
A Metamodel for the Specification and Verification of Model
Refactoring Actions∗

Davide Arcelli
University of L’Aquila

L’Aquila, Italy
davide.arcelli@univaq.it

Vittorio Cortellessa
University of L’Aquila

L’Aquila, Italy
vittorio.cortellessa@univaq.it

Daniele Di Pompeo
University of L’Aquila

L’Aquila, Italy
daniele.dipompeo@univaq.it

ABSTRACT
Refactoring has become a valuable activity during the software de-
velopment lifecycle, because it can be induced by dierent causes,
like new requirements or quality improvement. In code-based de-
velopment contexts this activity has been widely studied, whereas
in model-driven ones, where models are rst-class development
entities, there are many issues yet to be tackled. In this paper we
present a metamodel that supports the specication of pre- and
post- conditions of model refactoring actions, and the automated
derivation and verication of such conditions in specic modeling
languages. Our work is aimed at helping users to implement refac-
toring actions in the adopted modelling language by providing an
environment for guaranteeing the feasibility of refactoring actions.
Our primary focus is on the denition of applicable sequences of
refactoring actions, rather than on the user-driven step-by-step
application of refactoring actions. As an example, we illustrate the
applicability of our metamodel for UML models refactoring.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; Software maintenance tools;

KEYWORDS
Model-Driven Engineering, Refactoring, Language-independent
refactoring metamodel, Refactoring feasibility

ACM Reference Format:
Davide Arcelli, Vittorio Cortellessa, and Daniele Di Pompeo. 2018. A Meta-
model for the Specication and Verication of Model Refactoring Actions.
In Proceedings of the 2nd International Workshop on Refactoring (IwoR ’18),
September 4, 2018, Montpellier, France. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3242163.3242167

1 INTRODUCTION
Refactoring is acquiring ever more relevance during software lifecy-
cle due to fast and frequent software changes that require exibility

∗This work has been partially funded by the ECSEL project MegaMart2 (grant agree-
ment No 737494).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
IwoR ’18, September 4, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5974-0/18/09. . . $15.00
https://doi.org/10.1145/3242163.3242167

in each development phase. As a consequence, dierent code-based
refactoring approaches have recently appeared in literature, as
based on previously developed concepts.

For exaemple, Opdyke had introduced in his Ph.D. thesis the
feasibility of a sequence of refactoring actions by considering and
introducing pre- and post-condition aspects [20]. Lately, Fowler
et al. had provided a dictionary of refactoring actions aimed at
driving users selection [10]. By leveraging on Opdyke’s approach,
Ò Cinnèide et al. have introduced a framework for automatically
verifying the feasibility of a sequence of refactoring actions [17].
In the latter, they have formalised whether a sequence is feasible
or not by reducing and validating its pre- and post-condition.

In our recent work [2, 3], we have targeted the need of imple-
menting refactoring actions in model-based approaches. In this
context, we have experimented a lack of support especially to the
denition of sequences of actions that can be batch-applied, for
example in the context of evolutionary algorithms, without user
interactions. In order to start targeting this lack, in this paper we
present a metamodel, that we have developed by leveraging on
Opdyke and Ò Cinnèide concepts, for supporting refactoring activ-
ities, with a special focus on pre- and post-condition specication
and verication.

We have conceived our metamodel with the aim of being ap-
plied to multiple modelling languages. Thus, we have introduced
dierent anchor points for applying the metamodel to their mod-
elling languages. Furthermore, we have developed a set of external
helpers aimed to execute common operations, for example, the
reduction of the sequence pre-condition or the validation of the
post-condition. Moreover, we have decided to use OCL as constraint
language because it is quite commonly adopted in MDE ecosystems.

We have applied our metamodel to UML and Æmilia [7]. For
both languages, we have implemented dierent refactoring actions
to build feasible sequences of refactoring actions. Due to space
limitations, we report here only the UML implementation.

The remaining of this paper is structured as follows: Section 2 in-
troduces the related work; in Section 3 we describe our metamodel,
while in Section 4 we illustrate its application to UML; conclusion
and future work are reported in Section 5.

2 RELATEDWORK
Software refactoring is a well-known activity very likely born with
programming. The x-it-later approach, where xing problems
(especially non-functional ones) is demanded after a prototypal
version of the code has been produced, implies refactoring as a
rst-class activity, interleaved with other phases of the software
lifecycle. Although code refactoring is an extensively explored topic
in literature [1, 16, 21, 24], the wide adoption of MDE techniques

14

https://doi.org/10.1145/3242163.3242167
https://doi.org/10.1145/3242163.3242167

IwoR ’18, September 4, 2018, Montpellier, France Davide Arcelli, Viorio Cortellessa, and Daniele Di Pompeo

in software design and development, which has led models to be
rst-class artefacts, paved the way to model refactoring, which
nowadays represents a challenging research area [4, 10, 12, 23].

