
Trustworthy Cloud Service Level Agreement
Enforcement with Blockchain based Smart Contract

Huan Zhou∗‡, Cees de Laat∗ and Zhiming Zhao∗
∗Informatics Institute, University of Amsterdam, Amsterdam, Netherlands

‡School of Computer Science, National University of Defense Technology, Changsha, China
Email: {h.zhou, delaat, z.zhao}@uva.nl

Abstract—Cloud Service Level Agreement (SLA) is challenge-
able due to lacking a trustworthy platform. This paper presents
a witness model to credibly enforce the cloud service level
agreement. Through introducing the witness role and using
the blockchain based smart contract, we solve the trust issues
about who can detect the service violation, how the violation is
confirmed and the compensation is guaranteed. In this model,
a verifiable consensus sortition algorithm proposed by us is
firstly leveraged to select independent witnesses to form a witness
committee. They are responsible for a specific service level agree-
ment and get paid by monitoring and detecting service violation.
Through carefully designing the witness’ payoff function in the
agreement, we further leverage game theory to analyze and
prove that it is not the witness itself is trustworthy. Instead,
the witness has to tell the truth because of its greedy nature,
which is the desire to maximize its own revenue. As long as
the service violation is confirmed by the witness committee, the
compensation is automatically transferred to the customer by
the smart contract. Finally, we implement a proof-of-concept
prototype with the smart contract of Ethereum blockchain. It
demonstrates the feasibility of our model.

Index Terms—service level agreement, cloud computing, smart
contract, blockchain.

I. INTRODUCTION

Traditionally, SLA (Service Level Agreement) is a business
concept. It defines contractual financial agreements between
roles who engage in the business activity [1]. In the context
of cloud computing, it is an agreement between the cloud
customer and provider on the quality of the cloud service.
Even planning algorithms, like [2][3], try to make the in-
frastructure satisfy QoS (Quality of Service) requirements of
the application, the possibility of violation still exists due
to the cloud uncertainty. According to SLA, if the service
quality is not met, the cloud provider must compensate the
customer’s lost. Since a lot of applications tend to run on
clouds [4], it is therefore become an important way to ensure
their QoS through enforcing SLA, especially when migrating
time-critical applications [5][6][7]. Though there exist various
of frameworks for service monitoring to detect the service
violation [8], the agreement is still hard to be enforced in
practice. Because following gaps hinder the traditional SLA
to be really adopted and feasible in industry: i) Manual
verification. It lacks an automatic mechanism to enforce the
agreement, especially for the compensation; ii) Rights fairness.
The provider has many more rights, such as the right to verify
the violation and decides whether to compensate the customer.

iii) Proof of violation. It is hard for the customer to prove and
convince the provider that the violation has really happened.

In order to address this issue, there are plenty of research
on the cloud SLA. However, most of them concentrate on
the syntax definition of the SLA terms and parameters [1],
such as SLA*, SLAC, CSLA, etc. Moreover, a systematic
survey [1] on cloud SLA has pointed out, that papers they
found addressing the issues about SLA violation management
and reporting are only 3% and 1% respectively. It demonstrates
that detecting the SLA violation and automating the compen-
sation are still challengeable based on traditional technologies.

Smart contract is proposed to digitally facilitates, verifies
and enforces a contract through a computer protocol [9]. Some
explorations such as [10] combine this concept with cloud
SLA negotiation, focusing on the semantic expression of smart
contract to automate the negotiation phase. However, most of
them lack of a trustworthy underlying platform to execute the
smart contract. Blockchain technology brings in a new hint
for possible solution to mitigate this gap. Especially the smart
contract in Ethereum [11] makes it possible automate the SLA
on the blockchain. For instance, [12] designs a set of web
APIs based on Ethereum to automate the SLA enforcement.
They introduce a role, “Service Performance Monitor”, who
detects the violation and sends the notification. However, they
have not discussed the trust issue for this role. Actually, this
is also a challenge for blockchain itself. That is how we
can achieve consensus on an event happening outside the
blockchain.

