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Abstract—By using Majority Logic (MJL) aided Succes-
sive Cancellation (SC) decoding algorithm, an architecture
and a specific implementation for high throughput polar
coding are proposed. SC-MJL algorithm exploits the low
complexity nature of SC decoding and the low latency
property of MJL. In order to reduce the complexity of
SC-MJL decoding, an adaptive quantization scheme is
developed within 1-5 bits range of internal log-likelihood
ratios (LLRs). The bit allocation is based on maximizing
the mutual information between the input and output
LLRs of the quantizer. This scheme causes a negligible
(0.1 < dB) performance loss when the code block length
is N = 1024 and the number of information bits is
K = 854. The decoder is implemented on 45nm ASIC
technology using deeply-pipelined, unrolled hardware ar-
chitecture with register balancing. The pipeline depth is
kept at 40 clock cycles in ASIC by merging consecutive
decoding stages implemented as combinational logic. The
ASIC synthesis results show that SC-MJL decoder has
427 Gb/s throughput at 45nm technology. When we scale
the implementation results to 7nm technology node, the
throughput reaches 1 Tb/s with under 10 mm2 chip area
and 0.37 W power dissipation.

Index Terms—Application specific integrated circuits,
polar codes, terabits-per-second throughput, successive-
cancellation decoding, majority-logic decoding, quantiza-
tion

I. INTRODUCTION

It is foreseen that within the next decade there will

be demand for forward error correction (FEC) codes

operating at Terabit-per-second (Tb/s) data rates for

certain beyond-5G applications [1]. The demand for

higher data rates can be seen by looking at the recent

standardization activities. For wired connections, the

IEEE 802.3ba Ethernet standard specifies 100 Gigabit-

per-second (Gb/s) throughput over optical media [2]. In

the wireless domain, the IEEE 802.15.3d standard rati-

fied in 2017 defines a 100 Gb/s system using frequencies

in the 252 - 322 Gigahertz (GHz) range [3]. The 2018

Ethernet Roadmap [4] foresees demand for Terabit-per-

second (Tb/s) data rates for 2020 and beyond.

This paper studies the feasibility of achieving Tb/s

data rates using polar codes. Part of the challenge of

reaching Tb/s with polar codes is generic, common to

all FEC schemes, and stems from limitations of the

VLSI technology. A second set of difficulties are specific

to polar codes, arising from the inherently sequential

nature of the decoding of polar codes. We investigate

both aspects of the challenge and propose solutions. We

begin by giving an overview of the problem.

A. VLSI technology challenges for Tb/s FEC

For several decades, FEC data rates could be increased

by advances in VLSI technology, in accordance with

technology forecasts known as Moore’s law and Den-

nard’s scaling law [5]. Although transistor dimensions

still continue to shrink in accordance with the Moore’s

law, transistor switching speeds (clock frequencies) can-

not keep increasing due to power density constraints

[6]. With the clock frequency reaching practical limits

at around 1-5 GHz, implementing Tb/s FEC schemes

in VLSI requires highly parallel and deeply pipelined

implementation architectures. This in turn makes imple-

mentation issues, such as chip area and power density,

to move to the forefront as major design parameters,

along with traditional measures of FEC performance

such as coding gain or gap-to-capacity. The design and

implementation of Tb/s FEC codes involves a complex

tradeoff between a large set of parameters.

In the Tb/s regime, I/O bottleneck and excessive mem-

ory usage emerge as two important generic problems. To

see the scale of the I/O problem, consider as an example

of a FEC system with a coding rate R = K/N carrying

K bits of information in code blocks of length N bits.

Suppose the receiver front-end provides the decoder with

soft information in the form of log-likelihood ratios

(LLRs) at a rate of γ
R LLRs-per-second with a precision

of Q bits-per-LLR, where γ is the throughput in b/s. Let

fc be the clock frequency for the interface between the

decoder and the receiver front-end and P is the number

of spatially parallel decoders connected to the front-end.

The interconnect bus width at this interface will then

have to contain at least

W =
γ

fc

Q

R
=

(NRPfc)

fc

Q

R
= NPQ (1)



wires assuming that each wire in the bus carries binary

signals. For example, with γ = 1 Tb/s, fc = 1 GHz,

Q = 3 bits, and R = 1/2, we have W = 6000. For

the given W , a set of (N ,P ) values can be (512, 4),

(1024, 2), (2048, 1). This example clearly shows the

difficulty of increasing γ while fc is held fixed. In

order to alleviate the I/O bottleneck, we consider in this

paper a relatively high rate code with R = 5/6, and

try to minimize Q by using an quantization scheme that

is information-theoretically as efficient as possible, as

suggested in [7].