Recently, several approaches have tried to improve code refactor-
ing within IDEs (eg, Eclipse, IntelliJ Idea). Kim et al. have proposed
a series of papers [13, 14] targeting Java code refactoring through
the implementation of some design patterns dened in [11]. Our
approach diers in that, rst, it supports model-based refactoring
in a language-independent way and, second, it leaves to the user
the denition of refactoring actions.

In the model-based context, dierent approaches have been pub-
lished, which share the characteristic of being user-driven. EMF
Refactor [5] provides a suite of well-known refactoring actions by
exploiting a statical analysis of the target model and by considering
design quality metrics. Operation Recorder [8] allows to derive
model refactoring, based on model dierences, by applying a pat-
tern matching algorithm on source and refactored models. With
respect to these approaches, we natively enable the specication of
sequences of refactoring actions.

Our approach borrows some concepts from code refactoring
approaches [17, 20], by providing support to specify and verify pre-
and postconditions of model refactoring actions and to automat-
ically derive and verify pre- and postconditions for sequences of
refactoring actions.

Fowler et al. have introduced in [10] a cornerstone for code
refactoring. They have presented a dictionary of refactoring actions,
which helps developers in selecting the most valuable actions that
solve their issues.

Ouni et al. have presented an approach for xing code smells by
suggesting design patterns [21]. They have used a multi-objective
function to drive the search within the solution space. By exploiting
the QMOOD (Quality Model for Object-Oriented Design) [6] model,
they are able to calculate the eectiveness of each refactoring action
on the quality of the source code. Moreover, for each refactoring
operation they have used a pre-condition style as Opdyke had
introduced in [20]. Basically, our approach takes into account the
last aspect, by trying to formalise the Opdyke’s concepts in a model-
driven refactoring environment.

The main dierences between code-based andmodel-based refac-
toring come form the dierent nature of the refactoring targeted
artefacts.

The main issue in model-based refactoring is to maintain the
conformance among views. For example, a refactoring action might
directly change a view (e.g. static view), but it might indirectly
involve other views (e.g. the behavioral one). Mansoor et al. have
presented an example that intends to address this issue [15], as they
have proposed a solution for maintaining intra-view conformance.
In this direction, our approach provides a solution in which we can
verify the feasibility of the sequence by evaluating the postcondition
of a refactoring sequence.

3 METAMODEL FOR MODEL REFACTORING
In this section, we describe the core of our work by: (i) introducing
the metamodel for model refactoring (Section 3.1), and (ii) describ-
ing the metamodel facilities that we provide for enabling users
to “plug” refactoring actions into a language-dependent context,

thus inducing pre- and post- conditions support within the target
modelling language (Section 3.2).

Several model-based refactoring approaches exist in literature,
but none of them is based on a general metamodel that supports
refactoring feasibility in multiple modeling languages. In fact, our
metamodel has to be intended as an instrument that allows to
generate a set of facilities (data-structures and algorithms) that
ease the verication of refactoring applicability, as described in the
remaining of this section.

3.1 Metamodel Description
Our metamodel has been dened within the Eclipse Modelling
Framework [22], hence it basically consists of an (annotated) ecore
le accompained by a .genmodel le that allows to generate all the
required facilities. Figure 1 depicts the metamodel big picture.

The Refactoring metaclass (bottom-left of Fig. 1) represents
the root, although we would not generate any model out of this
metamodel, as intended in a “pure” MDE context. In fact, key-
applications of our framework fall within contexts where a large
number of refactoring action sequences have to be automatically
generated, applied and veried, as for example in multi-objective
optimization contexts [2].

A Refactoring may contain:
• A sequence of refactoring Actions, namely actions;
• A Precondition and a Postcondition, both representing
the general concept of Condition, which basically contains
a logical formula in rst-order logics, namely FOLSpecifi-
cation (see the conditionFormula reference).

Refactoring Pre- and Post- Conditions are derived from Pre-
and Post- Conditions of the Actions composing the Refactoring.

The concepts of pre and post- condition are borrowed from
theoretical code-based aspects initially presented by Opdyke [20],
and successively improved by ÓCinnéide et al. [17]. In the latter, the
feasibility of a sequence of refactoring actions (i.e. a Refactoring)
is guaranteed if and only if the conditions of each action do not
break the applicability of the remaining actions in the sequence. In
practical terms, the precondition of the rst action has to be veried,
then its postcondition does not have to break the precondition of
the second action in the sequence, and so on, for each action in the
sequence.

For example, let us dene the following refactoring actions in a
UML context:

(1) moveComp(c : Component, T : Set(Node)), which re-deploys a
Component, namely c, to a given set of target Nodes, namely
T.

(2) deleteComp(c : Component), which properly removes a Com-
ponent, namely c, from the UML model (1).

Their pre- and post- conditions, namely pre1, post1, pre2 and
post2, would be as follows:
• pre1 = (∃ c ∈ C) ∧ (∀ t ∈ T ∃ t ∈ N), where C and N are
the set of all the Components and Nodes in the UML model,
respectively. Hence, pre1 checks the existence of the moved
Component and each selected target Nodes.