In this paper, a witness model is proposed to tackle the
challenge of detecting SLA violations in a trustworthy way. A
new role termed as witness is added in the traditional cloud
service delivering scenario to perform as the performance
monitor. The witness is designed as an anonymous participant
in the system, who desires to gain revenue through offering the
violation reporting service. The payoff function for different
actions in our agreement model is carefully designed that the
witness would have to always behave honestly in order to gain
the maximum profit for himself, which can be proved by game
theory. In addition, a verifiable consensus sortition algorithm
is developed in our witness model to select a certain number
of witnesses in order to form a committee. The committee
members are randomly selected and the randomness can not
be dominated by any participant. This is very important to
ensure selected witnesses are independent. Last but not least,

a prototype system1 using smart contracts of the Ethereum
blockchain is implemented to automate the SLA lifecycle
and empowers the fairness between roles, especially for the
customer.

II. SLA ENFORCEMENT SYSTEM AND WITNESS MODEL

In this section, we first introduce the related roles in our
witness model design, especially the witness role. Then we
illustrate our system architecture for SLA enforcement with
smart contracts on blockchain. At last, we describe our witness
model design.

A. Roles and Problem Assumptions

In the traditional cloud SLA lifecycle, there are basically
two roles. One is the cloud provider, P , which offers cloud
service. The other is the cloud customer, C, which consumes
the cloud service and pay the service fee. To demonstrate the
key contribution of our work, we take a basic example to
formulate our problem as follows.

A cloud provider, p, is an IaaS (Infrastructure-as-a-Service)
provider. It provisions VMs (Virtual Machine) on demand
with public addresses for its customers to use. For instance,
according to the request of a customer c, provider p provisions
a VM with a public IP address, IPpub. During the service
time, Tservice, the customer, only the customer c is able to
SSH and login to the VM through the corresponding address
IPpub. In this case, the SLA can be that the provider p claims
that during the service time the provisioned VM will always
be accessible. If this is true, the customer c must pay the
service fee, Fservice, to the provider p after the ending of the
service. Otherwise, the customer c can acquire a compensation
fee, Fcompensation. That is the customer c only needs to pay
Fservice−Fcompensation to the provider p in the end, where we
assume that Fservice > Fcompensation. For the latter case, if
it happens, we define it as a SLA violation event. In addition,
it is worth to mention that we should exclude the case that
the inaccessibility is caused by the customer’s own network
problem, to be a violation event.

With only these two roles in the agreement, it is hard to
ensure that the provider can get paid or the customer can
get compensation paid back, if the service fee is prepaid.
Hence, we leverage blockchain to play as the trusted party
to afford a platform for these two roles and enforce these
monetary transmissions. But it is still especially difficult to
convince both roles whether the violation happens and whether
it is caused by the customer’s own network problem. We
therefore bring in another new role in the traditional SLA
lifecycle, named as witness role, W . They are also the normal
participants in the blockchain and volunteers to take part in
our SLA system to gain their own revenue through offering
monitoring service. In order to solve the trust issue, a set of N
witnesses, {w1, w2, ..., wN}, is selected to form a committee
in a specific SLA lifecycle. They together report the violation
event and may obtain witness fee, Fwitness, as rewards from

1https://github.com/zh9314/SmartContract4SLA

both the provider and the customer. Moreover, the wallet
address of a specific role on the blockchain is denoted by
function, address(). For instance, address(wk) is the wallet
address of witness wk.

In this paper, we make the basic assumption on the witness
role that it is always selfish and aims at maximizing its own
revenue.

B. System Architecture and Model Design

Figure 1 illustrates the system architecture we design
for cloud SLA enforcement. First of all, any user of the
blockchain, who has a wallet address, can register in the
system to be a member of witnesses. They form a witness
pool and wait to be selected for some specific contract. The
incentive for the witness to participant in this system is to
obtain revenue. And the more witness participants in the
system, the more reliable and trustworthy the system will be.

