book, also written by its author,
on the other hand has 1366 pages and its fourth edition came out in 2013! As discussed
in Section 1.2 [Science and its tools|, page 2, it is very important for other scientists to be
able to readily read the code of a program at their will with minimum requirements.

In C++, inheriting objects in the object oriented programming paradigm and their inter-
nal functions make the code very easy to write for the programmer who is deeply invested
in those objects and understands all their relations well. But it simultaneously makes read-
ing the program for a first time reader (a curious scientist who wants to know only how
a small step was done) extremely hard. Before understanding the methods, the scientist
has to invest a lot of time in understanding those objects and their relations. But in C, if
only simple structures are used, all variables can be given as the basic language types for
example ints or floats and their pointers to define arrays. So when an outside reader is
only interested in one part of the program, that part is all they have to understand.

Recently it is also becoming common to write scientific software in Python, or a combi-
nation of it with C or C++. Python is a high level scripting language which doesn’t need

! Brian Kernighan, Dennis Ritchie. The C programming language. Prentice Hall, Inc., Second edition,
1988. It is also commonly known as K&R and is based on the ANSI C and ISO C90 standards.

2 Bjarne Stroustrup. The C++ programming language. Addison-Wesley Professional; 4 edition, 2013.

Chapter 10: Developing 127

compilation. It is very useful when you want to do something on the go and don’t want to
be halted by the troubles of compiling, linking, memory checking, etc. When the data sets
are small and the job is temporary, this ability of Python is great and is highly encouraged.
A very good example might be plotting, in which Python is undoubtedly one of the best.

But as the data sets increase in size and the processing becomes very complicated, the
speed of Python scripts significantly decrease. So when the program doesn’t change too
often and is widely used in a large community mostly on large data sets (like astronomical
images), using Python will waste a lot of valuable research-hours. Some use Python as a
wrapper for C or C++ functions to fix the speed issue. However because such actions allow
separate programs to share memory (through Python), the code in such programs tends to
become extremely complicated very soon, which is contrary to the principles in Section 1.2
[Science and its tools], page 2.

Like C++, Python is object oriented, so as explained above, it needs a high level of
experience with that particular program to fully understand its inner workings. To make
things worse, since it is mainly for fast and on the go programming, it constantly undergoes
significant changes, such that Python 2.x and Python 3.x are not compatible. Lots of
research teams that invested heavily in Python 2.x cannot benefit from Python 3.x or
future versions any more. Some converters are available, but since they are automatic, lots
of complications might arise in the conversion. Thus, re-writing all the changes would be
the only truly reliable option. If a research project begins using Python 3.x today, there is
no telling how compatible their investments will be when Python 4.x or 5.x will come out.
This stems from the core principles of Python, which are very useful when you look in the
‘on the go’ basis as described before and not future usage.

Being a very low level (closer to the hardware) language, C is much less complex for
both the human reader and the computer. It thus allows for closer relation between the
programmer (program) and the actual data in our disposal. This is contrary to the illusion
of abstractions that the higher level languages provide. The GNU coding standards® also
encourage the use of C over all other languages when generality of usage and ‘high speed’
is desired.

10.2 Design philosophy

The core processing functions of each program are written mostly with the basic ISO C90
standard. We do make lots of use of the GNU additions to the C language in the GNU
C Library, but these additional functions are mainly used in the user interface functions
(reading your inputs and preparing them prior to or after the analysis). The actual algo-
rithms, which most scientists would be more interested in, are much more closer to ISO
C90. For this reason, the source files containing user interface code and those containing
actual processing code are clearly separated, see Section 10.7 [Program source|, page 132. If
anything particular to the GNU C Library is used in the processing functions, it is explained
in the comments in between the code.

Similar to GNU Coreutils, all the Gnuastro utilities provide very low level operations.
This enables you to use the GNU Bash scripting language (which is the default in most
GNU/Linux operating systems) or any other shell you might be using to operate on a large
number of files or do very complex things through the creative combinations of these tools

3 http://www.gnu.org/prep/standards/

http://www.gnu.org/prep/standards/

Chapter 10: Developing 128

that the authors had never dreamed of. We have put a few simple examples in Chapter 2
[Tutorials], page 11.

For example all the analysis output is provided as ASCII tables which you can feed into
your favorite plotting program to inspect visually. Python’s Matplotlib is very useful for
fast plotting of the tables to immediately check your results. If you want to include the plots
in a document, you can use the PGFplots package within IXTEX, no attempt is made to
include such operations in Gnuastro. In short, Bash can act as a glue to connect the inputs
and outputs of all these various Gnuastro utilities (and other programs) in any fashion you
please.

The advantage of this architecture is that the programs become small and transparent:
the starting and finishing point of every program is clearly demarcated. For nearly all
operations on a modern computer, the read/write speed is very insignificant compared to
the actual processing a program does. Therefore the complexity which arises from sharing
memory in a large application is simply not worth the speed gain. This basic design is influ-
enced by Eric Raymond’s “The Art of Unix Programming”* which beautifully describes the
design philosophy and practice which lead to the success of Unix-based operating systems®.

Finally, and arguably the most important, principle of Gnuastro is this: Gnuastro is
not planned to be a repository of creative programs with no clear purpose. The purpose of
each program and all the major operations it does have to be very clearly documented and
aligned with the general purpose of Gnuastro. Through the main management hub, we have
a set of planned tasks and bugs, see Section 10.3 [Gnuastro project webpage|, page 128. If
you have a plan to add something and want it to be an official part of Gnuastro, please
check there and if it (or something similar to it) doesn’t already exist, then add it. This
will notify all the developers of your intent, so potentially parallel operations do not occur
and similar ideas can be discussed. If something similar to your idea already exists, you
can contact the person in charge and join that work.

10.3 Gnuastro project webpage

Gnuastro’s central management hub® is located on GNU Savannah”. It is the central soft-
ware development management system for all GNU projects. Through this central hub,
you can view the list of activities that the developers are engaged in, their activity on the
version controlled source, and other things. Each defined activity in the development cycle
is known as an ‘issue’ (or ‘item’). An issue can be a bug (see Section 1.7 [Report a bug],
page 7), or a suggested feature (see Section 1.8 [Suggest new feature|, page 8) or an en-
hancement or generally any one job that is to be done. In Savannah, issues are classified
into three categories or ‘tracker’s:

Support This tracker is a way that (possibly anonymous) users can get in touch with the
Gnuastro developers. It is a complement to the bug-gnuastro mailing list (see
Section 1.7 [Report a bug], page 7). Anyone can post an issue to this tracker.
The developers will not submit an issue to this list. They will only reassign the

4 Eric S. Raymond, 2004, The Art of Unixz Programming, Addison-Wesley Professional Computing Series.
5 KISS principle: Keep It Simple, Stupid!

6 https://savannah.gnu.org/projects/gnuastro/

7 https://savannah.gnu.org/

https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/

Chapter 10: Developing 129

issues in this list to the other two trackers if they are valid®. Ideally (when the
developers have time to put on Gnuastro, please don’t forget that Gnuastro is
a volunteer effort), there should be no open items in this tracker.

Bugs This tracker contains all the known bugs in Gnuastro (problems with the ex-
isting tools).

Tasks The items in this tracker contain the future plans (or new features/capabilities)
that are to be added to Gnuastro.

All the trackers can be browsed by a (possibly anonymous) visitor, but to edit and comment
on the Bugs and Tasks trackers, you have to be a registered Gnuastro developer. When
posting an issue to a tracker, it is very important to choose the ‘Category’ and ‘Item
Group’ options accurately. The first contains a list of all Gnuastro’s utilities along with
‘Installation’, ‘New utility’ and ‘Webpage’. The “Item Group” contains the nature of the
issue, for example if it is a ‘Crash’ in the software (a bug), or a problem in the documentation
(also a bug) or a feature request or an enhancement.

The set of horizontal links on the top of the page (Starting with ‘Main’ and ‘Homepage’
and finishing with ‘News’) are the easiest way to access these trackers (and other major
aspects of the project) from any part of the project webpage. Hovering your mouse over
them will open a drop down menu that will link you to the different things you can do on
each tracker (for example, ‘Submit new’ or ‘Browse’). When you browse each tracker, you
can use the “Display Criteria” link above the list to limit the displayed issues to what you
are interested in. The ‘Category’ and ‘Group Item’ (explained above) are a good starting
point.