1By properly, here we implicitly assume that deleteComp action takes into account intra-
model consistency issues, e.g. deleting a Component implies that all its deployment
relations have to be deleted as well.

15

A Metamodel for the Specification and Verification of Model Refactoring Actions IwoR ’18, September 4, 2018, Montpellier, France

Figure 1: The metamodel for model refactoring

16

IwoR ’18, September 4, 2018, Montpellier, France Davide Arcelli, Viorio Cortellessa, and Daniele Di Pompeo

• post1 = (∃ c ∈ C) ∧ (∀ t ∈ T ∃ t ∈ N) ∧ (∀ d ∈ D ∃ d ∈ T),
where C and N are the set of all the Components and Nodes
in the UML model, respectively, whereas D is the set of
deployment Nodes of c, after the application of moveComp.
Hence, post1 is similar to pre1, but it additionally checks that
the moved Component is actually deployed to the selected
target Nodes.
• pre2 = ∃ c ∈ C , where C is the set of all the Components
in the UML model. Hence, pre2 checks the existence of
Component to be deleted.
• post2 = ∃ c ∈ C , where C is the set of all the Components in
the UML model, after the application of moveComp. Hence,
post2 checks the non-existence of the deleted Component.

Given the refactoring actions above and their pre- and post-
conditions, the sequence moveComp (c1,T1) → deleteComp (c1)
would be feasible, because post1 (applied to the instances c1 and T1)
does not break pre2 (applied to c1), i.e. c1 still exists after having
been moved and it can be thus deleted. Conversely, the sequence
deleteComp (c1) → moveComp (c1,T1) would not be feasible, be-
cause post1 (applied to c1) breaks pre2 (applied to c1 and T1), i.e. c1
does not exist anymore after having been deleted, hence it cannot
be moved.

Providing a language-independent automated support for a pri-
ori verifying the feasibility of refactoring action sequences, through
the mechanism exemplied above, lls an important lack in the
context of model-based refactoring, which is often conceived as a
user-driven activity, i.e. semi-automated. In fact, such an automated
support paves the way to approaches that automatically generate
(and possibly suggest) design alternatives resulting from the applica-
tion of dierent refactoring action sequences, e.g. search-based ap-
proaches based on multi-objective optimization such as [2, 15, 21].

An Action exposes four public methods, which must be imple-
mented to exploit the framework for a specic modelling language
(2): i) execute, ii) setParameters, iii) createPreCondition and iv) cre-
atePostCondition. The latter two methods allow to dene the pre-
and post- conditions that must be validated before (i.e. pre-) and
after (i.e. post-) the action is executed, by invoking the method
execute. However, in order to create a Condition for an Action, its
Parameters have to be set by overriding the setParameters method.
Parameters are used to “resolve” model elements involved in Con-
ditions, through the resolvingExpr strings that are assumed to be
conform to the OCL grammar (i.e. they must express OCL queries),
as described later in this section. There are two types of Parame-
ter: SingleValued and MultipleValued. The former type is used
to resolve a single model element, whereas the latter is used for
resolving a set of model elements. Parameters may properly re-
cur within a FOLSpecification as operands of the Operators
that compose the specication. In fact, a FOLSpecification con-
tains a root, namely rootOperator, which represents the rst
Operator that, in turn, may contain other Operators, and so on.
As a result, a FOLSpecification is expressed in a functional-like
notation by using the available kinds of Operators. Currently,
LogicalOperators have been dened, as: Exists, ForAll, Not,
2Note that we do not provide any specic concrete Action within the metamodel,
because it would jeopardize the generic nature of our framework. A categorization of
refactoring actions, such as additions, deletions and changes would be possible, but
this would have introduced a further degree of complexity.

And, Or. However, the metamodel denition is open to the intro-
duction of other operators, if needed, such as operational ones.

Note that, dierent representations of FOLSpecificationwould
have been possible, e.g. as a set of atomic expressions which are
rstly declared and then composed bymeans of operators. However,
for sake of simplicity, we have opted for the one presented here.

Equation (1) describes a minimal example of FOLSpecification,
where the existence of a specic model element, resolved through
the getCompToMoveSVP SingleValuedParameter, has to be veri-
ed within the set of all the UML Components, which is retrieved via
the getAllCompsMVP MultipleValuedParameter. Practically, the
FOLSpecificationwill be composed by only one ExistsOperator
with getCompToMoveSVP as element and getAllCompsMVP as col-
lection.

∃дetCompToMoveSVP ∈ дetAllCompsMVP (1)

3.2 Main Facilities for Language-Specic
Contexts

As mentioned before, our metamodel is an instrument that allows
to generate a set of refactoring support facilities. In this section,
we describe what a user is expected to do in order to exploit such
refactoring facilities with the aim of “plugging” the metamodel into
a specic modelling notation (e.g. UML [19]).

