
Noname manuscript No.
(will be inserted by the editor)

Quality Attributes Use in Architecture Design
Decision Methods: Research and Practice

Ioanna Lytra · Carlos Carrillo · Rafael
Capilla · Uwe Zdun

Received: date / Accepted: date

Abstract Over the past ten years software architecture has been perceived
as the result of a set of architecture design decisions rather than the elements
that form part of the software design. As quality attributes are considered
major drivers of the design process to achieve high quality systems, the design
decisions that drive the selection and use of specific quality properties and vice
versa are closely related. Consequently, quality attributes must play a role for
decision making processes and be documented alongside with the decisions
captured. Consequently, we conduct a systematic literature review to study
the importance and impact of the relationships between quality attributes
and architecture design decisions and to what extent existing architecture
knowledge management methods and tools deal with the decisions that affect
the quality of a system. We also report on the challenges and future research
paths for architectural knowledge management methods and tools. Our results
reveal important explicit relationships between both software artifacts, the role
of uncertainty in decision making and empirical studies reporting the use of
quality attributes in architecture knowledge management activities.

Ioanna Lytra
Software Architecture Group, University of Vienna, Austria
E-mail: ioanna.lytra@univie.ac.at

Carlos Carrillo
Department of Telematic and Electronic, Polytechnic University of Madrid, Spain
E-mail: carlos.carrillo@upm.es

Rafael Capilla
Department of Computer Science, Rey Juan Carlos University, Spain
E-mail: rafael.capilla@urjc.es

Uwe Zdun
Software Architecture Group, University of Vienna, Austria
E-mail: uwe.zdun@univie.ac.at

2 Ioanna Lytra et al.

Keywords Quality Attributes · Architecture Design Decisions · Architectural
Knowledge · Systematic Literature Review

1 Introduction

Since the early 2000s, the software architecture community perceives design
decisions as first-class artifacts that should be captured alongside the standard
software architecture documentation [23]. Today, many of the existing decision
making approaches demand the capture and documentation of multiple alter-
natives that have to be evaluated during the development and evolution of the
system. However, as making decisions often implies that competing require-
ments must be satisfied for different stakeholders’ concerns, the evaluation of
quality attributes (QAs) [8] in the architecture may trigger additional deci-
sions that must also be evaluated. For many years, QAs [9] have been used
in the architecture to describe the non-functional properties of systems and
are primarily addressed in the early phases of the design activity. Although
software architects make design decisions to depict the major functional parts
in the design, we need to understand the impact of quality attributes in the
architecture as well as important decision drivers [30, 54, 55].

Some authors [21, 47, 51] also highlight the role of design patterns, as
a kind of architectural knowledge or proven design decisions, to address the
quality requirements of a system. Although some of the existing architecture
decision methods consider the role of the QAs implicitly or explicitly, satisfying
the various trade-offs of QAs during any decision making process as well as
the interplay of decisions and quality properties still remains a complex and
challenging task.

Existing architecture design decision methods and tools have already been
analyzed in other works but with a different focus and aim. For instance,
Capilla et al. [13] provide an informal retrospective analysis of AK manage-
ment research while Falessi et al. [19] examine various techniques for select-
ing design alternatives during decision making. Tofan et al. [46] conducted
a systematic mapping study as an overview of existing architecture decision
documentation approaches in which the authors discuss functional and non-
functional requirements in the context of architecture decisions, but they do
not analyze in detail the relationships between quality attributes and archi-
tectural decisions.

Although previous studies discuss the relationship between architectural
design decisions (ADDs) and quality attributes (QAs), they do not provide a
full perspective discussing dimensions such as uncertainty, dependency types
between decisions, or QA trade-offs, and do not analyze in depth such charac-
teristics we do in our study. Therefore, apart from analyzing different dimen-
sions and challenges in the overlap of ADDs and QAs, we provide a deeper
analysis classifying each selected paper according to different criteria.

To the best of our knowledge, the use and integration of QAs in existing
AK management (AKM) methods and tools have been under-investigated so

Quality Attributes Use in ADD Methods: Research and Practice 3

far. Consequently, our main contribution in this research is the investigation
of the role of QAs in existing AK approaches as well as the support of QAs
in existing architecture decision methods and tools. We also provide an in-
tegrated view of the relationships between QAs and AK based on the three
aforementioned dimensions and supported by a deeper analysis of approaches
that report industry case studies.

The paper is structured as follows. In Section 2, we clarify the two key
terms relevant to our SLR, architecture design decision and quality attribute.In
Section 3 we present the research method we have applied to extract the
relevant literature. In particular, we introduce the rationale of our literature
review, discuss our search strategy and process as well as the selection criteria
we applied, and we state the three research questions under investigation. We
go into the details of the research’s results in Section 4-6. Section 7 discusses
our findings and future research directions, as well as the limitations of our
study, and, finally, in Section 8, we draw the conclusions of our work.