In order to illustrate the memory problem mentioned

above, suppose that the decoder in the preceding example

is implemented in a deeply-pipelined fashion, using D
pipeline stages, where D is the decoder latency measured

in number of clock cycles. Thus, we are assuming that

there are PD codewords inside the decoder at any

moment, the codewords spread over the successive stages

of decoding in an assembly-line fashion. The memory

requirement for this architecture may be estimated as

MReq =
γ

fc

DQ

R
=

NRPfc
fc

DQ

R
= NPDQ, (2)

where Q is the average number of bits per LLR value

inside the decoder. The product NPD emerges a sig-

nificant parameter for controlling MReq. The number

of pipeline stages D is related to N in a manner that

is specific to the code family and decoder type within

that code family. For example, for the basic successive

cancellation (SC) decoding method for polar codes, the

smallest value of D is 2N − 2 (achieved by using a

fully parallel implementation), making the product NP
quadratic in N . Such a quadratic growth in MReq as a

function of N severely limits the length of codes that can

be used, leading to inferior coding gains. In this paper we

seek a remedy to this problem by introducing a hybrid

decoding algorithm that has a lower latency D than the

SC decoding algorithm. The hybrid algorithm combines

SC decoding with Majority Logic (MJL) decoding, as

discussed below. As a further measure to reduce MReq,

we implement a variable-length quantization scheme

inside the decoder so as to minimize Q for a given

performance.

B. Relation to previous work

Polar codes were introduced in [8]. Polar codes are

closely related to Reed-Muller (RM) codes [9], [10].

Many existing decoding algorithms for polar codes were

originally devised for RM codes [11], [12]. This is true

for the two decoding algorithms of interest in this paper,

namely, SC decoding and MJL decoding. In fact, MJL

decoding was the original decoding method for RM

codes [10]. The distinctive feature of MJL decoding is

its inherently parallel nature. The SC decoding method

provides better coding gain at the expense of being serial

in nature (increased latency). In this paper we combine

the best features of SC decoding and MJL decoding. We

use a soft-decision version of MJL decoding [13], [14].

The implementation presented below takes advantage

of specific techniques for speeding up the SC decoder.

These include methods to recognize specific constituent

codes of the given polar code and decodes them quickly

as described in [15], [16], [17], [18], [19], and [20].

A hybrid SC-MJL decoder implementation for polar

codes was reported in [21]. That design relied on using

combinational logic and aimed to provide a flexible

architecture that could operate at various different coding

rates. Unlike [21], here we focus on throughput only and

use a fully unrolled and pipelined SC-MJL architecture

to decode particular code segments faster. Similar to [16]

and [17], the repetition (REP) and single parity-check

(SPC) code segments are decoded by MAP [22] and

Wagner [23] decoders respectively.

The outline of this paper is as follows. Section II

gives a short review of polar coding and introduces the

SC-MJL decoding with adaptive quantization. Section

III presents the unrolled SC-MJL decoder architecture.

Section IV presents the communication performance and

ASIC implementation results of the SC-MJL decoder.

Finally, Section V summarizes the main results with a

brief conclusion.

II. POLAR CODES AND SC-MJL DECODING

This section starts with a short review of polar codes.

Then, in Section II-B, the proposed SC-MJL decoding

algorithm is introduced. Finally, in Section II-C, the

adaptive quantization scheme used in this paper is pre-

sented.

A. Review of polar codes

Polar codes are a class of linear codes. Here, we

consider only polar codes over the binary field F2. For

every n ≥ 1, there exists such a code with block

length N = 2n and a transform matrix GN = G⊗n

where G⊗n is the nth Kronecker power of a kernel

matrix G =

[

1 0
1 1

]

. In polar coding, the user data dK1

is first embedded in a transform input vector uN
1 and

the codeword is obtained as xN
1 = uN

1 GN . A set A
indicates which coordinates of uN

1 carries the data dK1 .

We write uA to denote the data-carrying part of uN
1 . The

remaining part of uN
1 is denoted uAc and is frozen to

zero. We write uA = dK1 and uAc = 0 to indicate the

composition of the transform input uN
1 . For a description

of the details of polar coding, we refer to [8].

