
Model-driven Round-trip Software Dependability Engineering
Michele Tucci

Department of Information Engineering, Computer Science and Mathematics
University of L’Aquila, Italy
michele.tucci@univaq.it

ABSTRACT
Supporting changes in software models is becoming increasingly
important. Some of these changes are induced by non-functional
analysis that is usually conducted on different models and tools.
Therefore, it becomes crucial to develop methods that allow au-
tomated transformations between these two families of models
throughout the development cycle. To this extent, in the last decade,
a number of approaches have been introduced to generate non-
functional analysis models from software models. However, when
analysis models are modified to meet non-functional requirements,
changes are not propagated to update the software model. Automat-
ing the identification and propagation of changes would better
support a round-trip analysis process. In this PhD program, we
aim at introducing automation in the model-driven assessment
of dependability, and we propose to leverage bidirectional model
transformations to: (i) generate dependability analysis models from
software models, and (ii) automatically propagate changes, driven
by dependability requirements satisfaction, from analysis models
back to software models. In particular, we intend to extend JTL, that
is a bidirectional model transformations framework designed for
model synchronization and change propagation, to handle problems
that may arise from the application of bidirectional transformations
in the context of dependability assessment.

CCS CONCEPTS
• Software and its engineering → Extra-functional proper-
ties;Model-driven software engineering;

KEYWORDS
software refactoring, dependability, change propagation, model-
driven engineering, bidirectional model transformations

ACKNOWLEDGMENTS
This research was supported by the ECSEL-JU through the Mega-
Mart2 project (grant agreement No. 737494)

1 PROBLEM
During the last two decades, a major challenge for researchers work-
ing on software modeling and evaluation has been the assessment
of system Non Functional Properties (NFP), such as performance,
schedulability, dependability or security. This is mostly due to the
increasingly demanding user requirements, on one side, and to the
pervasiveness of software over heterogeneous platforms on another
side. Attributes like performance and reliability are very complex
to analyze, because the designer is usually able to assess them only
late in the life cycle, when most of the system has been designed
and implemented. Nevertheless, if non-functional requirements
are not met, then a variety of negative consequences (such as user

dissatisfaction, lost income, etc.) can impact on significant parts
of a project [33]. This has led to a widespread use of quantitative
models for the assessment of non-functional properties from the
early phases of software design [16]. To this extent, a considerable
number of approaches, mostly based on Model-Driven Engineering
(MDE) [31] techniques like model transformation, has been pro-
posed in the last decade to automatically generate non-functional
models from software models [11, 17].

The general process for a model-driven assessment of non-func-
tional requirements on software is outlined in Figure 1. Starting
from a software model M1 (top-left corner) annotated with non-
functional properties, an initial analysis model AM1 is obtained in
the first step 1. This first step is usually called the forward path from
software models to analysis models. Model AM1 is then solved in
order to obtain analysis indices IND1 (e.g., response time, probabil-
ity of failure, etc.). These indices may not meet some non-functional
requirements, thus leading the designer to perform changes (∆1)
to the initial analysis model (AM1) with the aim of improving the
model. The refactored analysis model AM2 and analysis indices
IND2 are obtained in this way. This process is repeated until a sat-
isfactory analysis model AMk is obtained when the corresponding
analysis indices INDk meet the requirements. However, a satisfac-
tory analysis model has undergone several refactoring steps, hence
it no longer corresponds to the initial software model.

Figure 1: Model-driven round-trip assessment of non-func-
tional properties

Hence, the next task should be to somehow replicate in the soft-
ware domain the changes performed in the non-functional analysis
domain. This phase, usually called the backward path, corresponds
to the change propagation step in Figure 1. Such a step is conducted
1Although a designer could perform this step manually, we are only interested in the
automated generation of analysis models.



by interpreting the feedback gained during the analysis to produce
a refactored software model (Mk ). This informal process of deriving
changes is inherently difficult and usually based on the designer
expertise and domain knowledge.

While a large variety of approaches have been proposed to im-
plement the forward path, especially in the performance analysis
domain [3, 24], there is still lack of automated solutions for the back-
ward path. Introducing automation in this step goes beyond the
mere advantage of achieving automated refactoring. In MDE, bidi-
rectional model transformations are a key mechanism to propagate
changes and maintain the consistency of related models.