10.4 Version controlled source

The source code that is publicly distributed does not contain the revision history, it is only
the final snapshot of a stable release, ready to be configured and built. To be able to develop
successfully, the revision history of the code can be very useful, also some updates that are
not yet released might be in it. We use Git for the version control of Gnuastro. For those
who are not familiar with it, we suggest the Pro Git book?. The whole book is publicly
available for online reading and downloading. The latest version of Gnuastro can be cloned
by running

$ git clone git://git.sv.gnu.org/gnuastro.git

The version controlled source code lacks the source files that we have not written or are au-
tomatically built (and included in the distributed gnuastro-0.0.tar.gz) for configuration
and building. There are two types of files that we have not written. To ensure porta-
bility for a wider range of operating systems (those that don’t include GNU C Library,
namely glibc), we have used the GNU Portability Library (Gnulib). Gnulib keeps a copy
of all the functions in glibc and you can include them in the source code to replace system
wide functions on other compilers. To test for various system architectures and compiler

8 Some of the issues registered here might be due to a mistake on the user’s side, not an actual bug in the
program.

9 http://git-scm.com/book/en/v2

http://git-scm.com/book/en/v2

Chapter 10: Developing 130

configurations we make use of the various GNU Autoconf macros in the GNU Autoconf
archives!?.

To get the Gnulib and the Autoconf archives, just run these commands in any directory

you want to store them in (lets assume you are in ~/Development directory):

$ pwd

/home/yourusername/Development

$ git clone git://git.sv.gnu.org/gnulib.git

$ git clone git://git.sv.gnu.org/autoconf-archive.git
This will download the full version controlled source of the two in separate directories.
Both these packages are regularly updated, so every once and a while you can run $ git
pull within them to get any possible updates. First, include all the necessary packages
from Gnulib. To do that, run the following command from within the cloned gnuastro
directory!!:

$ ~/Development/gnulib/gnulib-tool --import --source-base=gnulib/lib \
--with-tests --tests-base=gnulib/tests --no-vc-files math argp \
error progname

One of the directories made after running gnulib-tool is m4/. We can now add the
necessary Autoconf checks from the Autoconf archives to this directory:

$ cp “/Development/autoconf-archive/m4/ax_pthread.m4 ./m4/

All the necessary GNU C Library functions and Autoconf macros are now available. Now
you can add the automatically generated files used to build Gnuastro using the GNU build
system. To generate those files you have to run the following command in the cloned
gnuastro directory. autoreconf is part of GNU Autoconf and also requires GNU Au-
tomake, GNU Libtool and GNU Texinfo to create all the necessary files, see Section 10.9
[Building], page 138.

$ autoreconf --install

Now you can easily configure, build and start hacking into the code and you have the full
revision history under your fingers.

The hand-written (version controlled) code for Gnuastro, this manual and the tests are
divided in the following sub-directories of the top directory. Their names are standard and
descriptive enough, but a short summary is given here:

doc The Texinfo source files for this manual and the Gnuastro webpage file(s).

include The header files of the internal static libraries and also some other header files
that are used by more than one program.

1ib The internal static libraries (only their . c files) are stored here. These libraries
hold functions that are used by more than one program, they will not be in-
stalled.

src This directory contains a subdirectory for every program in this version of

Gnuastro. The source code for each program is placed inside each of these
sub-directories to be easily separable.

10 http://www.gnu.org/software/autoconf-archive/

1 Note that the gnulib-tool script has to be run from within the cloned Gnulib directory, it is not
insxtalled.

http://www.gnu.org/software/autoconf-archive/

Chapter 10: Developing 131

tests This directory keeps all the tests (checks) which are executed when make check
is run.

Until Gnuastro grows large enough to define its own, we strive to follow the version
control guidelines of the Git project as our base. You can find it in the Git project’s
submitting patches guideline!?.

10.5 Internal libraries

Libraries are binary (compiled) files which are not executable them selves, but once linked
with other binary files, they form the building blocks of larger programs. Several functions
are commonly used by all or several of the programs in Gnuastro. Therefore they are
written as separate libraries so we don’t have to maintain duplicate code. Such libraries are
commonly referred to as convenience libraries. They are mostly to do with interaction with
the outside world (of the program), for example setting up the configuration files, reading
text catalogs or wrappers for CFITSIO and WCSLIB to facilitate reading and writing of
FITS files. The names of the libraries are usually descriptive enough on the kind of functions
they keep.

Currently these libraries are not installed along with Gnuastro, they are only statically
linked to any program needing them in the build directory and remain or are deleted from
there. Note that in a static link, the contents of the library are merged with the executable,
so they are no longer needed after the linking (you can safely delete them after installing
the executable). In the future if need be, they can also be installed so they can be used by
other programs too.

10.6 Header files

The include/ directory contains the headers for Gnuastro’s internal libraries (see
Section 10.5 [Internal libraries|, page 131) and several header-only files in the include

)

directory. Below is a list of the latter type.

commonargs.h

All the programs have a common set of options, see Section 4.1.4 [Common
options|, page 34. Instead of including separately them and making sure they
are identical in the implementation of all programs, the GNU C library’s ability
to merge independent argument parsers with Argp is used. This ensures that
they are identical in all programs with only one file to work on. The common
options and the function to parse them are thus defined in this header file. All
the argument parsers in various programs are merged with this argument parser
to read the user’s input.

commonparams.h
The structure that keeps the values of the common arguments and whether
they have been set or not is defined in this header file.

fixedstringmacros.h
Some strings are fixed in all the programs, only the relevant names of the pack-
ages must be put in them. The various names for each package are defined in

12 https://github.com/git/git/blob/master/Documentation/SubmittingPatches

https://github.com/git/git/blob/master/Documentation/SubmittingPatches

Chapter 10: Developing 132

their main.h source file with macros of fixed names. For example the copyright
notice, or parts of the top information in the --help output.

neighbors.h
The macros in this header find the neighbors of a pixel index using four or eight
connectivity in a region of an image or the whole image.

10.7 Program source

Besides the fact that all the programs share some functions that were explained in
Section 10.5 [Internal libraries], page 131, everything else about each program is completely
independent. In this section the conventions used in all the program sources are explained.
To easily understand the explanations in this section, it is good to open the source files of
one or several of the programs in Gnuastro and inspect them as you read along.

10.7.1 Mandatory source code files

Some programs might need lots of source files and if there is no fixed convention, navigating
them can become very hard for a new inquirer into the code. The following source files
exist in every program’s source directory (which is located in src/progname). For small
programs, these files are enough. Larger programs will need more files. In general for
writing other source files, please choose filenames that are descriptive.

main.c Each executable has a main function, which is located in main.c. Therefore
this file in any program’s source code will be the starting point. No actual
processing functions are to be defined in this file, the function(s) in this file are
only meant to connect the most high level steps of each program. Generally,
main will first call the top user interface function to read user input and make
all the preparations. Then it will pass control to the top processing function
for that program. The functions to do both these jobs must be defined in other
source files.

main.h All the major parameters which will be used in the program must be stored in
a structure which is defined in main.h. The name of this structure is usually
prognameparams, for example imgcropparams. So #include "main.h" will be
a staple in all the source codes of the program and most of the functions. Keep-
ing all the major parameters of a program in this structure has the major benefit
that most functions will only need one argument: a pointer to this structure.
This will significantly facilitate the job of the programmer, the inquirer and the
computer. All the programs in Gnuastro are designed to be low-level, small
and independent parts, so this structure should not get too large.

The main root structure of a program contains at least two other structures:
a structure only keeping parameters for user interface functions, which is
also defined in main.h and the commonparams structure which is defined in
commonparams.h, see Section 10.6 [Header files|, page 131. The main structure
can become very large and since the programmer and inquirer often don’t
need to be confused with these parameters mixed with the actual processing
parameters, they are conveniently defined in another structure which is
named uiparams and is also defined in main.h. It could be defined in ui.h
(see below) so the main functions remain completely ignorant to it, but its

Chapter 10: Developing 133

args.h

ui.c, ui.h

progname.c

parameters might be needed for reporting input conditions, so it is included as
part of the main program structure.

This top root structure is conveniently called p (short for parameters) by all
the programs. The uiparams structure is called up (for user parameters) and
the commonparams structure is called cp. With this convention any reader can
immediately understand where to look for the definition of one parameter.