B. The proposed SC-MJL decoding

The proposed SC-MJL decoding is given in Algorithm

1. Initially, the recursive block length parameter M = N
and ℓN1 is the channel log-likelihood ratio (LLR) vector

with



ℓi = log

(

W (yi|xi = 0)

W (yi|xi = 1)

)

,

where W (y|x) is the channel transition probability den-

sity function. vN1 is an indicator vector of the frozen

coordinates defined as

vi =

{

1, if i ∈ Ac

0, if i ∈ A.

The building blocks of the decoder are f, g and d

functions. The function f(ℓ, ℓ′) for any two LLR values

ℓ and ℓ′ is defined as

f(ℓ, ℓ′) = 2 tanh−1(tanh(
ℓ

2
) tanh(

ℓ′

2
)),

which can be approximated [24] as

f(ℓ, ℓ′) ≈ sgn(ℓℓ′)min(|ℓ|, |ℓ′|). (3)

The function g(ℓ, ℓ′, α) for any ℓ and ℓ′ and any α ∈
{0, 1} is defined as

g(ℓ, ℓ′, α) = (1− 2α)ℓ+ ℓ′. (4)

The function d(ℓ, v) for any ℓ and frozen bit indicator v
is defined as

d(ℓ, v) =











0, if v = 1

0, if v = 0 and ℓ ≥ 0

1, if v = 0 and ℓ < 0.

(5)

Algorithm 1 combines SC decoder with certain shortcuts

such as MJL decoding, Wagner decoding, etc. For details

of SC decoding we refer to [8], and to [13] for MJL

decoding. A precise statement of the MJL decoder as

used here is given as Algorithm 2 with a generic block

length NMJL. The algorithm has logNMJL + 1 stages.

For the ith stage, the MJL algorithm decodes
(

logM
i

)

number of bits in parallel. For each bit, the algorithm

calculates a final LLR value ℓj using the given f (3)

and g (4) functions. After all x̂M
1 bits are decoded, the

encoded ûM
1 sequence is computed by using the bit-

reversal permutation matrix BM and the generator matrix

GM [8].

The flowchart representation of Algorithm 1 is shown

in Fig. 1. The decoding complexities of Wagner and

MAP decoders are upper bounded by NLIM parameter,

which denotes the maximum decodable block length

in a single time step. When M is equal to NMJL, the

MJL decoding algorithm is used. In other case, the

f (3) and g (4) functions divide the length-M polar

code into two length-M /2 polar code branches until one

of the special code segments appears. Both functions

are applied element-wise to odd ℓM1,odd and even ℓM1,even

elements of ℓM1 vector. Moreover, the partial update logic

(PSUL) calculates the systematic decision output of the

decoder when M = N . It is represented with a set of

XOR (⊕) operations. When M < N , PSUL calculates

Algorithm 1: SC-MJL

Inputs : ℓM1 , vM1 , M Output: ûM
1

if vM1 = 1 then // R = 0

ûM
1 = d(ℓM1 , vM1 = 1) = 0

else if vM1 = 0 then // R = 1

ûM
1 = d(ℓM1 , vM1 = 0)

else if M ≤ NLIM and v1 = 1 and vM2 = 0 then

ûM
1 = d(ℓM1 , vM1 = 0) // Wagner dec.

p = mod(
∑M

i=1 ûi, 2) // of R = (M-1)/M

r = argmin(| ℓM1 |)
ûr = ûr ⊕ p

else if M ≤ NLIM and vM−1
1 = 1 and vM = 0

then // MAP decoding of R = 1/M

ûM
1 = d(

∑M
i=1 ℓi, v = 0) // Eq.(5)

else if M = NMJL then // MJL ∀ R

ûM
1 = MJL(ℓM1 , vM1 , NMJL)

else // SC ∀ R

l
M/2
1 = f(ℓM1,odd, ℓM1,even) // Eq.(3)

ẑ
M/2
1 = SC-MJL(l

M/2
1 , vM1,odd, M

2 )

r
M/2
1 = g(ℓM1,odd, ℓM1,even, ẑ

M/2
1 ) // Eq.(4)

x̂
M/2
1 = SC-MJL(r

M/2
1 , vM1,even, M

2 )