During my PhD program, we intend to study how to introduce
such automation (as described above) with the aim to contribute to
the model-driven dependability assessment [11] at the architectural
level [29, 34]. Dependability is a term that encompasses several non-
functional properties as defined in [6]. In our view, a key element
for automating the backward path is the adoption of bidirectional
model transformations. Hence, we rely on the Janus Transformation
Language (JTL) [14], that is a bidirectional model transformations
framework specifically designed to support model synchronization
and change propagation. However, for this goal we need to extend
JTL to tackle current challenges (such as tool support, framework
expressiveness, non-determinism, consistency restoration) emerg-
ing from the application of bidirectional model transformations in
such context. Furthermore, JTL can be exploited to explore design
solutions emerging from the propagation of changes and that may
not have been considered in the first place.

2 RELATEDWORK
A considerable number of approaches have been proposed in the
last few years to derive analysis models from annotated software
models.

One of the first attemps at enriching a UML design to specify
depedability aspects can be found in [12]. The authors extend UML
with information needed to automatically generate Stochastic Petri
Net models for depedability analysis. In the proposed approach,
the authors derive high-level SPN models from UML structural dia-
grams and successively use UML behavioral specifications to refine
the generated analysis models. The transformation relies upon an
intermediate model, and no standard UML profiles are used since
none were available at the time of publication. While this repre-
sents a seminal work for the design of forward transformations, we
intend to rely only on standard UML profiles to exploit exiting tools.
A transformation between UML statechart diagrams and Stochastic
Reward Nets (SRN) is proposed in [26]. The transformation is de-
fined as a mapping over a set of SRN patterns and used to conduct
a performance and dependability analysis under erroneous state
and faulty behavior assumptions. The idea of matching patterns of
the analysis model is particularly interesting to us and we expect
to further explore it. In [28], another mapping is proposed between
a probabilistic extension of statecharts and a Markov chain model
for quantitative assessment of safety and reliability. We also intend
to employ probabilistic extensions of UML diagrams as the starting
point for the assessment of dependability. In [9], the authors present
a transformation able to generate Generalized Stochastic Petri Nets
(GSPN) from UML sequence, statechart and deployment diagrams.

Software models are annotated using the former standard UML
SPT profile. The authors show how to obtain an analysis model
by gathering information from different source software model.
However, no mention is made about how these models should be
kept synchronized after changes.

In the context of model synchronization, the formal definition
of a round-trip engineering process between models representing
different views can be found in [25]. Despite the authors consider
the general case of partial and non-injective bidirectional model
transformations, modifications to target models are considered
valid only when they can be translated into a corresponding exact
change to the source model. In [4], the authors introduce an incre-
mental model transformation to propagate changes from a UML
software model annotated with MARTE to the corresponding Lay-
ered Queueing Network (LQN) performance model. Changes are
detected with the Eclipse EMF Compare tool and the incremental
transformation is implemented with the Epsilon Object Language
(EOL). While the detection of changes is automated, the change
propagation requires the additional effort of defining actions to be
performed for each type of detected model difference.

The authors of [32] propose an approach to backward change
propagation of view models, that are models derived from an un-
derlying domain model by a unidirectional forward transformation.
Changes are propagated back by a delta-based backward trans-
formation using a logic solver (Alloy Analyser) to derive change
candidates to be selected by the designer. When dealing with model
uncertainty, intended as the set of possible admissible models, [30]
describes how the problem of change propagation arises when
changes in the level of uncertainty result in further model changes.
The authors formally define the mechanism of change propagation
and present two change propagation algorithms based on an SMT
solver. Although both these works demonstrate the effectiveness
of logic solvers on propagating changes, the problem of presenting
the designer with multiple solutions remains open.

A study comparing two alternative methods to derive software
changes from the results of a model-based performance analysis
is presented in [5]. Refactoring can be performed either on the
software side by detecting and solving performance antipatterns, or
on the analysis model using bidirectional model transformations to
induce software changes. Both represent valid alternative processes
but, while several approaches have been proposed to perform the
refactoring on the software side, there is still lack of solutions for
the propagation of changes performed on analysis models.

