
Dual Trellis Construction for
High-Rate Punctured Convolutional Codes

Vinh Hoang Son Le∗, Charbel Abdel Nour∗, Emmanuel Boutillon† and Catherine Douillard∗
∗IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France
Email: {vinh.le, charbel.abdelnour, catherine.douillard}@imt-atlantique.fr
†Lab-STICC, UMR CNRS 6285, Université Bretagne Sud, Lorient, France

Email: emmanuel.boutillon@univ-ubs.fr

Abstract—Puncturing a low-rate convolutional code to
generate a high-rate code has some drawback in terms
of hardware implementation. In fact, a Maximum A-
Posteriori (MAP) decoder based on the original trellis will
then have a decoding throughput close to the decoding
throughput of the mother non-punctured code. A solution
to overcome this limitation is to perform MAP decoding on
the dual trellis of a high-rate equivalent convolutional code.
In the literature, dual trellis construction is only reported
for specific punctured codes with rate k/(k + 1). In this
paper, we propose a multi-step method to construct the
equivalent dual code defined by the corresponding dual
trellis for any punctured code. First, the equivalent non-
systematic generator matrix of the high-rate punctured
code is derived. Then, the reciprocal parity-check matrix
for the construction of the dual trellis is deduced. As a
result, we show that the dual-MAP algorithm applied on the
newly constructed dual trellis yields the same performance
as the original MAP algorithm while allowing the decoder
to achieve a higher throughput. When applied to turbo
codes, this method enables highly efficient implementations
of high-throughput high-rate turbo decoders.

Index Terms—Convolutional codes, puncturing, high-
rate codes, dual trellis, turbo codes

I. INTRODUCTION

Nowadays, the demand for high data rate commu-
nications is steadily increasing. Consequently, in order
to limit the occupied bandwidth, transmissions using
forward error correction (FEC) schemes with high cod-
ing rates have to be considered to keep the number of
transmitted redundant data as low as possible.

In this paper, we consider rate-k/n convolutional
codes with constraint length ν, according to the defi-
nition given in [1]. When high coding rates r > 1/2 are
targeted, two main approaches exist. One can use directly
a convolutional generator matrix of size k × n. The
code is then referred to as a true high-rate convolutional
code. The second method, also widely used consists in
puncturing a low-rate mother code (e.g. with rate 1/2)
[2]. The puncturing method has the advantage of being
flexible, since the code rate can be changed without
modifying the structure of the encoder-decoder while
the true high-rate code yields a better error correction
performance in the asymptotic region [3] and is, in

theory, more appropriate to high-throughput applications
since k bits are decoded at each trellis stage.

For FEC codes requiring iterative decoding, such as
turbo codes [4], soft-input soft-output algorithms are
needed to decode the convolutional codes. The maxi-
mum a posteriori (MAP) algorithm or its sub-optimal
logarithmic version (Max-Log-MAP) [5] can then be
employed to produce the soft output and the extrinsic
information. However, for true high-rate convolutional
codes, the MAP algorithm is preferably implemented
using the dual trellis [6], [7] instead of the original
trellis. This is particularly useful in order to reduce the
decoding complexity, since the dual trellis, i.e., the trellis
of the rate-(n − k)/n dual code is used for decoding.
In this case, it is expected that a higher throughput
and a lower decoding latency can then be achieved. In
fact for punctured codes, the decoder implements the
MAP algorithm using the trellis of the low-rate mother
code, even for high coding rates. The MAP algorithm
employed with the dual trellis is referred to as the dual-
MAP algorithm in this work.

In this paper, we propose a general procedure to
construct the dual trellis for any high-rate punctured
convolutional code to enable the application of the dual-
MAP algorithm for decoding.

The paper is organized as follows. Section II intro-
duces the two common approaches to obtain high-rate
convolutional codes: punctured and true high-rate con-
volutional codes. The respective advantages and draw-
backs of these two methods are analyzed in terms of
decoding algorithms. Section III describes the proposed
procedure to derive the dual trellis from the high-rate
punctured convolutional code. Then, Section IV gives a
construction example and the corresponding comparison
of simulation results of the dual-MAP algorithm with the
classical MAP algorithm. Finally, Section V concludes
the paper.



