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Effects of species traits and 
environmental predictors on 
performance and transferability of 
ecological niche models
Adrián Regos   1,2, Laura Gagne3, Domingo Alcaraz-Segura4,5, João P. Honrado2,6 & 
Jesús Domínguez   1

The ability of ecological niche models (ENMs) to produce robust predictions for different time frames 
(i.e. temporal transferability) may be hindered by a lack of ecologically relevant predictors. Model 
performance may also be affected by species traits, which may reflect different responses to processes 
controlling species distribution. In this study, we tested four primary hypotheses involving the role 
of species traits and environmental predictors in ENM performance and transferability. We compared 
the predictive accuracy of ENMs based upon (1) climate, (2) land-use/cover (LULC) and (3) ecosystem 
functional attributes (EFAs), and (4) the combination of these factors for 27 bird species within and 
beyond the time frame of model calibration. The combination of these factors significantly increased 
both model performance and transferability, highlighting the need to integrate climate, LULC and 
EFAs to improve biodiversity projections. However, the overall model transferability was low (being 
only acceptable for less than 25% of species), even under a hierarchical modelling approach, which 
calls for great caution in the use of ENMs to predict bird distributions under global change scenarios. 
Our findings also indicate that positive effects of species traits on predictive accuracy within model 
calibration are not necessarily translated into higher temporal transferability.

Ecological niche models (ENMs) based on correlative species-environment relationships are widely used to assess 
the impact of past and future global change on biodiversity1,2. Despite the long-standing and important role of 
ENMs in global change research3, these correlative approaches present important shortcomings that challenge 
their applicability in a changing, highly dynamic world (see e.g.4–6). One such limitation is the low transferability 
(i.e. model extrapolation) of parameterised models to other regions or times beyond the range of data used for 
model fitting (see7, for a review). However, the spatial and temporal transferability of ENMs is rarely evaluated 
prior to predicting species distribution in different regions or times.

Previous studies have provided evidence that model transferability is influenced by the modelling technique, 
as different algorithms show different sensitivities to spatial dimensionality and correlation8–12. Ensemble model-
ling and consensus methods have been proposed as an alternative to avoid overreliance on a single technique and 
reduce uncertainty across individual models13. Moreover, excessively complex models risk overfitting the data 
used for calibration, ultimately leading to predictions that can be too specific to the reference system to be trans-
ferable14. Most parsimonious models – built upon a small set of predictors – are expected to lead to greater trans-
ferabilities15. Thus, one critical step to ensure that models are ecologically meaningful, and therefore may support 
transferability14, is the choice of predictor variables16,17. However, many studies appear to use only environmental 
data that are readily available, while failing to consider other variables that may be ecologically relevant to the 
species distribution (i.e. causal rather than substitute predictors)18, and often missing important environmental 
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drivers. New research on how the integration of key environmental drivers affects the transferability of ENMs is 
urgently needed given the increasing consensus on the importance of addressing the combined impacts of future 
climate and land-use/cover changes on biodiversity19–21. In this regard, the incorporation of less common but 
equally important predictors is now increasingly feasible, as remote sensing data are more readily available22. This 
broad range of available predictors can help improve the performance of ENMs and, in turn, their transferabil-
ity14,23,24. This is the case for the intra- and inter-annual variability and seasonal dynamics of vegetation indices 
obtained from monthly images captured by satellite sensors. Several metrics summarising such dynamics are 
considered robust, integrative descriptors of ecosystem functioning25,26 and have recently been found to be mean-
ingful predictors for species distributions and their temporal dynamics27–29. However, to the best of our knowl-
edge, there is only one study that has assessed the role of these remotely-sensed ecosystem functional variables on 
model transferability30, although without considering the potential advantages of combining those variables with 
other relevant environmental drivers such as climate and land use change.

To advance on the application of model extrapolation in time and space, a better understanding of the pro-
cesses and conditions that affect transferability is needed14. The ecology of species has also been demonstrated to 
impact model performance31–33 and predictor ranking34. Indeed, the effects of species traits (i.e., characteristics 
or qualities of the organisms of a species influencing performance or fitness)35 on the predictive ability of ENMs 
were found to override any differences in modelling technique, as these traits may reflect the different responses 
of species to processes that control species distributions36. For instance, a global meta-analysis has showed that 
species traits such as body size, dispersal model and trophic position may be good indicators of predictability37. 
Other studies found that non-endemic species with greater dispersal capacity, intermediate levels of prevalence, 
and little fire adaptation held higher model transferability than endemic species with limited dispersal capacity38. 
In addition, ENMs based upon climate, land cover and soil type variables performed less well for highly mobile 
species with large ranges39. A recent study also highlighted that the predictive ability of ENMs differs with regard 
to life history characteristics such as range, migration, habitat and rarity of a species40.

Despite the growing body of research and evidence, the relationship between specific traits, predictor variables 
and model transferability still remains poorly understood7,14. To address this caveat, here we tested four primary 
hypotheses involving the role of species traits and environmental predictors in model performance and transfer-
ability (see Table 1 for a detailed description):

(H1) Model transferability hypothesis: Model accuracy will be higher within than beyond the model cali-
bration time frame7.

(H2) Environmental-predictor hypothesis: Model accuracy, both within and beyond the model calibration 
time period, will increase with the combination of different types of relevant environmental predictors related to 
climate, habitat availability and ecosystem functioning conditions6,7.

(H3) Hierarchical-integration hypothesis: Model accuracy will improve, particularly beyond the model 
calibration time period, by hierarchically integrating environmental drivers whose effects are more evident and 
relevant at regional scales (i.e. climate) with those found to be more important at local scales (i.e. land use/cover 
and ecosystem functioning)41–43.