The entire SLA lifecycle then becomes as follows. Prior
to setting up SLA, the customer c should negotiate with the
provider p about the detailed SLA terms, including Tservice,
Fservice, Fcompensation, etc. Thereinto, one of the most impor-
tant terms is to determine N , which is the number of witnesses
would be hired for enforcing this SLA. The more witnesses
involved in a SLA, the more trustworthy the violation detection
results are. On the other hand, however, the more witness fee
would be paid and both the customer and the provider need
to afford this fee equally. As long as these terms are agreed
by both sides, a set of N witness members can be selected
to form a witness committee through the sortition algorithm
in Section III-A. We design the sortition to be random and
being able to convince both, c and p, that most ones in the
witness committee are independent and would not belong to

Verifiable Consensus
Random Sortition

Setup SLA with
smart contract

Report
violation

Enforce the
corresponding fees

…

Cloud Customer

Cloud Provider

Witnesses

Witness Committee

Smart Contract
on Blockchain Cloud Service

2

3

3 Monitor

45

Compensation Fee

Service
Fee

Witness
Fee

1

3 Provision

Negotiate

Fig. 1: System Architecture for Cloud SLA Enforcement

the adverse role. After dynamically building up the witness
committee, a smart contract can be automatically generated
and deployed on the blockchain. Hence, the provider and
customer are able to setup SLA through the deployed smart
contract. In the mean time, the provider provision its cloud
service for the customer to use, and the witnesses from the
committee also start to monitor the service. In the case of our
problem assumption in Section II-A, the provider p provisions
a VM on demand and notify the public address IPpub to all
the committee members and the customer c. Therefore, the
customer is able to use the VM and each witness starts to
“ping” the address IPpub constantly. If the violation happens
during the service time, i.e. the address IPpub is not accessible,
the witness can report this event independently.

Since the first violation report, the smart contract would start
counting a time window, Treport. Within this time window, the
smart contract accept reports from other witnesses. When the
time window Treport is over, the violation is automatically
confirmed, if there are no less than M out of N reports
from the witness committee received by the smart contract.
M is also negotiated by p and c. It is then defined in the
SLA smart contract. Of course, the bigger the M is, the more
trustworthy the violation is. Furthermore, we design that the
witness needs to report the violation along with some fee
to the SLA smart contract. This is to endorse its report. In
some sense, these N independent witnesses constitute a n-
player game, in which each witness would like to maximize
its revenue. We specially design the payoff function, shown
in Section III-B, and leverage the Nash Equilibrium of Game
Theory to prove that the witness have to be a honest player in
this game. That is they have to report the violation according
to the real event.

Finally, the SLA ends at two cases. One case is the service
time Tservice is over and there is no violation. The other
case is that the SLA is violated. According to these different
cases, the three roles are able to withdraw corresponding fees
from the SLA smart contract. This is explained in detail in
Section III-B. All the dash lines in Figure 1 mean it may hap-
pen according to the actual event. Anyhow, the provider and
witnesses from the committee are able to get corresponding
fees.

III. KEY TECHNIQUES

In this section, we describe key techniques adopted in our
SLA system in detail. They ensure the automatic detection of
the SLA violation can convince both sides, the provider and
the customer. First, the verifiable consensus sortition algorithm
is leveraged to guarantee that most of the witnesses selected
into the committee are random and independent. It is also
important to make both sides achieve consensus that most
of the selected witnesses would not delegate the opponent’s
benefit. Based on this, we design the payoff function for
the witness model in Section III-B. And also through the
Nash Equilibrium theory, we prove that the “player” from the
witness committee have to behave honestly and tell the truth to
maximize its revenue. In addition, the history of all the actions

on the blockchain is immutable. We therefore introduce an
auditing mechanism to detect malicious witness.

A. Verifiable Consensus Sortition

In Section II-A, we have explained that the witness role is
also an independent normal blockchain participant. It registers
itself with its wallet address in our SLA system to be a witness.
Its incentive is to gain the witness fee. In order to be a member
of a specific SLA witness committee, the registered witness in
the system cannot actively choose to participant certain SLA.
It can only keep online and wait to be selected randomly.
Moreover, neither the provider nor the customer should have
the ability to dominate the selection result. Otherwise, most
of the selected witnesses cannot be guaranteed not to be in
collusion with each other or on behalf of either side in a
specific SLA enforcement lifecycle. In addition, the indepen-
dency among the selected witnesses is also the fundamental
requirement to analyze their behavior through game theory
in Section III-B. Therefore, a verifiable consensus sortition
algorithm is designed as shown in Algorithm 1.

According to the blockchain technique, the participant’s
wallet address is a fixed length of bits, denoted as addrlen. For
instance, the Ethereum wallet address is the last 160 bits of the
account’s public key. Therefore, the address can be interpreted
as an integer. We represent the registered witness as an integer
set RW . The addresses in the set are listed in ascending order.
RW is expressed as Equation 1 and 2.