With this basic root structure, source code of functions can potentially become
full of structure de-reference operators (->) which can make the code very un-
readable. In order to avoid this, whenever a parameter is used more than a
couple of times in a function, a parameter of the same type and with the same
name (so it can be searched) as the desired parameter should be defined and
put the value of the root structure inside of it in definition time. For example

char *hdu=p->cp.hdu;

int verb=p->cp.verb;

The argument parser structures (which are used by GNU C Library’s Argp) for
each program are defined in args.h. They are separate global variables and
function definitions that will be used by Argp. We recommend going through
the appropriate section in GNU C library to understand their exact meaning,
although they should be descriptive and understandable enough by looking at
a few of the programs.

The user interface functions are also a unique set of functions in all the pro-
grams, so they are particularly named ui.c and ui.h in all the programs.
Everything related to reading the user input arguments and options, checking
the configuration files and checking the consistency of the input parameters be-
fore the actual program is run should be done in this file. Since most functions
are the same, with only the internal checks and structure parameters differing,
we recommend going through several of the examples and structuring your ui.c
in a similar fashion with the rest of the programs.

The most high-level function in ui.c is named setparams which accepts int
argc, char *argv[] and a pointer to the root structure for that program, see
the explanation for main.h. This is the function that main calls. The basic
idea of the functions in this file is that the processing functions should need a
minimum number of such checks. With this convention an inquirer who only
wants to understand only one part (mostly the processing part and not user
input details) of the code can easily do so. It also makes all the errors related
to input appear before the processing begins which is more convenient for the
user.

The main processing functions in each program which keep the function(s)
that main() will call are in a file named progname.c, for example imgcrop.c
or noisechisel.c. The function within these files which main() calls is also
named after the program, for example

void

imgcrop(struct imgcropparams *p)

Chapter 10: Developing 134

or
void
noisechisel(struct noisechiselparams *p)
In this manner, if an inquirer is interested the processing steps, they can im-
mediately come and check this file for the first processing step without having
to go through main.c first. In most situations, any failure in any step of the
programs will result in an informative error message and an immediate abort
in the program. So there is no need for return values. Under more complicated
situations where a return value might be necessary, void will be replaced with
an int in the examples above.

cite.h This file keeps the function to be called if the user runs any of the programs
with --cite, see Section 4.1.4.2 [Operating modes|, page 35.

10.7.2 Coding conventions

Generally we try our best to follow the GNU coding standards, besides those the following
conventions are adhered to until now. If new code is also added in the same manner, it
would be much more easily readable by any interested astronomer (who will become familiar
with it after reading once).

e It is very important that the code be easy to read by the eye. So when the order of
several lines within a function does not matter (mostly when defining variables at the
start of a function). You should put the lines in the order of increasing length and group
the variables with similar types such that this half-pyramid of declarations becomes
most visible. If the reader is interested, a simple search will show them the variable
they are interested in. However, when looking through the functions or reading the
separate steps of the functions, this ‘order’ in the declarations will make reading the
rest of the function steps much more easier and pleasent to the eye.

e When ever you see that the function cannot be fully displayed (vertically) in your
monitor, this is a sign that it has become too long and should be broken up into multiple
functions. 40 lines is usually a good reference. When the start and end of a function
are clearly visible in one glance, the function is much more easier to understand. This
is most important for low-level functions (which usually define a lot of variables). Low-
level functions do most of the processing, they will also be the most interesting part
of a program for an inquiring astronomer. This convention is less important for higher
level functions that don’t define too many variables and whose only purpose is to run
the lower-level functions in a specific order and with checks.

In general you can be very liberal in breaking up the functions into smaller parts, the
GNU Compiler Collection (GCC) will automatically compile the functions as inline
functions when the optimizations are turned on. So you don’t have to worry about
decreasing the speed. By default Gnuastro will compile with the -03 optmization flag.

e If possible, the text files should always be at most 80 characters wide. Monitors today
are certainly much wider, but with this limit, reading the functions becomes much more
easier. Also for the developers, it allows multiple files (or multiple views of one file) to
be displayed beside each other on wide monitors (Emacs’s buffers are excellent for this
capability).

Chapter 10: Developing 135

For long comments you can use press Alt-q in Emacs to separate them into separate
lines automatically. For long literal strings, you can use the fact that in C, two strings
immediately after each other are concatenated, for example "The first part, " "and
the second part." Note the space character in the end of the first part. Since they are
now separated, you can easily break a long literal string into several lines and adhere
to the maximum 80 character line length policy.

e The headers required by each source file (ending with .c) should be defined inside of
it. All the headers a program needs should not be stacked in another header to include
in all source files (for example main.h). Although most ‘professional’ programmers
choose the latter type, Gnuastro is primarily written for inquisitive astronomers (who
are generally amateur programmers). This is very useful for readability by a first
time reader. main.h may only include the header file(s) that define types that the
main program structure needs, see main.h in Section 10.7 [Program source|, page 132.
Those particular header files that are included in main.h can ofcourse be ignored (not
included) in separate source files.

e The headers should be classified (by an empty line) into separate groups:

1. #include <config.h>: This must be the first code line (not commented or blank)
in each source file. It sets macros that the GNU Portability Library (Gnulib) will
use for the possible additions/modifications to C library headers.

2. The C library (or GNU C library) header files, for example stdio.h or errno.h.
3. Installed library header files, for example cfitsio.h or gsl/gsl_rng.h.

Gnuastro common header files, for example fitsarrayvv.h or neighbors.h, see
Section 10.6 [Header files], page 131.

5. That particular program’s header files, for example main.h and mkprof .h.
As much as order does not matter when you include the header of each group, sort
them by length, see above.

e There should be no trailing white space in a line. To do this automatically every time
you save a file in Emacs, add the following line to your ~/.emacs file.

(add-hook ’before-save-hook ’delete-trailing-whitespace)

e There should be no tabs in the indentation. Add the line below to your ~/.emacs file
to do this automatically:

(setq-default indent-tabs-mode nil)

e All similar functions are separated by 5 blank lines to be easily seen to be related in a
group when parsing the source code by eye. In Emacs you can use CTRL-u 5 CTRL-o.

e One group of functions is separated from another with 20 blank lines. In Emacs you
can use CTRL-u 20 CTRL-o. Each group of functions has short descriptive title of the
functions in that group. This title is surrounded by asterisks (*) to make it clearly
distinguishable. Such contextual grouping and clear title are very important for easily
understanding the code.

10.7.3 Multithreaded programming

Most of the programs in Gnuastro utilize multi-threaded programming for the CPU intensive
processing steps. This can potentially lead to a significant decrease in the running time of a

Chapter 10: Developing 136

program, see Section 4.3.1 [A note on threads|, page 40. In terms of reading the code, you
don’t need to know anything about multi-threaded programming. You can simply follow
the case where only one thread is to be used. In these cases, threads are not used and can
be completely ignored.

At the time K&R’s book was written, using threads was not common. We use POSIX
threads for multi-threaded programming, defined in the pthread.h system wide header.
There are various resources for learning to use POSIX threads, the excellent tutorial from
Lawrence Livermore National Laboratory® is a very good start. The book ‘Advanced
programming in the Unix environment’*, by Richard Stevens and Stephen Rago, Addison-
Wesley, 2013 (Third edition) also has two chapters explaining the POSIX thread constructs
which can be very helpful.

An alternative to POSIX threads was OpenMP, but POSIX threads are low level, al-
lowing much more control, while being easier to understand, see Section 10.1 [Why C pro-
gramming language?], page 126. All the situations where threads are used are completely
independent with minimal need of coordination between the threads. Such problems are
known as “embarrassingly parallel” problems. They are some of the simplest problems
to solve with threads and also the ones that benefit most from threads, see the LLNL
introduction'®.

10.7.4 Documentation

Documentation (this manual) is an integral part of Gnuastro. Documentation is not con-
sidered a separate project. So, no change is considered valid for implementation unless the
respective parts of the manual have also been updated. The following procedure can be a
good suggestion to take when you have a new idea and are about to start implementing it.

The steps below are not a requirement, the important thing is that when you send the
program to be included in Gnuastro, the manual and the code have to both be fully up-to-
date and compatible and the purpose should be very clearly explained. You can follow any
path you choose to do this, the following path was what we found to be most successful
during the initial design and implementation steps of Gnuastro.

1. Edit the manual and fully explain your desired change, such that your idea is completely
embedded in the general context of the manual with no sence of discontinuity for a
first time reader. This will allow you to plan the idea much more accurately and in the
general context of Gnuastro or a particular program. Later on, when you are coding,
this genral context will significantly help you as a road-map.