(H4) Species-traits hypothesis: Model performance and transferability will be influenced by species 
traits31,38,40,44 (see Table 1 for expectations and sub-hypotheses).

To test these hypotheses, we compared the predictive accuracy of ENMs based upon (1) climate, (2) land-use/
cover and (3) ecosystem functional attributes, and (4) the combination of these factors, for 27 bird species within 
the model calibration period (year 2000) and in a different time frame (year 2010), in a highly dynamic landscape 
of NW Iberia (Gerês-Xurés Biosphere Reserve). The predictive accuracy was aggregated by species traits related 
to biogeographic origin, migratory status and habitat preference and specialization.

Methods
Study site.  The study area is the Baixa Limia-Serra do Xurés Natural Park (c. 29 345 ha), located in the north-
west of the Iberian Peninsula (Fig. 1A). It is included in the Gerês-Xurés transboundary UNESCO Biosphere 
Reserve (Fig. 1B) and protected under EU legislation (Habitat and Bird Directives). The zone is a mountain range, 
with elevation gradient between 323 and 1529 m a.s.l., located in the transition between the Mediterranean and 
Eurosiberian biogeographic regions and in the proximity of the Atlantic coast45, making it particularly susceptible 
to climate change. The landscape is mainly dominated by shrubland (69%) and forest (21%)46. The area has been 
greatly affected by the abandonment of traditional agricultural and livestock activities, which has favoured veg-
etation encroachment and recent forest expansion46,47. The area is also subjected to a high frequency of human-
caused fires − linked to long-standing socio-economic difficulties in rural communities − and to a fast recovery 
of vegetation after fire48, resulting in an unstable and highly dynamic system46.

Bird data.  We used occurrence (presence/absence) data for bird species at two different scales (both spatial 
extent and resolution): (1) Iberian extent at 10-km resolution and (2) Gerês-Xurés Mountains at 230-m resolution 
(Fig. 1). At the Iberian scale, bird data were obtained from the combination of the Second Spanish and Portuguese 
Atlases of Breeding Birds49,50. This dataset documents the occurrence of breeding bird species in 6212 grid cells 
of 10-km resolution (Fig. 1A), with field data mostly collected between 1998 and 2005. At the Gerês-Xurés scale, 
bird data was surveyed in 2000 and 2010 using two different sampling methodologies. A set of 344 5-min point 
counts with unlimited distance were carried out in 2000 (hereafter: ‘calibration dataset’) (Fig. 1C). This initial 
dataset was partly replicated in 2010 by re-sampling a subset of 204 5-min point counts to evaluate the tempo-
ral transferability of ENMs (i.e. internal temporal transferability assessment; hereafter: ‘Internal TT’ dataset). 
Simultaneously, another set of 384 20-min point counts with a limited distance of 80 m was surveyed twice during 
the spring of 2010 to form a spatially and temporally independent data set (i.e. external temporal transferability 
assessment; hereafter: ‘External TT’ dataset) (Fig. 1C). The censuses were undertaken during the breeding season 
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(May–June). To avoid possible detection biases caused by the time of survey, wind speed or cloud cover, all cen-
suses were carried out during the 4 h after sunrise (peak vocal activity) and under uniform weather conditions 
(days without marked rainfall or wind). In the ‘External TT’ survey, the point counts were resampled in the after-
noon during the 4 h before sunset (peak vocal activity).

From the initial set of species, we only selected those with more than 15 presences to ensure a minimum 
of 5 occurrences per predictor (i.e. to avoid overfitting the models)51 (see Table 2 for a list of target species). 
These species were grouped in different guilds based upon their ecological traits related to biogeographical origin 
(Eurosiberian/Mediterranean), phenology (sedentary/migrant), and habitat specialization (generalist/specialist) 
and preference (forest/open habitat), information extracted from different sources, from continental to local 
atlases49,50,52–55 (Table 2).

Environmental data.  Climate variables.  Climate variables were calculated from meteorological stations 
in Spain and Portugal by using multiple regression techniques (see details in56). In particular, 19 climate variables 
were computed for each year from monthly time series of air temperatures (mean maximum and mean minimum 
temperature) and total precipitation by using the function ‘biovars’ available in the R package ‘dismo’, version 
1.1–457. From the initial set of 19 climate variables, we selected the two most ecologically relevant for the bird 

Hypothesis Sub-hypothesis Expectations and rationality Comparison

(H1) Model 
transferability 
hypothesis

Model accuracy usually evaluated with a split-sample approach, i.e. 
repeatedly and randomly leaving out a subset of data used for calibration 
(‘Cross-validation’), will be higher within than beyond the model calibration 
time frame7,103. We also expect higher model accuracy after testing the 
temporal projections against temporally (but not spatially) independent 
data (‘Internal TT’) than against spatially and temporally independent data 
(‘External TT’). This hypothesis aims to assess if cross-validation procedures 
are good indicators of model transferability.

‘Crossvalidation’ vs 
‘Internal TT’ and 
‘External TT’.

(H2) Environmental-
predictor hypothesis

The lack of ecologically relevant predictors will substantially reduce ENM 
performance and transferability6,7. While holding the number of variables 
constant (i.e., trivariate models), model accuracy − both within and beyond 
the model calibration time period − will increase with the combination 
of different types of environmental predictors related to climate, habitat 
availability, and ecosystem functioning conditions.

‘Individual’ vs ‘combined’ 
models.

