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Introduction

Primary productivity, the capacity of a soil to produce plant
biomass for human use (as food, feed, fuel, or fiber), is one of
the cornerstones of prosperous farming communities.
Accordingly, farmers need to focus on multiple soil functions
in order to maintain the productivity function of the soil
(Schulte et al. 2014) and to help secure the viability of farms
for the next generations. This includes the soils’ provision of
clean drinking water, the recycling of nutrients, carbon se-
questration, and soil serving as a habitat for biota (Schulte et
al. 2015). To this end, several improvedmanagement practices
are being applied in the field. No-tillage or non-inversion till-
age practices are being promoted to reduce the labor and crop
production costs, but also due to their positive effects on soil
organic matter (SOM) and soil aggregate stability (Bauer et al.
2015; Tatzber et al. 2008; Spiegel et al. 2007). Incorporation

* Aneta Trajanov
aneta.trajanov@ijs.si

Heide Spiegel
adelheid.spiegel@ages.at

Marko Debeljak
marko.debeljak@ijs.si

Taru Sandén
taru.sanden@ages.at

1 Department of Knowledge Technologies, Jozef Stefan Institute,
Jamova cesta 39, 1000 Ljubljana, Slovenia

2 Jozef Stefan International Postgraduate School, Jamova cesta 39,
1000 Ljubljana, Slovenia

3 Department for Soil Health and Plant Nutrition, Institute for
Sustainable Plant Production, Austrian Agency for Health & Food
Safety – AGES, Spargelfeldstrasse 191, 1220 Vienna, Austria

Regional Environmental Change (2019) 19:325–337
https://doi.org/10.1007/s10113-018-1361-3

# The Author(s) 2018

Abstract
Primary productivity is in the foundation of farming communities. Therefore, much effort is invested in understanding the
factors that influence the primary productivity potential of different soils. The International Long-Term Ecological Research
(ILTER) is a network that enables valuable comparisons of data in understanding environmental change. In this study, we
investigate three ILTER cropland sites and one long-term field experiment (LTE) outside of the ILTER network. The focus is
on the influence of different management practices (tillage, crop residue incorporation, and compost amendments) on
primary productivity. Data mining analyses of the experimental data were carried out in order to investigate trends in the
productivity data. We generated predictive models that identify the influential factors that govern primary productivity. The
data mining models achieved very high predictive performance (r > 0.80) for each of the sites. Preceding crop and crop of the
current year were crucial for primary productivity in the tillage LTE and compost LTE, respectively. For both crop residue
incorporation LTEs, plant-availableMg affected productivity the most, followed by properties such as soil pH, SOM, and the
crop residue management. The results obtained by data mining are in line with previous studies and enhance our knowledge
about the driving forces of primary productivity in arable systems. Hence, the models are considered very suitable and
reliable for predicting the primary productivity at these ILTER sites in the future. They may also encourage researcher-
farmer-advisor-stakeholder interaction, and thus create enabling environment for cooperation for further research around
these ILTER sites.
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of crop residues and various organic fertilizer amendments,
such as composts and farmyard manure, is feasible options
for substituting mineral nitrogen fertilizers (Spiegel et al.
2010). Currently, conservation agriculture is becoming more
wide-spread among the global farming community. Already
approximately 125 million hectares of land are managed by
the principles of conservation agriculture (Friedrich et al.,
2012; Brouder and Gomez-Macpherson, 2014). The defini-
tion of conservation agriculture includes minimum, non-
inversion or reduced tillage, combined with retention of crop
residues on the soil surface and crop rotation. The aim is to
conserve soil and water for optimum productivity (Hobbs et
al. 2008; Kertész and Madarász 2014).

The International Long-Term Ecological Research
(ILTER) represents a network that enables valuable compari-
sons of data for understanding environmental change.
Nonetheless, cropland sites are still underrepresented in the
network, and more sites would be needed for global compar-
isons. In Austria, only four agricultural ILTER sites are includ-
ed in the network of 38 sites in total (Mirtl et al. 2015). This
study focuses on three of the cropland sites (tillage and crop
residue incorporation), as well as one long-term field experi-
ment (compost amendments) outside of the ILTER network.

The previous investigations of the selected LTER sites have
focused on how the different improved management practices,
i.e., tillage (Franko and Spiegel 2016; Tatzber et al. 2008;
Spiegel et al. 2007), crop residue incorporation (Spiegel et al.
2018), cropping systems (Tatzber et al. 2009, 2012, 2015a, b;
Tatzber 2009), and organic/compost amendments (Lehtinen et
al. 2017; Hijbeek et al. 2017; Körschens et al. 2013), affected
the soil properties as well as soil productivity. However, no
analyses of the experimental data have been carried out in order
to determine patterns in the productivity data.