3 PROPOSED SOLUTION
In this section we present our proposed solution to the problem
stated in Section 1. We briefly introduce the JTL framework as the
main technological component at the basis of our solution, and
then we show how we intend to exploit it in order to implement
a round-trip process for the model-driven assessment of software
dependability.

3.1 Overview of the JTL framework
JTL [14, 20] is a constraint-based bidirectionalmodel transformation
framework specifically designed to support model synchronization
and change propagation. JTL transformations allows a declarative

2



specification of relationships between MOF models. The semantics
is defined in terms of the Answer Set Programming (ASP) [23], a
form of declarative programming oriented towards difficult (pri-
marily NP-hard) search problems and based on the stable model
(answer set) semantics of logic programming. Transformations are
rule-based and the JTL syntax supports object pattern matching.
A transformation is specified as a set of relations that must hold
between matched elements in the source and target models. Each
relation is composed by two domains and may include when and
where predicates to specify pre- and post- conditions to be satified
by elements of the candidate models. A bidirectional transformation
is executed in a specific direction by selecting one of the candidate
models as target. Using a deductive process, the JTL engine gen-
erates, in a single execution, all the possible models that can be
derived from the application of the rules.

Figure 2: Overview of the JTL framework

An overview of the JTL framework architecture is reported in
Figure 2. The engine executes bidirectional transformations written
in the JTL syntax and later automatically transformed into ASP
programs. During the execution, source and target metamodels
of the defined transformation (MM1, MM2) are automatically en-
coded in ASP and provided as input of the engine along with the
source model (M1). The DLV [27] solver is employed in this phase
to execute a transformation and obtain the resulting models (stable
models) as a set of ASP facts. A trace model relating source and
target model elements is also produced during the transformation
(TM1M2,TM2M1). Trace models conforming to the trace metamodel
TTM are automatically encoded in ASP as well, and can be option-
ally provided as additional input of consecutive executions. The
framework employs an advanced traceability mechanism able to
derive different types of trace links during the transformation exe-
cution: (i) usual trace links, mapping target elements to the source
elements they are generated from; (ii) partial links, recording ele-
ments in the source model that are not matched by any relation; (iii)
non-injective links, relating elements matched by a non-injective
relation.

The traceability mechanism and the capability of leveraging a
logic solver to automatically derive candidate target models are key
features in the selection of JTL as the pivotal technology we intend
to exploit in our solution. Another important aspect is interoper-
ability with existing modeling technologies. This is the reason why

JTL is implemented as a set of Eclipse plug-ins2 taking advantage
of the widely used Eclipse Modelling Framework (EMF) [13].

3.2 Round-trip dependability engineering
The general process for the assessment of non-functional prop-
erties, represented in Figure 1, is instantiated in Figure 3 in the
dependability context to illustrate our approach.

A software model is intended as a description of the system un-
der design, defining structural and behavioral views. This model is
provided by the software designer and it is expected to be annotated
with dependability attributes, such as: type and number of physical
hosts on which a software component is to be deployed, failure
rates of components and communication channels, and probabil-
ities of executing a specific behavior. The initial software model
(M) will be the input of the forward execution of a bidirectional
model transformation, together with the source metamodel (soft-
ware domain) and the target metamodel (dependability domain).
By executing the transformation, the JTL engine will produce as
output a single dependability model (DM) corresponding to the
initial software model. The dependability model could be any model
having formal semantics to be used for the validation of dependabil-
ity requirements, given that the appropriate JTL transformation has
been defined. Models usually employed for this task are state-based
models, like Markov chains and Stochastic Petri Nets, or path-based
models like Fault Trees and Event Trees.

Figure 3: Proposed approach based on JTL

At this stage, a dependability expert will compute dependability
metrics on the model obtained by the forward execution of the
transformation. When the dependability analysis is completed and
the dependability model is modified until requirements are met (∆),
a refactored dependability model (DM ′) is obtained. This model
will be the input to the backward execution of the same bidirectional
transformation used to generate the initial dependability model
(DM). The JTL engine will generate as output a set of candidate
refactored software models (M ′

1, ...,M
′
n ). Elements, attributes and

references of DM that were not modified by ∆ are restored in each
candidate solution as they were, and this is achieved by exploiting

2JTL: http://jtl.di.univaq.it

3



the traceability mechanism embedded in the JTL engine. Modifica-
tions matched by bijective relations are propagated in each target
model. On the other hand, changes matching non-injective rela-
tions induce the generation of alternative models, each containing
a possible software design alternative. Despite being different, ev-
ery software model obtained in this way retains the very same
dependability measures, as computed in the analysis phase. In case
no modifications are matched by non-injective rules, the engine
will produce only one candidate solution.