(H3) Hierarchical-
integration hypothesis

Model accuracy will improve, particularly beyond the model calibration 
time period, with the hierarchical integration of environmental drivers 
whose effects are more evident and relevant at regional scales (i.e., climate) 
with those more important at local scales (i.e., land use/cover and ecosystem 
functioning)41–43. Climate-driven models calibrated at regional scales 
(i.e., Iberian Peninsula) will be able to capture a larger range of species 
distributions and, therefore, wider range of climate conditions where the 
species can currently occur or not104. These ‘regional’ climate-driven models 
will be able to define the climate niche of species more generally (i.e. fewer 
omission errors) than ‘local’ models, and they can then be improved by the 
incorporation of land use/cover and ecosystem functioning at finer scales 
(i.e. Gerês-Xurés Biosphere Reserve).

‘Hierarchical’ vs ‘non-
hierarchical’ modelling 
approaches.

(H4) Species-traits 
hypothesis

Performance and transferability of ENMs will be influenced by species 
traits31,38,40,44. Species ecological characteristics will affect our ability to 
describe their distributions within the time frame used for model fitting (i.e. 
calibration) and to predict distributional shifts through time (i.e. temporal 
projections). If so, species’ traits might help to identify environmental 
predictors more suitable for predicting species’ distribution.

Species traits across 
crossvalidation, ‘TT 
Internal’ and ‘TT external’.

(H4.1). Biogeographic-
climate hypothesis

If climate is the determining factor of bird species distributions (sensu)105,106, 
the performance of ENMs based upon climate variables will be strongly 
dependent on the species traits related to their biogeographic origin. Given 
that Mediterranean species are relatively scarce and rare in our study area, we 
can expect that their distributions can be a priori more easily predictable in 
space and time (due to combined effects of a narrow niche and small range 
size)97 than for Eurosiberian species, yielding the highest model accuracy.

‘Eurosiberian’ vs 
‘Mediterranean’

(H4.2). Habitat-
landcover hypothesis

Model performance and transferability will be higher for habitat-specialists 
than for generalists when predicted with models built with land cover (but 
not necessarily with climate) variables95,96. However, the predictive accuracy 
of our models should not be affected by species’ habitat preference (i.e. forest 
or open habitat).

‘Habitat-specialist’ vs 
‘habitat-generalist’ for 
ENMs based upon land 
cover, climate variables; 
and, ‘open-habitat’ vs 
‘forest-habitat’ for ENMs 
based upon land cover, 
climate variables.

(H4.3) Phenology-EFAs 
hypothesis

Migrating birds track vegetation dynamics; i.e., the birds move with the 
seasonally progressing green-up of vegetation28, so species traits related 
to their phenology will potentially contribute to explain the performance 
and transferability of ENMs based upon ecosystem functioning attributes 
(‘EFAs’)26, which are derived from inter-annual variability and seasonal 
dynamics of vegetation indices.

‘Migrant’ vs ‘sedentary’ for 
ENMs based upon EFA

(H4.4) Trait-predictor 
hypothesis

Since EFAs are directly affected by climate and land use/cover change25, they 
can potentially provide information about the integrative response of species 
to global environmental change102, Thus, we would expect that those species 
traits with impacts on the performance and transferability of climate and/or 
land-cover models will also affect our predictions based upon EFAs.

Species traits for ENMs 
based upon EFAs vs 
ENMs based upon 
climate and/or land-cover 
variables.

Table 1.  Hypotheses and sub-hypotheses, expectations arising from each hypothesis, and corresponding 
comparisons of model accuracy.
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species according to expert knowledge and scientific literature58,59: (1) the maximum temperature of the warmest 
month, and (2) the average annual precipitation. A third predictor variable − (3) seasonality of precipitation 
(i.e. coefficient of variation) − was also selected after ensuring no problems related to collinearity with the other 
climate variables (see Supplementary Information S1 for correlations between pairs of predictors, description 
and visualization). Climate variables were resampled from their original resolution of 200 m to 230 m in order to 
match the spatial resolution of the EFAs.

Land-use/cover variables.  The land-use/cover variables were derived from optical and thermal multispectral 
bands of Landsat TM and ETM + images acquired over the same temporal sequence as the bird sampling was car-
ried out (20 March 2000, 8 June 2000, 24 June 2000, 19 May 2010 and 30 July 2010). The land-cover classification 
was obtained using a hybrid classification procedure, which combines unsupervised and supervised strategies47 
(see details in Supplementary Information S2). Land-use/cover types were then aggregated in broad categories to 
describe the landscape composition, and three main categories were selected to describe habitat preference for the 
target bird species: (1) scrubland, (2) forest and (3) cropland. Land-use/cover variables represent the percentage 
of these three main categories in each geographic unit (i.e. grid cell), and they were resampled from their original 
resolution of 30 m to the spatial resolution of the EFAs (~230 m).

Ecosystem functioning variables.  Ecosystem functional attributes (EFAs) were derived from the Enhanced 
Vegetation Index (EVI) obtained from 16-day maximum value composite images captured by the Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensor at a spatial resolution of ∼230 m. EVI is related to the 
fraction of photosynthetically active radiation intercepted by vegetation. EVI proved to have better sensitivity 
in high biomass regions and lower influence from the canopy background and atmospheric noise than other 
vegetation indices60. Three independent metrics of the EVI seasonal dynamics were calculated for 2001 (MODIS 
complete year closest to 2000) and 2010: (1) EVI annual mean, an estimator of annual primary production, which 
is one of the most integrative descriptors of ecosystem functioning (productivity indicator); (2) EVI seasonal 
standard deviation, a descriptor of the difference in carbon gains between seasons (seasonality indicator); and (3) 
the date of the maximum EVI value, an indicator of the growing season peak, as it indicates the most productive 
month during the year (phenology indicator) (see26 for details).