We remark that Action represents a key anchor point, because
a user must implement her refactoring actions, by overriding the
four declared Action methods, in order to apply the metamodel
to a specic modeling language. As from Fig. 2, the metamodel
provides an ad-hoc class, namely Manager, that exposes all the
facilities needed for such purpose.

Figure 2: Excerpt of Managermetaclass and its facilities.

17

A Metamodel for the Specification and Verification of Model Refactoring Actions IwoR ’18, September 4, 2018, Montpellier, France

3.2.1 Manager Facilities. Manager provides many methods, span-
ning from objects initialization and creation (e.g. of FOLSpecifi-
cations, Single and MultipleValuedParameters, Pre and Post-
Conditions, Operators) to conditions comparison, processing and
evaluation. Fig. 2 depicts a minimal but signicant subset of such
methods, which are described in the following to clarify the funda-
mental role played by Manager:
• calculatePreCondition is in charge of deriving the PreCondi-
tion of the Refactoring, passed as input to the method, by
exploiting an ad-hoc version of the approach by Ó Cinnéide
et al. [17] that we have implemented for our purposes.
• calculatePostCondition is in charge of deriving the PostCon-
dition of the Refactoring, passed as input to the method,
analogously to calculatePreCondition.
• evaluateFolSpecication veries a FOLSpecification against
a contextual model element passed as input parameter, which
has to be retrieved and properly cast, based on the target
modelling language.

Moreover, Manager has three fundamental references to dierent
kinds of managers, aimed at tailoring to a specic modelling lan-
guage, namely: MetamodelManager, OclManager and OclString-
Manager. To this aim, a user has to extend and implement her own
version of the latter managers, as described in the following.

3.2.2 MetamodelManager. MetamodelManager handles ordinary
activities on a target modelling language. Two methods need to be
overridden by a user extension of this class, i.e. init and packageReg-
istering. The former has to initialise all paths of the artefacts needed
for dealing with models conforming to the target metamodel. For
example, the path of the source model onto which a Refactoring
has to be applied, and thus pre- and post- conditions have to be
derived and veried, as well as additional resources and resource
sets (3) have to be dened in the init method. The packageRegis-
tering method, instead, is responsible for the registration of all the
necessary packages into the EMF registry, and it has to be properly
called by init to enable the creation of required resources.

3.2.3 OclManager. OclManager is in charge of performing OCL
queries and handling their results, within the context of the target
modeling language. Notice that OCL query results return Objects,
HashSets of Objects, or Java Generics (not shown in Fig. 2), which
need to be properly cast before being returned to the caller. For this
reason, the user is required to extend OclManager with her own
manager, by providing tailored implementations of its predeclared
methods.

3.2.4 OclStringManager. Asmentioned before, parameters are used
to resolve model elements involved within conditions. Although
this appears as a restricting assumption, it simplies the manage-
ment of such strings. As alternative, in fact, OCLExpressions (4)
rather than strings should be used, thus resulting in a higher com-
plexity. However, in both cases, the user is required to know OCL,
hence we have opted for introducing such assumption in favour of
simplicity.

3The terms resource and resource set here refer to
the classes org.eclipse.emf.ecore.resource.Resource and
org.eclipse.emf.ecore.resource.ResourceSet, respectively.
4From org.eclipse.ocl.expressions.

That said, OCLStringManager itself does not provide anymethod,
hence the user has to implement all the necessary OCL queries
within a tailored extension of it. Each method has to return a pre-
dened query, and all queries will be available to use by setPa-
rameters methods of the dened refactoring actions. When the
FOLSpecification of a Condition for an Action has to be eval-
uated against a model, all the needed Parameters are set by con-
struction, thus each OCL query can be evaluated to properly resolve
the model elements involved in the condition.

Finally, we remark that the basic idea behind such mechanism
for resolving model elements, grounded on a single class that pro-
vides all the needed strings, is borrowed from the Android string
resources system, which can be queried in order to obtain text
strings with optional text styling and formatting for the labels of
an application (5).

4 APPLYING THE METAMODEL TO AN
EXAMPLE MODELING LANGUAGE : UML

In this section, we illustrate the application of our metamodel to
a specic modeling language. We have recently applied refactor-
ing action sequences automatically, in two dierent model-based
contexts, that are: i) an Epsilon-based approach, where dierent
kinds of refactoring sessions on UML-MARTE models [18], aimed
at detecting and removing performance antipattern occurrences,
can be executed by exploiting the dierent execution semantics of
Epsilon languages [2]; ii) a multi-objective optimization approach,
where alternative sequences of refactoring actions on Æmilia ar-
chitectural specications [7, 9] are automatically obtained as the
near-Pareto front of a tness function that considers design aspects
(i.e., number of changes) and performance ones (i.e. number of
performance antipattern occurrences and a performance quality
indicator) [3]. For this reason, in this section we opt for providing
a thorough usage example of our metamodel facilities within one
of these contexts, i.e UML-MARTE, rather than showing the eects
of refactoring actions on modeling examples. However, readers
interested to this aspect can refer to the works mentioned above.