II. HIGH-RATE PUNCTURED CONVOLUTIONAL
CODES AND TRUE HIGH-RATE CONVOLUTIONAL

CODES

A. High-Rate Punctured Convolutional Codes

Puncturing [2] is usually employed to obtain high-
rate codes from a low-rate code with patterns indicating
which bits are transmitted and which bits are discarded
(punctured). For instance, starting from an original rate-
1/2 code, a rate-4/5 code can be obtained using the
following puncturing pattern

P =

(
1 1 1 1
1 0 0 0

)

where the first row indicates the pattern applied for the
systematic bits and the second row for the parity bits of
the convolutional code. In this example, no systematic
bit is punctured and only one out of four parity bits is
transmitted.

The search for good puncturing patterns has been
intensively studied in [8], [9] for feedforward convo-
lutional codes and in [3], [10] for recursive systematic
convolutional (RSC) codes, employed in turbo codes. In
[10], the authors investigated the joint optimization of
puncturing patterns and interleavers for turbo codes.

The advantage of puncturing is that the MAP decoder
structure designed for the original code can be reused for
the high-rate punctured codes. Therefore, the complexity
for decoding high-rate punctured codes is hardly differ-
ent from the original code. Moreover, the code enjoys the
flexibility to change the code rate by applying different
puncturing patterns at the encoder, without changing the
decoder structure. However, this also implies that, for
high coding rates, the decoder inherits the throughput
and decoding latency of the mother code. Furthermore,
for high-rate schemes, the MAP decoders usually adopt
the acquisition (ACQ) technique with long acquisition
lengths to maintain the performance thus increasing fur-
ther the decoding latency [11]. Consequently, for high-
rate schemes, other code families such as LDPC codes
may provide a better performance in terms of decoding
complexity, throughput and latency compared to turbo
codes.

B. True High-Rate Convolutional Codes

Another alternative to achieve a rate-k/n convolu-
tional code is to encode with a k×n generator matrix (we
also call it encoder below). In the conventional trellis
representation of a convolutional code, 2k branches or
transitions go to and from each state. If the code has
ν memory elements, there is a total of 2ν+k state
transitions at each trellis stage. Therefore, for high-rate
codes (e. g. for n = k + 1 and k ≥ 4), the decoding
algorithm has to process a large number of branches
in each trellis stage, thus significantly increasing the
decoding complexity.

The task of decoding a true high-rate convolutional
code can be simplified by applying the dual-MAP algo-
rithm. For a rate-k/n convolutional code C encoded by
generator matrix G(D), there exists an associated rate-
(n−k)/n dual code C⊥ generated by matrix H̃(D) such
that GH̃> = 0. In other words, any codeword generated
by G(D) should be orthogonal with all codewords gen-
erated by H̃(D). The generator matrix H̃(D) is usually
referred to as the reciprocal parity-check matrix since it
is the reciprocal of the parity-check matrix H(D) of code
C. We will refer to the trellis constructed according to
H̃(D) as reciprocal dual trellis or dual trellis for short.
In a dual trellis stage, there are 2(n−k) branches going
to and from a state and there are a total of 2(n−k+ν)

branches at each trellis stage. This number is much less
than the number of branches processed in the original
trellis when high-rate schemes are employed. Hence, the
dual-MAP algorithm is preferred to the MAP algorithm
in this case.