Modelling framework.  We first developed three sets of trivariate models based exclusively upon each 
type of environmental predictor (henceforth ‘individual’ models): (1) Climate, (2) Land cover, and (3) EFAs 
(see Fig. 2 for a flow diagram of the modelling approach and steps). We also developed an additional set of 
models by using the environmental suitability predicted from the ‘individual’ models as predictor variables to 
integrate in a balanced way all possible combinations of these three environmental drivers within the modelling 
framework (henceforth ‘combined’ models) (see e.g.30,48,49): (4) Climate + Land cover, (5) Climate + EFAs; (6) 
Land cover + EFAs, and (7) Climate + Land cover + EFAs (Fig. 2). Both individual and combined ENMs were 
fitted with a maximum number of three variables to control model complexity, increase model transferability17,61, 
and make model performance and transferability comparable61 (Fig. 2). Climate models were calibrated at local 
(Gerês-Xurés) scale at 230 m resolution (henceforth ‘local climate models’) and then combined with the envi-
ronmental suitability predicted from ENMs based upon land cover and/or EFAs (henceforth ‘non-hierarchical 

Figure 1.  Location of the study area (Gerês-Xurés Mountains) in the Iberian Peninsula. (A) 10-km squares in 
the Iberian Peninsula. (B) Location of the study area in the Gerês-Xurés transboundary UNESCO Biosphere 
Reserve. (C) Spatial distribution of the point counts used for sampling bird communities: 5-min point counts 
for 2000 (i.e. calibration dataset) (red dots), 5-min point counts for 2010 (i.e. ‘Internal TT’ dataset) (blue dots), 
and 20-min point counts for 2010 (i.e. ‘External TT’ dataset) (green dots). Maps generated with the QGIS 2.16.2 
https://www.qgis.org/es/site/.
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approach’). Climate models were also calibrated at the Iberian Peninsula scale (henceforth ‘regional climate 
models’) at 10-km resolution. These regional climate models were then directly projected (‘direct downscaling 
approach’, see62–64) to the extent and resolution of Gerês-Xurés Mountains for both 2000 and 2010. These local 
climate projections were used as predictor variables into combined models to hierarchically integrate climate 
suitability calibrated at regional scale with the environmental suitability predicted from ENMs based upon land 
cover and/or EFAs at local scale (henceforth ‘hierarchical approach’, sensu41,42).

All ENMs were calibrated using seven modelling algorithms available in the R package ‘Biomod2’, version 
3.3–765: generalized linear models (GLM), generalized additive models (GAM), generalized boosted regression 
models (GBM), random forest (RF), factorized distribution algorithm (FDA), multivariate adaptive regression 
splines (MARS) and artificial neural networks (ANN). For each technique, we used the default settings in bio-
mod2 because these settings are optimized for SDMs (see66). Presence-background modelling techniques such as 
MaxEnt or GARP were not considered as they are designed to cope with the lack of absence data67, which is not the 
case, and did not show significant improvement in terms of predictive accuracy. We applied a 30-fold split-sample 
procedure by randomly selecting 70% of the data for calibration and the remaining 30% for model evaluation 
(hereafter ‘crossvalitation’). Our results for the area under the curve (AUC) of the receiver-operating character-
istic (ROC), true skill statistic (TSS), the Cohen’s kappa coefficient were highly correlated (see Supplementary 
Table S3.1), and consequently, we only present results on AUC − a threshold-independent method − as a means 
of evaluating model performance68. In order to quantify model ability to accurately predict presences, we also 
computed sensitivity (i.e. the proportion of presences that were correctly predicted) as indicator of omission 
errors68. We applied the weighted average approach for computing a consensus (hereafter ‘ensemble model’) of 
the single models by calculating the weighted average of all single models with AUC > 0.65, using AUC values as 
model weights. This consensus method provides significantly more robust predictions than all the single-models 
and other consensus methods69. Models with AUC higher than 0.65 (instead of the more usual 0.7)70 were consid-
ered in the consensus method in order to obtain an ensemble model for all species, thereby ensuring a meaningful 
set of results to test our hypotheses and avoiding misleading conclusions that might result from considering only 
AUC values for those species with the highest model accuracies.

Model transferability.  The temporal transferability of the ENMs (i.e. the ability of the model to predict 
species distribution in a different time frame) was tested by comparing the environmental suitability predicted 

Common name Scientific name Acronym
Biogeographic 
origin

Habitat 
specialization

Habitat 
preference Phenology

Common Woodpigeon Columba palumbus CPAL Mediterranean Generalist Forest Sedentary

European Turtle Dove Streptopelia turtur STUR Mediterranean Specialist Forest Migrant

Common Cuckoo Cuculus canorus CCAN Eurosiberian Generalist Forest Migrant

European Green 
Woodpecker Picus viridis PVIR Eurosiberian Generalist Forest Sedentary

Eurasian Skylark Alauda arvensis AARV Eurosiberian Specialist Open habitat Sedentary

Eurasian wren Troglodytes troglodytes TTRO Eurosiberian Generalist Forest Sedentary

Dunnock Prunella modularis PMOD Eurosiberian Generalist Open habitat Sedentary

European robin Erithacus rubecula ERUB Eurosiberian Generalist Forest Sedentary

Common Stonechat Saxicola torquata  STOR Eurosiberian Specialist Open habitat Sedentary

