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Abstract—Live TV production, due to its distributed nature,
requires broadcasters to deploy equipments and human resources
to several different places. This increases production costs.
The traditional method through outside broadcasting vans is
expensive. Migrating this type of application onto clouds is a
promising method to reduce the cost. However, the Quality of
Experience (QoE) can hardly be assured because of the cloud
performance uncertainty. Auto-scaling the infrastructure based
on dynamic workloads at runtime is also difficult. The feasibility
of CloudsStorm framework, which is the core component of
SWITCH (Software Workbench for Interactive, Time Critical
and Highly self-adaptive Cloud applications) workbench, han-
dling the lifecycle of the time critical application development
and performance monitoring, infrastructure planning and pro-
visioning, etc., is demonstrated with the aspect of live events
broadcasting. It makes a significant attempt to fill the DevOps gap
when migrating applications from legacy systems onto clouds. A
live streaming application is demonstrated as a use case example.

Index Terms—Cloud, DevOps, broadcasting, live streaming,
time-critical applications.

I. INTRODUCTION

The production of live TV events by its very nature requires
very strict requirements: delivering video and audio with as
little delay as possible while maintaining the quality and
security requirements that the television industry requires to
ensure the maximum quality of experience (QoE) to viewers.
The current method for outside live production is based on
remote production based on mobile production trucks, or as
it is called in the media sector, Outside Broadcasting (OB)
vans [1] [2]. An OB van can cost several million dollars [1],
mainly because of the large amount and diversity of equipment
it contains. In many cases it may be necessary to use several
units, mainly because of the distributed nature of live events,
such as the coverage of an electoral event. This need, as well
as the satellite connection that allows the connection between
the OB van and the television studio, raises the costs and
complexity of television production [3].

Although a modern production studio already extensively
uses the IP protocol, its usage is mostly limited to archival
of multimedia materials so that they are available throughout
the production chain [4]. In the same way, this infrastructure
allows to serve viewers with videos on demand (VOD) services
such as Netflix and Hulu [4]. Despite the recent evolution, this
is only a small part of the workflow in television production.

The evolution of virtualization’s technologies on the cloud
and the efforts developed in order to provide solutions of
virtualized, elastic, controllable cloud environments leverages
the adoption of this technologic stack for time-critical applica-
tions, such as a live TV production. However the usage of such
type of technologies is still in its infancy [5], since there is still
a DevOps (software Development and Operations) gap for the
application to leverage the cloud more easily and efficiently,
especially for handling the operations of auto-scaling, failure
recovery, etc.

In this paper we focus on supporting live streaming ap-
plications using clouds, and highlight challenges during the
DevOps lifecycle, including customizing, provisioning, and
runtime managing virtual infrastructure based on the time
critical constraints of live streaming. The solution through
leveraging CloudsStorm1 framework is carried out. The re-
search is performed in the context of EU H2020 SWITCH
project2. CloudsStorm is adopted as the core engine of the
SWITCH workbench. In the rest of the paper, we firstly
discuss challenges of the live streaming requirements, and then
present the basic architecture of CloudsStorm framework with
some key techniques implemented by the framework. After
that, a use case is used to demonstrate how to leverage it to
develop, deploy and run the application based on the current
implementation of SWITCH [6] workbench.

II. LIVE STREAMING APPLICATIONS AND CHALLENGES

A. Overview of live streaming applications

For the production of live TV events in a distributed way, a
live streaming application in the cloud is presented, supported
by the transmission of video over IP and that allows the
director, through a Web App, to perform actions such as
changing the camera, selecting the number of input streams
and choosing which output feed to obtain.

By using the cloud scalability capabilities, for example, it
is possible to handle the video transcoding in the cloud or
to adapt the number of streams that connect simultaneously to
the application. Performing software-based operations, such as
transcoding or cloud switching, which were once performed
by hardware, enables virtualization to be produced not only for

1https://github.com/zh9314/CloudsStorm
2http://www.switchproject.eu/



Fig. 1: Architecture for live streaming applications

a distributed environment but also for a flexible and adaptive
environment.