A very important part of this process is the program introduction, which explains the
purposes of the program. Before actually starting to code, explain your idea’s purpose
thoroughly in the start of the program section you wish to add or edit. While actually
writing its purpose for a new reader, you will probably get some very valuable ideas
that you hadn’t thought of before, this has occured several times during the creation of
Gnuastro. If an introduction already exists, embed or blend your idea’s purpose with
the existing purposes. We emphasize that doing this is equally useful for you (as the

13 https://computing.llnl.gov/tutorials/pthreads/

4 Don’t let the title scare you! The two chapters on Multi-threaded programming are very self sufficient
and don’t need any more knowledge than K&R.

15 https://computing.llnl.gov/tutorials/parallel_comp/

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/parallel_comp/

Chapter 10: Developing 137

programmer) as it is useful for the user (reader). Recall that the purpose of a program
is very important, see Section 10.2 [Design philosophy], page 127.

As you have already noticed for every program, it is very important that the basics of
the science and technique be explained in separate subsections prior to the ‘Invoking
Programname’ subsection. If you are writing a new program or your addition involves
a new concept, also include such subsections and explain the concepts so a person
completely unfamiliar with the concepts can get a general initial understanding. You
don’t have to go deep into the details, just enough to get an interested person (with
absolutely no background) started. If you feel you can’t do that, then you have probably
not understood the concept your self! Have in mind that your only limitation in length
is the fatigue of the reader after reading a long text, nothing else.

It might also help if you start implementing your idea in the ‘Invoking ProgramName’
subsection (explaining the options and arguments you have in mind) at this stage too.
Actually starting to write it here will really help you later when you are coding.

2. After you have finished adding your initial intended plan to the manual, then start
coding your change or new program within the Gnuastro source files. While you are
coding, you will notice that somethings should be different from what you wrote in the
manual (your initial plan). So correct them as you are actually coding.

3. In the end, read the section in the manual that you edited completely and see if you
didn’t miss any change in the coding and to see if the context is fairly continuous for
a first time reader (who hasn’t seen the manual or had known of Gnuastro before you
made your change).

10.8 Test scripts

As explained in Section 3.3.2 [Tests|, page 28, for every program some simple tests are
written to check the various independent features of the program. All the tests are placed in
the gnuastro-0.0/tests directory, let’s call it TESTdir. There is one script (prepconf .sh)
in this folder and several Makefiles. The script is the first ‘test’ that will be run. It will
copy all the configuration files from the various directories to a .gnuastro directory which
it will make so the various tests can set the default values.

For each program, the tests are placed inside directories with the program name. Each
test is written as a shell script. The last line of this script is the test which runs the program
with certain parameters. The return value of this script determines the fate of the test, see
the “Support for test suites” chapter of the Automake manual for a very nice and complete
explanation. In every script, two variables are defined at first: prog and execname. The
first specifies the program name and the second the location of the executable.

The most important thing to have in mind about all the test scripts is that they are
run from inside the TESTdir directory in the “build tree”. Which can be different from
the directory they are stored in (known as the “source tree”). This distinction is made by
GNU Autoconf and Automake (which configure, build and install Gnuastro) so that you
can install the program even if you don’t have write access to the directory keeping the
source files. See the “Parallel build trees (a.k.a VPATH builds)” in the Automake manual
for a nice explanation.

Because of this, any possible data that was not generated by other tests (and is thus in
the build tree), for example the catalogs in ImageCrop tests, has a $topsrc prefix instead of

Chapter 10: Developing 138

../ for the build three. This $topsrc variable points to the source tree where the script can
find the source data (it is defined in TESTdir/Makefile.am). The executables and other
test products were built in the build tree (where they are being run), so they don’t need to
be prefixed with that variable. This is also true for images or files that were produced by
other tests.

10.9 Building

To build the various programs and libraries in Gnuastro, the GNU build system is used
which defines the steps in Section 1.1 [Quick start], page 1. It consists of GNU Autoconf
and GNU Automake and GNU Libtool which are collectively known as GNU Autotools.
They provide a very portable system to check the environment a program is to be installed
on prior to compiling and set the compilation conditions based on the particular user. They
also make installing everything in their standard places very easy for the programmer. Most
of the small caps files that you see in the top gnuastro-0.0/ directory are created by these
three tools.

By default all the programs are compiled with optimization flags for increased speed. A
side effect is that valuable debugging information is lost. To compile with the debugging
flag set on (and no optimization) you can add the following options to configure:

$./configure CFLAGS="-g -00"

In order to understand the building process, you can go through the Autoconf, Automake
and Libtool manuals, like all GNU manuals they provide both a great tutorial and technical
documentation. The “A small Hello World” section in Automake’s manual (in chapter 2)
can be a good starting guide after you have read the introductions of both. To get a good
understand of how these three operate separately yet the codes are all mixed, there is a
great tutorial book!® which you can get you started off.

10.10 After making changes

After you have made your your changes/additions, please take the following steps:

1. Write test(s) in the tests/progname/ directory to test the change(s)/addition(s) you
have made. Then add their file names to tests/Makefile.am. And run $ make check
to make sure everything is working correctly.

2. Make sure the manual is completely up to date with your changes, see Section 10.7.4
[Documentation], page 136.

3. If you have changed anything in the program, add it to the ChangeLog (a file in the
top source code directory). ChangeLog has a specific format defined by the GNU
coding standards. The easiest way to add an entry to it is through Emacs: by pressing
CTRL-x 4 a within the places that you have changed. Note that if you have only added
something, there is no need to include it in ChangeLog.

4. Finally, to make sure everything will run and is checked correctly, run
$ make distcheck

This command will create a distribution file (ending with .tar.gz) and try to compile
it in the most general cases, then it will run the tests on what it has built in its own

16 https://www.sourceware.org/autobook/

https://www.sourceware.org/autobook/

Chapter 10: Developing 139

mini-environment. If $ make distcheck finishes successfully, then you are safe to send
your changes to us to implement or for your own purposes.

Appendix A: GNU Astronomy Utilities list 140

Appendix A GNU Astronomy Utilities list

GNU Astronomy Utilities 0.0, contains the following programs. They are sorted in alpha-
betical order and followed by their version number. A short description is provided for each
program which starts with the executable names in parenthesis, see Section 1.4 [Naming
convention], page 4. Throughout this manual, they are ordered based on their context,
please see the manual contents for contextual ordering.

ConvertType 0.0
(astconvertt) Convert astronomical data files (FITS or IMH) to and from
several other standard image and data formats, for example JPEG, EPS or
PDF (Section 5.2 [ConvertTypel, page 49).

Convolve 0.0
(astconvolve) Convolve (blur or smooth) data with a given kernel (Section 6.2
[Convolve|, page 63).

Header 0.0
(astheader) Print and manipulate the header data of a FITS file (see
Section 5.1 [Header], page 47).

ImageCrop 0.0
(astimgcrop) Crop region(s) from an image and stitch several images if nec-
essary. Inputs can be in pixel coordinates or world coordinates (Section 6.1
[ImageCrop], page 57).

ImageStatistics 0.0
(astimgstat) Get pixel statistics and save histogram and cumulative frequency
plots (Section 7.1 [ImageStatistics|, page 86).

ImageWarp 0.0
(astimgwarp) Warp image to new pixel grid (Section 6.3 [ImageWarp], page 68).

MakeCatalog 0.0
(astmkcatalog) Make catalog of labeled image (Section 7.3 [MakeCatalog],
page 103).

MakeNoise 0.0
(astmknoise) Make (add) noise to an image (Section 8.2 [MakeNoise],
page 120).

MakeProfiles 0.0
(astmkprof) Make mock profiles in image (Section 8.1 [MakeProfiles|,
page 108).

NoiseChisel 0.0
(astnoisechisel) Detect and segment signal in noise (Section 7.2
[NoiseChisel], page 94).

SubtractSky 0.0
(astsubtractsky) Find and subtract sky value by comparing the mode and
median on a mesh grid (Section 6.4 [SubtractSky|, page 75).

Appendix B: Other useful software 141

Appendix B Other useful software

In this appendix the installation of programs and libraries that are not direct Gnuastro
dependencies are discussed. However they can be useful for working with Gnuastro.