Algorithm 1 Verifiable Consensus Sortition

Input:
Registered witness set, RW ;
Required number, N , of members in witness committee;
Random number, randp, given by the provider p;
Random number, randc, given by the customer c.

Output:
Selected witness set, SW , to form a committee.

1: randhash ← Hash(randp + randc)
2: j ← 0
3: i← 1
4: SW ← ∅
5: for all wi such that wi ∈ RW do
6: if addr(wi) > randhash && wi is online then
7: add wi ⇒ SW
8: j ++
9: end if

10: if j == N then
11: break;
12: end if
13: i++
14: i← (i mod (‖RW‖ + 1)) + 1
15: end for
16: return SW

RW = {addr(wk)|addr(wk) ∈ (0, 2addrlen − 1)} (1)
∀wi, wj ∈ RW, i < j, addr(wi) < addr(wj) (2)

To select N witnesses from RW , the provider and the
customer must first provide two random numbers, randp
and randc respectively. Then hash function, Hash(randp +
randc), is adopted to generate a hash value, randhash, with
addrlen bits. Finally, N online witnesses are selected, whose
wallet addresses are bigger and closest to the value randhash.
As this value is generated based on the two random values,
the set of selected witnesses cannot be predicted in advance.
In addition, the result is verifiable by both the provider and the
customer. They hence can be convinced that the sortition result
is not dominated by the opponent or any other third party.
Because they both provide part of the randomness. Though
the provider or the customer may exploit several addresses to
register as witnesses in the system to delegate its own profit,
it is still a small chance that most of its fraudulent witnesses
are selected in a specific SLA at the same time, if there are
many registered witnesses in RW . There is also an order
problem, which is who gives the random number first. The
one who gives its random number latter has a small advantage
to determine the final selection results. In order to solve this
problem, we adopt the commitment scheme [13] mechanism
combined with the blockchain based smart contract to make
both roles reveal their random values at the same time. Mean-
while, considering the registered witnesses number should be
much larger than the witness number, which is ‖RW‖ � N ,
Algorithm 1 can always return the result, SW .

B. Witness Game and Payoff Function

The N witnesses committee for enforcing a specific SLA
formulate a witness game. In this game, every witness is equal.
Each of them has two actions: report the violation to the smart
contract during the service time or keep silence. Here, an
endorsement fee is required from the witness when it wants
to report the violation. We then design the payoff function as
follows. If the violation is finally confirmed, i.e., most of the
witnesses report, the ones who have reported gain 10 shares
of profit. In this case, the ones who have not reported gain
nothing; If the violation is not confirmed, the ones who have
reported would not retrieve back their endorsement fee, which
is -1 share of profit, as penalty. The ones who have not reported
earn 1 share of profit.

The confirmation of the violation is also mentioned in
Section II-B. Only when more than M witnesses from the
N -witness committee report the service violation event within
a time window, the violation is then automatically confirmed
by the smart contract. At the same time, the compensation
fee for the customer and witness fee are also automatically
assigned by the smart contract according to the payoff function
mentioned above. The concrete M and N values can also be
negotiated to define by the provider and the customer. It is a
trade off between the witness hiring expenses and the extent
of trustworthy. But in general, the constraints on these values

TABLE I: Payoff Functions of a 3-witness Game

w1

w3

σ
(r)
3 : Report σ

(s)
3 : Silence

w2 w2

σ
(r)
2 : Report σ

(s)
2 : Silence σ

(r)
2 : Report σ

(s)
2 : Silence

σ
(r)
1 : Report (10, 10, 10) (10, 0, 10) (10, 10, 0) (-1, 1, 1)

σ
(s)
1 : Silence (0, 10, 10) (1, 1, -1) (1, -1, 1) (1, 1, 1)

should be N > 2 and M < N , in order to achieve the violation
confirmation reliably and fairly.