The distributed application must be able to receive video
streams and serve (low-resolution) proxy versions for the Web
App, while dealing with the synchronization of streams and
the coherence that is inherent in the output. When served
to the end user (broadcasters) as SaaS, it allows constant
updates transparently to the user, while taking advantage of
the flexibility of the cloud.

The present application is composed of four blocks shown
as Figure 1, each with a distinct and very specific function.
Each block corresponds to a node in the network and, although
they have different functions, the level of abstraction that they
offer to the network and the communication between nodes
are identical among all of them.

B. Components and requirements

According to Figure 1, functions of different components
are as follows.

Each Input Distributor node is responsible for receiving an
input stream, decompressing it, and delivering it, by multicast,
generating the resulting media flows. In this case, the main rel-
evant nodes are the Video Switcher and the Proxy Transcoder.
Each Proxy Transcoder is responsible for transcoding the pair
of media flows it has subscribed to, generating a proxy version
and making it available externally, for example for a Web App.

The Video Switcher must subscribe to the multicast ad-
dresses that the Input Distributors are providing, store in
memory the data it receives, and is served by multi-casting the
Flow that Business Logic determines. It is necessary to save
data in memory due to the delay introduced by the various
network transmissions and the transcoding process performed
by the Proxy Transcoder. Despite this, [7] suggests another
IGMP-based switching technique, which, by itself, does not
guarantee frame accurate switching.

Each Output node receives, by multicast, video flow from
the Video Switcher and delivers them abroad, in a single
stream, with a specific encoding and for a specific platform.
This means that there may be multiple Outputs, including, for

example, an Output that delivers a stream with the same Input
characteristics as to provide cascading scenarios.

For each input stream an Input Distributor is provisioned;
therefore, there is a 1: 1 ratio. This means that since N is the
number of input streams entering the cloud, N input streams
imply N Input Distributors. Due to the demultiplexing that the
Input Distributor performs, N Flows are obtained, since each
input stream gives one flow of video.

The relationship between an Input Distributor and a Proxy
Transcoder is also 1: 1. That is, for N Flows from the Input
Distributors set, there are N subscriptions made by N Proxy
Transcoders, each subscribing to the corresponding Video. In
addition, there is one additional Proxy Transcoder, responsible
for serving the Video Switcher result, so the final Proxy
Transcoders ratio is N + 1.

Let M be the number of Output nodes, which is independent
of N , considering that there are P subscriptions to the
switching result achieved by the Video Switcher. Since an
Output can, for example, be a SD version of a program, the
number of subscriptions P is not necessarily M . Likewise, the
Output distributor can subscribe to Q flows directly from the
Input Distributor, for the purpose of completing a transcoding
string, for example.

Therefore, it should be noted in Table 1 that, for each set
of nodes, the quantity that is supplied and the relationship
between the incoming Flows and the Flows that are originated
are gathered.

C. Time critical challenges

The implementation of this kind of system faces several
challenges, as the system must:

• Collect and process the camera video data in nearly real
time;

• Predict the potential increase of load on the warning
system when public users (customers) increase;

• Operate reliably and robustly throughout its life time;
• Scalable when the deployment of cameras increases.
The development of such applications is usually difficult

and costly, because of the high requirements for the runtime
environment, and in particular the sophisticated optimization
mechanisms needed for developing and integrating the system
components. In the meantime, a cloud environment provides
virtualized, elastic, controllable and quality on demand ser-
vices for supporting systems like time critical applications.
However, the engineering method and software tools for
developing, deploying and executing classical time critical
applications have not yet included the programmability and

TABLE I: Scaling of nodes considering the data flow of the
proposed architecture

Nodes Set Provisioning Input Flows Output Flows
Input Distributors N N N
Proxy Transcoders N + 1 N + 2 N + 1

Video Switcher 1 N 1
Outputs M P +Q M



controllability provided by clouds; and the time critical appli-
cations cannot yet get the full potential benefits which cloud
technologies could provide.

It is still an open question whether live streaming applica-
tions, like the one outlined above, are suited to run in one
or more private or public cloud environments. To deploy and
control such time-critical applications require a workbench of
dedicated tools each having its well-defined task.