As far as we know, there is little research on generator
matrices for high-rate convolutional codes. The most
relevant work that we found is [3] where the authors
searched for good rate-k/(k + 1) systematic encoders.
The following example is drawn from table IV in [3],
where a (5, 4, 3) convolutional code is described by the
systematic generator matrix Gsys(D):

Gsys(D) =




1 0 0 0 1+D+D2+D3

1+D+D3

0 1 0 0 1+D+D2

1+D+D3

0 0 1 0 1+D2+D3

1+D+D3

0 0 0 1 1+D3

1+D+D3


 . (1)

In the case of a rate-k/(k+1) code, the parity-check ma-
trix H(D) can be easily derived since G(D)H>(D) = 0
as

H(D) =
(
1 +D +D2 +D3, 1 +D +D2,

1 +D2 +D3, 1 +D3, 1 +D +D3
)

(2)

and the reciprocal parity-check matrix H̃(D) can be
obtained as follows

H̃(D) = DνH(D−1) = D3H(D−1)

=
(
1 +D +D2 +D3, D +D2 +D3,

1 +D +D3, 1 +D3, 1 +D2 +D3
)

(3)

However, based on the codes of table IV in [3], we
observe that, for high-rate convolutional codes, trellis
termination with tail-biting cannot always be applied.
Actually, tail-biting is the preferred trellis termination
technique for the component codes of a turbo encoder.
When the trellis is terminated by forcing the final state
to zero, specific extra processing is necessary for edge
bits included to this effect. The introduction of these
bits leads to uneven protection between the bits of the
information sequence that can entail an undesirable error



Low rate CC
(e.g. r = 1/2)

G(D)

Puncturing
pattern

P

Equivalent
non-systematic
generator matrix

Gns(D)

Invariant factor
decomposition

Gns(D) = A(D)Γ(D)B(D)

Basic parity-check
matrix H(D)

Minimum basic
parity-check

matrix Hmb(D)

Reciprocal
parity-check matrix

H̃(D)
Dual trellis

Fig. 1. Procedure for obtaining the reciprocal dual trellis of a high-rate
punctured convolutional code.

floor. Additionally, for a rate-k/n code, the number of
overhead bits required to perform the zero termination
is nν bits: for very high-rate codes and short block
sizes, the loss in spectral efficiency due to overhead
bits may be significant. On the contrary, tail-biting
can be applied to most of the low-rate mother codes
making the corresponding decoder particularly attractive
for highly parallel hardware implementations [12]. The
tail-biting property is kept when the code is punctured:
this motivated the derivation of the reciprocal dual trellis
of high-rate punctured codes.

III. CONSTRUCTING RECIPROCAL DUAL TRELLIS
FOR HIGH-RATE PUNCTURED CONVOLUTIONAL

CODES

This section proposes a fully generic procedure to
construct the dual trellis for any convolutional code
and any puncturing pattern. Different from [3] where
only rate-k/(k + 1) codes are considered, this method
is based on transformations proposed by Forney in [1].
The generic procedure is presented in Fig. 1. The main
idea of the procedure is that, for a target rate-k/n code,
we find the non-systematic generator matrix Gns(D) of
size k× n equivalent to the original rate-k/n punctured
convolutional code. Then, parity-check matrix H(D) and
its reciprocal H̃(D) can be derived and the dual trellis is
constructed directly from matrix H̃(D). The dual-MAP
algorithm then decodes the received codeword based on
the dual trellis yielding the soft estimate on the punctured
codeword. In this section, we reuse several notions and
definitions introduced in [1].

Two generator matrices or encoders are said to be
equivalent if and only if they generate the same code-
word space C. From an algebraic perspective, two rate-
k/n convolutional generator matrices G(D) and G′(D)
are equivalent if and only if there exists a k × k non-
singular matrix T(D) such that

G(D) = T(D)G′(D). (4)

A. Equivalent Non-Systematic High-Rate Generator Ma-
trix

The first step towards the reciprocal dual trellis in-
volves converting the punctured convolutional code into
a non-systematic encoding form, as described in [13].

This transformation has previously been used to assess
the performance of convolutional codes, since all equiv-
alent forms share the same Hamming weight spectrum.