Based on game theory [14], we can prove the Nash equi-
librium points in our N -witness game under the given payoff
function design. Then, the behavior of the witness is analyzed
in order to pursue the Nash equilibrium. However, due to
the space, the complete prove is not presented in this paper.
Instead, we take the example of the 3-witness game as an
example to analyze. In this case, M = 2 and N = 3. It means
that as long as two of three witnesses report, the violation
event is confirmed by the smart contract. Therefore, Table I
shows the payoff functions of a 3-witness game as an example.
Here, wk represents the kth witness. The vector of the payoff
function value is also listed in the witness order. According
to this table, it is obvious that the Nash equilibrium points in
this game are (10, 10, 10) and (1, 1, 1) respectively. Actually,
in a N -witness game, the Nash equilibrium points are still
the strategy profiles, where all the witnesses report or keep
silence. Based on the property of Nash equilibrium, none of
the witness has the incentive to leave the point, as long as it can
be achieved. However, neither of these two actions dominates
the other action. It means none of the witness can always
choose one action to consistently gain the maximum revenue.

Based on above analysis, for a rational and selfish witness,
who wants to maximize its revenue through offering services,
would have to behave as follows in this game. If there is a
violation happening, the witness knows that most of other
witnesses are more likely to report this event to gain more
revenue. Hence, the higher revenue pushes the witness to
report this event. On the contrary, if there is no violation, the
witness knows that most of other witnesses are more likely
to keep silence. Although the witness wants to achieve the
highest revenue, it has to take a great risk to pay a penalty
for its fraudulent behavior. From the global view, when there
is no violation, all the witnesses prefer to keep silence in
order to stay at the Nash equilibrium point, (1, 1, 1). Then the
violation acts as a signal to push them achieving another Nash
equilibrium point, (10, 10, 10), with much higher revenue. At
the same time, they tell the truth about the service violation.
Therefore, it is not the witness wants to tell the truth. Instead,
it has to be honest, in order to maximize its revenue.

For unrational and malicious witness, we introduce an
extra auditing mechanism to kick them off from the witness
pool. Because all behaviors on the blockchain are public and
immutable. It is possible to audit every witness’ behavior
history. When some possible malicious behavior is performed
by the witness, its reputation value may decrease. As long
as its reputation value is not enough, the witness will be

blocked by the sortition algorithm to be selected into a witness
committee. Then, the witness loses the chance to gain revenue
in the system. Furthermore, we can also category some types
of possible dishonest witnesses according to certain kind of
behavior pattern.

IV. PROTOTYPE IMPLEMENTATION

According to the witness model and the payoff function
design, we implement a prototype system based on the smart
contracts of Ethereum. The language, Solidity2, of Ethereum
is leveraged to program smart contracts.

A. Interactions among Roles and Smart Contract

The sequential diagram in Figure 2 shows how different
roles interact with the smart contract especially involving the
witness in our model. After witnesses being selected, the
entire lifecycle of a specific SLA begins. The provider p
provisions the cloud service and deploy the smart contract
on the blockchain. In order to setup a SLA, p must prepay
the corresponding fee PFprepaid to the smart contract first.
The amount of PFprepaid is determined by the half of the
maximum witness fee. The customer c is then notified about
the service and the content of the smart contract. As all the
smart contract on the blockchain is public, the customer can
verify the contract and the service status to decide whether
to accept the SLA in a certain time window. In order to
accept the SLA, the customer also needs to transfer the
prepaid fee, CFprepaid. It includes the service fee, Fservice
and the other half of the maximum witness fee. As we
assume Fservice > Fcompensation, the compensation fee would
be directly deducted from this part of prepaid fee, if the
violation happens. Afterwards, every witness in the committee
is notified to start monitoring the service continuously.

During the service time, the witness can decide whether
to report the event to the smart contract, if there is a service
violation, for instance, the VM is not accessible. We design the
rule that the witness wk also needs to transfer a small amount
of fee, WFprepaid, to endorse its report at the same time. The
incentive persuading wk to report the event is that it would
gain relative more revenue as witness fee, if the violation event
is finally confirmed by the smart contract. On the contrary,
if the violation is not confirmed, wk would not get back
the prepaid endorsement fee, WFprepaid, as a penalty. This
prevents wk reporting fake violations just for maximizing its
revenue. In addition, the final violation is confirmed according
to Section III-B.