There are many positive examples of using data mining
techniques for building predictive models in the field of agri-
cultural and environmental sciences (Bondi et al. 2018; Bui et
al. 2009; Debeljak et al. 2007, 2008; Goldstein et al. 2017;
Kuzmanovski et al. 2015; Shekoofa et al. 2014; Trajanov
2011). Their biggest advantage is that they are applied on
easily obtainable empirical data, and the parametrization of
the data mining models is done automatically from the data;
hence it is not influenced by the subjectivity of the modelers.
By applying data mining methods, data sets from long-term
field experiments can be turned into an understandable struc-
ture, and interpretable patterns (i.e., long-term trends and their
drivers) in the data can be identified.

Data mining, as a part of the Knowledge Discovery in
Databases (KDD) process, uses machine learning and statisti-
cal methods in order to find interesting patterns in data
(Fayyad et al. 1996). The goal of data mining is to extract
information from datasets that is intelligible and useful in an
understandable and easily interpretable format. Different data
mining algorithms are used to address different data mining

tasks and discover different patterns in the data (e.g., decision
trees, clusters, equations, rules). These algorithms search
through the space of patterns (models) to find interesting pat-
terns that are valid in the given data.

This study was designed to predict primary productivity
and to identify the driving factors that govern primary produc-
tivity by means of data mining. To this end, we addressed the
following questions within the framework of the selected field
experiments:

(1) Can data mining help make reliable predictive models of
primary productivity from LTE (long-term field
experiments) data?

(1) What are the driving factors of primary productivity in
the selected arable LTEs that are sufficiently fertilized
with main nutrients?

(2) Do the selected management practices influence primary
productivity?

Materials and methods

International Long-Term Ecological Research (ILTER)
experimental sites

This paper investigated data from four Austrian long-term
field experiments (LTEs, Fig. 1).

Tillage

The long-term field experiment investigating different tillage
management (tillage LTE) was established in Fuchsenbigl
(Table 1). In brief, the experiment included three different
tillage systems (minimum, reduced, and conventional tillage)
(Spiegel et al. 2002, 2007; Tatzber et al. 2008). The experi-
ment consisted of a randomized block design, the plots mea-
suring 60 m × 12 m each. The crop rotation was not fixed and
consisted of the most important crops for the region such as
cereals, sugar beet, maize, and grain legumes.

Crop residue incorporation

Two long-term field experiments were established to investi-
gate the management of crop residues, crop residue LTE in
Rutzendorf, and crop residue LTE in Grabenegg. Both sites
have recently been described by Spiegel et al. (2018). The
field experiments consisted of a randomized block designwith
four replicates, each plot measuring 32 m × 6 m (192 m2) in
Rutzendorf and 30 m × 7.5 m (225 m2) in Grabenegg. There
were four P-fertilization stages (0, 33, 66, 131 kg P ha-1y-1),
and all crop residues were either incorporated or removed in
the treatments. The crop rotation was not fixed and consisted
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of the most important crops for both regions, such as cereals,
sugar beet, grain maize, and grain legumes.

Compost amendments

The long-term compost LTE was designed in Ritzlhof near
Linz, Upper Austria, to study the effects of different com-
post amendments on chemical, physical, and microbial soil
parameters and plants. The compost LTE and its soils have
previously been described in Lehtinen et al. (2017) and ref-
erences therein. The field experiment consists of a random-
ized block design with four replicates, the plots measuring
5 m × 6 m (= 30 m2). The field trial includes a control plot
(zero N), minerally fertilized plots (40 kg N, 80 kg N,
120 kg N ha−1 y−1) and biowaste compost, green waste

compost, manure compost, and sewage sludge compost
plots (each treatment corresponding to 175 kg N ha−1) with
a crop rotation of winter wheat, winter barley, maize, and
pea (without compost application). In further variants, the
four compost amendments are fertilized with 80 kg mineral
N (NH4NO3) ha

−1.

Data mining methods

In our study, we used data mining algorithms for generation
of decision trees (Breiman et al. 1984), in particular model
and regression trees. The algorithms for building decision
trees are one of the most commonly used data mining algo-
rithms. They predict the value of a dependent variable
(termed target attribute) from a set of independent variables

Table 1 The long-term agricultural field experiments of AGES (Austrian Agency for Health & Food Safety)

Tillage LTE Crop residue LTE - Grabenegg Crop residue LTE - Rutzendorf Compost LTE

GPS coordinates 48° 11′ N 16° 44′ E 48° 12′ N 15° 15′ E 48° 21′ N 16° 61′ E 48° 18′ N 14° 25′ E

ILTER site name LTER_EU_AT_030 LTER_EU_AT_038 LTER_EU_AT_030 n.a.