In order to get a rate-k/n punctured convolutional
code, we start from the following general form of an
encoder generating a rate-1/N code

G(D) =
(
G0(D) G1(D) . . . GN−1(D)

)
(5)

where Gi(D), i = 0, . . . , N − 1 are the generator poly-
nomials. This convolutional code can also be viewed as a
rate-k/kN code, for any value of k. Then, we derive an
equivalent encoder defined by kN polynomials obtained
by splitting each polynomial Gi(D), i = 0, . . . , N − 1
into k sub-polynomials gi,j(D), j = 0, . . . , k − 1 as
follows

Gi(D) =

k−1∑

j=0

Djgi,j(D
k). (6)

The element of the resulting k × kN generator matrix
G′(D) at row p and column q, G′p,q(D), is defined as:
{
G′p,q(D) = gqmodn,bq/Nc−p(D) if p×N ≤ q
G′p,q(D) = D×gqmodn,bq/Nc−p+k(D) if p×N > q

(7)
The encoder of the rate-k/n code is then obtained by
selecting n out of kN columns in G′(D) according to
a selected puncturing pattern.

For example, let us illustrate the decomposition
principle for k = 3 and N = 2. The gen-
eral form of an encoder generating a rate-1/2 code
is G(D) = (G0(D), G1(D)). Polynomials G0(D)
and G1(D) are each decomposed into k = 3 sub-
polynomials: {g0,j(D)}j=0,1,2 and {g1,j(D)}j=0,1,2. To
lighten notations, polynomials gi,j(D) will be denoted
as gi,j in the sequel. The generator matrix G′(D) of the
equivalent rate-3/6 code is



g0,0 g1,0 g0,1 g1,1 g0,2 g1,2
Dg0,2 Dg1,2 g0,0 g1,0 g0,1 g1,1
Dg0,1 Dg1,1 Dg0,2 Dg1,2 g0,0 g1,0


 . (8)

The non-systematic punctured generator matrix Gns(D)
of the rate-k/n code is then obtained by selecting n
columns out of kN in G′(D), according to a selected
puncturing pattern. For instance, if columns 1, 2, 3 and
5 in G′(D) are selected, the following matrix generates
a rate-3/4 code

Gns(D) =




g0,0 g1,0 g0,1 g0,2
Dg0,2 Dg1,2 g0,0 g0,1
Dg0,1 Dg1,1 Dg0,2 g0,0


 . (9)

B. Reciprocal Parity-Check Matrix

In this section, we introduce a general procedure to
obtain the reciprocal parity-check matrix H̃(D) from
the non-systematic generator matrix Gns(D). A con-
volutional encoder or encoding matrix G(D) is called
basic if it has a right inverse G−1(D). The right inverse



existence of an encoding matrix ensures that the encoder
is a bijective function. Therefore, given any two different
inputs, the basic encoder always yields two different
codewords.

1) Invariant-factor decomposition of the generator
matrix: Based on the invariant-factor theorem, as in [1],
or on the Smith form, as in [14], the invariant-factor
decomposition of the generator matrix G(D) of a rate-
k/n convolutional code gives

G(D) = A(D)Γ(D)B(D), (10)

where A(D) is a k × k polynomial matrix with unit
determinant, B(D) is a n × n polynomial matrix with
unit determinant, thus having an polynomial matrix
inverse B−1(D), and Γ(D) is a k × n diagonal matrix,
whose elements are called the invariant factors of G(D)
and are unique. In fact, matrix Γ(D) is obtained by
permuting and linearly combining the rows and the
columns of matrix G(D). Since the permutation or linear
combination of rows (or columns) can be represented by
the pre- (or post-) multiplication of a square matrix with
unit determinant by G(D), A(D) is the the result of
all row operations and matrix B(D) is the result of all
column operations.

As pointed out in [1], matrix U(D) consisting of
the first k rows of B(D) is a basic encoding matrix
equivalent to G(D). Since the polynomial matrix B(D)
has a polynomial inverse B−1(D), the matrix consisting
of the last (n− k) columns of B−1(D) is the transpose
of the parity-check matrix, i.e., H>(D). This can be
explained by the fact that B(D)B−1(D) = In where
In is the n× n identity matrix. Then, the inner product
between row i ∈ {0, . . . , k − 1} of B(D) and column
j ∈ {n − k, . . . , n − 1} of B−1(D) is the element at
row i and column j of the identity matrix In. Since
(In)i,j = 0 for j > i, U(D)H>(D) = 0 and conse-
quently, G(D)H>(D) = 0. Note that matrix H(D) is
basic since it has a right inverse which is the transpose of
the matrix consisting of the last (n− k) rows of B(D).