2 Terminology and Conceptual Model

Architecture Design Decision (ADD): According to ISO/IEC/ 42010:2011
[2], an ADD affects various architectural elements, pertains to or raises con-
cerns, and is justified by architecture rationale. Ven et al. [49] understand
design decisions as a first-class artifact that couples rationale with software
architecture. Approaches using templates for capturing ADDs [48] and are
supported by existing meta-models [54] and tools [40, 44, 46] set the focus on
architecture knowledge management.

Quality Requirement, quality attribute and quality property: Ac-
cording to ISO/IEC/IEEE 25010:2011 [1] a quality requirement (QR) is
defined as “a requirement that a software quality attribute be present in soft-
ware,” while a quality property (QP) is understood as a “measurable com-
ponent of quality.” In addition, quality attribute (QA) is defined by [9] as
“a measurable or testable property of a system that is used to indicate how well
the system satisfies the needs of its stakeholders.”

QAs are orthogonal to functionality [9] and the choice of a functionality in
a design decision does not dictate the level of quality of such a functionality.
Therefore, wheter ADDs are driving the selection of the qualities of the system
or the other way round, QAs are seen as major decision drivers [9, 30, 54, 55].

In order to define a conceptual relationship between QAs and ADDs, we
describe the following conceptual model depicted in Fig. 1, which illustrates the
main entities used to create the significant design decisions that require quality
properties as decision drivers or even incomplete knowledge to make a decision.
The decisions can be used to select the most suitable qualities of interest for a
particular system (e.g. security and availability are major concerns for banking
systems) or the other way around, where quality attributes drive the selection
of a particular decision (e.g. select a middleware with high performance). As

4 Ioanna Lytra et al.

decisions are connected to other decisions, it is common that all the decisions
made form a decisions network, and software architects can use this network
to evaluate the impact of decision changes during evolution cycles. Finally,
the set of decisions made should lead to a solution architecture that fulfills the
requirements and constraints that motivated the decisions taken.

Type of decisions

(technical, business, etc.)

Architecture Styles

Design patterns

Reusable decisions
Produces

Architectural

Design Decision Design

Solution

Decision Network

(DAG, QOC)
Quality

attribute

Decision Driver

(requirements, assumptions)

AK Reuse

Complete information
and/or uncertainty

Is a

Organized asEvaluated

QA trade-off
evaluation

Decision-making*
*

*
1

**

*

* *

*

*

* 1

Entity that impacts on another
Two entities that mutually influence each other

Legend

Fig. 1: Conceptual model showing the main concepts and relationships between
design decisions and quality attributes. Decision networks can adopt different
topologies like DAG (Directed Acyclic Graphs) or QOC (Question-Option-
Criteria) models.

3 Review Method

Following the guidelines provided by Kitchenham et al. [26] we run a system-
atic review to investigate in depth the relationships and role of QAs and ADDs.
According to Kitchenham et al. [25], systematic reviews comprise the following
three phases: (1) planning i.e. stating the rationale of the review and editing
of the review protocol, (2) execution i.e. conduction of the review according to
the review protocol, and (3) reporting i.e. presentation of the review results.
As we found that the topic relating QAs and ADDs in AKM approaches has
been poorly treated, we perceived the need to analyze which research works
better highlight the role of QAs and their relationships in existing AKM ap-
proaches, tools, and case studies in order to derive meaningful findings. We
summarize the main objectives of our study below:

1. Review and better understand the relationships of QAs and ADDs.

Quality Attributes Use in ADD Methods: Research and Practice 5

2. Review and better understand the focus of existing AKM methods and
tools, especially with regard to the challenges they address.

3. Find evidence about how the relationships between QAs and ADDs are
modeled and documented.

4. Review and better understand implications for researchers and practition-
ers interested in AKM in the current state of the art.

3.1 Research Questions

In the context of the literature review, based on the aforementioned objectives,
we considered the following research questions:

RQ1 What is the role and use of QAs and their relationships to ADDs in
existing AKM methods and tools?

RQ2 Which challenges related to managing QAs are frequently addressed by
existing AKM methods and tools?

RQ3 What is the size and scope of industry case studies of existing AKM
methods and tools with regard to QAs?