B. SLA State Transition

Figure 3 shows the state transition of SLA lifecycle in our
smart contract implementation. The reason of designing these
states is to restrict the participant’s behavior. That is only the
allowed roles can interact with the smart contract in a specific
state. This is important for finally assigning proper amounts of
revenue to corresponding roles in the end of SLA. Meanwhile,
we adopt the event mechanism of smart contract to emit an

2http://solidity.readthedocs.io

Cloud
Provider

Witness
wk

Cloud
Service

Cloud
Customer

Witness Committee (N)

Smart
Contract

Provision
Setup SLA & Pay PFprepaid

Accept SLA & Pay CFprepaid

Notify

Notify

Constantly
Monitoring If violation happens,

Report & Pay WFprepaid

M out of N reports
confirm the violation

SLA
Ends

Withdraw Fwitness

If violation happens,
Withdraw Fcompensation

Withdraw Fservice

Fig. 2: Sequential Diagram of Different Roles in Witness
Model

event, as long as the SLA state is modified. This event can be
leveraged to notify other roles to further invoke its interface
and perform corresponding reactions. Because Ethereum also
provides the API for off-chain applications to capture these
events.

There are five states shown in Figure 3, which are “Fresh”,
“Init”, “Active”, “Violated” and “Completed”. The arrows in
this figure explain how the states transit among each other.
The text on the arrow refers to the interface defined in the
smart contract, which can be invoked to achieve the state
transition. The format of the text is ‘role :: interface name’.
It means that only the role can invoke the interface, named as
interface name, to make the state transited. The dash arrows
demonstrate the state transition path when violation happens.
The three squares in the figure represent the corresponding
roles in this smart contract. In the end of SLA, they can
withdraw the revenue respectively. The text in the box refers
to the corresponding roles, who can withdraw revenue from
the smart contract under different circumstances. The dash line
here also refers to the action adopted under the situation of
violation.

The contract is generated in the state of “Fresh”. In this
state, the provider is able to customize the SLA parameters

Active

Fresh

Init

Completed

Customer

Provider

Witness

C :: acceptSLA

P :: providerEndNSLAandWithdraw

C :: customerEndVSLAandWithdraw

Violated

W :: witnessWithdraw

Fig. 3: State Transition Diagram of SLA Lifecycle in the
Prototype Smart Contract

according to the negotiated results with the customer. Fur-
thermore, the service detail can also be published onto the
contract through “publishService”. In our case, the detail is the
public IP of the VM. All others are therefore being notified.
However, this SLA proceeds only when the number of the
members in the witness committee is satisfied. Otherwise,
the provider is unable to leverage the interface, “setupSLA”,
to transit into “Init” state. According to the witness model
design in Section II-B, the provider needs to prepay some
fee, PFprepaid, to the smart contract for hiring witnesses. The
concrete amount of fee is calculated by the smart contract
according to the scale of committee member and a basic hiring
fee. In addition, this amount is one of the constraints to invoke
the interface. It ensures that only that amount of prepaid fee is
transferred into the smart contract. The customer then decides
whether to accept. If it accepts the SLA, it also needs to prepay
the fee, CFprepaid, including the service fee and its part of
hiring fee for witnesses. If not, the provider can withdraw back
its money and “cancleSLA”. When the service is completed,
all corresponding roles can retrieve its revenue through a set of
withdraw interfaces. After all the money is withdrawn from
the contract, the provider can leverage “resetSLA” to rotate
back to the previous state. This is used for continuous service
delivery instead of a long service duration to stuck witnesses.

It is also worth to mention that the smart contract on
blockchain cannot run itself. The state transition must be
triggered by some interfaces and it takes some cost to execute.
Therefore, we design the interface for the role, who is the
greatest beneficiary in some cases, to modify the state. Because
they have the motivation to perform the state transition. For ex-
ample, when the service duration ends normally, the provider
is the greatest beneficiary to gain the entire service fee. It
must actively leverage the interface, “providerEndNSLAand-
Withdraw”, to end the normal SLA and withdraw its own
revenue. Meanwhile, it divides the prepaid money as the
payoff function design in Section III-B to different witnesses.
Afterwards, other roles are able to withdraw their parts of
revenue. Analogously, when there is a violation, the customer
is the most motivated one to gain the compensation fee.
It can leverage, “customerEndVSLAandWithdraw”, to end
the violated SLA and transit the state from “Violated” to
“Completed”.