4.1 UmlAction
Let us consider a refactoring Action, namely UmlMoveComponent,
which takes as input a UML Component, namely compToMove, and
a list of Nodes, namely targets, and deploys the former to the latter.
As mentioned before, the Java implementation of the action has to
be introduced within the execute method.

While implementing an action, a user has to dene attributes
representing its Parameters that will be subsequently set within
the setParameters method. Listing 1 shows an excerpt of an imple-
mentation of the setParameters method conceived for the UmlMo-
veComponent refactoring action. In particular, it shows how to set
the following Parameters:

• compToMoveSVP, whose resolvingExp retrieves the Component
to move (line 2). The resolvingExpr is set through the get-
CompQuery method.

5https://developer.android.com/guide/topics/resources/string-resource.

18

https://developer.android.com/guide/topics/resources/string-resource.

IwoR ’18, September 4, 2018, Montpellier, France Davide Arcelli, Viorio Cortellessa, and Daniele Di Pompeo

Listing 1: Excerpt of setParameters method for UmlMove-
Component
1 public void setParameters () {
2 setCompToMoveSVP(Manager.getInstance ().

createSingleValuedParameter(
UmlOclStringManager.getInstance ().
getCompQuery(compToMove)));

3 setAllCompsMVP(Manager.getInstance ().
createMultipleValuedParameter(
UmlOclStringManager.getInstance ().
getAllCompsQuery ()));

4 setTargetNodesMVP (... getNodesQuery(nodes)));
5 setAllNodesMVP (... getAllNodesQuery ()));
6 ...
7 }

• allCompsMVP, whose resolvingExpr retrieves all the Compo-
nents within the system model (line 3). The resolvingExpr is
set through the getAllCompsQuery method.
• targetNodesMVP, whose resolvingExpr retrieves all the Nodes
to which compToMove has to be moved (line 4). The resolving-
Expr is set through the getNodesQuery method.
• allNodesMVP, whose resolvingExpr retrieves all the Nodes
within the system model (line 5). The resolvingExpr is set
through the getAllNodesQuery method.

The resolvingExprs above must be provided by a properly tai-
lored OclStringManager, namely UmlOclStringManager (lines 4–
15 and 16–18 of Listing 6).

Once action parameters have been set, they can be retrieved
through the proper getters, e.g. getTargetNodesMVP() and getAllN-
odesMVP(), in order to dene action pre- and post- conditions.
Hence, using such a notation, the PreCondition of UmlMoveCom-
ponent should verify the following rst-order logics formula:

∃ дetCompToMoveSVP () ∈ дetAllCompsMVP () ∧

∀t ∈ дetTarдetNodesMVP () ∃ t ′ ∈ дetAllNodesMVP () (2)

This pre-condition checks the existence of:
(1) the Component to move (i.e. getCompToMoveSVP()) within

the set of all the Components (i.e. getAllCompsMVP());
(2) each target deployment Node for the Component to move

(i.e. getTargetNodesMVP()) within the set of all the Nodes (i.e.
getAllNodesMVP()).

Listing 2 shows a possible implementation of the formula (2).
A PreCondition is rstly created (line 2), which will be nally
set as the precondition of UmlMoveComponent (line 13). A FOL-
Specification for the PreCondition is then created (line 3), which
will be set as the conditionFormula of the previously created Pre-
Condition (line 12). Thereafter, an AndOperator is created (line
4), which represents the rootOperator of the previously created
FOLSpecification (line 11). The rst argument of the rootOper-
ator (added at line 6) is an ExistsOperator, namely existsComp-
ToMove (line 5), whose element to search is the UML Component
to move. The latter is targeted by getCompToMoveSVP() and has to
be searched within the set of all Components, which are targeted
by getAllCompsMVP(). The second argument of the rootOperator

Listing 2: createPreCondition method for UmlMoveCompo-
nent Action
1 public void createPreCondition () {
2 PreCondition pre =

LogicalSpecificationFactory.eINSTANCE.
createPreCondition ();

3 FOLSpecification fol = Manager.getInstance ().
createFOLSpecification("MoveCompPreC");

4 AndOperator folRoot = Manager.getInstance ().
createAndOperator ();

5 ExistsOperator existsComp = Manager.
getInstance ().createExistsOperator(
getCompToMoveSVP (), getAllCompsMVP ());

6 folRoot.getArguments ().add(existsComp);
7 ForAllOperator forallTargets = Manager.

getInstance ().createForAllOperator(
getTargetNodesMVP ());

8 ExistsOperator existsInNodes = Manager.
getInstance ().createExistsOperator(
getAllNodesMVP ());

9 forall.setArgument(existsInNodes);
10 folRoot.getArguments ().add(forallTargets);
11 fol.setRootOperator(folRoot);
12 preCondition.setConditionFormula(fol);
13 setPre(pre);
14 }

(added at line 10) consists of a ForAllOperator, namely forall-
Targets, whose collection targets the targetNodesMVP of the refac-
toring action through the proper getter (line 7). The argument of
such ForAllOperator is an ExistsOperator, namely existsInN-
odes, whose collection points to the allNodesMVP of the refactoring
action through the proper getter (lines 8–9).