ûM
1,odd = ẑ

M/2
1 ⊕ x̂

M/2
1 // PSUL

ûM
1,even = x̂

M/2
1

return ûM
1

Algorithm 2: MJL

Inputs : ℓM1 , vM1 , NMJL Output: ûM
1

Set M = NMJL and c = 0 // dec. counter

for i = 0, 1, ..., logM do // serial

r = find rows (
∑

columns GM = 2i)
for j = 1, 2, ...,

(

logM
i

)

do // parallel
c = c + 1

Calculate ℓj using f (3) and g (4) functions

for only the rth rows

x̂r(j) = d(ℓj , vc) // Eq.(5)

ûM
1 = x̂M

1 BM GM

return ûM
1

the feedback ẑ
M/2
1 for the input of g functions. At the

end of PSUL, M can increase up to M = 2iM for

i ∈ {0, 1, ..., logN − logM}. The estimated user data

d̂K1 is extracted from the estimated transform vector ûN
1

at the end of decoding operation.

C. Adaptive quantization of the LLRs

The chip area of the SC decoder is dominated by the

memory and the register chains in the deeply-pipelined

architecture [16]. Implementation practice shows that

using 5 or 6-bit precision for each LLR value causes

tolerable performance loss [25]. We propose to reduce

LLR precision even further (1-5 bits range of LLRs)



No No No No No No

No

Yes Yes Yes Yes Yes Yes

b b b

b

b

SC Decoder

PSUL

g g
f f

M/2
M = M

2

Info. Sequence Extractor
Yes

Output

Input υM
1 = 1 υM

1 = 0 M > NLIM
υM
2 = 0
υ1 = 1 υM−1

1
= 1

υM = 0

M = NMJL

M = N

ẑ
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Fig. 1: The recursive structure of SC-MJL decoding algorithm where N is the code block length, K is the number

of information bits, vM1 is the indicator vector of the frozen coordinates with variable constituent block length M ,

NMJL is the block length of MJL decoder and NLIM is the maximum block length of Wagner and MAP decoders.

using an adaptive quantization technique. The bit allo-

cation is based on maximizing the mutual information

between input and output LLRs of the quantizer. Unlike

using lookup tables [26], here we use the regular f and g

functions with custom input data width. The data width

or, in other words, the number of required quantization

bits is optimized using input LLR distribution of each

constituent polar code. For example, a rate-1 polar code

segment with an arbitrary block length can be repre-

sented with one bit (the sign bit). Since polarization takes

place, using large number of bits is not necessary for the

polarized code segments. In this way, the LLRs located

on those paths can have adaptive quantization levels.

Applying adaptive quantization to (1024,854) polar

code, the internal LLR bit precision is shown in Fig. 2.

The number of quantization bits are illustrated on each

line. For example, the second half of the (1024,854) po-

lar code uses one less quantization bits by dropping the

redundant least significant bit. The adaptive quantization

method has a significant impact on reducing the chip area

as well as the power dissipation of the SC-MJL decoder

as shown in Section IV-B.

III. UNROLLED SC-MJL DECODER ARCHITECTURE

We propose unrolled and deeply pipelined SC-MJL

decoder architecture with fully-parallel processing units.

We take advantage of bit-reversal decoding to operate

on neighboring LLRs. The SC decoder, denoted as

SC(N,K), consists of two sub-decoders which have the

same block length N
2 with a different payload Ki =

N
2 Ri. In general, SC(N,K) is decoded in four steps:

f, SC(N2 ,K1), g and SC(N2 ,K2). As a small example,

the architecture of SC(16, 9) is shown in Fig. 3. The ℓ161
LLRs at the input with 16×Q bits are stored during the

processing duration of f function plus SC(8, 2) decoder

(1024,854)

(512,361)

5

(256,131)
5

(128,36)5

(128,95)

4

(256,230)

4
(128,103)4

(128,127)
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(512,493)

4 (256,238)
4

(128,111)4

(128,127)

3

(256,255)

3
(128,127)3

(128,128)

1

Fig. 2: Adaptive quantization of the constituent codes of

SC-MJL(1024,854) for 128 ≤ M ≤ 1024. The number

of quantization bits are written on the lines.

(denoted as L(SC1)) until ẑ81 becomes ready at the input

of g. Likewise, ẑ81 is stored until x̂8
1 is ready.

The proposed SC-MJL decoder architecture for N =
16 and K = 9 is shown in Fig. 4. First, the adaptive

quantization block (abbreviated as Adp. Q.) reduces the

input LLR quantization from Q to Q′ bits. Then, f func-

tion, MJL(8, 2) decoder, g function, and Wagner(8, 7)
decoder are activated consecutively. When ẑ81 and x̂8

1

are ready, PSUL calculates the systematic output û16
1 .