Since change propagation from analysis to software models may
consist in the generation of multiple design alternatives, an aspect
we intend to investigate is how to present a set of candidate so-
lutions to the software designer. A possible solution could be to
represent a set of models as one unified model explicitly depicting
alternative elements and features belonging to single candidate solu-
tions. Some work has been made in this direction [20] by adopting a
model for uncertainty to represent the output of a non-deterministic
transformation. Dealing with a single uncertainty model, instead of
a potentially large set of models, represents a clear advantage for
the designer. However, a major challenge is to study the process
of selecting or excluding suggested alternatives throughout the
software development lifecycle.

4 PLAN FOR EVALUATION AND VALIDATION
We intend to validate our approach by applying it to a consider-
able number of case studies. Specifically, we are interested in the
application to case studies by different sizes, which induce different
dependability models and on which we can test changes performed
on both the structure and the parameters of the models. We are
interested in determining in which practical cases such an approach
can effectively scale without loosing accuracy. It therefore becomes
essential to identify such case studies not only within the related
literature but also from industrial applications. On one side, we plan
to integrate the JTL engine in the MDEForge software-as-a-service
modeling platform [7] in order to base on the large number of mod-
els and metamodels contained within its repository. On the other
side, we want to take advantage of case studies proposed by com-
panies participating in theMeдaM@Rt2 european project 3, which
aims at creating a framework for continuous development and run-
time validation of complex systems. Finally, our research group has
been recently involved in a research project aimed at re-designing
the automated systems for controlling the transit of trains across
the Italian railway network (i.e., Rete Ferroviaria Italiana). We in-
tend to apply the proposed approach on the model-based design
of such system, especially considering its stringent dependability
requirements.

5 RESEARCH QUESTIONS AND EXPECTED
CONTRIBUTION

In this section, we discuss the main research questions that we
intend to address in the context of this PhD program.

RQ1: Can we identify changes in a software model that pro-
duce an improvement of dependability indices?

3https://megamart2-ecsel.eu

This is a central question in the research area of model-based de-
pendability assessment at design time. Our approach can help the
designer to identify software components that mostly affect the
system dependability. The identification of these critical compo-
nents can lead to a more targeted and efficient testing phase. In the
long run, this can contribute to a cost-effective construction of de-
pendable software components. Moreover, providing the designer
with the possibility of choosing among alternative architectural
changes, it can facilitate the exploration of dependability tradeoffs.

RQ2: How does an approach based on refactoring analysis
models differ significantly from an approach based on refac-
toring software models?
In order to support the designer in such complex task, a round-trip
process should be highly automated. In this respect, transformations
from software to dependability models have been fully automated
in the last decade even for high complexity cases. Moreover, bidirec-
tional model transformations are complex to build in this domain,
mostly due to mappings that collapse several elements of a software
model into a single element of a dependability model, and there-
fore being inherently non-injective. These are some of the reasons
why most approaches prefer to refactor the software model. Any-
way, refactoring actions performed on dependability models are
traditionally very well-supported and grounded in well-established
theory. In addition, refactoring the software model usually leads to
a prolonged iteration of the round-trip process. This is due to the
need of applying a forward transformation to a refactored software
model for obtaining a refactored dependability model to compute
the effect of the refactoring on dependability. The automation of
the backward path can actually support to refactor the same models
used for the assessment of dependability.

RQ3: Is our approach applicable to consistently propagate
changes to a variety of dependability case studies?
After modifying an analysis model obtained from a forward trans-
formation, reversing the mapping in order to obtain one or more
new refactored software models is a challenging task. In fact, the
automation introduced in this step should guarantee a consistent so-
lution. Although the adoption of automated mechanisms is crucial,
this automation makes sense only when the changes introduced
in the analysis model can be mapped to a (set of) desired soft-
ware model correctly translating the refactoring policy. Therefore,
backward execution becomes not only a means of model synchro-
nization, but above all a way of imposing a refactoring policy that
is consistent with the decisions made in the analysis domain. The
changes identified by the dependability analyst must be translated
into modifications that produce the expected improvement and that
are satisfactory for the software designer. The role of transformation
designers is therefore fundamental, because they will impose a spe-
cific interpretation of the changes from which candidate solutions
are generated. In this regard, the proposed approach investigates
how a bidirectional transformation framework expressiveness can
support the propagation of changes in the dependability context.