B.1 SAO ds9

SAO ds9' is not a requirement of Gnuastro, it is a FITS image viewer. So to check your
inputs and outputs, it is one of the best options. Like the other packages, it might already
be available in your distribution’s repositories. It is already pre-compiled in the download
section of its webpage. Once you download it you can unpack and install (move it to a
system recognized directory) with the following commands (x.x.x is the version number):

$ tar -zxvf ds9.linux64.x.x.x.tar.gz
$ sudo mv ds9 /usr/local/bin

Once you run it, there might be a complaint about the Xss library, which you can find
in your distribution package management system. You might also get an XPA related error.
In this case, you have to add the following line to your ~/.bashrc and ~/.profile file (you
will have to log out and back in again for the latter):

export XPA_METHOD=local

B.1.1 Viewing multiextension FITS images

The FITS definition allows for multiple extensions inside a FITS file, each extension can
have a completely independent data set inside of it. If you ordinarily open a multi-extension
FITS file with SAO ds9, for example by double clicking on the file or running $ds9 foo.fits,
SAO ds9 will only show you the first extension. To be able to switch between the extensions
you have to follow these menus in the SAO ds9 window: File—Open Other—Open Multi
Ext Cube and then choose the Multi extension FITS file in your computer’s file structure.

The method above is a little tedious to do every time you want view a multi-extension
FITS file. Fortunately SAO ds9 also provides options that you can use to specify a particular
behavior. One of those options is -mecube which opens a FITS image as a multi-extension
data cube. So on the command line, if you run $ds9 -mecube foo.fits a small window will
also be opened, which allows you to switch between the image extensions that foo.fits
might have. If foo.fits only consists of one extension, then SAO ds9 will open as usual.

Just to avoid confusion, note that SAO ds9 does not follow the GNU style of separating
long and short options as explained in Section 4.1.1 [Arguments and options|, page 31. In
the GNU style, this ‘long’ option should have been called like ——mecube, but SAO ds9 does
follow those conventions and has its own.

It is really convenient if you set ds9 to always run with the -mecube option on your
graphical display. On GNOME 3 (the most popular graphic user interface for GNU/Linux
systems) you can do this by taking the following steps:

e Open your favorite text editor and put the following text in a file that ends with
.desktop, for example saods9.desktop. The file is very descriptive.

1 http://ds9.si.edu/

http://ds9.si.edu/

Appendix B: Other useful software 142

[Desktop Entry]
Type=Application
Version=1.0

Name=SAO0 ds9
Comment=View FITS images
Exec=ds9 -mecube %f
Terminal=false
Categories=Graphic;FITS;

e Copy this file into your local (user) applications directory:
$ cp saods9.desktop ~/.local/share/applications/
In case you don’t have the directory, you can make it your self:
$ mkdir -p "/.local/share/applications/

e The steps above will add SAO ds9 as one of your applications. To make it default for
every time you click on a FITS file. Right click on a FITS file and select “Open With”,
then go into “Other Application...” and choose “SAO ds9”.

In case you are using GNOME 2 you can take the following steps: right click on a FITS
file and choose Properties—Open With—Add button. A list of applications will show up,
ds9 might already be present in the list, but don’t choose it because it will run with no
options. Below the list is an option “Use a custom command”. Click on it and write the
following command: ds9 -mecube in the box and click “Add”. Then finally choose the
command you just added as the default and click the “Close” button.

B.2 PGPLOT

PGPLOT is a package for making plots in C. It is not directly needed by Gnuastro, but can
be used by WCSLIB, see Section 3.1.3 [WCSLIB], page 22. As explained in Section 3.1.3
[WCSLIB], page 22, you can install WCSLIB without it too. It is very old (the most recent
version was released early 2001!), but remains one of the main packages for plotting directly
in C. WCSLIB uses this package to make plots if you want it to make plots. If you are
interested you can also use it for your own purposes.

If you want your plotting codes in between your C program, PGPLOT is currently one
of your best options. The recommended alternative to this method is to get the raw data
for the plots in text files and input them into any of the various more modern and capable
plotting tools separately, for example the Matplotlib library in Python or PGFplots in
IXTEX. This will also significantly help code readability. Let’s get back to PGPLOT for the
sake of WCSLIB. Installing it is a little tricky (mainly because it is so old!).

You can download the most recent version from the FTP link in its webpage?. You
can unpack it with the tar -vxzf command. Let’s assume the directory you have un-
packed it to is PGPLOT, most probably it is: /home/username/Downloads/pgplot/. open
the drivers.list file:

$ gedit drivers.list

Remove the ! for the following lines and save the file in the end:

2 http://www.astro.caltech.edu/"tjp/pgplot/

http://www.astro.caltech.edu/~tjp/pgplot/

Appendix B: Other useful software 143

PSDRIV 1 /PS
PSDRIV 2 /VPS
PSDRIV 3 /CPS
PSDRIV 4 /VCPS
XWDRIV 1 /XWINDOW
XWDRIV 2 /XSERVE

Don’t choose GIF or VGIF, there is a problem in their codes.
Open the PGPLOT/sys_linux/g77_gcc.conf file
$ gedit PGPLOT/sys_linux/g77_gcc.conf

change the line saying: FCOMPL="g77" to FCOMPL="gfortran", and save it. This is a very
important step during the compilation of the code if you are in GNU/Linux. You now
have to create a folder in /usr/local, don’t forget to replace PGPLOT with your unpacked
address:

$ su

mkdir /usr/local/pgplot

cd /usr/local/pgplot

cp PGPLOT/drivers.list ./

To make the Makefile, type the following command:
PGPLOT/makemake PGPLOT linux g77_gcc

It should finish by saying: Determining object file dependencies. You have done the
hard part! The rest is easy: run these three commands in order:

make
make clean
make cpg

Finally you have to place the position of this directory you just made into the LD_
LIBRARY_PATH environment variable and define the environment variable PGPLOT_DIR. To
do that, you have to edit your .bashrc file:

$ cd ~
$ gedit .bashrc

Copy these lines into the text editor and save it:

PGPLOT_DIR="/usr/local/pgplot/"; export PGPLOT_DIR
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/pgplot/
export LD_LIBRARY_PATH

You need to log out and log back in again so these definitions take effect. After you logged
back in, you want to see the result of all this labor, right? Tim Pearson has done that for
you, create a temporary folder in your home directory and copy all the demonstration files
in it:

cd ~

mkdir temp

cd temp

cp /usr/local/pgplot/pgdemo* ./

1s

€ €NH H P P

Appendix B: Other useful software 144

You will see a lot of pgdemoXX files, where XX is a number. In order to execute them
type the following command and drink your coffee while looking at all the beautiful plots!
You are now ready to create your own.

$./pgdemoXX

Appendix C: GNU Free Documentation License 145

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix C: GNU Free Documentation License 146

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: GNU Free Documentation License 147

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: GNU Free Documentation License 148

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: GNU Free Documentation License 149

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: GNU Free Documentation License 150

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: GNU Free Documentation License 151

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix C: GNU Free Documentation License 152

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index

Index
A 35
—-Cite . 36
--disable-progname 25
--dontdeletel 35
—--enable-gnulibcheck 25, 30
——enable-progname.ouueieennnna... 24
-—enable-progname=no 25
--enable-reentrantoiiiiiin. 22
—=hdu ..o 34
—=help....coviiiiiii 31, 35, 44
—--help output customization 44
—-keepinputdirl 35, 42
--numthreads........................ 37, 40
—-onlydirconfl 37
—=ON1lYVerSIiOn . ..o voutttteiiie i 37
—=output ... 35, 37
—-prefix....... 25
—-printparams................oiiinaan 33, 36, 41
—-program-prefix.......... i i 28
—-program-suffix........... oo oo 28
--program-transform-name 28
—quiet 36
--setdirconf.......... 36, 39
——setusrconf....... ... 37, 39
STUSAGE 31, 35, 43
SSVErSION. ... 36
--with-numthreads....................coouun. 24
—-without-pgplot............cooviiiiiiiiian. 22
e 35
D 35
Sh 34
K 35
TN 37
O 35
P 36, 41
L I 36
e 36
U 37
SV 36
L/ .gnuastro/ ... 39
JJconfigure......l i 24, 26
./configure options..................... 24
bashrc.............. ...l 26, 45, 123
sdesktop.....ooooiiiiii i 141
\