The actual nature of individual response-time constraints
varies. For example, often time constraints are imposed on
the acquisition, processing and publishing of real-time obser-
vations, not least in scenarios such as weather prediction or
disaster early warning [8]. The ability to handle such scenarios
is predicated on the time needed for customization of the
runtime environment and the scheduling of workflows [9] [10],
while the steering of applications during complex experiments
is also temporally bounded [11]. Time constraints imposed on
the scheduling and execution of tasks require high performance
or high throughput computing (HPC/HTC) and depend on
the customization, reservation and provisioning of suitable
infrastructure, on the monitoring of runtime application and
infrastructure behaviour, and on runtime controls.

III. THE ARCHITECTURE AND TECHNIQUES OF
CLOUDSSTORM FRAMEWORK

The Dynamic Real-time Infrastructure Planner (DRIP) is
a system developed in the SWITCH project for the plan-
ning, validation and provisioning of the virtual infrastructure
to support migrating applications onto clouds. The entire
SWITCH) [12] workbench also includes other two subsystems:
SIDE (SWITCH Interactive Development Environment). It is
responsible for composing and describing applications; ASAP
(Autonomous System Adaptation Platform). It is a runtime
monitoring and adaptation subsystem [13]. CloudsStorm [14]
framework is the key component of DRIP we developed, sim-
plifying the DevOps lifecycle for applications migration onto
clouds. In this section, we demonstrate how the framework,
CloudsStorm, works and some important techniques of the
framework to mitigate the gap of challenges mentioned above.

A. Architecture Overview

Figure 2 illustrates the architecture overview of
CloudsStorm framework.

In this framework, there are mainly three types of code,
including the application code, infrastructure code and in-
frastructure description. The application code is the original
logic of the application, which is going to run on clouds. The
difference of our framework is that we furthermore allow the
application developer to describe its underlying infrastructure
and operations on the infrastructure. Among these code types,
the infrastructure code is the core of the framework. Among
them, the infrastructure description allows application devel-
opers to describe the infrastructure, which is required by the
application. It also includes the network topology. The infras-
tructure code is leveraged by cloud applications to control the
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Fig. 2: Architecture overview of CloudsStorm framework

whole lifecycle of the infrastructure, including operations of
provisioning, deployment, auto-scaling and destruction.

After above infrastructure definitions, the infrastructure
code can be executed to perform all the operations on the in-
frastructure, such as provisioning, deploying and executing the
application, etc. Meanwhile, the control agent is responsible
for dynamically control at runtime through infrastructure code,
including auto-scaling, failure recovery, etc. Finally, results
generated by the application can be retrieved directly from
the remote federated clouds.

B. Infrastructure management and description syntax

In CloudsStorm framework, all the related syntax is in the
format of YAML (YAML Ain’t a Markup Language). Because
YAML format is human readable, which is easy to understand.
The detailed infrastructure description is well explained in the
online manual3 or from our previous work [15].

Then we briefly introduce our partition-based infrastructure
management mechanism to show the infrastructure description
in our framework. Figure 3 illustrates an example topology.
We classify the application-defined topology description into
three levels. The lowest level is the VM level. It describes
the types of VMs required, mainly referring to the computing
capacities, CPU, memory, etc. The level in the middle is the
sub-topology level. It includes descriptions of several VMs in
one data center and also describes the cloud provider from
which this data center comes from. The top level is the top-
topology level. It includes all the sub-topologies and describes
the network connections among these VMs. Internally, the
network is defined as a private network, being that it is useful
for the application to define the topology as such during the
design phase. These descriptions are based on YAML format.

In this example, there are three sub-topologies from dif-
ferent different clouds and data centers to consist the en-
tire infrastructure topology for hosting the cloud application.
Meanwhile, there are two subnets to describe the network
connection among these computing resources. Instead of using
the public IP address, all the VMs can be configured to be
connected with private IP addresses via CloudsStorm. These

3https://cloudsstorm.github.io
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Fig. 3: An example topology description of partition-based
infrastructure management

addresses are therefore able to be fixed, when the infrastructure
is provisioned every time. Hence, the provisioned infrastruc-
ture according to the description is reproducible.