RQ4: How the human role can change in the round-trip de-
pendability engineering process?

4



So far, most of the activities involved in a round-trip process re-
quire experience and skills of software designers and dependability
analysts. While a good level of automation is supported in the
problem detection and solution step on dependability models, the
same cannot be said for software models where automation has
been introduced only recently, for example based on antipatterns
detection [18]. Moreover, in both cases it may be still necessary to
decide among alternative refactoring solutions, especially in large
scale systems. Therefore, even if we are convinced that it is nec-
essary to explore automated solutions to the problem, the human
role remains fundamental. Any decision to automatically propagate
changes to a unique design alternative may not consider central
aspects that require human decision-making, such as long-term
benefits, enforcing of company policies, and development team skill
sets. Our approach shall introduce a fair level of automation in the
process to provide enough guidance in the choice of refactoring
actions but, at the same time, it shall leave enough freedom to the
designer dedicated to the (above-mentioned) human-driven aspects.
Therefore, this study can be a starting point to investigate how
much human intervention is actually needed during such process
and where it should be required.

6 CURRENT STATUS AND PLANNED
TIMELINE

An early attempt at providing automation in the round-trip as-
sessment of non-functional properties was presented in [19]. We
used JTL to define a bidirectional model transformation between
a software architecture designed using UML [2] annotated with
the MARTE profile [1] and Queueing Networks (QN). The software
architecture was defined by means of UML Use Case, Component
and Sequence diagrams. The transformation was applied to a sim-
ple case study from which we were able to generate a QN. The
obtained QN was successfully employed to conduct a performance
analysis and the consequent refactoring to remove a performance
bottleneck. Changes performed on the QN were back propagated
inducing modifications in both the UML Component and Sequence
diagrams.

Since this first attempt, the development of JTL was very active,
bringing the initial prototype to a fully integrated framework based
on the Eclipse Rich Client Platform (RCP) 4. We completely reengi-
neered the semantic anchoring between the JTL syntax and the ASP
engine, providing full interoperability of the DLV solver system
with EMF and introducing a more advanced traceability mechanism.
We presented this work in a tool paper [21] demonstrating the JTL
progress on the Collapse/Expand State Diagrams benchmark.

In [15] we introduced a more recent advancement in the con-
text of round-trip assessment of availability at the architectural
level. We defined a bidirectional model transformation between
UML State Machines annotated with the MARTE-DAM [10] profile
and Generalized Stochastic Petri Nets (GSPN). The transformation
we presented is based on a unidirectional forward transformation
between UML Statecharts and GSPN formally defined in [8]. In
order to provide change propagation, we extended this approach
by implementing and executing a bidirectional transformation in

4Eclipse RCP: https://wiki.eclipse.org/Rich_Client_Platform

the JTL framework. We demonstrated the effectiveness of our ap-
proach on an Environmental Control System case study to which
we applied well-known fault tolerance patterns with the objective
of improving its software availability.

In [22] we proposed a traceability mechanism for bidirectional
model transformations to achieve better model management in sce-
narios like round-trip engineering, synchronization, or consistency
restoration. By considering bidirectional transformations to be, in
general, partial and non-injective, we designed a trace metamodel
able to represent such information. Trace models are automatically
generated alongside target models during the transformation ex-
ecution, so that the user can easily refine and reuse trace links
in further stages. We realized this traceability mechanism within
the JTL framework and we validated it on the Families to Persons
case that was proposed at the Transformation Tool Contest (TTC)
2017 5. We showed how such traceability mechanism can support
consistency restoration in various benchmark tests that other bidi-
rectional transformation tools were not able pass.

From preliminary results, it seems that the proposed approach
could actually be suitable to tackle the problem.

This PhD program has started in November 2017, hence it is in its
first year. During the remainder of the first year, we plan to continue
investigating open challenges resulting from the application of
model-driven techniques in the field of dependability assessment.