\$igma-clipping, 7

153
4
AOT8 .t 33
A
A4 paper Size........c.ouiiiiiii i 29
A4 print manual......... ol 29
ACS . 69
Additions to Gnuastro............. ..., 8
Adobe systems ... 50
Advanced Camera for Surveys................. 70
Advanced camera for surveys 69
Affine Transformation 71
Amplifier....... ... 78
Announcements. i 9
Anonymous bug submission..................... 7
Anscombe F. J........ oo 2
Anscombe’s quartet............. i 2
ANSI C .o 126
Aperture blurring.o oo 87
Argp argument parser..................... 44, 133
ARGP_HELP_FMT i 44
args.h.................oolalllllL 133
Arguments to programs............ ... 31
ASCITPIOt o e 90
ASCII85 encodingovvvvivii i 54
ASTPTOGNAME . . .\ttt 4
Astronomical data format...................... 50
Astronomical data suffixes..................... 32
Astronomical Magnitude system.............. 114
Asynchronous thread allocation 12, 60
Atmosphere.......o 63, 75
Atmosphere blurring............... 87
Auto-complete in the shell 27
Automatic configuration file writing............ 38
Automatic output file names................... 42
Automatically created build files.............. 129
Available number of threads................... 40
Average filter........ol 80
Average, weighted L 63
B
Background flux............. 76, 121
Background flux gradients.................... 121
Background pixels..........ol 97
Bash history..........o 41
Best use of CPU threads....................... 40
Bias current ... 78
Bias subtraction.............. . ..o 75
Bicubic interpolation.................... ... 72, 80
Bilinear interpolation.......................... 72
Bin width, histogram oL 86

Binary image oo ool 51, 97

Index

Binary mask image values 84
Black and white image......................... 51
blank color channel.................... 51
Blank pixel ... 59, 74
Blank pixels.........oo i 85
Blur image ... 63, 109
Blurring. ... 87
Border on an image............. 53
Breadth first search 109
Buffers (Emacs) ... 134
Bug ... 7, 128
Bug reporting 7
Bug tracker.......o 8
bug-gnuastro@gnu.org......................... 7
Build..... ... o 1
Build individual profiles................ 116
Build tree....... o 137
Building from source 21

C

C programming language 126
C++ programming language................... 126
C,plotting ... 142
Cache, system ..., 40
(0 001! - 72
CCD i 69, 78
Central management 128
CEITSIO . ..o 22
CFITSIO version on outputs................... 46
Change converted pixel values 54
Changelog........... ... i 138
Channel........ ... i, 78
Charge-coupled device..............coooinitn. 69
Check ... 1
Check center of crop............oooiiiiiiin. 61
Checking detection algorithms................ 108
Checking final parameter values................ 41
Checking tests........... ..ot 28
Citation information.......................... 134
cite.h.. ..o 134
CLI: command line user interface 6
CLI: repeating operations....................... 6
CMYK . 51
COlOTSPACE .. v v vt et 51
Colorspace, grayscaleccoviiiiieann.. 51
Colorspace, transformation 52
Command line arguments...................... 31
Command line help............................ 43
Command line options.................ovonan. 31
Command line scroll.............. 44
Command line searching text 44
Command line token separation................ 31
Command line user interface.................... 6
Command line, long outputs................... 44
Command line, viewing full manual 45
commonargs.h............. ...l 131

commonparams.h.................... ...l 131

154
Commutative property..............cooeevnn... 72
Compare Moffat and Gaussian................ 110
Compare Poisson and Gaussian............... 120
Compile 1
Compiled PostScript.......coooviviiinn. 50
Compiling from source......................... 21
Complex numbers ..., 68
Compression quality in JPEG............... ... 54
Configuration file directories................... 38
Configuration file format....................... 38
Configuration file precedence................... 38
Configuration file suffix 38
Configuration files 33, 37
Configuration files, system wide................ 39
Configuration files, writing..................... 38
Configuration, not finding library 29
Configure options.............oooiiiiiii.. 24
Configure options particular to Gnuastro....... 24
Configuring. ... 24
Convenience libraries..................... ... 131
Convenient manual formats.................... 43
Convention for program source 132
Converting data formats....................... 49
Converting image formats...................... 49
ConvertType 0.0 (astconvertt) 49
Convolution..............cooviino.... 63, 64, 109
Co0KbOOK ... oo 11
Coordinate transformation..................... 69
Coordinates, homogeneous..................... 70
Copyright 3
Correlation. ... 64
Cosmic ray removal............ 76
CoSMIC TaYS. ..o vvvvie i 63, 69, 76, 77, 87
COSMOS SUrveyoovviii i 57
Counting error 120
Counting from zero. 34
CPPFLAGS . . .ot e e 30
CPU threads..........coooviiia.. 24, 40, 118
CPU threads, number 37
CPU threads, set number 24, 37
CPU, using all threads......................... 40
Crop a given section of image.................. 59
Crop part of image, 57
Crop section format 59
Cumulative Frequency Plot.................... 86
Customize --help output...................... 44
Customize executable names................... 27
Customizing installation 24
D
Data ... 76
Data format conversion........................ 49
de Vaucouleur profile......................... 111
Default executable search directory 26
Default library search directory................ 27
Default option values 33, 37
Define section to crop...........ooooiiiiiL. 59

Index

Dependencies, Gnuastro 21
Detection... ... i 63, 94
Detector. ... 72
Development packages......................... 29
Diffraction limited............................ 109
Directories in Gnuastro source................ 130
Directory, install............ 26
Discrete fourier transform...................... 68
Distortion, optical 69
Distribution mean 76
Distribution median 76
Distribution mode 76, 77
Drizzle 73
ds9 -mecube......... ... 141

E

Edges, image 72
Edwin Hubble................................. 11
Effective radius..................., 111
Efficient use of CPU threads................... 40
Ellipse ... 108
Elliptical distancet 109
Elliptical galaxies..............coooiiiiiit. 13
Emacs buffers............... 134
Encapsulated PostScript....................... 50
Environment variable, HOME.................... 26
Environment variables 25, 122
OB . 13
EPS . 50
Erosion........ o 97
Error, floating point round-off 68
BB 37
Exact area resampling 73
Executable names oo 27
Eye of GNOME it 13

F

Fast Fourier Transform 64
Feature request............... 128
Feature requestso il 8
File operationsl 47
File suffix mis-spelling 51
File system Hierarchy Standard................ 37
Final parameter value checking 41
FITS image viewer ..., 141
FITS standard ..., 22
Fitting o 108
fixedstringmacros.h........................ 131
Flat field ... 75
Flip coordinates...................oooiiiiit. 70
Floating point round-off error.................. 68
FLT . o 33
Flux to magnitude conversion................. 114
Foreground pixels........... oL 97
Fourier spectruml 68
Free software oL 3

155
Frequency domain................... ... 63
Full Width at Half Maximum................. 110
Function gradient over pixel area 112
Function groups.................oooiii 135
Functions for user interface................... 133
FWHM ..o 110
G
Galaxy profiles.........ol 111
Galileo, G oo 3
Gaussiano.vvi 94, 104
Gaussian distribution 79, 110
Gaussian FWHM 110
Gedit. oo 14, 19
General file operations......................... 47
Generalized de Vaucouleur profile............. 111
Gérard de Vaucouleurs 111
Gt e 129
GNOME 2 .. 142
GNOME 3. e 6, 141
GNU Astronomy Utilities (Gnuastro) 0.0........ 1
GNU Autoconf..............cooiiii.. 130, 138
GNU Autoconf Archive....................... 129
GNU Automakecooan.. 130, 138
GNUBashc.ooiiiiit. 6, 13, 26, 128
GNU build system 21, 130, 138
GNU Clibrarycoovviiiiiiiiiinan.. 135
GNU CLibraryccoovvviinn.... 25, 45, 129
GNU coding standards................ 1, 134, 138
GNU Compiler Collection 134
GNU Coreutils. ...t 40, 127
GNU Emacs 13, 14, 19, 45, 135, 138
GNU Free Documentation License.......... 4, 145
GNU General Public License.................... 4
GNU Grep. .o 44, 48
GNUINfo ..o 45
GNU Libtool ... 130, 138
GNU Parallel ... 13, 41
GNU Portability Library 25, 30, 129, 135
GNU Scientific Library 21, 64, 122
GNU software documentation.................. 45
GNU style options...............oooooiiin.. 32
GNU Texinfo....................... 3, 29, 30, 130
GNU/LINUX « . oot 5
Gnuastro coding convention 134
Gnuastro common options..................... 34
Gnuastro major version number................. 5
Gnuastro program structure convention....... 132
Gnuastro project pageoviiiiiiii .. 7
Gnuastro test scripts.............oi i 137
Good statistical analysis........................ 2
GPL Ghostscriptoovoeiioo 23, 30, 51
Gradient......... ..o, 75, 78
Gradient over pixel area...................... 112
Gradients in background flux................. 121
Graphic user interface 6