V. CONCLUSION

We propose a witness model for cloud SLA enforcement
and specially design the payoff functions for each witness. We
leverage the game theory to analysis that the witness has to
offer honest monitoring service in order to maximize its own
revenue. Finally, a proof-of-concept prototype is implemented
with the smart contract of Ethereum and is able to demonstrate
the feasibility of our model. Via this way, the trust problem
is transferred into economic issues. It is not the witness itself
would like to be honest, but the economic principles force
them to tell the truth. We also believe our witness model
based on blockchain can be applied in other scenarios, where
originally only two roles are involved in a contract. For the

future work, we are going to implement the whole system
and combined with our cloud Application DevOps framework,
CloudsStorm3[15], to construct the witness ecosystem. The
vision is to insure the cloud performance for applications
through automated and trustworthy SLA.

ACKNOWLEDGMENT

This research is funded by the EU Horizon 2020 re-
search and innovation program under grant agreements
643963 (SWITCH project), 654182 (ENVRIPLUS project)
and 676247 (VRE4EIC project).

REFERENCES

[1] F. Faniyi and R. Bahsoon, “A systematic review of service level
management in the cloud,” ACM Computing Surveys (CSUR), vol. 48,
no. 3, p. 43, 2016.

[2] J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou, J. Pang, C. de Laat, and
Z. Zhao, “Planning virtual infrastructures for time critical applications
with multiple deadline constraints,” Future Generation Computer Sys-
tems, vol. 75, pp. 365–375, 2017.

[3] X. Wang, C. S. Yeo, R. Buyya, and J. Su, “Optimizing the makespan and
reliability for workflow applications with reputation and a look-ahead
genetic algorithm,” Future Generation Computer Systems, vol. 27, no. 8,
pp. 1124–1134, 2011.

[4] K. Jeferry, G. Kousiouris, D. Kyriazis, J. Altmann, A. Ciuffoletti,
I. Maglogiannis, P. Nesi, B. Suzic, and Z. Zhao, “Challenges emerging
from future cloud application scenarios,” Procedia Computer Science,
vol. 68, pp. 227 – 237, 2015, 1st International Conference on Cloud
Forward: From Distributed to Complete Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915030835

[5] Z. Zhao, D. van Albada, and P. Sloot, “Agent-based flow control for hla
components,” SIMULATION, vol. 81, no. 7, pp. 487–501, 2005.

[6] Z. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, F. J.
Hidalgo, G. Suciu, A. Ulisses, P. Ferreira, and C. d. Laat, “A software
workbench for interactive, time critical and highly self-adaptive cloud
applications (switch),” in 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, May 2015, pp. 1181–1184.

[7] Y. Hu, H. Zhou, C. de Laat, and Z. Zhao, “Ecsched: Efficient container
scheduling on heterogeneous clusters,” in Euro-Par 2018: Parallel
Processing, M. Aldinucci, L. Padovani, and M. Torquati, Eds. Cham:
Springer International Publishing, 2018, pp. 365–377.

[8] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski,
“Monitoring self-adaptive applications within edge computing
frameworks: A state-of-the-art review,” Journal of Systems and
Software, vol. 136, pp. 19 – 38, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016412121730256X

[9] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates:
foundations, design landscape and research directions,” arXiv preprint
arXiv:1608.00771, 2016.

[10] V. Scoca, R. B. Uriarte, and R. De Nicola, “Smart contract negotiation
in cloud computing,” in Cloud Computing (CLOUD), 2017 IEEE 10th
International Conference on. IEEE, 2017, pp. 592–599.

[11] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[12] H. Nakashima and M. Aoyama, “An automation method of sla contract
of web apis and its platform based on blockchain concept,” in Cognitive
Computing (ICCC), 2017 IEEE International Conference on. IEEE,
2017, pp. 32–39.

[13] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Pro-
ceedings of the 6th ACM conference on Computer and communications
security. ACM, 1999, pp. 28–36.

[14] K. Binmore, Game theory: a very short introduction. Oxford University
Press, 2007, vol. 173.

[15] H. Zhou, Y. Hu, J. Su, C. de Laat, and Z. Zhao, “Cloudsstorm: An
application-driven framework to enhance the programmability and con-
trollability of cloud virtual infrastructures,” in International Conference
on Cloud Computing. Springer, 2018, pp. 265–280.

3https://cloudsstorm.github.io/