2) Minimal basic parity-check matrix: Let G(D) be
a k×n encoding matrix. We define the constraint length
for the ith input as

νi = max
j=0,...,k−1

{
deg

(
Gi,j(D)

)}
, (11)

where Gi,j(D) is the polynomial element of G(D) at
row i and column j and deg() denotes the degree of
the polynomial. Then, we define the overall constraint
length of the encoder as the sum of the constraint lengths
for all inputs

ν =

k∑

i=0

νi (12)

According to Theorem 7 in [1], if G(D) is a basic
encoder with overall constraint length ν, then there

exists an associated basic parity-check matrix H(D)
with overall constraint length ν.

However, we observed that, in the previous decompo-
sition, the parity-check matrix H(D) consisting of the
last (n− k) columns of B−1(D) usually has an overall
constraint length greater than ν. Therefore, we need to
find the minimal basic parity-check matrix Hmb(D)
with overall constraint length ν that is equivalent to
H(D). To this end, the authors in [14] proposed an
algorithm for finding the minimal basic form of an
encoding matrix, called Algorithm MB. The main idea
of this algorithm is to lower gradually the constraint
length of the parity-check matrix by linearly combining
multiple rows. Then, after a number of steps, its overall
constraint length becomes equal to ν. Since the operation
of linearly combining matrix rows can be represented by
the pre-multiplication of a unit determinant matrix by
H(D), the resulting minimal basic parity-check matrix
Hmb(D) is equivalent to H(D).

Assuming that G(D) is a k × n encoding matrix, let
[G(D)]h be a (0,1)-matrix with 1 in the position (i, j)
if deg

(
Gi,j(D)

)
= νi and 0 otherwise. The algorithm

MB proceeds as follows:
• Step 1: If [G(D)]h has full rank, then G(D) is a

minimal basic encoding matrix and the algorithm
stops; otherwise go to Step 2.

• Step 2: [G(D)]h does not have full rank, mean-
ing that there are at least two linearly dependent
rows in [G(D)]h. Without loss of generality, we
let [ri1 ], [ri2 ], . . . , [rid ] denote the set of linearly
dependent rows in [G(D)]h such that νid ≥ νij ,
j = 0, . . . , d − 1. Then, if we let ri1 , ri2 , . . . , rid
be the corresponding set of rows in G(D), we can
lower νid by adding

Dνid−νi1 ri1 +D
νid−νi2 ri2 + . . .+D

νid−νid−1 rid−1

to the idth row of G(D). Return to Step 1.
3) Reciprocal parity-check matrix: After having de-

rived the minimal basic parity-check matrix Hmb(D),
the reciprocal parity check matrix H̃(D) can be directly
obtained by

H̃i(D) = DνiHmbi(D
−1), 0 ≤ i < n− k (13)

where H̃i(D) and Hmbi(D) are respectively the ith row
of H̃(D) and Hmb(D).

Matrix H̃(D) is the encoder generating the dual
codeword ṽ that is orthogonal to any codeword v gen-
erated by the original high-rate punctured convolutional
encoder. The dual-MAP algorithm can be run using the
dual trellis generated by H̃(D) to yield the soft estimates
related to codeword v.

To summarize, the procedure to obtain the dual trellis
starting from the original high-rate punctured convolu-
tional code can be described as follows:



• Find the equivalent high-rate non-systematic gener-
ator matrix Gns(D);

• Perform the invariant-factor decomposition

Gns(D) = A(D)Γ(D)B(D);

• Find the inverse matrix B−1(D), then the parity-
check matrix H(D) is the transpose of the matrix
consisting of the last (n− k) columns of B−1(D);

• Apply Algorithm MB to derive the equivalent
minimal basic parity-check matrix Hmb(D) from
H(D);

• Deduce the reciprocal parity-check matrix H̃(D)
according to (13) and construct the dual trellis based
on H̃(D).

