
,

github.com/TheChymera/RepSeP

Reproducible Publishing — Reference Poster Implementation
Horea-Ioan Ioanas1, Markus Rudin1

1Institute for Biomedical Engineering, ETH and University of Zurich

,

Abstract

As scientific work becomes increasingly collaborative and automated, reproducibility becomes
increasingly vital for sharing and integrating scientific results. For most researchers, however,
reproducibility remains a nebulous ideal, the benefits of which are considered more theoretical
and indirect, than practical and immediate. Here we showcase an open-source reference im-
plementation of a technology stack which makes the benefits of reproducibility accessible via a
reusable document template.

The prevalent and currently most accessible medium of exchange for high-level (i.e. semantic)
scientific results is that of the document. As this medium (including e.g. posters and articles) is
static, it encourages the creation of work which is unreproducible. We present an infrastructure
which addresses this issue, without compromising content sharing standards, by automatically
generating variable article elements (e.g. figures and statistics) directly from code and data.

Dependency Management

RepSeP
 Document

PythonTeX statsmodelsSAMRI

... pandasNipypeFSLANTs

SciPypygraphviz... ...

CBLASLAPACKgraphviz

... ...

...

Figure 1: Small excerpt and conceptual representation of software dependencies for research articles doing
even only simple neuroimaging analysis. First-level dependencies are highlighted in green.

Explicit, unambiguous declaration (e.g. conforming to the Package Manager Specification
[1]) of first-level dependencies is vital for software environment reproducibility. Given such
a specification, an effective package manager can automatically resolve all downstream steps
(typically extending into the hundreds or thousands of packages) [2].

Technologies

Arbitrarily complex plots leveraging the full capacity of matplotlib
[3], higher-level packages building on it, or other Python plotting
packages, are generated live on document compilation.

The core technology of this infrastructure is provided by PythonTEX
[4], which comes complete with codeblock dependency tracking
(n.b. not to be confused with dependency management for the
software itself). All figures are generated on the initial execution
of a LATEX compile script, and subsequently regenerated when either
code, data, or styling dependencies are changed.

3D Plots

X

−40 −30 −20 −10
0

10
20

30
40

Y

−40
−30
−20
−10

0
10

20
30

40

Z

−100

−75

−50

−25

0

25

50

75

100

Figure 2: A 3D plot, from the matplotlib exampes [3].

The above image is dynamically generated on document compilation by inserting the following
code in the TEX document source:

\py{pytex_fig(

'scripts/3dplot.py',

conf='poster/3dplot.conf', label='3dplot',

caption='A 3D plot. Plot script from matplotlib exampes \cite{matplotlib}.',

)}

Outlook

I We are looking for testers, to apply this reference implementation to their own work (we
have used it to great satisfaction in numerous articles, including [5]).

I We are looking for potential co-authors for the reference article implementation, which is
to be submitted to an academic journal.

I We are looking for potential web developers or co-founders to launch a platform offering
RepSeP-based publishing services (yes, a journal of reproducible code-based articles!).

Why do we need this?

Why do we need code-based publishing?

I Transparency −→ verifiability

I Reproducibility −→ hackability, reusability

I Version management −→ sustainability

Why do we need distributed publishing?

I No external entry barrier −→ citizen science

I No institutional bias −→ free science

I Less publication bias −→ honest science

Split Violin Plots

Generic Legacy
Processing

0.6

0.8

1.0

1.2

1.4

1.6

V
ol

um
e

C
ha

ng
e

F
ac

to
r

Template
Generic
Legacy

Generic Legacy
Processing

0.6

0.7

0.8

0.9

1.0

1.1

1.2

V
ol

um
e

C
ha

ng
e

F
ac

to
r

Contrast
BOLD
CBV

Figure 3: Violin plots highlighting both the distribution densities and quartiles in a multifactorial comparison (from [5]). The style is adapted
in the source code of this document to improve quartile styling in excess of the capabilities offered by the upstream package, seaborn [6].

Custom plotting options can also be used, by distributing customization code inside the article source. For fig. 3, a patched
module from the original code is distributed in lib/categorical.py , and preferentially imported in the script files (e.g.
scripts/violin.py).

Statistics and Tables

Automatically computed and formatted inline statistics:

I F1,268 = 10.97, p = 0.0011

I Processing Factor: F1,268 =72.8, p=1.07×10−15

I Template Factor: F1,268 =1333, p=5.13×10−106

I Processing:Template Intearction: F1,268 =10.97, p=0.0011

Onset
[s]

Duration
[s]

Frequency
[Hz]

Pulse Width
[s]

Wavelength
[nm]

333.05 20.0 20.0 0.005 488.0
513.05 20.0 20.0 0.005 488.0
693.05 20.0 20.0 0.005 488.0
873.05 20.0 20.0 0.005 488.0

1053.05 20.0 20.0 0.005 488.0

Table 1: BIDS [7] event file table, from [5]

Text elements can also be auto-generated from code and data, allowing inline statistics to be dynamic. Such elements
can be based on single scripts (e.g. \py{pytex printonly(’scripts/anova.py’)}), or parameterized script calls (e.g.