Gravitational lensing 69

Index

Grayscale...... ... i 51
Grid. ..o 75, 78
Groups of similar functions................... 135
GUI: graphic user interface 6
GUI: repeating operations 6

H

Halted program............ 7
HDU.. ..o 31, 34, 47
Header data unit........................... 31, 34
Header fileo i 135
Header fileso oo 131
Help ... 43
help-gnuastro mailing list...................... 46
help-gnuastro@gnu.org....................... 46
Hexadecimal encoding 54
Histogramo 77, 86
5 (0] 1 26, 39
5 (0) 01 A e o W P 26
HOME/.local/etc/....oovviiiiniiiiinninno .. 39
Homogeneous coordinates. 70
Homography i 71
Hubble Space Telescope............. 57, 69, 70, 78
Hyper Suprime-Cam........................... 78

I

Image........ ..o o 51
Image blurring L 109
Imageedges...............o. il 72
Image format conversion....................... 49
Image mosaic...............oooiiiiiiiiii 57, 69
Image noiseoooi it 120
Image tileso i 57
Image transformations........................ 108
ImageCrop 0.0 (astimgcrop).........coovnen... 57
Imaging surveys............. ... ool 57
Inconsistent results L. 7
Individual profiles L 116
INFODIR . ..ottt e e 27
Inside-out construction 109, 112
Install directory L. 26
Install with no super-user access............... 25
Installation............coooiiiii i, 21
Installation, customizing....................... 24
Installed help methods......................... 43
Instrumental noise............. L 121
Integration over pixel.................. 112
Integration to infinity......................... 113
Internal default value.......................... 37
Internal libraries................... ... L. 131
Internally stored option value.................. 40
Interpolation i 72
Interpolation, bicubic............. 72, 80
Interpolation, bilinear...................... 72, 80
Interpolation, spline 80

Intervals, histogram 86

156
0 33
Irrelevant options.......... ..., 34
ISOC90 ..o 126
Issue ... 128
J
Jaynes E. T o 3
JPEG compression quality 54
JPEG formato oo 23, 50
K
Ken Thomsonoooiiiiiiiiii .. 3
Kernel, convolution............................ 63
Kernighan, Brian........... 126
L
Large astronomical images..................... o7
IATEX 50
Lawrence Livermore National Laboratory 136
LD_LIBRARY PATH 27, 30, 143
LDFLAGS . .ottt e e e 29
Learning GNU Info............... 45
Lensing simulations.............. 108
LSS ottt e 44
B o =Y 23
Libraries, convenience 131
Library search directory 27
Linear interpolation 80
Linear spatial filtering......................... 64
Linux....ooooiii 5
Long option abbreviation................... ... 33
Long outputs.........cooviiiii i, 44
Lord Kelvin ... i 3
Low level programming....................... 127
M
Magnitude zero-point........... 114
Magnitudes from flux.............. 114
Mailing list archives......................... 7, 46
Mailing list: bug-gnuastro.................. 7,128
Mailing list: help-gnuastro..................... 46
Mailing list: info-gnuastro....................... 9
main function....... oo oo 132
Main parameters C structure................. 132
MAIN.Co.u it 132
main.h..... 132
Major version number 4
make check............ ool 28
MakeProfiles 0.0 (astmkprof)................. 108
Making a distribution package................ 138
Making profiles pixel by pixel................. 109
Man pages 45
Management hub......... L 128
Mandatory arguments...................... 31, 43

Index

Manipulating tables 125
MANPATH . ..o e 27
Manual formats i 43
Mask imageoovoii 84
Matplotlib....... ..o 89
Matplotlib, Python 128, 142
Matrix .o 70
Matrix multiplication.................. 72
Mean of distribution........................... 76
Median of distribution......................... 76
Mesh. ..o 75
Mesh grid o i 78
Metacharacters............coooiiiiiiiii... 31
Metacharacters on the command line........... 31
Minor version number 4
Mirror distribution o oL 88
Mis-spelling file suffix............ 51
Mixing pixel values 63, 72
Moébius, August. F.....ooooooo 70
mock.fits. ... 28
Mode of a distribution......................... 7
Mode of distribution............... 76
Modelingouuuu i 108
Modeling starsoiiiiiiiii 111
Modifying print manual........................ 29
Moffat beta ... 110
Moffat function............ ...t 110
Moffat FWHM, 110
Monte carlo integration....................... 112
Mosaicing. i 57, 69
Multi-threaded programs 40
Multiextention FITS 141
Multiple file opening, reentrancy............... 22
Multiplication, matrixt 72
Multiplication, Matrix................. 70
Multithreaded programming.................. 135

N

Names of executables................... 27
Names, customizeooiiiiaa.. 27
Names, programs ..., 4
NaN. ..o 74, 84, 91, 97
Navigating source files........................ 132
Necessary parameters.......................... 37
Neighborhood i 63
neighbors.h ...l 132
No access to super-user install 25
NoiSe....ovvii 79, 120
Noise simulation.....................o i 121
Noise, instrumental 121
Noise-based detection.......................... 94
Non-commutative operations................... 72
Normalizing histogram......................... 86
TIPTOC .« v vvttt ettt ettt 40
Number of CPU threads touse............. 24, 37
Number of threads available 40
Number, version.............cooiiinnnnnn.. 4

157
Numbers, complex..............oooiiiii.. 68
Numbers, psudo-random...................... 122
Numbers, random, 122
O
Object oriented programming................. 126
On/Off options. ..., 32
Online help.......ooo i 43
Opening multiextention FITS................. 141
OpenMP 136
Operationson files......................ooo... 47
Operations, non-commutative.................. 72
Operator, structure de-reference 133
Optical distortion...................ooooi... 69
Optimization flag........... 134
Option values ...t 33
Optional and mandatory tokens................ 43
Options common to all utilities 34
Options to Programs.c..c.covueevnne... 31
Options, abbreviation.......................... 33
Options, GNU style. 32
Options, irrelevant.........o 34
Options, on/off........ ... il 32
Options, repeated ... 33
Options, short (=) and long (==) 32
Order in search directory 27
Output file names, automatic.................. 42
Output FITS headers.......................... 46
Output, WIONG. ..« ovvt ittt 7
Oversample.t 17
Oversamplingcooiiiiiiiiiia.. 113
P
D e 133
Package managers oL 21
Paper size, Ad....... ... 29
Paper size, US letter................ ... 29
Parametric PSFs ...l 110
PATH ..o e 26
PDF 50
PGFplots in TEX or IATEX............... 128, 142
PGPLOT ... 142
Phaseangle ... 68
photo-electronsol 76
Photoelectrons ool 72
Photon counting noise........................ 120
Picture element............. ...t 72
Pipe. .o 44
Pixel. ..o 72
Pixel by pixel making of profiles.............. 109
Pixel mixingo 63, 72, 73
Pixel, blank o 74
Pixelated graphics..........l 50
Pixels ..o 51
Plain text ... 51

Plotting directly in C.......... 142

Index

PNG .o 89
PNG standard..............coiiiiiii. . 52
Point pixelso. 72
Point source............ ... 109
Point Spread Function........................ 109
Poisson distribution ...l 120
Portable Document format..................... 50
POSIX threads library 40, 136
Postage stamp images 57
PostScript . ..o 50
PostScript vs. PDF ... oo 50
Precedence, configuration files 38
prefix/etc/ 39
Primary colors.........ol 51
Probability density function 7
Probability distribution function............... 86
Profiles, galaxies..........ooviiiiiiiennannn. 111
PLOGNAME . C . vvvvvveeeteeeeeeeeeeeeeeens 133
PrOGNAMEPATAMS . o oo v vt veeeeeeeeeeeeeeeennn.. 132
Program crashing............. 7
Program names.......... ... o oo 4
Program structure convention 132
Programming, low level....................... 127
ProgramName...............cooiiiiiiiiiine..n. 4
Projective transformation...................... 71
PSF 80, 109
PSF image size ...t 109
PSF over-sample ..., 113
PSF width ... 110
PSF, Moffat compared Gaussian.............. 110
Psudo-random numbers............ L 122
pthread 40
Public domain................ ..ol 3
Puzzle solving scientist 3
Python...... ..o i 88
Python Matplotlib....................... 128, 142
Python programming language 126
Q