Year established 1988 1986 1982 1991

Soil type (WRB, 2015) Haplic Chernosem Gleyic Luvisol Calcaric Phaeozem Cambisol

MAT 9.4 °C 8.5 °C 9.1 °C 8.5 °C

MAP 529 mm 836 mm 540 mm 753 mm

Texture (% clay/silt/sand) 22/41/37 16/77/7 23/52/26 17/69/14

pH (CaCl2) 7.6 6.6 7.5 6.8

SOC 1.2% 1.0% 2.2% 1.2%
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(attributes). They are hierarchical models that contain inter-
nal and terminal nodes, connected with edges. In each inner
node, the value of an attribute is tested and compared to a
constant value. The edges coming out from the node corre-
spond to the outcome of the test. The leaf nodes contain the
predictions of the target attribute that apply to all samples
that fall in that leaf. To predict the value of the target attri-
bute for a new sample, it is routed down the tree according to
the values of the attributes that are tested in each node.
When the sample reaches a leaf, it is given the prediction
assigned to the leaf.

When the values of the target attribute are numeric, the
leaves of the tree contain models for predicting it. The
models can be piece-wise linear regression equations, in
which case the decision trees are known as model trees, or
can be constant values and in this case, the decision trees are
termed regression trees. When generating regression trees,
syntactic constraints can also be used (Džeroski et al. 2010).
The syntactic constraints influence the process of building
the trees by defining a partial structure of the tree, from
which point on the tree is generated automatically, follow-
ing the regular regression tree algorithm.

In this study, we generated model and regression trees
for each of the LTE experimental sites (tillage LTE, crop
residue LTEs, and compost LTE). For easier interpretation
of the model trees, we calculated the average predicted
value of the samples that fall into each leaf according to
its piece-wise equation, as well as their average actual
values. When interpreting decision (classification or re-
gression) trees, we start from the top (root) of the tree.
The most important factors that influence the target attri-
bute (primary productivity in our case) appear at the top.
The importance of the attributes decreases as you move
towards the lower levels of the tree.

There are different measures of predictive performance
to assess how good the data mining models describe our
data. To assess the performance of regression and model
trees, we used the correlation coefficient as a measure: it
quantifies the statistical correlation between the predicted
and the real values of the target attribute. The values of
the correlation coefficient can vary between 1 (perfect
correlation) and − 1 (perfect negative correlation) through
0 (no correlation at all). In addition, to assess how good
the model performs on new (test) data, we used the ten-
fold cross-validation technique (Witten and Frank 2011).
In cross-validation, the dataset is split into n approxi-
mately equal partitions (folds). Each fold is (in turn) used
for testing, while the remaining folds are used for train-
ing (building) the model. This procedure is repeated n
times and, at the end, the correlation coefficients obtained
in the different iterations are averaged to obtain the over-
all correlation coefficient of the data mining model. A
common practice when generating data mining models

is to use tenfold cross-validation as a standard method
for their evaluation.

Another measure of predictive performance is Root
Mean Square Error (RMSE) (Witten and Frank 2011). It is
a measure that reports the average magnitude of the error. It
is the square root of the average of squared differences be-
tween prediction and actual values of the target attribute.

To model the influence of different agricultural manage-
ment techniques on primary productivity, we used the data
mining package WEKA (Witten and Frank 2011), which
implements a large collection of machine learning algo-
rithms for different data mining tasks. In this study, we used
the model and regression tree algorithm M5P. For generat-
ing regression trees with syntactic constraints, we used the
decision and rule induction system CLUS (Blockeel and
Struyf 2002).

Data description

The data from the four Austrian long-term field experi-
ments, described in the BInternational Long-Term
Ecological Research (ILTER) experimental sites^ section,
were organized and preprocessed in order to be analyzed
using data mining techniques. The data comprising the three
LTEs datasets are presented in Table 2. The attributes in-
cluded the long-termmonitoring data available from each of
the experiments; thus, the attributes differed slightly be-
tween the LTEs.

Although the general structure of all datasets was similar,
each dataset was preprocessed in a unique way in order to
correctly address the goal and obtain the most accurate and
interpretable data miningmodels possible. The structure of the
separate datasets from each experimental site is explained in
the following sections.

Tillage

The tillage dataset consisted of data from 18 years of exper-
iments (1998–2015), yielding 162 samples, described with
soil parameters, management techniques (tillage), and crop
yields. In addition to these original attributes, for each ex-
ample, we included the soil properties of the preceding year
(derived attributes) in order to check whether the soil prop-
erties of the preceding year and the type of tillage applied on
the field influence the crop yield in the current year.