Each decoding operation takes one time step except

PSUL, which performs combinational XOR operations.

Therefore, the total latency of SC-MJL(16, 9) is 4 time

steps, which is considerably smaller than 30 time steps

as in the SC(16, 9) decoder. Furthermore, the MJL(8, 2)



decoder architecture is shown in Fig. 5. It utilizes nine

adders, four f functions, two d functions, one g function

and one XOR gate such that each f function contains a

comparator and an XOR gate and each g function has

two adders and one multiplexer.
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A. Register Balancing

The proposed SC-MJL decoder simultaneously pro-

cesses different codewords in a sequence of decoding

stages. The complex operations in the sequential stages

and strict setup/hold time requirements may cause a

throughput bottleneck in the decoder. The critical path,

where the worst negative slack (WNS) is minimum, may
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Fig. 5: MJL(8,2) decoder architecture.

limit the frequency and reduce the throughput. In order

to avoid this, register balancing is performed in HDL

level to merge the consecutive short paths by removing

the registers in between those paths. The locations of

remaining registers are chosen according to combina-

tional delay of the merged stages. Applying register

balancing enables SC-MJL decoder to perform multiple

calculations within a clock cycle. It reduces both the

latency and the memory usage of the decoder. For

example, the latency of SC-MJL(16,9) decoder reduces

by two clock cycles when the given registers in Fig. 4

are removed without violating the WNS.

IV. IMPLEMENTATION STUDY

The SC-MJL(1024,854) decoder is implemented on

45nm ASIC using the general purpose (GP) standard cell

library (tcbn45gsbwp12tbc). The nominal PVT values

are 45nm, 1.2V and 25°C. The implementation parame-

ters are NLIM = 32 and NMJL = 8. In this configuration,

the number of shortcuts are: 13 MJL, 13 SPC, 5 REP, 16

Rate-1 and 3 Rate-0. In addition to that the clock gating

method is employed for the available registers to reduce

the power dissipation.

A. Performance Results

Extensive simulations have been performed to ob-

tain the communication performance results of the SC-

MJL decoding algorithm and the adaptive quantiza-

tion method. The simulations have been carried out

with an AWGN channel and BPSK modulation for

the (1024,854) code. The performance of the SC-MJL

decoding algorithm with a variable NMJL is shown in

Fig. 6. As NMJL increases, the performance deteriorates

progressively. It is observed that NMJL = 8 causes a

tolerable loss.

The communication performance of the SC and the

SC-MJL decoders are shown in Fig. 7. There is almost

0.1 dB performance difference between SC and SC-

MJL decoder. An additional performance loss occurs

when the adaptive quantization is used. Applying register

balancing does not introduce an additional performance

degradation. However, using fixed Q = 4 bits quanti-

zation for both channel and internal LLRs causes more

than 0.3 dB performance loss.

B. ASIC Implementation Results

The ASIC post-synthesis results of SC(1024,854) and

SC-MJL(1024,854) decoders are shown in Table I. The

SC-MJL decoder dissipates 1.5 times less power than the

benchmark SC decoder, while having a smaller area. The

proposed adaptive quantization and register balancing

architecture further reduces the power dissipation by 1.4
and 2.3 times, respectively. Due to register balancing

architecture, both latency and pipeline depth of the

decoder reduce to 40 clock cycles. Since the throughput

results of given implementations are the same, the most



Fig. 6: Performance of (1024,854) polar code under SC-

MJL decoding algorithm with NLIM = 32 and a variable

NMJL.

Fig. 7: The effect of LLR quantization on software and

FPGA performance of (1024,854) polar code under SC

and SC-MJL decoding with NMJL = 8 and NLIM = 32.

energy efficient implementation is the last one with 2.4

pJ/bit. The post-synthesis results are scaled from 45nm to

7nm technology using the conservative scaling formulas

in [1]. In addition to the scaling, each implementation

utilizes two parallel decoders, which operate at 585.5

MHz frequency as the expected 2.2 GHz frequency

is scaled down by a factor of 3.7. Another parameter

is the area scaling, which is a multiplier to the chip

area to obtain a reasonable power density for a feasible

cooling off the chip. The results show that the proposed

TABLE I: ASIC post-synthesis results of (1024,854) po-

lar code SC-MJL decoder with NMJL = 8 and NLIM = 32
at 45nm technology node.