In the second year, we will focus on issues emerging when restor-
ing consistency among multiple models at different abstraction
levels, with the objective of understanding limitations in the propa-
gation of changes by means of bidirectional transformations. Specif-
ically, we are interested in how the framework expressiveness and
non-determinism play a role in the design of bidirectional trans-
formations. We also plan to apply the proposed approach to other
attributes in the dependability domain while addressing their in-
teractions, relationships and tradeoffs. We will continue our work
on the JTL framework by extending it and providing a version
specifically targeted at dependability engineering.

The PhD program shall be completed in the third year by con-
solidating and validating the proposed approach against real world
case studies, extending the round-trip process to other notations on
both software and dependability side, as well as considering other
relevant attributes, such as performance and energy. By the end of
the third year we plan to finalize the tool support for the automated
refactoring and exploration of solutions derived from the backward
propagation of changes.

REFERENCES
[1] 2008. A UML profile for MARTE: modeling and analysis of real-time embedded

systems. Object Management Group. http://www.omg.org/omgmarte/
[2] 2015. Unified Modeling Language. Object Management Group. http://www.

omg.org/spec/UML/2.5/ Version 2.5.
[3] Mohammad Alhaj and Dorina C. Petriu. 2010. Approach for generating perfor-

mance models from UML models of SOA systems. In Proceedings of the 2010 con-
ference of the Centre for Advanced Studies on Collaborative Research, November 1-4,
2010, Toronto, Ontario, Canada. 268–282. https://doi.org/10.1145/1923947.1923975

[4] Taghreed Altamimi and Dorina C. Petriu. 2017. Incremental change propagation
fromUML software models to LQN performancemodels. In Proceedings of the 27th
Annual International Conference on Computer Science and Software Engineering,
CASCON 2017, Markham, Ontario, Canada, November 6-8, 2017. 120–131. http:
//dl.acm.org/citation.cfm?id=3172810

5http://www.transformation-tool-contest.eu/2017/

5

http://www.omg.org/omgmarte/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://doi.org/10.1145/1923947.1923975
http://dl.acm.org/citation.cfm?id=3172810
http://dl.acm.org/citation.cfm?id=3172810


[5] Davide Arcelli and Vittorio Cortellessa. 2013. Software model refactoring based
on performance analysis: better working on software or performance side?. In
Proceedings 10th International Workshop on Formal Engineering Approaches to
Software Components and Architectures, FESCA 2013, Rome, Italy, March 23, 2013.
33–47. https://doi.org/10.4204/EPTCS.108.3

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. 2004.
Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans.
Dependable Sec. Comput. 1, 1 (2004), 11–33. https://doi.org/10.1109/TDSC.2004.2

[7] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Lu-
dovico Iovino, and Alfonso Pierantonio. 2014. MDEForge: an Extensible Web-
Based Modeling Platform. In Proceedings of the 2nd International Workshop
on Model-Driven Engineering on and for the Cloud co-located with the 17th In-
ternational Conference on Model Driven Engineering Languages and Systems,
CloudMDE@MoDELS 2014, Valencia, Spain, September 30, 2014. 66–75. http:
//ceur-ws.org/Vol-1242/paper10.pdf

[8] Simona Bernardi, Susanna Donatelli, and José Merseguer. 2002. From UML
sequence diagrams and statecharts to analysable petrinet models. InWorkshop
on Software and Performance. 35–45. https://doi.org/10.1145/584369.584376

[9] Simona Bernardi and José Merseguer. 2006. QoS Assessment via Stochastic
Analysis. IEEE Internet Computing 10, 3 (2006), 32–42. https://doi.org/10.1109/
MIC.2006.63

[10] Simona Bernardi, José Merseguer, and Dorina C. Petriu. 2011. A dependability
profile within MARTE. Software and System Modeling 10, 3 (2011), 313–336.
https://doi.org/10.1007/s10270-009-0128-1

[11] Simona Bernardi, José Merseguer, and Dorina C. Petriu. 2013. Model-Driven
Dependability Assessment of Software Systems. Springer.

[12] Andrea Bondavalli, Mario Dal Cin, Diego Latella, István Majzik, András Pataricza,
and Giancarlo Savoia. 2001. Dependability analysis in the early phases of UML-
based system design. Comput. Syst. Sci. Eng. 16, 5 (2001), 265–275.