Three types of crops were grown at the tillage experimental
site: sugar beet, grain maize, and cereals. These crops have
significantly different absolute yields. Therefore, we divided
the dataset into three subsets, according to crop classes:

& Sugar beet (number of samples 18)
& Grain maize (number of samples 36)
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& Cereals: winter wheat, spring wheat, soybean, winter bar-
ley, spring barley (number of samples 108)

For the data mining analyses, we generated five scenar-
ios using different combinations of original and derived
attributes:

& Scenario 1: Original attributes WITHOUT CEC and C/N
& Scenario 2: Original attributesWITHCEC and C/N (exclud-

ing the attributes from which CEC and C/N are calculated)
& Scenario 3: Original and derived attributes WITHOUT

CEC and C/N
& Scenario 4: Original and derived attributes WITH CEC

and C/N (excluding the attributes from which CEC and
C/N are calculated)

& Scenario 5: Original and derived attributes WITH CEC
and C/N and syntactic constraints (forcing the tillage attri-
bute at the top of the decision trees)

The attributes from which CEC and C/N are calculated
were excluded in scenarios 2 and 4 in order to avoid correla-
tions in the investigated attributes.

Crop residue incorporation

The data from the crop residue incorporation experimental
sites consisted of data from two LTEs—Rutzendorf and
Grabenegg. Each dataset comprised 5 years of experiments
(2002, 2008, 2010, 2012, and 2014), yielding 160 samples,
described by soil properties, management practices (crop res-
idue incorporation or removal), and the crop yield. Data about
preceding years were not included in these datasets because
the data in these LTEs were not collected for consecutive
years. At these experimental sites, only cereal crops were
grown, so there was no need to divide the datasets according
to crop type.

Table 2 Each long-term experiment dataset comprised of data describing the soil properties of the experimental sites, the management techniques used,
and the crop yield

Attributes Tillage long-term experiment Crop residue long-term
experiments

Compost long-term experiment

Crop • Sugar beet
• Grain maize
• Cereals (winter wheat, spring wheat,

soybean, winter barley, spring barley)
+ preceding crops

Cereals (winter wheat,
winter barley)

• Maize
• Cereals (spring wheat, winter wheat,

winter barley, and pea)

Soil • Percentage of total nitrogen (N)
• Mineralized N (mg/kg/7day)
• Percentage of total soil organic

carbon (SOC)
• Plant available phosphorus (P) (mg/kg)
• Plant available potassium (K) (mg/kg)
• Plant available magnesium

(Mg) (mg/kg)
• Soil pH
• Percentage of carbonate content (CAO)
• Exchangeable calcium (Ca) (cmolc/kg)
• Exchangeable magnesium

(Mg) (cmolc/kg)
• Exchangeable potassium (K) (cmolc/kg)
• Exchangeable sodium (Na) (cmolc/kg)
• Cation exchange capacity (CEC)

(cmolc/kg)
• C to N ratio (C/N)
+ preceding soil attributes

• Percentage of total
nitrogen (N)

• Mineralized N
(mg/kg/7day)

• Percentage of total soil
organic carbon (SOC)

• Plant available phosphorus
(P) (mg/kg)

• Plant available potassium
(K) (mg/kg)

• Plant available magnesium
(Mg) (mg/kg)

• Soil pH
• C to N ratio (C/N)

• Percentage of total nitrogen (N)
• Mineralized N (mg/kg/7day)
• Percentage of total soil organic

carbon (SOC)
• Plant available phosphorus

(P) (mg/kg)
• Plant available potassium

(K) (mg/kg)
• Plant available magnesium

(Mg) (mg/kg)
• Soil pH
• C to N ratio (C/N)

Management • Minimum tillage
• Reduced tillage
• Conventional tillage

• Removal of crop residues
• Incorporation of crop residues

• Mineral fertilization (0, 40, 80
or 120 kg N/ha/y)

• Compost amendments (bio-waste,
green waste, manure or sewage
sludge compost corresponding
to 175 kg N/ha/y)

• Combination of compost and
mineral fertilization (compost with
additional 80 kg mineral N/ha/year)

Primary
productivity

Yield (kg/ha) Yield (kg/ha) Yield (kg/ha)
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Here, we performed two scenarios for both Rutzendorf and
Grabenegg datasets:

& Scenario 1: Using total nitrogen and total soil organic
carbon attributes and excluding the C/N attribute

& Scenario 2: Using C/N and excluding the total nitrogen
and total soil organic carbon attributes

Compost amendments

The compost amendment dataset consisted of 8 years of ex-
periments (1998, 2001, 2002, 2003, 2005, 2007, 2012, and
2015), yielding 384 samples, described by soil properties,
management practices (type of fertilization and compost
amendment), and crop yield. At this experimental site, two
classes of crops were grown: maize and cereals (spring wheat,
winter wheat, winter barley, and pea). As in the case of the
tillage LTE data and to avoid biasing the data mining models,
we divided the dataset into two subsets because the two types
of crops have significantly different absolute crop yields in kg/
ha: one consisting of data only for maize (144 examples) and
the other for cereals (240 examples). Data on preceding crops
grown on the fields were also included in the datasets.