C. Infrastructure code and scaling operation

The infrastructure code is also organized in the YAML
format. Based on the above application-defined topology
description, application developers can further develop the
infrastructure code to execute and run their applications on
clouds. The infrastructure code is basically a set of operations
defined sequentially in a list. In order to combine these basic
operations to complete a complex task, we define two types
of code to do the operation, ‘SEQ’ and ‘LOOP’. ‘SEQ’ code
only contains one operation. A list of ‘SEQ’ codes is executed
one at a time. ‘LOOP’ code contains several operations and
performs repeatedly for a number of iterations. The detailed
syntax definition can also be found in the online manual
mentioned above.

In order to fill the gap to migrate applications onto clouds,
CloudsStorm framework also provides some high-level con-
trollability, including horizontal scaling, vertical scaling, fail-
ure recovery, etc. Code 1 below demonstrates the example of
horizontal scaling at VM level (there is also corresponding
sub-topology level).

In this example, the scaled part is the VM named as
“Node0” from sub-topology “XS” and VM “Node1” from sub-
topology “YS”. The request element shows that the scaled
VM would be provisioned in the Washington data center from
ExoGENI4 cloud. The name of this scaled sub-topology is
not explicitly specified. It would be named in some rules by
CloudsStorm. Meanwhile, all the scaled sub-topology copies
will keep the same network topology as the original scaling
sub-topologies. The network IP addresses of the scaled VMs
are picked from the private addresses pool of the original
subnet. The symbol in ‘‖’ in “objects” definition means that

4http://www.exogeni.net/

Code 1 Example code for VM level horizontal scaling

- CodeType: “SEQ”
OpCode:

Operation: “hscale”
Options:
- ReqID: “hs req 1”

CP: “ExoGENI”
DC: “GWU (Washington DC, USA)”
OutIn: “Out”

ObjectType: “VM”
Objects: “XS.Node0 ‖ YS.Node1”

- CodeType: “SEQ”
OpCode:

Operation: “hscale”
ObjectType: “REQ”
Objects: “hs req 1”

the scaling operation of these two VMs are performed in
parallel.

Compared to other programming tools, the syntax of
CloudsStorm is much more simple. For example, if adopting
jclouds5 to automate the scaling process, the developer needs
advanced programming skills in Java to implement multi-
thread to make the operation in parallel. And the code is hard
to reconstruct to schedule these operations. On the contrary,
our syntax is human readable and very easy to learn.

IV. CASE STUDY

Figure 4 demonstrates how the live streaming use case is
composed by the SIDE subsystem. Four Input Distributors
are connected to a Video Switcher and their respective Proxy
Transcoders. From the Video Switcher, there are two out-
puts, one to the broadcast and another to the Output Proxy
Transcoder. All the Proxy Transcoders are connected to a
frontend, in order that the operator may watch the feeds. There
are also REST connections between the frontend component
and the Proxy Transcoders to the Video Switcher component,

5https://jclouds.apache.org/

Fig. 4: The workflow of the live streaming application com-
ponents



Fig. 5: Sequence diagram for deploying the live streaming use
case

in order to handle the operation. All these components are
managed as Dockers6.

The communication between the user and DRIP is made
within SIDE. SIDE maps all the information gathered and
compiles a description file, which provides an overview of the
distributed components, their interdependencies and associated
QoE requirements. Once completed, the description file is sent
to DRIP via a POST request. Then ‘compress-relax’ Multi
dEadline workflow Planning Algorithm (MEPA) method is
leveraged to assign each task in the workflow to the best
performing VM possible such that multiple deadlines are met.
Wang [16] demonstrated the performance of both approaches
for task graphs generated by the GGen package [17] applying
the ‘fan-in/fan-out’ methods, showing that the MEPA method
can successfully cope with these kinds of problems and allows
for an easy adaptation in case more constraints play a role.
Therefore, the user only need to do some drag and drop con-
figurations, and later fill the remaining data in the components.
Because of our CloudsStorm framework, the developer does
not need to know any special language or create a document
consisting of thousands of lines of code, in order to cooperate
with the cloud infrastructure.