Decoding Algorithm SC SC-MJL SC-MJL SC-MJL
Quantization (bits) 6 6 5-to-1 5-to-1
Reg. Balancing x x x X

Throughput (Gb/s) 427
Frequency (MHz) 500

Area (mm2) 9.8 8.3 6.6 2.4
Power (W) 4.6 3.1 2.3 1.0

Area Eff. (Gb/s/mm2) 43.5 51.4 65.0 175.2

Pow. Den. (W/mm2) 0.47 0.38 0.36 0.42
Energy Eff. (pJ/bit) 10.9 7.3 5.5 2.4
Latency (µs) 0.31 0.25 0.25 0.08
Latency (Clock cyc.) 157 127 127 40

TABLE II: The expected ASIC post-synthesis results of

(1024,854) polar code SC-MJL decoder with NMJL =

8 and NLIM = 32 at 7nm technology node. Each im-

plementation consists of two identical spatially parallel

polar decoders.

Decoding Algorithm SC SC-MJL SC-MJL SC-MJL
Quantization (bits) 6 6 5-to-1 5-to-1
Reg. Balancing x x x X

Area Scaling 14.3 16.9 21.4 57.7

Throughput (Gb/s) 1000
Frequency (MHz) 585.5

Area (mm2) 10

Area Eff. (Gb/s/mm2) 100

Power (W) 1.69 1.14 0.85 0.37

Pow. Den. (W/mm2) 0.17 0.11 0.09 0.04
Energy Eff. (pJ/bit) 1.69 1.14 0.85 0.37

implementation is expected to have 0.37 pJ/bit energy

efficiency at 7nm while having 1 Tb/s throughput.

C. ASIC implementation comparison of SC-MJL with

other high throughput polar decoders

The ASIC post-synthesis results of high throughput

polar decoders are compared in Table III. Using the same

scaling rule in [27] and [21], the normalized results show

that the SC-MJL decoder is the most energy efficient

decoder. Although it can operate at 1.5 lower frequency

than the SC-Fast decoder, it has 3.2 times better area

efficiency due to efficient merging of pipelined stages in

the register balancing architecture.

V. CONCLUSION

In order to reach high throughput within the physical

limits of the current VLSI technology, we proposed SC-

MJL decoding algorithm with an adaptive quantization

and register balancing architecture. Firstly, the SC-MJL

decoder architecture reduces the pipelined depth of the

SC algorithm by 1.2 times. In addition to that the

proposed adaptive quantization scheme further reduces

both computational and memory complexity of the SC-

MJL decoder. The proposed decoding algorithm utilizes

a deeply-pipelined and unrolled hardware architecture

using combinational logic. In this architecture, the con-

secutive decoding stages are merged to further reduce



TABLE III: Comparison with the high throughput polar

decoders.

Implementation This work [28] [21]
Architecture SC-MJL SC-Fast SC-Comb.
ASIC Technology 45nm 28nm 90nm
Supply Voltage (V) 1.2 1.0 1.3

Coded Throughput (Gb/s) 512 1275 2.6
Frequency (MHz) 500 1245 2.5
Latency (µs) 0.08 0.3 0.4∗

Area (mm2) 2.4 4.6 3.2
Power (W) 1.01 8.79 0.19

Converted to 28nm, 1.0 V using the scaling in [27], [21]

Coded Throughput (Gb/s) 823 1275 8.2
Frequency (MHz) 804 1245 8.0∗

Area (mm2) 0.94a 4.63 0.31

Area Eff. (Gb/s/mm2) 872 276 26

Power (W) 0.44† 8.79 0.04

Power Density (W/mm2) 0.46 1.89∗ 0.12∗

Energy Eff. (pJ/bit) 0.5‡ 6.9 4.6
∗Not presented in the paper, calculated from the presented results
aNormalized factor for area is 0.39 = (28/45)2
†Norm. factor for power is 0.43 = (28/45)(1.0/1.2)2
‡Norm. factor for energy eff. is 0.27 = (28/45)2(1.0/1.2)2

the pipeline depth of the decoder to 40 clock cycles. The

ASIC synthesis results show that the SC-MJL decoder

has 427 Gb/s throughput at 45nm technology. When the

results are scaled to 7nm, the throughput reaches Tb/s

under 10 mm2 chip area with 0.37 W power dissipation.

Finally, the comparison with other high throughput im-

plementations shows that the proposed SC-MJL decoder

has a remarkable area and energy efficiency.
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