Quality of compression in JPEG............... 54
Quantile...... ..o 97

R

Radial profile on ellipse....................... 109
Radius, effective...............oooooiiia 111
Random numbers................. oL 122
Raster graphics........... oL 50
Readout noise.......... ... il 121
Redirection of output 41, 44
Reentrancy, multiple file opening............... 22
Remembering options.......................... 43
Remote operation................. 7
Removing ast from executables................ 28
Repeated options.................iii 33
Report abug......... ... 128

Reproducible bug reports............... 8

158
Reproducible results 6, 42
Resampling. ... 72
Resource heavy operations...................... 7
Results, wrong........... oL 7
RGB . 51
Ritchie, Dennis. ... 126
Root access, not possible 25
Root parameter structure..................... 132
Rotation of coordinates........................ 70
Round-offerror........... ... i 68
S
Sampling 72, 112
SAO ASO . 141
Save output to file............. .. il 44
Saving binary image............c..ooiiia.. 51
Scaling ...oovvi 69
Scientist, puzzle solver.......................... 3
Scripts, startup ... 26
Scroll command line........................... 44
Search directory for executables................ 26
Search directory order 27
Searching text............ooiiiiiiiiiiiii.. 44
Section of an image.............c..ooiiiii.L. 57
Secure shell....... oo i 7
SED, stream editor................ 28
Seed, psudo-random numbers................. 122
Separating tokens on the command line........ 31
Sérsic Indexo 111
Sérsic profileo o 111
Sérsic, J. L. oo 111
setparams function..............ol 133
Setting output file names automatically 42
Setting PATH. . ..ottt 26
Shear. ... 70
Shell ... 6
Shell auto-complete............ 27
Shell redirectioncoviiiiiieiiin... 41
Shell Seript ..o 5
Shell variables.......... ..., 25
Shift + PageUP and Shift + PageDown 44
Signal to noise ratio........................ 69, 72
Simulating noise............ol 121
Single channel CMYK 52
Skewed Poisson distribution 120
Sky value ... 75, 76, 121
Software bugo 7
Source code building............ oL 21
Source code compilation 21
Source file navigation................... 132
Source tree. . ..o 137
SOUrce, UNCOMPTESS .« oo vvvee e eieeeeneeenn. 1
Spatial domain o il 63
Spectrum, Fourier 68
Spiral galaxies..........c.oviiiiiiiiiiiiean. 13
Spline interpolation............ 80
Spread of a point source...................... 109

Index

SSH o 7
Stars, modeling. oL 111
Startup scripts. ..o 26, 123
Static document description format............ 50
Static libraries........... ... 131
Statistical analysis, good........................ 2
Stitch multiple images......................... 57
Stray light. ... i 75
Stream editor, SED............. 28
Stroustrup, Bjarne............ 3, 126
Structure de-reference operator............... 133
Subaru Telescope........cooiiiiiiiiin... 78
Submit new tracker item........................ 7
Suffixes, astronomical data..................... 32
Suffixes, EPS format........................... 51
Suffixes, JPEG images......................... 50
Suffixes, PDF format 51
Suffixes, plain text........ ... 51
Sum for total fluxo 113
Superuser, not possible 25
Support request manager 7
Symbolic link.........o 28
System Cachet 40
System wide configuration files................. 39

T

Table manipulation................. 125
Tabsareevil ... i 135
Task tracker......... ..o i 8
oSt oo 1
Test scripts. ... 137
Tests, only one passescoouuiiuuunnn.. 30
Tests, running o o il 28
X e 30, 50
Threads, CPU....... ... i i 118
Tilde expansion as option values............... 34
Tile .o 78
Token separationo 31
Top processing source file..................... 133
Top root structure............. L. 132
Top source code directories................... 130
Total profile flux................... ..., 111, 113
Tracker..... ..o i i 8, 128

Trailing spaceoooiiiiiiiia 135

159
Transform image ... 108
Transformation, affine 71
Transformation, projective..................... 71
Truncation radiusooveeiiiiia.... 113
Tutorial ... 11
U
ui.c, ui.h.. ... 133
Uncompress SOUICEvvvuuenneenneenneennn.. 1
Undetected objects. ..., 121
US letter paper size...........cooviiiiienn... 29
Usage pattern............. 43
User interface functions....................... 133
Using CPU threads............................ 40
Using multiple CPU corescouen... 40
Using multiple threads......................... 40
\Va
Values to options...............ooooiiiiii.. 33
Variation of background flux.................. 121
Vector graphics.............o.oooiiiiii 50
Version control.................. 7,129
Version number.......... ... oo 4
Viewing trackers.............. 8
Virtual console i 7
\%%
Wall-clock time................ooiiiii... 40
WS . 22
WCSLIB ... 22,73
Weighted average..............o 63
WECS. 69
White space character 38
Wide Field Camera 3 69, 70
William Thomson ..., 3
World Coordinate System.................. 22,73
Writing configuration files 38
Wrong output oo 7
Wrong results.............oo ool 7
Z
Zero-point magnitude......................... 114

	Introduction
	Quick start
	Science and its tools
	Your rights
	Naming convention
	Version numbering
	GNU Astronomy Utilities 1.0

	New to GNU/Linux?
	Report a bug
	Suggest new feature
	Announcements
	Conventions
	Acknowledgments

	Tutorials
	Hubble visually checks and classifies his catalog
	Sufi simulates a detection

	Installation
	Requirements
	GNU Scientific library
	CFITSIO
	WCSLIB

	Optional requirements
	libjpeg
	GPL Ghostscript

	Installing GNU Astronomy Utilities
	Configuring
	GNU Astronomy Utilities configure options
	Installation directory
	Executable names

	Tests
	A4 print manual
	Known issues

	Common behavior
	Command line
	Arguments and options
	Arguments
	Options
	Common options
	Input/Output options
	Operating modes

	Configuration files
	Configuration file format
	Configuration file precedence
	Current directory and User wide
	System wide

	Threads in GNU Astronomy Utilities
	A note on threads

	Final parameter values, reproduce previous results
	Automatic output
	Getting help
	--usage
	--help
	Man pages
	Info
	help-gnuastro mailing list

	Output headers

	Files
	Header
	Invoking Header

	ConvertType
	Recognized file types
	Color
	Invoking ConvertType

	Image manipulation
	ImageCrop
	ImageCrop modes
	Crop section syntax
	Blank pixels
	Invoking ImageCrop
	ImageCrop options
	ImageCrop output

	Convolve
	Convolution process
	Convolution on the edges
	Spatial vs. Frequency domain
	Convolution kernel
	Invoking Convolve

	ImageWarp
	Warping basics
	Merging multiple warpings
	Resampling
	Invoking ImageWarp

	SubtractSky
	Sky value
	Finding the sky value
	Sky value misconceptions

	Tiling an image
	Quantifying signal in a mesh
	Grid interpolation and smoothing
	Checking grid values
	Mesh grid options

	Mask image
	Invoking SubtractSky

	Image analysis
	ImageStatistics
	Histogram and Cumulative Freqency Plot
	Sigma clipping
	Mirror distribution
	Invoking ImageStatistics

	NoiseChisel
	Invoking NoiseChisel
	NoiseChisel options
	NoiseChisel output

	MakeCatalog
	Invoking MakeCatalog

	Modeling and fitting
	MakeProfiles
	Modeling basics
	Defining an ellipse
	Point Spread function
	Stars
	Galaxies
	Sampling from a function
	Oversampling

	If convolving afterwards
	Profile total magnitude
	Magnitude to flux conversion
	Invoking MakeProfiles
	MakeProfiles catalog
	MakeProfiles options
	MakeProfiles output

	MakeNoise
	Noise basics
	Photon counting noise
	Instrumental noise
	Final noised pixel value
	Generating random numbers

	Invoking MakeNoise

	Table manipulation
	Developing
	Why C programming language?
	Design philosophy
	Gnuastro project webpage
	Version controlled source
	Internal libraries
	Header files
	Program source
	Mandatory source code files
	Coding conventions
	Multithreaded programming
	Documentation

	Test scripts
	Building
	After making changes

	GNU Astronomy Utilities list
	Other useful software
	SAO ds9
	Viewing multiextension FITS images

	PGPLOT

	GNU Free Documentation License
	Index