[13] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. 2003. Eclipse
Modeling Framework. Addison Wesley.

[14] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
2010. JTL: A Bidirectional and Change Propagating Transformation Language.
In Software Language Engineering - Third International Conference, SLE 2010,
Eindhoven, The Netherlands, October 12-13, 2010, Revised Selected Papers. 183–202.
https://doi.org/10.1007/978-3-642-19440-5_11

[15] Vittorio Cortellessa, Romina Eramo, and Michele Tucci. 2018. Availability-Driven
Architectural Change Propagation Through Bidirectional Model Transformations
Between UML and Petri Net Models. In IEEE International Conference on Software
Architecture, ICSA 2018, Seattle, WA, USA, April 30 - May 4, 2018. 125–134. https:
//doi.org/10.1109/ICSA.2018.00022

[16] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. 2007. Non-
Functional Modeling and Validation in Model-Driven Architecture. In Sixth
Working IEEE / IFIP Conference on Software Architecture (WICSA 2007), 6-9 Janu-
ary 2005, Mumbai, Maharashtra, India. 25. https://doi.org/10.1109/WICSA.2007.30

[17] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. 2011. Model-
Based Software Performance Analysis. Springer. https://doi.org/10.1007/
978-3-642-13621-4

[18] Vittorio Cortellessa, Antinisca Di Marco, and Catia Trubiani. 2014. An approach
for modeling and detecting software performance antipatterns based on first-
order logics. Software and System Modeling 13, 1 (2014), 391–432. https://doi.
org/10.1007/s10270-012-0246-z

[19] Romina Eramo, Vittorio Cortellessa, Alfonso Pierantonio, and Michele Tucci.
2012. Performance-driven architectural refactoring through bidirectional model
transformations. In Proceedings of the 8th international ACM SIGSOFT conference
on Quality of Software Architectures, QoSA 2012, part of Comparch ’12 Feder-
ated Events on Component-Based Software Engineering and Software Architecture,
Bertinoro, Italy, June 25-28, 2012. 55–60. https://doi.org/10.1145/2304696.2304707

[20] Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. 2015. Managing uncer-
tainty in bidirectional model transformations. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2015,
Pittsburgh, PA, USA, October 25-27, 2015. 49–58. https://doi.org/10.1145/2814251.
2814259

[21] Romina Eramo, Alfonso Pierantonio, and Michele Tucci. 2018. Enhancing the
JTL tool for bidirectional transformations. In Conference Companion of the 2nd
International Conference on Art, Science, and Engineering of Programming, Nice,
France, April 09-12, 2018. 36–41. https://doi.org/10.1145/3191697.3191720

[22] Romina Eramo, Alfonso Pierantonio, and Michele Tucci. 2018. Improved Trace-
ability for Bidirectional Model Transformations. In Proceedings of MODELS 2018
Satellite Event: MDETools Workshop co-located with ACM/IEEE 21th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2018),
Copenhagen, Denmark, October, 15, 2018. In press.

[23] M. Gelfond and V. Lifschitz. 1988. The Stable Model Semantics for Logic Program-
ming. In Procs of ICLP. The MIT Press, Cambridge, Massachusetts, 1070–1080.

[24] Jens Happe, Steffen Becker, Christoph Rathfelder, Holger Friedrich, and Ralf H.
Reussner. 2010. Parametric performance completions for model-driven perfor-
mance prediction. Perform. Eval. 67, 8 (2010), 694–716. https://doi.org/10.1016/j.
peva.2009.07.006

[25] Thomas Hettel, Michael Lawley, and Kerry Raymond. 2008. Model Synchroni-
sation: Definitions for Round-Trip Engineering. In Theory and Practice of Model
Transformations, First International Conference, ICMT 2008, Zürich, Switzerland,
July 1-2, 2008, Proceedings. 31–45. https://doi.org/10.1007/978-3-540-69927-9_3

[26] Gábor Huszerl, István Majzik, András Pataricza, Konstantinos Kosmidis, and
Mario Dal Cin. 2002. Quantitative Analysis of UML Statechart Models of Depend-
able Systems. Comput. J. 45, 3 (2002), 260–277. https://doi.org/10.1093/comjnl/
45.3.260

[27] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. 2004. The DLV System for Knowledge
Representation and Reasoning. TOCL (2004).