In order to organize the results of the research questions, we describe the
concepts and research questions in Fig. 2 to guide the reader through the re-
sults. For research question RQ1, we are interested in whether the QAs appear
in the decision making process, in the documentation of the design decisions,
or both. We also model different types of relationship between the decisions
and the quality attributes (e.g. explicit, not explicit, etc.). The evaluation of
ADDs using QAs can be supported in different ways such as the ones indicated
in the values of the figure. Regarding research question RQ2, we first look for
whether there is uncertainty using the QAs in existing architecture design
decision methods. In addition, we searched for different types of dependency
between the QAs and whether these appear explicitly as well as the trade-offs
between QAs. Finally, research question RQ3 explores the size of the design
space and scope of the different approaches using QAs and ADDs, and the
evaluation method used. In the figure, We also explicitly model some inter-
dependencies between different concepts belonging to the research questions.
These are represented by solid arrows in Fig. 2. For instance, QA uncertainty
from RQ2 has a clear impact on the evaluation of ADDs using QAs (cf., Re-
search Question RQ1), as every time we evaluate a design decision we need to
know if the qualities exhibit incomplete information.

3.2 Search Strategy

To conduct the systematic review, we queried four digital publication libraries:
1) the Association for Computing Machinery (ACM) Guide to Computing

6 Ioanna Lytra et al.

Fig. 2: Relationships between the main concepts and research questions that
organize the results shown in the tables in Section 4-6

Literature1, 2) the IEEE Xplore Digital Library2, 3) DBLP3, and 4) Springer4.
The search string we used entails the most appropriate keywords related to
the scope of this SLR, namely the terms “quality attributes”, “non-functional
requirements”, “design decisions”, and so on. The query we performed in the
four digital libraries can be expressed as a Boolean formula:

software architecture AND (quality attributes OR non-functional requirements
OR nfr OR design decisions OR architecture knowledge OR architectural
knowledge)

The queries performed on the libraries refer only to the titles, as addition-
ally searching abstracts and content would produce an enormous amount of
matches, unmanageable to be inspected manually. However, as Springer does
not allow the filtering of only the titles, in this case we searched the overall
contents of the articles. As our search strategy might miss useful citations, we
used backward and forward snowballing [50] to identify additional candidate
citations. In backward snowballing, the references of the selected articles are
checked for useful publications, while in forward snowballing the publications
that cite the selected articles are examined. In both cases, snowballing finishes

1 http://dl.acm.org/
2 http://ieeexplore.ieee.org/
3 http://dblp.uni-trier.de/
4 http://link.springer.com/

Quality Attributes Use in ADD Methods: Research and Practice 7

when a convergence is reached and no new articles can be found. Because dif-
ferent digital databases provide different search facilities, it was not possible to
use one single search string in all the cases to identify all the relevant sources.
We summarize in Table 1 the different queries we used in each digital library.

Digital Library Search String

ACM DL +("software architecture") + ("quality attributes" "non-functional re-
quirements" "nfr" "design decisions" "architecture knowledge" "archi-
tectural knowledge")

IEEEXplore ("software architecture") AND ("quality attributes" OR "non-
functional requirements" OR "nfr" OR "design decisions" OR "archi-
tecture knowledge" OR "architectural knowledge")

DBLP architectur* quality|nfr|decision*|functional$

Springer ("software architecture") AND ("quality attributes" OR "non-
functional requirements" OR "nfr" OR "design decisions" OR "archi-
tecture knowledge" OR "architectural knowledge")

Table 1: Search strings against four digital libraries

3.3 Selection Criteria

In order to extract the publications to be used as basis for answering our three
research questions, we defined appropriate selection criteria. Inclusion/exclusion
criteria were used to select publications focusing on methods and tools for ADD
support and documentation with a focus on QAs, and to reject papers that
focused on other forms of AKM or did not refer explicitly to ADDs or QAs.
Therefore, the inclusion and exclusion criteria are as follows:

Inclusion Criteria (IC)

IC1: The primary study is a peer-reviewed scientific paper that introduces
a technique, method, or approach about AKM or ADDs using QAs.

IC2: The primary study reports a case study about the use of QAs in ar-
chitecture decision making or on an AKM tool.

IC3: The primary study is the most recent version.
IC4: The paper is written in English.

Exclusion Criteria (EC)

EC1: The primary study does not deal with QAs in AKM explicitly or
implicitly.

EC2: The primary study does not consider the tandem QA-ADD, even if it
belongs to the software architecture field.

EC3: The primary study does not include an evaluation of QAs using ADDs.

8 Ioanna Lytra et al.

EC4: The primary study is an older publication from the same authors
about the same approach or a duplicated study.

EC5: The primary study is a short paper with less than five pages.
EC6: The primary study is a non-peer-reviewed publication.