Common Blackbird Turdus merula TMER Eurosiberian Generalist Forest Sedentary

Dartford Warbler Sylvia undata SUND Mediterranean Specialist Open habitat Sedentary

Common Whitethroated Sylvia communis SCOM Mediterranean Specialist Open habitat Migrant

Eurasian Blackcap Sylvia atricapilla SATR Eurosiberian Specialist Forest Migrant

Iberian Chiffchaff Phylloscopus ibericus PIBE Eurosiberian Specialist Forest Migrant

Common Firecrest Regulus ignicapilla RIGN Eurosiberian Specialist Forest Sedentary

European crested tit Lophophanes cristatus PCRI Eurosiberian Specialist Forest Sedentary

Coal Tit Periparus ater PATE Eurosiberian Specialist Forest Sedentary

Great Tit Parus major PMAJ Eurosiberian Specialist Forest Sedentary

Short-toed Treecreeper Certhia brachydactyla CBRA Eurosiberian Specialist Forest Sedentary

Eurasian Golden Oriole Oriolus oriolus OORI Eurosiberian Specialist Forest Migrant

Red-backed shrike Lanius collurio LCOL Eurosiberian Specialist Open habitat Migrant

Eurasian jay Garrulus glandarius GGLA Eurosiberian Specialist Forest Sedentary

Common Chaffinch Fringilla coelebs FCOE Eurosiberian Generalist Forest Sedentary

European Serin Serinus serinus SSER Mediterranean Generalist Forest Migrant

European greenfinch Carduelis chloris CCHL Mediterranean Specialist Forest Migrant

Common linnet Carduelis cannabina CCANN Mediterranean Specialist Open habitat Sedentary

Rock Bunting Emberiza cia ECIA Eurosiberian Specialist Open habitat Sedentary

Table 2.  Traits related to biogeographic origin, habitat preference and specialization, and phenology of each 
target bird species.
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for 2010 − derived from ensemble models calibrated for 2000 − against observed occurrence data available for 
2010 from two independent sources: (1) a dataset obtained from the replication in 2010 of a subset of the initial 
point counts used to calibrate the models, which enables a temporally (but not spatially) independent assessment 
of model transferability (i.e. ‘Internal TT’); and (2) another dataset obtained from a distinct set of locations and 
using a different sampling methodology, which offers a more independent − spatially and temporally − evalua-
tion of the model transferability (i.e. ‘External TT’).

As described above, the AUC of the ROC and Sensitivity were also used as accuracy metrics to evaluate model 
transferability68. We also calculated the number of species with AUC higher than 0.7 as a complementary indi-
cator. To compare the spatial predictions for years 2000 and 2010, derived from the different ENMs, we calcu-
lated the Schoener’s D metric, the most common measure of niche overlap71,72. In particular, we computed niche 
overlap between spatial predictions derived from ‘individual’ and ‘combined’ models for each species using the 
function ‘nicheOverlap’ available in the R package ‘dismo’, version 1.1–457. Then, the Schoener’s D metric values 
were summarised by computing the average across species for each type of model.

Hypothesis testing.  Each hypothesis and sub-hypothesis was tested by comparing the AUC values (see 
Table 1 for a detailed description) between the following:

(H1) crossvalidation and temporal transferability assessments (i.e. ‘Internal TT’ and ‘External TT’),
(H2) model types (i.e. ‘individual’ vs ‘combined’; e.g. ‘climate’ vs ‘climate + land cover’),
(H3) modelling approaches (i.e. ‘hierarchical’ vs ‘non-hierarchical’), and
(H4) species traits (e.g. ‘sedentary’ vs ‘migratory’).
We used box plots to display the variability of predictive accuracy obtained from crossvalidation, ‘Internal TT’ 

and ‘External TT’ assessments, across all predictor combinations (i.e. from ‘individual’ to ‘combined’ models), the 
two modelling approaches (i.e. ‘hierarchical’ and ‘non-hierarchical’) and all species traits (see Table 2). All plots 
were constructed with R software and the ggplot2 package73.

In addition, the effect of environmental predictor, modelling approach and species traits on AUC values were 
estimated using GLMs with a Gaussian error distribution and the ‘identity’ link function74 separately for cross-
validation, ‘TT Internal’ and ‘TT External’. In particular, we fitted a set of competing models and applied the 
multimodel inference approach75. We applied a data dredging analysis (the dredge function, available in the R 
package MuMIn; R Core Team 2015) to run the GLMs for all (valid) combinations of environmental predic-
tors (interactions between predictor, modelling approach and species trait not included). For each model, we 

Figure 2.  Flow diagram of the modelling approach and steps (see Material and Methods for a detailed 
description of each step).
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calculated the Akaike Information Criterion (AIC) and ∆I, where ∆I = AICi−AICminimum. All the models with 
∆I < 7 were considered to have support75. The importance of each predictor was obtained by adding the Akaike 
weights (Wi) to the models in which that variable is present76. The addition of the weights of each variable was 
considered consequential when ΣWi > 0.5, meaning that half or more of the total Akaike weight for the model 
set was represented by models that contained that variable77. The AUC values for species traits were compared 
by a Wilcoxon signed rank test for paired samples. To be conservative, we only considered significant changes 
associated with p-values smaller than 0.001.

Results
Model transferability hypothesis (H1).  All ENMs performed well during the crossvalidation procedure 
(AUCmean = 0.923 ± 0.081). However, the predictive accuracy of their temporal projections was much lower when 
tested against temporally (i.e. ‘Internal TT’; AUCmean = 0.615 ± 0.071) and spatiotemporally (i.e. ‘External TT’; 
AUCmean = 0.601 ± 0.067) independent datasets (Fig. 3). The low temporal transferability (AUC was higher than 
0.7 for less than 25% of species) indicates that the ability of the models to predict distributional shifts is limited.