IV. EXAMPLE AND NUMERICAL RESULTS

A. An Example of Dual Trellis Construction

In this section, we provide an example of derivation of
the dual trellis from a high-rate punctured convolutional
code. The considered convolutional code is the con-
stituent RSC code of the LTE turbo code [15], punctured
to achieve rate 5/7

GLTE(D) =
(
1 1+D+D3

1+D2+D3

)
; P =

(
1 1 1 1 1
1 0 0 1 0

)

thus yielding a rate-5/9 turbo code. In order to derive
the dual trellis of the convolution code, we first convert
the recursive systematic generator matrix into a non-
recursive form

G(D) = (1 +D2 +D3)
(
1 1+D+D3

1+D2+D3

)

=
(
1 +D2 +D3 1 +D +D3

)

and according to (4), GLTE(D) and G(D) are equiva-
lent.

1) Equivalent non-systematic generator matrix: First,
we find the equivalent non-punctured rate-5/10 generator
matrix. According to (6), we decompose G0(D) =
1 + D2 + D3 and G1(D) = 1 + D + D3 into 5 sub-
polynomials each

g0,0 = 1, g0,1 = 0, g0,2 = 1, g0,3 = 1, g0,4 = 0,
g1,0 = 1, g1,1 = 1, g1,2 = 0, g1,3 = 1, g1,4 = 0.

Then, the non-punctured rate-5/10 generator matrix
G′(D) is




1 1 0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0 1 1
D D 0 0 1 1 0 1 1 0
D 0 D D 0 0 1 1 0 1
0 D D 0 D D 0 0 1 1




The length of puncturing pattern P is 5. When applying
it periodically to G(D), every second, third and fifth
parity bits are punctured. Since these parity bits are
equivalently generated by the even columns of G′(D),
applying pattern P to G′(D) amounts to removing

columns 4, 6 and 10 from G′(D). The resulting non-
systematic rate-5/7 generator matrix Gns(D) is then:

Gns(D) =




1 1 0 1 1 1 0
0 0 1 0 1 0 1
D D 0 1 0 1 1
D 0 D 0 1 1 0
0 D D D 0 0 1




2) Reciprocal parity-check matrix: For the sake of
simplicity, we do not show all the details of the
invariant-factor decomposition here. Readers may refer
to Example 2.4 in [14] for a detailed example. The
invariant-factor decomposition of Gns(D) results in
A(D)Γ(D)B(D) as shown in (15) at the top of the
next page.

Then, the inverse matrix B−1(D) is derived from
B(D) by Gaussian elimination. It gives B−1(D) equal
to


1 0 0 1+D 0 1+D+D2 1+D2+D3

0 0 0 D 0 1+D2 D3

0 1 1 1+D 0 D+D2 1+D+D2+D3

0 0 0 0 0 0 1
0 0 0 1 1 0 1+D
0 0 0 0 1 D 1+D+D2

0 0 1 D 1 D+D2 D2+D3




and parity-check matrix H(D) is obtained from the last
2 columns of B−1(D) as shown in (16). We can observe
that the overall constraint length of H(D) in (16) is 5
while the overall constraint length of Gns(D) is only
3. Therefore, one should apply algorithm MB to matrix
H(D). We first derive the following matrix

[H(D)]h =

(
1 1 1 0 0 0 1
1 1 1 0 0 0 1

)
. (14)

Row 1 and row 2 of [H(D)]h are linearly dependent.
Therefore, applying Step 2 of algorithm MB, row 2 is
changed according to

[Row 2]⇐= [Row 2] +D × [Row 1]

resulting in the minimal basic parity-check matrix shown
in (17), whose overall constraint length is 3.

Finally, applying (13) yields the reciprocal parity-
check matrix H̃(D) given in (18).