3.4 Search Process and Selected Publications

The results of the queries we performed for the period between 01/2001 and
10/2018 reported the following numbers: ACM DL (1070 papers), IEEE (785
papers), DBLP (1509 papers), and Springer (2032 papers). In the case of the
Springer database, we selected only those papers belonging to the software en-
gineering discipline (i.e. “Software Engineering” keyword). In addition, as de-
picted in Fig. 3, we merged and aggregated the results from the four databases.
Once we have removed the duplicates, we came up with 4571 papers. We used
the title to filter out the research works according to the inclusion/exclusion
criteria which resulted in 73 papers. According to [50], we carried out a snow-
balling process to find additional papers. Using this technique, we carried out
two backward-forward iterations in the proposed four databases, except for
Springer where we needed three iterations, and we found only four additional
papers. This proves that the selection of the queries was precise enough in
order to find the relevant papers.

4 databases selected
(ACM DL, IEEE,
DBLP, Springer)

Query
databases

ACM DL: 1070 papers
IEEE: 785 papers
DBLP: 1509 papers

Springer: 2032 papers

Filter out
results

73
papers

Snowballing
(backward/forward)

77
papers

Manual review
by URJC and UV

36
papers

4571
papers

Merge and remove
duplicated papers

Fig. 3: Literature review steps and outcomes

After the iteration process, we manually filtered out the papers (77 papers)
according to the inclusion/exclusion criteria, This was done by two of the pa-
per’s authors (Universidad Rey Juan Carlos - URJC), then a second time by
the other two authors (University of Vienna - UV). We reviewed the contents
of the papers in order to perform an accurate selection regarding those works
relating ADDs and QAs. For instance, we did not consider the work of [27] on
capturing software design decisions in our selection as the tool they introduce
aims at annotating ADDs in software related artifacts rather than on archi-
tecture decision making and documentation, and does not consider the use of
QAs. Other examples include the work of [42] which on the one hand discusses

Quality Attributes Use in ADD Methods: Research and Practice 9

the prioritization of QAs for different stakeholders’ concerns, but on the other
hand, it does not contain any explicit reference to ADDs. Apart from that, we
excluded works that referred to the same approaches and/or tools and kept
only the most recent or most detailed publications (e.g. journal or conference
papers instead of workshop papers). The papers were selected based on careful
reading of the abstracts, introduction, and conclusions but we read in depth
all the 77 papers selected for manual review to ensure their compliance to the
inclusion/exclusion criteria and we finally selected 36 papers. All the papers
selected were reviewed by the four authors of this research work. As a result,
we consolidated a list of 36 publications (four journal, 28 conference and four
workshop publications) and we classified the selected publications into three
focus areas according to our research questions.

Table 1 in the Appendix5 lists the selected papers along with the pub-
lication year and place as well as the name of the method or tool used for
architecture decision making and documentation. The majority of the publi-
cations (28) are from the years 2007–2018, which gives an indication of the
increasing interest of the software architecture community in ADDs in recent
years. In most of the cases, the proposals are accompanied by tools for software
architects.

4 Role and Importance of QAs in ADD Tools and Methods (RQ1)

The importance of QAs in decision making in software architecture [9, 30,
54, 55] and the fact that good decisions affect the selection of which QAs are
important for a system during architecture reviews [8] are widely recognized.
In order to answer RQ1, in this section we discuss the role of QAs in AK
approaches. More specifically, we will investigate at what point in time the
QAs appear in the decision making process or are just documented, the explicit
and implicit relationships between ADDs and QAs, how decisions are evaluated
using QAs, and how QAs are used to decide on the best alternative. In the
following subsections, we discuss in particular the selected publications with
regard to the following aspects:
1. Appearance of QAs: We distinguish between tools that integrate QAs in

decision making, in ADD documentation, or in both.
2. Relationships between ADDs and QAs: We investigate the relationships be-

tween QAs and ADDs and whether these are explicitly or implicitly doc-
umented. We distinguish between “not explicit” and “explicit” trace links
support and identify those approaches that contain explicit links supported
by some kind of evaluation method.

3. Evaluation of decisions and qualities: Some approaches use QAs to evalu-
ate the best or the optimal alternative decisions. However, other research
works focus on how to make design decisions in order to select one or sev-
eral quality requirements that are more important for the architecture and
hence, fulfill the quality requirements of a system.