Environmental-predictor hypothesis (H2).  ENMs developed with the three sets of predictors were all 
useful for describing the distribution of the target species (AUCClimate = 0.889 ± 0.104; AUCEFA = 0.867 ± 0.117; 
AUCLCT = 0.873 ± 0.071; Fig. 3). The high niche overlap between projections indicates that the different ENMs 
produce congruent predictions for our target species distributions (Fig. 4). However, spatial dissimilarities were 
also found, which confirms the complementary spatial information that ENMs based upon the different types of 
predictors can provide (Schoener’s D values ranging from 0.60 to 0.82, Fig. 4). Models based upon EFAs showed 
higher niche overlap with combined models (Schoener’s D = 0.69–0.79) than land cover (Schoener’s D = 0.67–
0.73) or climate models (Schoener’s D = 0.63–0.70; Fig. 4). The gradual integration of information derived 
from ENMs based upon the different sets of predictors substantially increased model performance, both within 
(AUCmean up to 0.98; Fig. 3; ΣWPRED = 0.99; Table 3) but also beyond (Fig. 3; ΣWPRED = 0.98; see ‘Internal TT’ in 
Table 3; ΣWPRED = 0.99; see ‘TT External’ in Table 3) the calibration time frame. However, despite the enhanced 
model performance, the overall accuracy of temporal projections remained very low (Fig. 3).

Hierarchical-integration hypothesis (H3).  The hierarchical integration of climate suitability predicted 
from regional climate models (calibrated at Iberian level) with the environmental suitability predicted from local 
ENMs (calibrated at Gerês-Xurés level, based upon land use/cover and ecosystem functioning variables) signif-
icantly improved our predictions within (AUCmean up to 0.97; Fig. 3; ΣWAPP = 0.90; Table 3), but not beyond the 
model calibration time period (Fig. 3; ΣWAPP = 0.26; see ‘Internal TT’ in Table 3; ΣWAPP = 0.28; see ‘External TT’ 
in Table 3).

Species-traits hypothesis (H4).  The species traits significantly affected our ability to accurately describe 
species distribution within the model calibration time period (Fig. 5; ΣWTRAIT = 0.99; Table 3) and also to predict 
distributional shifts over time (Fig. 5; ΣWTRAIT = 0.99; see ‘External TT’ in Table 3). However, this result was not 
consistent when temporal projections were tested against temporally (but not spatially) independent datasets 
(ΣWTRAIT = 0.04; see ‘Internal TT’ in Table 3).

Model performance and transferability were higher for Mediterranean than for Eurosiberian species (‘H4.1’; 
crossvalidation: AUCmean = 0.96 vs 0.91, respectively; p < 0.001; ‘External TT’ AUCmean = 0.63 vs 0.59, respec-
tively; p < 0.001), especially for ENMs developed with climate variables (Fig. 5), except for ‘Internal TT’ evalua-
tions (AUCmean = 0.61 vs 0.61, respectively; p = 0.753).

Model performance within crossvalidation was higher for habitat specialist than generalist species 
(AUCmean = 0.93 vs 0.90, respectively; p < 0.001). However, these species traits did not show any significant effect 
on temporal transferability (‘H4.2’; ‘Internal TT’ AUCmean = 0.60 vs 0.59, respectively; p = 0.043; ‘External TT’ 
AUCmean = 0.62 vs 0.60, respectively; p = 0.223; Fig. 5).

No significant differences were found between forest and open-habitat dwelling species, in either the cross-
validation (AUCmean = 0.93 vs 0.90, respectively; p = 0.003) or in the temporal transferability (H4.2; ‘Internal 
TT’ AUCmean = 0.61 vs 0.62, respectively; p = 0.049; ‘TT External’ AUCmean = 0.60 vs 0.59, respectively; p = 0.378; 
Fig. 5). In addition, migrant species were more accurately predicted than sedentary species (AUCmean = 0.94 vs 
0.91, respectively; p < 0.001), especially with ENMs based upon EFAs (‘H4.3’; Fig. 5), but only within the calibra-
tion time period (‘Internal TT’ AUCmean = 0.61 vs 0.60, respectively; p = 0.035; ‘External TT’ AUCmean = 0.62 vs 
0.59, respectively; p = 0.001).

Overall, species traits affecting the performance and transferability of ENMs based upon climate and land 
cover variables also affected the predictive accuracy of ENMs based upon EFAs (‘H4.4’; see Fig. 5).

Discussion
The present study compares - for the first time - the performance and temporal transferability of ecological niche 
models (ENMs) based upon climate, land-use/cover and ecosystem functional attributes (‘EFAs’), as well as the 
combinations of these factors. It is also, to our knowledge, the first study to evaluate the ability of an approach that 
hierarchically integrates climate with land-use/cover and ecosystem functional variables (cf.30,31) to improve bird 
distribution predictions beyond the calibration time frame. In addition, this study provides new insights into the 
relative role of species traits in model performance, being one the few attempts so far to examine the effects on 
model transferability (but see38,40,78,79).
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Integration of predictors and model transferability.  Our findings showed that ENMs developed with 
the three sets of predictors (namely climate, land-use/cover and EFAs) were all useful for describing the distri-
bution of our target species (cf. Figs 3 and S3.1). The integration of these ecologically relevant predictors signif-
icantly increased the model performance within the calibration time period, under both the hierarchical and 
non-hierarchical integration approach (see ‘crossvalidation’ in Fig. 3, Table 3). As expected, the enhanced model 
performance within the calibration time was also translated into an increase in model transferability (cf. Fig. 3), 
providing additional support to the relevance of integrating climate and land-use/cover variables to improve our 
future biodiversity projections19–21 (‘H2’). In this sense, the integration of predictor variables related to ecosystem 
functioning − an often neglected dimension of ecological niche of species (but see27,80) − was found to increase 
model performance and transferability (cf. Fig. 3), especially for migrant, forest specialist species (cf. Fig. 5). 