Here, we also carried out two scenarios:

& Scenario 1: Using total nitrogen and total soil organic
carbon attributes and excluding the C/N attribute

& Scenario 2: Using C/N and excluding the total nitrogen
and total soil organic carbon attributes

Results

Tillage

The results of the obtained model and regression trees for the
tillage experimental site are presented in Table 3 in terms of
correlation coefficients (r) and Root Mean Square Error
(RMSE).

Figure 2 indicates that the preceding crop was of pivotal
importance for primary productivity. The predictive perfor-
mance of the models obtained for sugar beet was low.
However, due to the low number of samples (18 in total) in
this dataset, these results are unreliable. The best results
(models) were obtained for grain maize and cereals, where
the highest correlation coefficients (0.83 and 0.84, respective-
ly) were obtained for scenario 4. Overall, the correlation co-
efficients of the models for grain maize and cereals were
higher in scenarios 3 and 4, where we used soil and crop data
of the preceding year, compared to the scenarios 1 and 2,
where we used data only for the current year.

Crop residue incorporation

The regression trees of both trials highlight that the most impor-
tant attribute for primary productivity in the crop residue incorpo-
ration long-term experiments was the plant-available Mg (Fig. 3).

For modeling the influence of soil and crop properties as
well as crop residue incorporation on primary productivity,
we had one dataset for each LTE, for which we carried out
two scenarios. The predictive performances of the model and
regression trees obtained for the two datasets and for both sce-
narios are very high (Table 4). This makes them very reliable
for predicting and modeling the primary productivity in a field.

The best models were obtained for scenario 1. The regres-
sion trees for Grabenegg andRutzendorf are presented in Fig. 3.

Compost amendments

The regression tree for modeling the primary productivity in
cereals (Fig. 4) shows that in the compost amendment LTE,
the crop grown on the field and the treatment applied on the
field were the major drivers of primary productivity.

As in the crop residue LTE analyses, for the compost
amendments experimental site, we developed models for
two scenarios, using the C/N ratio and using total soil organic
carbon and total nitrogen as separate attributes. The predictive
performances of the obtained models are presented in Table 5.

The correlation coefficients of the models for both types of
crops were very high, 0.78 and 0.94, respectively. The models
obtained for the cereals dataset have especially high correlation
coefficients, which make the predictions very reliable. The re-
gression tree obtained for the cereals dataset is presented in Fig. 4.

Discussion

Tillage

In the tillage LTE, the crop rotation mimicked the current man-
agement practices in the area, i.e., the most common agricultural
crops were grown in 3–6-year crop rotations. Various aspects
influence a farmer’s decision which crop to grow, all of which
may act at a local, regional, or even at the global scale (Hazell
andWood 2008). Theymay include the farm type, the economic
market, the technological opportunities at hand, the possibilities
for government or EU subsidies, as well as the nature of the
farmer’s soil (Hazell and Wood 2008; Bennett et al. 2012). If
economic market trends influence the choice of a crop of the
season, the expected yields are probably one of the most impor-
tant driving factors for the choice. Our data mining models
clearly showed (Fig. 2) that cereal yields were significantly low-
er when sugar beet or winter wheat was the preceding crop
compared to e.g., soybean or spring wheat. These differences
may reflect a combination of factors, including how the grown
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crops influence the soil-plant interphase with regard to soil prop-
erties, pests, pathogens and soil microorganisms (Bennett et al.
2012), and residual effects on the succeeding crops—just to
mention a fraction of the possibilities.

The importance of the preceding soil and crop properties is
also evident from the generated model and regression trees. The
best model tree, obtained for the cereals dataset and scenario 4
(Fig. 2), shows that the most important attributes for predicting

Table 3 Predictive performance in terms of correlation coefficient (r) and RootMean Square Error (RMSE) of the model and regression trees obtained
for the tillage International Long-Term Ecological Research (ILTER) experiments

Scenarios

1:
Original attr.
without CEC
and C/N

2:
Original attr.
with CEC
and C/N

3:
Original and
derived attr.
without CEC
and C/N

4:
Original and
derived attr.
with CEC
and C/N

5:
Original and derived
attr. with CEC and
C/N and a syntactic
constraint

Sugar beet Model trees r 0.62 0.69 0.42 0.54 /

RMSE (kg/ha) 4552.73 3999.71 5182.84 4784.59 /

Regression trees r − 0.22 − 0.22 − 0.14 − 0.25 0.68

RMSE
(kg/ha)