5 The Appendix is available as an online supplement to Springer Web site of this paper.

10 Ioanna Lytra et al.

4.1 Appearance of QAs

It is of key importance to document the QAs that will drive the shape of the
architecture and the decisions made during the architecting activity in order
to prevent AK vaporization. In the primary studies, we observed three major
trends regarding the “Appearance of QAs” (see RQ1). The values of the second
column in Table 2 in the Appendix reflect these trends. The first trend is to
document QAs in approaches using AK. The second trend is documenting QAs
in the decision making process. Finally, the third set of research works docu-
ment QAs in both documentation and decision making. In the first case, QAs
are described explicitly in the documentation alongside the design decisions.
This approach is taken by two of the papers examined excluding those that ap-
pear in both documentation and decision making. The second trend describes
how the QAs are documented and used in the decision making process. Many
of the works highlight the importance of QAs in the reasoning activity and how
QAs act as major decision drivers (e.g. [5, 6, 31, 55]). In some of these works,
QAs play a key role for architectural trade-off decision making that is some-
times carried out using multiple attributes [32] and constraints [5]. Different
criteria and methods can be used to evaluate the role of QAs in the decision
process based on e.g. using utility trees [6] and recommender systems [29].
Corresponding tool support can assist software architects in the decision mak-
ing process using QAs for evaluating alternative decisions. A few tools provide
automated support for managing the interactions between QAs and decisions
such as the ArchiTech tool, an application of the Quark approach [5]. For
reusable architectural decision models, CoCoADvISE provides automated sup-
port for quality-attribute-based architectural decision making [31]. In addition,
Lopes Silva et al. introduce a tool to support the architecture design phase by
recommending architectural styles given the quality attributes [29]. Finally,
almost 14% of the approaches under study document both the QAs in ADD
documentations while at the same time they describe how QAs influence the
reasoning activity on ADDs. For instance, the STREAM-ADD approach [16]
suggests to explicitly document ADDs alongside NFRs, and to use QAs dur-
ing architectural refinements in structural and technology decisions. In this
approach, NFRs are used with soft-goals to evaluate the set of alternatives
using architectural styles and the rationale for them.

4.2 Relationships between ADDs and QAs

Regarding explicit and implicit relationships (or links) between ADDs and
QAs, we explored the types of links between decisions and quality attributes.
These QAs map to high-quality requirements [10] as an important quality con-
cern a system demands. This is important for the software architecture doc-
umentation because it helps software maintainers to identify the trace links
between both artifacts when decisions change, and to reevaluate the decisions
if QAs are modified. From our results we identified the following types of links

Quality Attributes Use in ADD Methods: Research and Practice 11

between both artifacts: “not explicit”, “explicit”, and “supported but not ex-
plicit”. For the sake of clarity, papers that categorize the relationship between
ADDs and QAs as “not explicit” means that there is no direct and clear link
described in a meta-model or via examples. Those works that we describe as
containing “explicit” links between ADDs and QAs suggest an approach or
method where QAs are used to support architecture decision making and in
most cases such direct links are represented in a meta-model as well. Finally,
works containing “supported but not explicit” relationship provide support for
describing and evaluating the links between QAs and ADDs in an implicit way.
Not all the research works selected provide explicit trace links between design
decisions and quality attributes as these relationships are somehow hidden.
In approaches categorized as “not explicit” [21, 35] the authors highlight that
there is a relationship between ADDs and QAs but those links are not clearly
described or represented. Such links are defined and used by tools like Software
Architecture Warehouse (SAW), which handles collaborative decisions with a
voting support facility [35]. Nevertheless, the authors did not explicitly docu-
ment these trace links as the focus of their approach is different, but this does
not mean the trace links do not exist in models supporting tools like SAW.

From the approaches that model and define explicit ADD-QA links, we
can highlight the one introduced by [15]. In this work, the authors describe
explicit connections in a meta-model linking decisions to design artifacts and
quality attribute requirements, which helps support an automatic synthesis
method of candidate architecture solutions. The decision-centric architecture
design process uses the QAs to identify the issues that will lead to the issue
solutions. These issue solutions will be used to synthesize the solution architec-
ture from the decisions captured with other software engineering artifacts and
the relationships among them. Other approaches [22, 52, 54] provide different
but similar ways to relate several types of ADDs with QAs and they document
such relationships explicitly with the use of meta-models.

Another way to relate ADDs with QAs is the use of architectural tactics –
see for instance, [7, 34] and [24] – or by combining requirements goal models
with component diagrams [41]. Finally, other works like CoCoADvISE [31]
introduce a reusable architectural decision meta-model which integrates de-
sign solutions (i.e. ADDs) with decision drivers (i.e. QAs) and is subsequently
used as a basis for generating questionnaires to support architectural deci-
sion making. This approach offers some degree of automation for representing
the design decisions and QAs of interest, which are evaluated positively or
negatively. More recent works like [14] describe explicit support of quality at-
tributes to understand the ripple effect in decision making, but they do not
provide explicit relationships between the quality attributes like in [38] or [39].