B. Simulation Results and Discussion

In this section, we present simulation results that
compare the error correction performance of turbo codes
implementing the conventional MAP algorithm and the
dual-MAP algorithm based on the dual trellis, for three
coding rates higher than 1/2. The original low-rate
mother code is the rate-1/2 constituent RSC code of the
LTE turbo code. Data are transmitted in AWGN channel,
using BPSK modulation. The information frame length is
K = 400 bits. The puncturing patterns of the parity bits
(Table I) and the internal Almost Regular Permutation



Gns(D) =




1 0 0 0 0
0 1 0 0 0
D 0 1 0 0
D D D 1 0
0 D 1+D 0 1




︸ ︷︷ ︸
A(D)




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0




︸ ︷︷ ︸
Γ(D)




1 1 0 1 1 1 0
0 0 1 0 1 0 1
0 0 0 1+D D 1+D 1
0 D 0 D2 1+D2 1+D2 0
0 D 0 1+D+D2 D2 1+D2 0
0 1 0 0 D D 0
0 0 0 1 0 0 0




︸ ︷︷ ︸
B(D)

(15)

H(D) =

(
1+D+D2 1+D2 D+D2 0 0 D D+D2

1+D2+D3 D3 1+D+D2+D3 1 1+D 1+D+D2 D2+D3

)
(16)

Hmb(D) =

(
1+D+D2 1+D2 D+D2 0 0 D D+D2

1+D D 1+D 1 1+D 1+D 0

)
(17)

H̃(D) =

(
1+D+D2 1+D2 1+D 0 0 D 1+D

1+D 1 1+D D 1+D 1+D 0

)
(18)

TABLE I
PARITY PUNCTURING PATTERN FOR K = 400

Turbo rate Parity puncturing pattern

8/11 1100000000000010

4/5 0100000000000010

8/9 0100000000000000

TABLE II
ARP INTERLEAVER PARAMETERS FOR K = 400

Q P
(
S(0), . . . , S(Q− 1)

)
16 383

(8, 80, 311, 394, 58, 55, 250, 298,
56, 197, 280, 40, 229, 40, 136, 192)

(ARP) interleaver have been jointly optimized according
to the method described in [10]. The interleaver is
defined by

π(i) =
(
Pi+ S

(
i mod Q

))
mod K. (19)

and the corresponding parameters are given in Table II.
The simulations were carried out with floating point

representation of data and the number of iterations is set
to 8. Fig. 2 shows that both decoding approaches yield
similar error correction performance for the turbo code.

On another note, the authors of [16] carry out a
comparison, in terms of throughput and circuit area,
for LTE SISO decoders using the dual-MAP and the
radix-4 Max-Log-MAP algorithms. They show that, for
a medium coding rate such as r = 2/3, both algorithms
yield the same throughput but the circuit area of the
dual-MAP decoder is more than twice compared to the
radix-4 Max-Log-MAP decoder (see Fig. 8 in [16]).
However, for higher coding rates such as r = 4/5 or

1 2 3 4 5 6
Eb/No in dB

10−5

10−4

10−3

10−2

10−1

100
Bl

oc
k 

Er
ro

r R
at

e

R=8/11 original
R=8/11 dual
R=4/5 original
R=4/5 dual
R=8/9 original
R=8/9 dual

Fig. 2. Performance comparison between MAP and dual-MAP algo-
rithms for various high-rate schemes for K = 400. AWGN channel
and BPSK modulation.

r = 8/9, the throughput of the Max-Log-MAP decoder
remains unchanged while the circuit area increases with
the coding rate, due to the need of longer decoding
windows and/or long acquisition sequences for state
metric initialization to avoid any correction performance
loss. On the contrary, the throughput of the dual-MAP
decoder is doubled from r = 2/3 to r = 4/5 and from
r = 4/5 to r = 8/9, while its circuit area only increases
from 140 kgates at r = 2/3 to 180 kgates at r = 8/9.
This is due to the fact that, for a code rate k/n, the dual
trellis decoder is able to process simultaneously k bits
while the conventional radix-4 Max-Log MAP decoder
can only process 2 bits at each trellis stage. This is the
main advantage of decoding using the dual trellis instead
of the original trellis for high-rate convolutional codes.