The PostCondition of UmlMoveComponent should verify the
following rst-order logics formula:

∃ дetCompToMoveSVP () ∈ дetAllCompsMVP () ∧

∀t ∈ дetTarдetNodesMVP () ∃ t ′ ∈ дetAllNodesMVP ()∧

∀n ∈ дetDeployNodesMVP ()

∃ n′ ∈ дetTarдetNodesMVP () (3)

This post-condition checks the existence of:
(1) the Component to Move (i.e. getCompToMoveSVP()) within

the set of all the Components (i.e. getAllCompsMVP());
(2) each target deployment Node for the Component to move

(i.e. getTargetNodesMVP()) within the set of all the Nodes (i.e.
getAllNodesMVP());

(3) each Node onto which the Component has to be moved (i.e.
getDeployNodesMVP()) within the set of all target deployment
Nodes (i.e. getTargetNodesMVP())

Listing 3 shows a possible implementation of formula (3). From
an implementative point of view, building a PostCondition is
like building a PreCondition. For this reason, we only report an
excerpt of createPostCondition() for UmlMoveComponent refactor-
ing action. Such excerpt shows an implementation of the third
predicate of Equation (3). Practically, it is implemented through a
ForAllOperator, namely forallDeployNodes (line 3), with a nested

19

A Metamodel for the Specification and Verification of Model Refactoring Actions IwoR ’18, September 4, 2018, Montpellier, France

Listing 3: createPostCondition method for UmlMoveCompo-
nent Action
1 public void createPostCondition () {
2 ...
3 ForAllOperator forallDeployNodes = Manager.

getInstance ().createForAllOperator(
getDeployNodesMVP ());

4 ExistsOperator existsInTargetNodes = Manager.
getInstance ().createExistsOperator(
getTargetNodesMVP ());

5 forallDeployNodes.setArgument(
existsInTargetNodes);

6 ...
7 }

Listing 4: init method for a UmlMetamodelManager
1 public void init(String modelUri) {
2 setModelUri(modelUri);
3 packageRegistering ();
4 getUmlOclManager ().inizialize(getResourceSet

());
5 setUmlResource ((UMLResource) getResourceSet ()

.getResource(Manager.getInstance ().
string2FileUri(getModelUri ()), true));

6 model = (Model) EcoreUtil.getObjectByType(
getUmlResource ().getContents (), UMLPackage.
Literals.MODEL);

7 }

ExistsOperator, namely existsInTargetNodes (lines 4–5), aimed at
verifying that, after the refactoring action execution, all the Nodes
onto which compToMove is deployed are within the set of target
Nodes (lines 4–5). This is achieved by exploiting the Multiple-
ValuedParameters, namely deployNodesMVP and targetNodesMVP.

4.2 UmlMetamodelManager
As said in Sec. 3.2.2, a MetamodelManager has to handle the ordi-
nary activities on a target modelling language. Two methods have
to be overridden by a potential UmlMetamodelManager, namely init
and packageRegistering. An example of the former is reported in
Listing 4 (lines 1–7), where the model URI is set (line 2), all the
needed packages are registered (line 3), the UmlOclManager is ini-
tialized (line 4) and, nally, resources are properly set (line 5) and
the model is stored in ad-hoc variable (line 6). Note that the code
not shown here, i.e. packageRegistering() method, works on UML
models proled with MARTE that are out of the scope of this paper.

4.3 UmlOclManager
As said in Sec. 3.2.3, an OclManager has to handle OCL queries
execution and their results. Methods of OclManager have to be
implemented by a potential UmlOclManager. For sake of paper
readability, we do not report here a complete example, however a
minimal excerpt for an evaluateOCLmethod is reported in Listing 5,
where an OCL object and an OCLHelper (6) are instantiated (lines
6From org.eclipse.ocl.helper.

Listing 5: Example of evaluateOCL method for a UmlO-
clManager
1 public Object evaluateOCL(String query , Object

contextualElement) throws ParserException {
2 OCL <?, EClassifier , ?, ?, ?, ?, ?, ?, ?,

Constraint , EClass , EObject > ocl = OCL.
newInstance(EcoreEnvironmentFactory.
INSTANCE);

3 OCLHelper <EClassifier , ?, ?, Constraint >
helper = ocl.createOCLHelper ();

4 if (contextualElement instanceof Model)
5 helper.setContext(UMLPackage.Literals.MODEL)

;
6 else
7 ...
8 Query <EClassifier , EClass , EObject > q = ocl.

createQuery(helper.createQuery(query));
9 return q.evaluate(contextualElement);
10 }

2–3), the query context is set by properly checking the type of the
contextual element (lines 4–7) and, furthermore, an OCL Query to
evaluate is properly obtained (line 8). The latter is nally evaluated
and the result of such evaluation is returned (lines 9–10). Note
that, the code not shown here (line 7), performs further checks
of the contextual element type (e.g., Component, Node) in order to
properly set the helper context.