4.3 Evaluation of decisions and qualities

The final category suggests the following values to classify how QAs and ADDs
are evaluated: “not supported”, “partially used”, and “fully used for evaluation”

12 Ioanna Lytra et al.

Fig. 4: Appearance of QAs in decision making, documentation, or both (left)
and type of relationships between ADDs and QAs (right)

(see Table 2 of the Appendix for the detailed results). The first value (i.e. “not
supported”) refers to works where we could not find an evaluation of ADDs
using QAs or the other way round. The second, “partially used”, refers to those
works where the evaluation is done only in one direction (e.g. QAs are used to
evaluate ADDs) or the process is not described in enough detail. Finally, the
last category, “fully used for evaluation”, refers to those research works where
the authors describe a method, approach, or tool supporting the evaluation
and selection of architecture design decisions using quality attributes in both
directions (compared to only one in the previous category).

Fig. 5: Evaluation of ADDs using QAs and of QAs using ADDs

Design decisions are used to select which QAs are more suitable to improve
the quality of the architecture. Alternatively, decisions can be evaluated based
on qualities, and on the pros and cons of each decision. In the first case, we
decide on the QAs that must be present in a design. In the second case, the
pros and cons are used to select the best or the optimal design decisions (e.g.
a higher level of security is needed, so a requirement decision about security
needs to be improved and hence, the necessary mechanisms to achieve the
desired quality must be added).

For instance, [52] do not indicate how they evaluate decisions using quality
attributes and the other way around. In most of these approaches, decisions
and QAs are captured, but the evaluation is not that explicit or explained.
Some other research works do not support or indicate any of the aforemen-
tioned types of evaluations using ADDs and QAs (e.g. [4, 35, 36, 52, 55]).

If we focus on those works rated as “fully used for evaluation”, the approach
described by [22] uses the notion of forces. The decision forces make the rela-

Quality Attributes Use in ADD Methods: Research and Practice 13

tionships between design decisions and the factors that influence the decision
makers explicit. Among these forces, we can find the quality attributes that
are used to select the best decision alternatives in a competing manner. The
authors use a table to connect these forces to other architecture views (e.g.
view technology) and provide the explicit trace links between the forces and
decisions, which are evaluated using a scale (i.e. ?, -, +, ++). We can use the
forces to rank the QAs during the selection of different technologies or use the
decisions to select the QAs that better suit different business goals.

Other works suggest a multi-attribute decision making approach to make
decision trade-offs, evaluate the most suitable QAs implemented in the sys-
tem [32], and estimate the impact of a decision in software quality [5]. The
work presented by [11] highlights the role of design patterns, and their impact
on good architecture design decisions and quality attributes is evaluated based
on the selection of patterns. Most of the approaches categorized as “fully used
for evaluation” put more emphasis on how decisions are selected based on a set
of qualities that must be satisfied in a competing manner, while the rationale
in the opposite direction (i.e. make decisions to select or reason on the best
qualities that must be supported) is rarely seen, even if the trace links between
both types of artifacts are explicit. In [33] the authors provide a catalogue of
decisions for designing industrial IoT systems as they can be fully used for
evaluation of different qualities.

5 QA-related Challenges Addressed by of ADD Tools and Methods
(RQ2)

In this section, we discuss the QA-related challenges that are addressed in ex-
isting tools and methods for architecture decision making and documentation.
In particular, after analyzing the selected articles of the literature survey, we
identified the following main challenges that are addressed in several publica-
tions which are detailed in Table 3 of the Appendix.

1. QA Uncertainty: Uncertainty is caused by vague, incomplete, or impre-
cise information about QAs of design solutions and requirements. An ap-
proach that supports dealing with uncertainty provides means for express-
ing and/or resolving QA uncertainty.

2. QA Interdependencies: A decision on one QA may have an indirect impact
on another QA as a consequence of such a decision. Apart from that,
prioritization of QAs is often considered in architecture decision making.

3. QA Trade-offs: Making ADDs is essentially the result of making trade-offs
between competing requirements and stakeholders’ concerns. In case QA
trade-offs are addressed, we are further interested in whether their resolu-
tion is performed manually or semi-automatically by software architects.

14 Ioanna Lytra et al.

5.1 QA uncertainty

Uncertainty is caused, among others, by imprecise and incomplete knowledge,
or requirements that make decision making and QA trade-offs difficult. Un-
certainty describes a situation in which QAs are not exactly known and can
not be precisely quantified, therefore, they are evaluated using a verbal scale.
The task of resolving this kind of uncertainty during decision making is on
the one hand complex and on the other hand, time-consuming. Even though
the inherent uncertainty of QAs is explicit in a few cases, the resolution of
this kind of uncertainty is not supported by the majority of the existing tools
and methods. For instance, Zdun expresses uncertainty of quality goals using
approximated scores (++ for very positive influence, + for positive influence,
o for no influence, - for a negative influence, and -- for a very negative in-
fluence expected) [53]. Similarly, in our previous work [31] we described such
relationships at a meta-model level for reusable architectural decision models
in order to express a positive or negative impact of design solutions on QAs.
Bode and Riebisch [11] use a point system to express the impact of architec-
tural styles on quality properties with a scale going from -2 (strong negative)
to 2 (strong positive), very similar to the verbal scale in [53]. The work of [39]
provides a method to estimate uncertain parameters which are unknown dur-
ing architecture design. We observe that a large majority of the 10 approaches
under analysis which discuss uncertainty of QAs use either a verbal scale or
a point system to express this uncertainty. Nonetheless, except for one paper
(i.e. [37]) the works under study do not tackle resolving uncertainty during
decision making. However, previous works have studied decision making in
the architectural solution space under uncertainty by considering probability
distributions of the parameters of an architecture model [28] or fuzzy values
for the alternative solution properties [18].