5928.43 5928.55 5865.84 5896.83 4264.75

Grain maize Model trees r 0.70 0.72 0.82 0.83 /

RMSE
(kg/ha)

905.21 884.38 730.81 711.35 /

Regression trees r 0.54 0.52 0.78 0.80 0.73

RMSE
(kg/ha)

1096.85 1108.93 986.36 978.81 877.4

Cereals Model trees r 0.68 0.77 0.81 0.84 /

RMSE
(kg/ha)

649.20 560.99 520.27 480.83 /

Regression trees r 0.47 0.68 0.79 0.74 0.67

RMSE
(kg/ha)

782.09 675.00 593.08 627.59 653.78

The bold values represent the best results obtained for different scenarios.
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yield were the preceding crop, the preceding yield, the C/N ratio,
and the preceding CEC and plant-available phosphorus. These
soil parameters are well-known to affect plant nutrition. A small-
er C/N ratio indicates more rapid decomposition of soil organic
matter and, thus, release of plant-available mineral nitrogen
(Jarvis et al. 2011). The sum of exchangeable cations—in alka-
line soils mainly Ca2+,Mg2+, Na+ andK+, which are adsorbed
on the exchange complex of the soil—also indicate the nutri-
tional status of the soil and may inform about deficiencies
(Kopittke and Menzies 2007). Phosphorus is a key nutrient
and essential for optimizing yields. Spiegel (2001) showed in
another long-term experiment at the same site that plant-
available P was significantly positively correlated with spring
barley, sugar beet, and winter wheat yields. Thus, the model
results are in line with earlier findings that yields were enhanced
if CEC and plant-available phosphorus showed higher values.

We were also interested in determining how the manage-
ment practice, in this case soil tillage, influences primary pro-
ductivity. However, the attributes describing the management
practice did not appear in the model and regression trees in
scenarios 1 to 4. Thus, in scenario 5, we generated regression
trees with syntactic constraints. Here, we defined the partial
structure of the tree (syntactic constraint) in a way that we
Bforced^ the management attributes to be at the top of the tree
and from there, the tree was generated automatically from the
data. Nonetheless, the correlation coefficients of these regres-
sion trees were lower than in scenarios 3 and 4. We therefore
conclude that soil tillage, as a management practice, is less
important for primary productivity than the current and pre-
ceding soil and crop properties. This is in line with former
findings from this field experiment that, on average, yields
did not differ between the investigated tillage practices
(Franko and Spiegel 2016; Spiegel et al. 2002, 2010).

Crop residue incorporation

Gerendás and Führs (2013) recently reviewed the literature on
the effect of magnesium on crop quality. Their review on
cereals agrees with our results of positive yield response to
plant-available Mg in the crop residue incorporation experi-
ments in Rutzendorf and Grabenegg. Gerendás and Führs
(2013), however, also show that there is not necessarily any
quality response to Mg beyond the yield maximum. The mag-
nesium available for plants depends on several factors includ-
ing soil pH, soil moisture, weathering, and microbial activity
of the soil (Senbayram et al. 2015). Grzebisz (2013) described
the so-called Bmagnesium-induced nitrogen uptake^ which
highlights the positive effect of magnesium on the nitrogen
uptake efficiency of the plants. Many factors, among them
source rock material and its properties and grade of
weathering as well as management practices such as crop
rotation and fertilization practices, influence the availability

Table 4 Predictive performance in terms of correlation coefficient (r)
and Root Mean Square Error (RMSE) of the model and regression trees
obtained for the crop residue incorporation International Long-Term
Ecological Research (ILTER) experiments

Scenarios

1:
Without C/N

2:
With C/N

Grabenegg Model trees r 0.90 0.88

RMSE 655.82 704.15

Regression trees r 0.76 0.84

RMSE 991.79 870.33

Rutzendorf Model trees r 0.94 0.93

RMSE 537.0 568.88

Regression trees r 0.92 0.91

RMSE 762.93 769.19

The bold values represent the best results obtained for different scenarios.
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Fig. 3 Regression trees for modeling the primary productivity in the crop residue incorporation long-term experiments: a regression tree for Grabenegg,
and b regression tree for Rutzendorf



of Mg to plants (Gransee and Führs 2013). In our study, it was
plant-available Mg in the soils, not Mg fertilization, that was
investigated and most important for crop yields. All the treat-
ments in Grabenegg and Rutzendorf were sufficiently sup-
plied with N, P, and K. This may explain why plant-
available Mg became so important in our model (Gransee
and Führs 2013). Magnesium is an essential plant nutrient that
is one of the building blocks of chlorophyll (Gerendás and
Führs 2013). Magnesium is also involved in enzyme activa-
tion, ATP formation and utilization, and growth of roots as
well as in seed formation (Cakmak 2013), making it very
important for the whole life cycle of a plant. In intensively
farmed soils, such as soils of our two long-term field experi-
ments, Mg balances become even more important for crop
yields due to a possible rapid depletion of Mg of the soils
(Cakmak 2013). Moreover, wheat grown under low Mg

supply may be more prone to challenges due to severe envi-
ronmental conditions such as heat (Cakmak 2013).