\py{boilerplate.fstatistic(’Processing’, condensed=True)}), allowing the same model to be used and different
factors to be reported in different locations.

\begin{table}[]

\py{

pytex_tab(

script='scripts/stim_table.py', label='sp',

caption='BIDS \cite{bids} event file table, from \cite{irsabi}',

options_pre='\\centering \\resizebox{0.9\\textwidth}{!}{',

data='data/JogB.tsv', options_post='}',

)

}

\end{table}

Additionally, scripts such as the
one invoked in the code block to
the left allow tab or comma sep-
arated value files to be automat-
ically read and typeset as LATEX
tables.

Manual Anchors

1970 1980 1990 2000 2010
0

10

20

30

40

50

60

70

80

90

Health Professions
Public Administration
Education
Psychology

Foreign Languages
English

Comm. and Journalism
Art and Performance
Biology

Agriculture
Soc. Sciences and History
Business
Math and Statistics
Architecture
Physical Sciences

Computer Science
Engineering

Figure 4: Percentage of Bachelor’s degrees conferred to women in the U.S.A. by major (1970-2011). Plot script from matplotlib exampes [3].

The style application via hierarchical matplotlib configuration files (global, per-document, per-script — in ascending order
of priority) allows the selfsame script results to be adapted to individual document types. Multiple views of the same data
analysis summary (e.g. a plot) can thus rely on the same code, avoiding divergent editing. Even sensitive plot elements, such
as anchors, remain stable throughout various style applications, as exemplified here.

References

[1] S. P. Bennett, C. Faulhammer, C. McCreesh, and U. Müller. (2017, 04) Package manager
specification. online. Gentoo Linux. [Online]. Available: https://projects.gentoo.org/pms/6/pms.html

[2] H.-I. Ioanas, B. Saab, and M. Rudin, “Gentoo linux for neuroscience - a replicable, flexible, scalable,
rolling-release environment that provides direct access to development software,” Research Ideas and
Outcomes, vol. 3, p. e12095, Feb. 2017. [Online]. Available: https://doi.org/10.3897/rio.3.e12095

[3] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & Engineering, vol. 9,
no. 3, pp. 90–95, Jun. 2007. [Online]. Available: https://doi.org/10.1109/mcse.2007.55

[4] G. M. Poore, “Pythontex: reproducible documents with latex, python, and more,” Computational
Science & Discovery, vol. 8, no. 1, p. 014010, 2015. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1749-4699/8/1/014010

[5] H.-I. Ioanas, M. Marks, M. F. Yanik, and M. Rudin, “An optimized registration workflow and standard
geometric space for small animal brain imaging,” bioRxiv, 2019. [Online]. Available:
https://www.biorxiv.org/content/10.1101/619650v2.full

[6] M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, S. Lukauskas, D. C. Gemperline, T. Augspurger,
Y. Halchenko, J. B. Cole, J. Warmenhoven, J. de Ruiter, C. Pye, S. Hoyer, J. Vanderplas, S. Villalba,
G. Kunter, E. Quintero, P. Bachant, M. Martin, K. Meyer, A. Miles, Y. Ram, T. Yarkoni, M. L.
Williams, C. Evans, C. Fitzgerald, Brian, C. Fonnesbeck, A. Lee, and A. Qalieh, “Seaborn: v0.8.1,”
Sep. 2017. [Online]. Available: https://doi.org/10.5281/zenodo.883859

[7] K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das, E. P. Duff, G. Flandin, S. S.
Ghosh, T. Glatard, Y. O. Halchenko et al., “The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments,” Scientific Data, vol. 3, p. 160044, Jun. 2016.
[Online]. Available: https://doi.org/10.1038/sdata.2016.44

www.aic-fmi.ethz.ch Open Innovation in Life Sciences — 2019-10-10 ioanas@biomed.ee.ethz.ch

https://github.com/TheChymera/RepSeP
https://projects.gentoo.org/pms/6/pms.html
https://doi.org/10.3897/rio.3.e12095
https://doi.org/10.1109/mcse.2007.55
https://iopscience.iop.org/article/10.1088/1749-4699/8/1/014010
https://www.biorxiv.org/content/10.1101/619650v2.full
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.1038/sdata.2016.44
http://www.aic-fmi.ethz.ch
mailto:my_address@wikibooks.org