5.2 QA interdependencies

The interactions between QAs are widely recognized in software architecture
evaluation and a QA may have a positive or negative impact on other QAs [17].
For instance, in a particular system context, system security might come at the
cost of availability, whereas in other system contexts availability is a subgoal
of security and thus the two are associated positively [20]. In [31], QA interde-
pendencies are described in a meta-model level, so a QA can be in synergy with
or in contradiction with another QA. In another approach, the authors define
subsets of QAs in the form of utility trees by distinguishing between qual-
ity attributes and quality factors [6] to establish links between the QAs and
design decisions, while [11] also introduces a hierarchy of subcharacteristics
and properties related to the quality goal “Evolvability” of software projects.
Lopes Silva et al. express potential relationships between QAs, which can be
conflictive (-), cooperative (+), or neutral (0) [29].

Quality Attributes Use in ADD Methods: Research and Practice 15

Another factor that may complicate QA evaluation is the resolution of
priorities among the different qualities, as stated in [43]. For instance, prefer-
ences on QAs are given by comparing them pairwise and giving quantitative
weights in the quality-driven approach for decision making by [3]. Also, [12]
use prioritization of QAs using an ordinal scale to rank the design solutions
with respect to the set of QAs of interest, and they define four types of crite-
ria (i.e. ontocriteria, anticriteria, diacriteria, and pericriteria) based on classes
of architectural design decisions. In the Quark approach described in [5], pri-
oritization of QAs can be used by a decision inference system to provide a
prioritized list of ADDs. Fig. 6 shows the percentage of the approaches under
study which support uncertainty and QA interdependencies.

Fig. 6: Approaches supporting uncertainty (left) and interdependencies (right)
of QAs

5.3 QA trade-offs

In our analysis we observed that 21 of the 36 approaches under study support
quality attribute evaluation trade-offs during decision making. Fig. 7 shows
the percentage of the selected approaches supporting QA trade-offs as well as
the different types of trade-off automation.

Fig. 7: Approaches supporting QA trade-offs (left) and different levels of trade-
off automation (right)

While the largest number of the approaches support manual QA trade-
offs (10 out of 21), only five approaches described an automatic process. In
other works, the level of automation is not indicated. The ADD+ method [32]

16 Ioanna Lytra et al.

supports automatic trade-offs between conflicting and incomplete quality sce-
narios and various stakeholders’ concerns and preferences as a multi-attribute
decision problem, in which the attributes represent the degree of satisfaction
of conflicting quality scenarios. ArchDesigner considers making trade-offs a
multi-attribute decision making problem and leverages the Analytic Hierar-
chy Process (AHP) to calculate value scores for design alternatives given their
relative impact on QAs and relative stakeholders’ preferences [3], while in [37]
the authors perform multi-criteria decision analysis. The tool introduced by de
Boer et al. can be used for automated trade-off analysis to rank the alternative
solutions according to certain QA priorities [12].

Currently, many approaches integrate trade-offs in the architecture decision
making process where quality scenarios are used to assist in making trade-offs,
such as described in [6]. In addition, the ArchPad (RADM) method of [55] pro-
vides reusable pattern-based decision models, which entail the information for
resolving requirements at different levels [54]. Also, [15] propose a method for
assisting in the selection of and reasoning on architectural solutions, so archi-
tects can summarize the advantages and disadvantages of each architecture
solution in order to make trade-offs. The STREAM-ADD approach supports
manual trade-off analysis of alternatives considering the fulfillment and the
priorities of softgoals and NFRs [16]. In other cases, like in the Software Ar-
chitecture Warehouse (SAW tool) approach, trade-offs are made in a collabo-
rative context [35] and stakeholders discuss the advantages and disadvantages
of each design alternative until they reach a consensus. More sophisticated
approaches use constraint satisfaction algorithms [5] and expert systems [29]
to reason about QA trade-offs. Finally, the authors in [34] suggest two negoti-
ation strategies using agents to support trade-off analysis. Fig. 8 summarizes
the different methods used for making QA trade-offs based on the analysis of
the 21 aforementioned approaches.