The plan given by DRIP is according to collected perfor-
mance information. The systematic collection and sharing of
such information will allow the DRIP to select the most suit-

6https://www.docker.com/

Code 2 A basic top-topology description for the live streaming
application

topologies:
- topology: MOG

cloudProvider: EC2
domain: California
status: fresh

subnets:
- name: s1

subnet: 192.168.10.0
netmask: 24
members:
- vmName: MOG.nodeA

address: 192.168.10.10
- vmName: MOG.nodeB

address: 192.168.10.11

Code 3 A basic sub-topology description for the live streaming
application

VMs:
- name: nodeA

nodeType: t2.medium
OSType: Ubuntu 16.04
script: applicationInstall.sh
role: master
publicAddress: null

- name: nodeB
nodeType: t2.medium
OSType: Ubuntu 16.04
script: applicationInstall.sh
role: slave
publicAddress: null

able resources for mission-critical applications. Elzinga [18]
showed the functionality of this collector.

When DRIP receives the description file of components,
it is saved under the user’s account with a unique identifier.
The CloudsStorm then is invoked to materialize the virtual
infrastructure along with the necessary cloud credentials stored
in the manager to request resources from one or more cloud
providers. It is able to provision a networked infrastructure,
recover from sudden failures quickly, and scale across data
centers or clouds automatically [19]. This framework is able
to set up a networked virtual Cloud across even public clouds,
which do not explicitly support network topology, like EC27 or
EGI8. Finally, the deployment agent of CloudsStorm uses the
description to arrange application components in the virtual
infrastructure. Figure 5 illustrates the process to migrate this
use case form MOG company.

Code 2 and 3 demonstrate a basic topology description
leveraged for the underlying virtual infrastructure to run the
live streaming application. Code 2 is a top-topology level
description. It shows that there is only one sub-topology,
named as ‘MOG’, for this application. It is planned from
EC2 cloud and the data center at California. Meanwhile, the
network connection is also defined in this file, where the

7https://aws.amazon.com/ec2/
8https://www.egi.eu/federation/egi-federated-cloud/

Fig. 6: Application level metrics sent by output transcoders



two VMs are defined in a private subnet. Code 3 is the
detailed sub-topology description of ‘MOG’. It contains the
required two VMs, including OS type, computing capacity,
etc. The “script” refers to the script file specifying how the
computing environment and the application would be installed.
The “publicAddress” field equals “null” in this design phase,
because the VM has not actually been provisioned. In this case,
these two VMs are going to be managed by Kubernetes9 as a
Docker cluster. Afterwards, the application, which consists of
Dockers, is deployed.

Finally, CloudsStorm provides a deadline-aware deployment
scheduling for time-critical applications in clouds comes into
action, which accounts for deadlines on the actual deployment
time of application components [20]. This is of special impor-
tance for horizontal scaling afterwards.

After those steps, the application can be in operation on
clouds for live steaming. The application level metrics are
retrieved from the final output transcoders as shown in Figure
6. It shows that the QoE requirement of this application is
satisfied. This information is also useful to decide whether
to automatically adapt the infrastructure to meet the QoE
requirements, when the performance is low.

V. CONCLUSION

In this paper, we discussed the DevOps challenges for
migrating the live streaming application from a legacy physical
system to clouds, and present a framework called CloudsStorm
to automate the procedure for planning, provisioning and
deploying live steaming applications based on their time
constraints. In the paper, the time critical constraints are not
only referring to the as fast as possible but also to the deadlines
that application has to meet.

The use of cloud for services that are typically performed
by specialized physical hardware, such as video switching
or transcoding, can be virtualized for on-demand pay-per-
use services. But the advantages of the cloud are not just
related to the business model. The ability to easily build
an infrastructure anywhere in the world without the need to
spend days configuring the entire infrastructure is enough to
be attractive in and of itself.

The CloudsStorm, embedded in SWITCH workbench, sup-
ports the building of a distributed application in the cloud for
production of events using remote production studios. Not only
it is the feasibility of the architecture demonstrated, but also
the feasibility of the various possible expansion possibilities,
making it the beginning of a possible solution to be worked
on and improved in the future.
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