V. CONCLUSION

In this paper, we propose a solution to combine the
advantages of punctured and true high-rate convolutional
codes. We applied the dual-MAP decoding algorithm,
usually used for true high-rate codes, to high-rate punc-
tured convolutional codes. To this end, we described a
generic procedure to construct the dual trellis for a punc-
tured convolutional code. This approach was validated
with simulations in AWGN channel where the dual-MAP
decoder based on the derived dual trellis was shown to
achieve the same performance as the MAP algorithm
employed on the original trellis.

As shown in [16], using the dual trellis leads to an
increase in the circuit area compared to the classical
MAP decoder since a large number of extrinsic infor-
mation has to be processed at the same time. However,
this approach offers the advantage of high throughput
decoding for high-rate coding schemes and the ratio of
throughput to chip area is largely increased. Nonetheless,
for future works, we aim to find a sub-optimal decoding
algorithm for the dual-MAP which offers several trade-
offs of performance/complexity.

ACKNOWLEDGEMENT

This work was partially funded by the EPIC project
of the EU’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 760150.

REFERENCES

[1] G. Forney, “Convolutional codes I: Algebraic structure,” IEEE
Trans. Inf. Theory, vol. 16, no. 6, pp. 720–738, November 1970.

[11] E. Boutillon, J. Sánchez-Rojas, and C. Marchand, “Simplified
compression of redundancy free trellis sections in turbo decoder,”
IEEE Commun. Lett., vol. 18, no. 6, pp. 941–944, June 2014.

[2] J. Cain, G. Clark, and J. Geist, “Punctured convolutional codes of
rate(n-1)/n and simplified maximum likelihood decoding,” IEEE
Trans. Inf. Theory, vol. 25, no. 1, pp. 97–100, January 1979.

[3] A. Graell i Amat, G. Montorsi, and S. Benedetto, “Design and
decoding of optimal high-rate convolutional codes,” IEEE Trans.
Inf. Theory, vol. 50, no. 5, pp. 867–881, May 2004.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: Turbo-codes,” in
Proc. IEEE Int. Conf. Commun., May 1993, pp. 1064–1070.

[5] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of
optimal and sub-optimal MAP decoding algorithms operating in
the log domain,” in Proc. IEEE Int. Conf. Commun., vol. 2, June
1995, pp. 1009–1013 vol.2.

[6] S. Riedel, “MAP decoding of convolutional codes using recip-
rocal dual codes,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp.
1176–1187, May 1998.

[7] S. Srinivasan and S. S. Pietrobon, “Decoding of high rate con-
volutional codes using the dual trellis,” IEEE Trans. Inf. Theory,
vol. 56, no. 1, pp. 273–295, Jan 2010.

[8] J. Hagenauer, “Rate-compatible punctured convolutional codes
(RCPC codes) and their applications,” IEEE Trans. Commun.,
vol. 36, no. 4, pp. 389–400, April 1988.

[9] G. Bégin, D. Haccoun, and C. Paquin, “Further results on high-
rate punctured convolutional codes for Viterbi and sequential
decoding,” IEEE Trans. Commun., vol. 38, no. 11, pp. 1922–
1928, Nov 1990.

[10] R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard,
“Protograph-based interleavers for punctured turbo codes,” IEEE
Trans. Commun., vol. 66, no. 5, pp. 1833–1844, May 2018.

[12] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decoding
of concatenated convolutional codes: Implementation issues,”
Proc. IEEE, vol. 95, no. 6, pp. 1201–1227, June 2007.

[13] H. Sasano and S. Moriya, “A construction of high rate punctured
convolutional codes,” in Int. Symp. Inf. Theory Applications, Oct
2012, pp. 662–666.

[14] R. Johannesson and K. S. Zigangirov, Fundamentals of convolu-
tional coding. Piscataway, NJ: IEEE Press, 1999.

[15] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Multiplexing and channel coding, ETSI TS 136 212 V14.8.0,
Jan 2019.

[16] C. Lin, C. Wong, and H. Chang, “A 40 nm 535 Mbps multiple
code-rate turbo decoder chip using reciprocal dual trellis,” IEEE
J. Solid-State Circuits, vol. 48, no. 11, pp. 2662–2670, Nov 2013.