Besides Mg, also the pH value of the soil, SOC, and po-
tential N mineralization (only in Grabenegg)—but also the
crop residue management and the crop type (only
Rutzendorf)—affected primary productivity. In the
Grabenegg LTE, soils with slightly acidic pH values had
higher crop yields than soils with lower acidity. In contrast,
at Rutzendorf LTE, higher yields were achieved at alkaline
soil pH levels. In both experiments, with higher soil pH, crop
residue management influenced crop yields. Yields increased
with long-term incorporation of crop residues. SOC was very
different in the two experiments: low in Grabenegg and high
in Rutzendorf. In Grabenegg, higher SOC led to higher yields,
whereas this was not the case in the already highly supplied
Rutzendorf soils. This is in line with results from 20 long-term
field experiments in Germany (Körschens et al. 2013), where
the relevance of initial SOC was emphasized. Both pH and
SOC are fundamental for soil fertility, especially for the bio-
logical activity of soils (Diepenbrock et al. 2009), driving
important biogeochemical cycles (e.g., C, N, and P). Former
studies have also revealed that long-term crop residue incor-
poration leads to higher SOC compared to the yearly removal
(Lehtinen et al. 2014; Poeplau et al. 2015, 2017; Spiegel et al.
2018). Lehtinen et al. (2014) showed a significant increase in
SOC when crop residues were incorporated, but did not find
significant correlations between SOC and crop yields. A gen-
eral 6% increase in yields following crop residue incorpora-
tion, as compared to crop residue removal, was observed.
Poeplau et al. (2015, 2017) have shown similar increase
ranges in SOC following crop residue incorporation in
Sweden and Italy. The interplay between soil organic matter
and attainable yields also puzzled Hijbeek et al. (2017), who
investigated how different organic inputs affected crop yields.
Their assumption was that increased soil organic matter leads

Table 5 Predictive performance in terms of correlation coefficient (r)
and Root Mean Square Error (RMSE) of the model and regression trees
obtained for the compost amendment International Long-Term
Ecological Research (ILTER) experiments

Scenarios

1:
Without C/N

2:
With C/N

Maize Model trees r 0.78 0.69

RMSE 901.70 1046.58

Regression trees r 0.73 0.69

RMSE 1015.61 1069.30

Cereals Model trees r 0.97 0.97

RMSE 466.57 469.72

Regression trees r 0.93 0.93

RMSE 720.68 720.68

The bold values represent the best results obtained for different scenarios.
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Fig. 4 Regression tree for
modeling the primary
productivity of cereals in the
compost amendments long-term
experiment



to increased crop yields, but to their surprise, the increase was
not statistically significant when 20 European long-term ex-
periments were investigated together. They explained this by
differences between experimental sites and the soil properties,
as well as organic inputs used in the various experiments
(Hijbeek et al. 2017).

Compost amendments

In general, pea and spring wheat achieved lower yields than
winter wheat and winter barley (Diepenbrock et al. 2009),
not least because of the shorter growing season. For the
cereal crops, spring and winter wheat and winter barley,
fertilization was an important driver for yields. No or low
mineral fertilization and only compost amendments resulted
in lower yields compared to sufficient mineral fertilization
or a combination of compost andmineral fertilization. Pea, a
legume, did not use the given fertilizer either in mineral or in
organic form. Our modeling results coincide with the results
of conventional statistical analyses of a similar data set ob-
tained from this long-term compost experiment (Lehtinen et
al. 2017). In farm management, caution should be exercised
with short crop rotations or when focusing on only the most
yielding crops. This is because the long-term maintained
crop yields are more important from a sustainability point
of view than maximum profit for a single cropping season.
In addition, the essential micronutrients may be neglected
from the fertilization schemes when only a few crops are
being considered (Rashid and Ryan 2004). Production of
only a few different crops may require less technical equip-
ment at the farm (Bullock 1992), although the farmer may
observe yield declines after several years (Bennett et al.
2012). The effects of fertilization on crop yields are
known, and the effect of compost combined with mineral
fertilizer was also shown by Lehtinen et al. (2017) from the
same compost LTE. The current models confirm the previ-
ous results and show that compost amendment alone may be
insufficient to match the yields reached with mineral fertil-
izer. This may reflect slow nutrient release from the com-
posts (Amlinger et al. 2003; Alluvione et al. 2013), which is
ca. 5–15% in the year of compost amendment and only 2–
8% in the following years (Amlinger et al. 2003).