[28] Sadaf Mustafiz, Ximeng Sun, Jörg Kienzle, and Hans Vangheluwe. 2008. Model-
driven assessment of system dependability. Software and System Modeling 7, 4
(2008), 487–502. https://doi.org/10.1007/s10270-008-0084-1

[29] Teerat Pitakrat, Dusan Okanovic, André van Hoorn, and Lars Grunske. 2016. An
Architecture-Aware Approach to Hierarchical Online Failure Prediction. In 12th
International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA
2016, Venice, Italy, April 5-8, 2016. 60–69. https://doi.org/10.1109/QoSA.2016.16

[30] Rick Salay, Jan Gorzny, and Marsha Chechik. 2013. Change Propagation due to
Uncertainty Change. In Fundamental Approaches to Software Engineering - 16th
International Conference, FASE 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings. 21–36. https://doi.org/10.1007/978-3-642-37057-1_3

[31] Douglas C. Schmidt. 2006. Guest Editor’s Introduction: Model-Driven Engineer-
ing. IEEE Computer 39, 2 (2006), 25–31. https://doi.org/10.1109/MC.2006.58

[32] Oszkár Semeráth, Csaba Debreceni, Ákos Horváth, and Dániel Varró. 2016. In-
cremental backward change propagation of view models by logic solvers. In
Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engi-
neering Languages and Systems, Saint-Malo, France, October 2-7, 2016. 306–316.
http://dl.acm.org/citation.cfm?id=2976788

[33] Connie U. Smith. 2007. Introduction to Software Performance Engineering: Ori-
gins and Outstanding Problems. In Formal Methods for Performance Evaluation,
7th International School on Formal Methods for the Design of Computer, Commu-
nication, and Software Systems, SFM 2007, Bertinoro, Italy, May 28-June 2, 2007,
Advanced Lectures. 395–428. https://doi.org/10.1007/978-3-540-72522-0_10

[34] Hasan Sözer, Mariëlle Stoelinga, Hichem Boudali, and Mehmet Aksit. 2017. Avail-
ability analysis of software architecture decomposition alternatives for local
recovery. Software Quality Journal 25, 2 (2017), 553–579. https://doi.org/10.1007/
s11219-016-9315-9

6

https://doi.org/10.4204/EPTCS.108.3
https://doi.org/10.1109/TDSC.2004.2
http://ceur-ws.org/Vol-1242/paper10.pdf
http://ceur-ws.org/Vol-1242/paper10.pdf
https://doi.org/10.1145/584369.584376
https://doi.org/10.1109/MIC.2006.63
https://doi.org/10.1109/MIC.2006.63
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1007/978-3-642-19440-5_11
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1109/WICSA.2007.30
https://doi.org/10.1007/978-3-642-13621-4
https://doi.org/10.1007/978-3-642-13621-4
https://doi.org/10.1007/s10270-012-0246-z
https://doi.org/10.1007/s10270-012-0246-z
https://doi.org/10.1145/2304696.2304707
https://doi.org/10.1145/2814251.2814259
https://doi.org/10.1145/2814251.2814259
https://doi.org/10.1145/3191697.3191720
https://doi.org/10.1016/j.peva.2009.07.006
https://doi.org/10.1016/j.peva.2009.07.006
https://doi.org/10.1007/978-3-540-69927-9_3
https://doi.org/10.1093/comjnl/45.3.260
https://doi.org/10.1093/comjnl/45.3.260
https://doi.org/10.1007/s10270-008-0084-1
https://doi.org/10.1109/QoSA.2016.16
https://doi.org/10.1007/978-3-642-37057-1_3
https://doi.org/10.1109/MC.2006.58
http://dl.acm.org/citation.cfm?id=2976788
https://doi.org/10.1007/978-3-540-72522-0_10
https://doi.org/10.1007/s11219-016-9315-9
https://doi.org/10.1007/s11219-016-9315-9

	Abstract
	Acknowledgments
	1 Problem
	2 Related Work
	3 Proposed solution
	3.1 Overview of the JTL framework
	3.2 Round-trip dependability engineering

	4 Plan for evaluation and validation
	5 Research questions and expected contribution
	6 Current status and planned timeline
	References