Figure 3.  Model performance and transferability measured by AUC and sensitivity values for each set of 
predictors, modelling approach, and type of evaluation. For all box plots, lower and upper whiskers encompass 
the 95% interval, lower and upper hinges indicate the first and third quartiles, and the central black line 
indicates the median value.

Figure 4.  The Schoener’s D values estimated from the spatial predictions derived from the different ENMs for 
both year 2000 and 2010.
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Nonetheless, the overall predictive accuracy beyond the calibration time period was considerably low, being 
acceptable for less than 25% of modelled species (‘H1’). The lack of model transferability might be due to the 
existence of non-analogous conditions and, consequently, the need to extrapolate14,81,82. Then, low transferability 
is almost a consequence of high uncertainty due to extrapolation83. Indeed, a large spatial dissimilarity between 
years 2000 and 2010 was found for annual precipitation and precipitation seasonality. Theoretically, more tem-
porally stable variables could lead to higher model transferability, but it depends upon the species to be modelled 
and the relative importance of those variables in the model (see Supplementary Fig. S4.1). Also, land abandon-
ment process and wildfires has been affecting landscape over the last decade (see Supplementary Figs S4.2 and 
S4.3), with strong impacts on the bird community, as has been already documented for our study area46,47. In this 
sense, the explicit consideration of ecologically meaningful processes for species (i.e., fire disturbance) and more 
mechanistic approaches when modelling species distributions might have improved the temporal transferability 
of our ENMs, as has been illustrated for fire-prone systems84,85. In addition, the development of more appropriate 

Evaluation type Models AIC Delta (∆AIC) Weight

Crossvalidation
PRED + APP + TRAIT −3448.3 0 0.908

PRED + TRAIT −3443.7 4.598 0.056

Internal TT

PRED −3684.6 0 0.674

PRED + APP −3682.8 1.836 0.268

PRED + TRAIT −3679.1 5.516 0.042

External TT
PRED + TRAIT −3906.3 0 0.718

PRED + APP + TRAIT −3904.4 1.877 0.281

Table 3.  Model ranking according to ∆AIC (delta Akaike Information Criterion; only models ∆AIC < 7 
are shown) for each evaluation type. Abbreviations: PRED (set of predictors); APP (modelling approach: 
‘hierarchical’ vs ‘non-hierarchical’); TRAIT (species trait, see Table 2).

Figure 5.  Model performance and transferability measured by AUC values aggregated by species traits for 
each set of predictors, modelling approach, and type of evaluation. For all box plots, lower and upper whiskers 
encompass the 95% interval, lower and upper hinges indicate the first and third quartiles, and the central black 
line indicates the median value.
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extrapolation methods can help generate more realistic predictions in different spaces or times, allowing higher 
model transferability and credibility86.

Theoretically, the hierarchical approach should have improved our predictions beyond the calibration time 
period, as regional climate models (i.e. those calibrated at Iberian scale and projected into the Gerês-Xurés condi-
tions) should be able to capture a wider range of species distributions and, in turn, a wider range of climate con-
ditions than local climate models (i.e. those calibrated at Gerês-Xurés level) (see spatial projections for Eurasian 
skylark, Alauda arvensis, in Fig. 6). Indeed, the high sensitivity of the downscaled climate projections derived 
from regional models (see Fig. 3) suggests that they were able to capture the broad climate envelope of the spe-
cies, being refined with the subsequent integration of ENMs based upon land cover and ecosystem functioning 
variables at Gerês-Xurés scale (cf. Fig. 3). These results contribute to the mounting evidence that hierarchical 
approaches effectively capture the intrinsic characteristics of ecological systems41, successfully integrating climate 
suitability over large scales with habitat characteristics at more local scales (see e.g.48,61,87,88). This multiscale hier-
archical approach did not, however, show any advantages in terms of model transferability relative to the classic, 
non-hierarchical integrative approach (Table 3, Fig. 3), undermining its suitability for making predictions of 
bird distributions under global change scenarios, at least in our particular case (‘H3’). Here we applied the ‘direct 
approach’ to obtain fine-grained, downscaled climate suitability from models calibrated at broader scale62–64. This 
approach relies on the assumption that fine-grain species distributions show the same environmental associations 
as distributions at the coarse grain62,63, which might not be necessarily the case for all species. Alternative hierar-
chical approaches based on Bayesian modelling framework might help to overcome these limitations89, eventually 
leading to more accurate predictions. Moreover, niche truncation is one of the most challenging issues when 
ENMs are used to predict in other times or spaces14,90. For example, niche truncation can result from a limited 
range of environmental conditions existing in the study region used to calibrate models (i.e., realized environ-
mental space sensu91). In our study, models calibrated at local (Gerês-Xurés) and regional (Iberian Peninsula) 
scales have likely resulted in different niche truncation. Then, the challenge for predictive ecology is how to deal 
with predictions into non-analogous conditions (i.e., beyond the point of niche truncation), which can be an 
important constraint, even having chosen the most appropriate predictors. Recent research has also highlighted 
that the poor performance of uncorrected (random) cross-validation might be caused by dependence structures 
in the data that might also persist in model residuals, violating the assumption of independence. The large differ-
ence found between model accuracy within and beyond the calibration timeframe draws attention to the need 
for using independent validation data or, alternatively, block cross-validation methods if the goal is predicting to 
new data or predictor space92. Last but not least, the lack of repeated temporal sample structure in our bird data 
(both at local and regional scale), required for accounting statistically for biases related to imperfect detection, is 
an additional source of variation93,94.