Applicability and scalability of the results

There are several advantages of using data mining methods
over classical statistical methods. First, the analyses are not
limited to only a few attributes or pair-wise comparisons for
modeling a certain soil function, but all available data can be
used. Using all the available data enables discovering inter-
esting and new—often unexpected—patterns from the data
(Buczko et al. 2018). This can provide new knowledge and
insights about the problem at hand (De’ath and Fabricius

2000; Debeljak and Džeroski 2011; Jiawei et al. 2006;
Veenadhari et al. 2011). Because of their ability to represent
the relationships between the attributes in a visual way, the
discovered patterns and knowledge about the problem can
be easily interpreted. Therefore, the created decision trees
could also be used to strengthen the researcher-farmer-
advisor-stakeholder dialog and to foster co-creation of
new research questions with high farmer relevance. From
the top attributes from the decision trees, the farmers could
disentangle what may be limiting their productivity and
how to improve it.

The construction of data mining models (model or re-
gression trees) proceeds automatically from the available
data, minimizing the researchers’ subjectivity during the
generation of the models. This means that the form of the
models and the interactions among the variables are induced
automatically from the data and not set by the experts. Since
the models were generated from data, they can be easily
validated using different validation techniques such as ten-
fold cross-validation, train-test sets, or leave-one-out vali-
dation (Witten and Frank 2011). The limitations are con-
nected to availability of long-term data. In case data on the
role of soil aggregation or soil microbiology in productivity
is not available, their importance in producing biomass can-
not be shown. This calls for extending the attributes that are
being monitored in LTEs.

The data mining models are predictive models; therefore,
the validated models that achieve high predictive perfor-
mance can be used to predict future scenarios of the same
type and under similar conditions as the ones that were used
for constructing the models. Finally, the data mining models
are usually presented in a form, such as a decision tree,
which is intuitive and easy to interpret by the researchers.

The data mining models generated in this study achieved
better predictive performance for each of the LTEs than the
statistical studies previously carried out on the same data
(Spiegel et al. 2002, 2007, 2018; Lehtinen et al. 2017).
They are therefore very suitable and reliable for predicting
the primary productivity at the experimental sites in the
future. A great advantage of using data mining methodolo-
gy over classical statistical or mechanistic models is the
simple and fast construction of models that can be easily
adapted to new data. Accordingly, having an established
data collection system at the LTE sites would simplify
upscaling the predictive data mining models to newest data.
Having more data from these sites will make the models
more general and might further improve the predictive per-
formances. Collecting data on a regional basis and covering
important farming regions would improve regional model-
ing efforts. The farmers could, for example, include their
soil monitoring data into the models, in order to find more
regional patterns. The created decision trees could support
researcher-farmer-advisor dialog on productivi ty
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management. However, obtaining empirical data from ad-
ditional experimental sites is most often a difficult and time-
consuming task and presents a limiting factor when apply-
ing data mining technologies in the field of agronomy.
Incomplete or inconsistent data can bias the data mining
models, so the completeness and quality of the data is also
an important factor in this approach.

Conclusions

Our study has generated primary production data mining
models with high predictive performance for all four LTEs
selected. The most important driving factors for productivity
were preceding crop, plant-available Mg and crop of the
growing year for tillage LTE, crop residue LTEs, and compost
LTE, respectively. In addition, soil properties such as soil pH,
SOC, C/N ratio, preceding CEC, and preceding plant-
available P played a role. Crop residue incorporation as well
as sufficient mineral fertilization or combined compost and
mineral fertilizer treatments of the soils proved to be effective
measures to optimize crop yields.

In this study, data mining techniques were used for the
first time in these LTEs to discover knowledge and patterns
from the data. While the model and regression trees gener-
ated in this study are region specific, the data mining ap-
proach enabled the effects of changing management and
soil, along with soil fertility parameters over time, to be
assessed in the context of crop yields and productivity at
the sites. The knowledge obtained from our predictive
models can be utilized by farmers in this region to predict
how future management will affect the productivity of their
soils. In a more general context, this methodology can be
employed in other regions, where long-term data sets com-
prising a few critical but widely measured soil and crop
parameters are available. This approach enables performing
structural dynamic modeling, which is one of the main
methodological goals in ecological modeling when dynam-
ic, unpredictable systems are involved.

These results are also important in understanding the driv-
ing forces of primary productivity in arable systems that are
sufficiently fertilized with main nutrients (nitrogen, phospho-
rous, and potassium). We can highlight which management
practices positively influence crop yields. This calls for further
investigations on other agricultural management practices, as
well as for upscaling the results to a larger geographical area.
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