4.4 UmlOclStringManager
As said in Sec. 3.2.4, OCLStringManager itself does not provide
any method, hence the user has to implement all the necessary
OCL queries, for example within a UmlOclStringManager. Each
method has to return a predened query, and all queries will be
available to the setParameters method of the UmlMoveComponent
refactoring action. Listing 6 reports sample code for some methods
of a UmlOclStringManager, in particular:
• getCompQuery (lines 1–3), which retrieves the Component
to move, passed as input, if the PaRunTInstance stereotype
(from PAM package of MARTE prole) is applied.
• getAllCompsQuery (lines 4–6), which retrieves all the Com-
ponents with the PaRunTInstance stereotype applied.
• getNodesQuery (lines 7–17), which retrieves all the Nodes
with the GaExecHost stereotype (from GQAM package of
MARTE prole) applied, among the ones passed as input.
• getAllNodesQuery (lines 18–20), which retrieves all the Nodes
with the GaExecHost stereotype applied.

5 CONCLUSION AND FUTUREWORK
In this paper, we have presented a metamodel for the specication
and verication of model refactoring action sequences. The meta-
model contains constructs related to the model-based refactoring
domain, such as the concepts of action, pre- and post- condition,
and a number of logical operators that can be used for dening
rst-order logical formulae representing pre- and post- conditions
of single refactoring actions.

20

IwoR ’18, September 4, 2018, Montpellier, France Davide Arcelli, Viorio Cortellessa, and Daniele Di Pompeo

Listing 6: Sample methods for a UmlOclStringManager
1 public String getCompQuery(Component c) {
2 return "Component.allInstances ()->select(c1 |

c1.getAppliedStereotypes ()->exists(s | s.
name = 'PaRunTInstance '))->select(c2 | c2.
name = '" + c.getName () + "')->asSequence
()->first ()";

3 }
4 public String getAllCompsQuery () {
5 return "Component.allInstances ()->select(c |

c.getAppliedStereotypes ()->exists(s | s.
name = 'PaRunTInstance '))";

6 }
7 public String getNodesQuery(List <Node > nl) {
8 String query;
9 query = "Node.allInstances ()->select(node |

node.getAppliedStereotypes ()->exists(s | s.
name = 'GaExecHost '))->" + "select(n | ";

10 Iterator <Node > iterator = nl.iterator ();
11 while (iterator.hasNext ()) {
12 query += "n.name = '" + iterator.next().

getName () + "'";
13 if (iterator.hasNext ())
14 query += " or ";
15 }
16 return query + ")";
17 }
18 public String getAllNodesQuery () {
19 return "Node.allInstances ()->select(node |

node.getAppliedStereotypes ()->exists(s | s.
name = 'GaExecHost '))";

20 }

The metamodel has been conceived to be plugged into dier-
ent modeling languages (e.g. UML) through a number of facilities
supporting objects creation, as well as the denition of language-
specic managers. It also embeds the implementation of an already
existing mechanism for deriving pre- and post- conditions of refac-
toring action sequences [17].

A critical point is that the user is in charge of writing her pre-
and post-condition as OCL statements, thus she needs to acquire
condence with OCL that, however, is one of the most widely
adopted languages in the MDE environment.

As mentioned in Sec. 4, we have recently introduced automation
in the application of refactoring action sequences in two model-
based contexts, i.e. UML and Æmilia. Here, we have illustrated the
application of our metamodel to the UML case.

Our primary objective in the near future is to extend this meta-
model to enable the specication of performance antipatterns de-
tection rules and their verication against a model. To this aim, we
shall need to include relational operators for comparing numeri-
cal values retrieved through the resolving expressions of single-
and multiple- valued parameters. Relational operators would allow
our metamodel to potentially provide a complete support to the
specication and verication of rst-order logics formulae, indepen-
dently from the fact that they represent pre- and post- conditions
or performance antipatterns detection rules.

REFERENCES
[1] R. AbÃŋlio, J. Padilha, E. Figueiredo, and H. Costa. 2015. Detecting Code Smells in

Software Product Lines – An Exploratory Study. In 12th International Conference
on Information Technology - New Generations, ITNG. IEEE, 433–438.

[2] Davide Arcelli, Vittorio Cortellessa, Mattia D’Emidio, and Daniele Di Pompeo.
2018. EASIER: an Evolutionary Approach for multi-objective Software archItec-
turE Refactoring. In 2018 IEEE International Conference on Software Architecture,
ICSA. IEEE, 105–114.

[3] Davide Arcelli, Vittorio Cortellessa, and Daniele Di Pompeo. 2018. Performance-
driven software model refactoring. Journal for Information and software Technol-
ogy 95 (2018), 366–397.