Species traits and model transferability.  Our findings showed that species traits have a significant 
impact on both model performance and transferability (‘H4’; cf. Fig. 5), despite the large variability among species 
(see Supplementary Fig. S3). These results confirm the important role of species ecology on model performance, 
as previously suggested32,38,40,78,79. However, our results also suggest that the effects of species traits on predictive 
accuracy within the model calibration time period are not necessarily translated into its temporal transferability 
(cf. Table 3; Fig. 5). Thus, while biogeographic origin was found to affect model performance and transferability, 
habitat specialization and migratory status only impacted model performance (not transferability), and habitat 
preference did not impact either model performance or transferability (cf. Table 3; Fig. 5). Interestingly, the results 
also indicate a trait-predictor relationship as some specific traits seem to be linked to specific environmental 
predictors. For instance, model performance was higher for habitat specialists than for generalist species95,96 (see 
‘crossvalidation’ in Fig. 5). Generalist species often have local subpopulations that differ in ecological characteris-
tics, so modelling all these subpopulations together could overestimate the species ecological breadth and hence 
reduce model accuracy96. On the contrary, specialist species that inhabit in more restricted environmental con-
ditions are usually more accurately predicted, as long as these conditions are not widely distributed95. Similarly, 
Mediterranean species showed higher predictive accuracy than Eurosiberian species, especially in ENMs that 
included climate variables (see ‘External TT’ in Fig. 5; ‘H4.1’), due also to a narrower niche and smaller range 
size in the study area97. Hence, our ability to properly model species distributions hinges upon the niche breadth–
range size relationship97, even though this does not necessarily have to affect model transferability (‘H4.2’; Fig. 5). 
In fact, some studies found greater model transferability for wide-ranging organisms with broad environmental 
niches than for narrow-ranging specialists14,40. In addition, our results showed that migrant species were more 
accurately predicted than sedentary species (‘H4.3’; Fig. 5). This is consistent with recent studies that demon-
strated that migrating birds track vegetation dynamics28; i.e., the birds move with the seasonally progressing 
green-up of vegetation98,99. Food availability is one of the most important resources determining breeding success. 
On the basis of the well-established principle that resources availability is related to primary productivity100, sev-
eral studies successfully correlated species distributions with the inter-annual variability and seasonal dynamics 
of vegetation, measured through satellite-derived indices27,80,101.

It is particularly interesting to note that species traits affecting the performance and transferability of ENMs 
based upon climate and land cover variables also affected the predictive accuracy of ENMs based upon EFAs 
(H4.4, Fig. 5). This may be explained by the fact that EFAs can be directly affected by climate and land use/cover 
change25 and can thus potentially provide information about the integrative response of species to global environ-
mental change27,102. Indeed, ENMs based exclusively upon EFAs showed higher niche overlap with the combined 
models – that integrate the three types of environmental predictors – than land cover or climate models (Fig. 4). 
These results suggest that satellite-derived EFAs, in addition to assisting the on-going assessment of essential 
biodiversity variables (EBVs) related to ecosystem functioning22 (see also Working Group Ecosystem function 
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GEOBON, http://geobon.org/working-groups/ecosystem-function/), can also contribute substantially to near 
real-time biodiversity monitoring. Our results therefore confirm the ability of EFAs to accurately model bird 
distribution – especially for migrant, forest specialist species – although they cannot ensure model transferability 
by themselves (Fig. 5). Their integration with other ecologically relevant factors, such as climate and land use 
changes39,79, into ENMs will be key to improve temporal predictions20.

In conclusion, the study findings confirm the important role of species traits and environmental predictors in 
model performance and transferability for bird distributions, especially in highly dynamic systems. The progres-
sive integration of ecologically relevant predictors related to climate, land-use/cover and ecosystem functional 
conditions significantly enhanced model performance within the calibration time period, under both hierarchical 
and non-hierarchical integration approaches. These findings provide additional support to the importance of 
integrating climate, land-use/cover and ecosystem functional variables to improve our future biodiversity projec-
tions. Unfortunately, the hierarchical multiscale approach did not show substantial advantages in terms of model 
transferability in comparison with the classic, non-hierarchical integrative approach, undermining its suitability 
for predicting bird distribution under global change scenarios. We strongly emphasize the importance of consid-
ering model transferability, in addition to traditional measures of model accuracy, and the need for caution when 
using ENMs to predict shifts in bird distributions as high discriminatory power within the calibration time frame 
does not guarantee the predictive ability of a model. Our findings also showed that species traits may significantly 
impact both model performance and transferability. In particular, the accuracy of prediction was highest for 
Mediterranean, migrant, habitat-specialist species, which provides guidance for the suitability of ENMs as an 
approach for predicting global change responses for birds in our region. However, the findings also suggest that 
the positive effects of species traits on predictive accuracy within model calibration are not necessarily translated 
into higher temporal transferability.

Data Availability
The bird datasets and environmental variables used during this study are available in Supplementary Information 
Files.
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