[4] Davide Arcelli, Vittorio Cortellessa, and Catia Trubiani. 2012. Antipattern-based
model refactoring for software performance improvement. In 8th International
Conference on the Quality of Software-Architectures, QoSA. ACM, 33–42.

[5] Thorsten Arendt and Gabriele Taentzer. 2013. A tool environment for qual-
ity assurance based on the Eclipse Modeling Framework. Automated Software
Engineering 20, 2 (June 2013), 141–184.

[6] Jagdish Bansiya and Carl GDavis. 2002. AHierarchical Model for Object-Oriented
Design Quality Assessment. IEEE Transactions on Software Engineering 28, 1
(2002), 4–17.

[7] Marco Bernardo, Lorenzo Donatiello, and Paolo Ciancarini. 2002. Stochastic
Process Algebra: From an Algebraic Formalism to an Architectural Description
Language. In Performance Evaluation of Complex Systems Techniques and Tools.
Springer, Berlin, Heidelberg, Berlin, Heidelberg, 236–260.

[8] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer,
Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger. 2009. An Example
Is Worth a Thousand Words: Composite Operation Modeling By-Example. In
Model Driven Engineering Languages and Systems. Springer Berlin Heidelberg,
Berlin, Heidelberg, 271–285.

[9] Martina De Sanctis, Catia Trubiani, Vittorio Cortellessa, Antinisca Di Marco, and
Mirko Flamminj. 2017. A model-driven approach to catch performance antipat-
terns in ADL specications. Journal for Information and software Technology 83
(2017), 35–54.

[10] Martin Fowler, Kent Beck, John Brant, William F Opdyke, and Don Roberts. [n.
d.]. Refactoring: improving the design of existing code. Addison-Wesley.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley.

[12] Adnane Ghannem, Ghizlane El-Boussaidi, and Marouane Kessentini. 2013. Model
refactoring using interactive genetic algorithm. In 5th International Symposium
on Search Based Software Engineering. Springer Berlin Heidelberg, 96–110.

[13] Jongwook Kim, Don Batory, and Danny Dig. 2015. Scripting parametric refactor-
ings in Java to retrot design patterns. In 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 211–220.

[14] Jongwook Kim, Don Batory, Danny Dig, and Maider Azanza. 2016. Improving
Refactoring Speed by 10X. In 38th International Conference on Software Engineer-
ing (ICSE). ACM, 1145–1156.

[15] Usman Mansoor, Marouane Kessentini, Manuel Wimmer, and Kalyanmoy Deb.
2015. Multi-view refactoring of class and activity diagrams using amulti-objective
evolutionary algorithm. Software Quality Journal (2015), 1–29.

[16] Iman Hemati Moghadam and Mel Ó Cinnéide. 2011. Code-Imp: A Tool for
Automated Search-based Refactoring. In Proceedings of the 4th Workshop on
Refactoring Tools (WRT). ACM, 41–44.

[17] Mel ÓCinnéide and PaddyNixon. 2000. Composite refactorings for Java programs.
In Workshop on Formal Techniques for Java Programs (FTfJP).

[18] OMG. 2009. UML Prole for MARTE: Modeling and Analysis of Real-Time
Embedded Systems. https://www.omg.org/omgmarte/

[19] OMG. 2017. Unied Modeling Language (UML 2.5.1). http://www.omg.org/
spec/UML/index.htm

[20] William F Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph.D. Disser-
tation.

[21] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Mel Ó Cinnéide, Kalyanmoy
Deb, and Katsuro Inoue. 2015. A Multi-Objective Refactoring Approach to In-
troduce Design Patterns and Fix Anti-Patterns. In North American Search Based
Software Engineering Symposium (NASBaSE). 1–16.

[22] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF:
Eclipse Modelling Framework. Addison-Wesley Professional.

[23] Wuliang Sun, Robert B. France, and Indrakshi Ray. 2013. Analyzing Behavioral
Refactoring of Class Models. InWorkshop on Models and Evolution co-located with
ACM/IEEE 16th International Conference on Model Driven Engineering Languages
and Systems (ME@MoDELS 2013) (CEUR Workshop Proceedings). CEUR-WS.org,
70–79.

[24] Michael Wahler, Uwe Drofenik, and Will Snipes. 2016. Improving Code Main-
tainability: A Case Study on the Impact of Refactoring. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 493–501.

21

https://www.omg.org/omgmarte/
http://www.omg.org/spec/UML/index.htm
http://www.omg.org/spec/UML/index.htm

	Abstract
	1 Introduction
	2 Related Work
	3 Metamodel for Model Refactoring
	3.1 Metamodel Description
	3.2 Main Facilities for Language-Specific Contexts

	4 Applying the metamodel to an example modeling language : UML
	4.1 UmlAction
	4.2 UmlMetamodelManager
	4.3 UmlOclManager
	4.4 UmlOclStringManager

	5 Conclusion and Future Work
	References