0 1 2 3 4 5

Competing design patterns

Analytic Hierarchy Process

Question-option-criteria and design alternatives

Utility trees

Group decision-making, multi-attribute, voting

Prioritization

Constraint satisfaction problem

Fuzzy inference system

Pareto Analysis

Other

Fig. 8: Methods for making QA trade-offs and number of approaches employing
these methods

Quality Attributes Use in ADD Methods: Research and Practice 17

6 Size and Scope of industry case studies in ADD tools and
methods (RQ3)

The demonstration and evaluation of the approaches in real-life-scenarios and
empirical studies the authors investigated validate many of the proposals, and
they guide practitioners who need to integrate QAs in architecture decision
making processes. The rationale for including the design space size and scope
in this research relies on the importance for each industrial and academic case
study about the decision capturing effort, dependencies between decisions and
other software artifacts, type and nature of the decisions, number of alterna-
tives considered, and the QAs used. Fig. 9 reports the size of several industry
cases in terms of scenarios and design issues, architectural patterns and tactics
used as well as the size of the decisions network.

0 1 2 3 4 5 6 7 8

Fewer than 10 design decisions
Between 10 and 50 design decisions

Between 51 and 200 design decisions
More than 200 design decisions

Fewer than 10 architectural patterns/tactics
Between 10 and 50 architectural patterns/tactics

More than 50 scenarios and design issues
Other

Not indicated

Fig. 9: Number of approaches with respect to the size and scope of reported
industry cases studies

More specifically, a portion of the proposals uses a small number of deci-
sions (<10), except in the case of [54, 55] where a big design space consisting
of 300 reusable SOA-related decisions has been created. While the approach
has been used in industrial projects, the validation of the corresponding QAs
was not the focus of the validation in reusable ADDs. 19 proposals report a
case study, six a motivating example and five of them a real project or system,
such as the ones described in [43, 45, 54]. In other evaluation studies, industrial
experts have participated in case studies (e.g. in [11, 31]).

In addition, few approaches (such as [21]) do not perform any kind of
evaluation or they just document types of decisions ranging from those based
on concrete scenarios to structural, behavioral, and technology decisions [16].
Also, the Software Architecture Warehouse [35] seems to be validated in vari-
ous design workshops with students but this is poorly reported. The majority
of the case studies report at least three QAs while only six publications do not
report which QAs were used. The frequencies of the QAs used in the papers
under study are shown in Table 2, as an indicator of the most relevant QAs
used in decision making activities.

18 Ioanna Lytra et al.

Quality Attribute # Quality Attribute # Quality Attribute #

Performance 18 Testability 3 Evolvability 1
Security 12 Accuracy 2 Fault Tolerance 1
Cost 9 Flexibility 2 Functional Suitability 1
Reliability 8 Analyzability 1 Installability 1
Usability 8 Backupability 1 Latency 1
Maintainability 8 Capacity 1 Privacy 1
Modifiability 6 Completeness 1 Recoverability 1
Portability 5 Complexity 1 Reusability 1
Scalability 5 Compliance to standards 1 Traceability 1
Interoperability 4 Concurrency 1 Understandability 1
Availability 3 Data Completeness 1 Effort 1
Efficiency 3 Extensibility 1

Table 2: Frequency of appearance of QAs

Regarding the types of studies, we can conclude that the majority of them
have introduced a technique or a tool in their case studies and examples. While
42% report a case study, 25% of them are only examples but in the context
of industrial projects. Nevertheless, in the majority of the studies, the design
space size and scope, as well as the number of QAs that are systematically
studied are rather low.

Fig. 10: Distribution of evaluation methods reported in analyzed ADD tools
and methods

7 Discussion

In this literature review, we have studied the research works on QAs in ADD
methods and tools over the past 17 years. Most of the papers examined in-
vestigate the role of QAs in architecture decision making approaches and how
design decisions are used to select the most optimal QAs during architecture
evaluation and design. The results also revealed that in the majority of cases,
QAs are documented or used in a decision making process. Other findings
show that a large majority of studies describe fully explicit relationships be-
tween QAs and ADDs, which highlights the importance of such trace links
for documentation and knowledge capturing. With respect to the evaluation

Quality Attributes Use in ADD Methods: Research and Practice 19

of QAs and ADDs, about one fifth of the studies do not focus on or describe
such an evaluation. This fact leads us to assume the difficulty of carrying out
such an evaluation activity. The QA-related challenges used in existing ADD
methods show that 58% of the research works deal with QA trade-offs, which
is close to the number of works using QAs to evaluate the design decisions.
However, only 28% and 39% of the research works address QA uncertainty and
QA interdependencies respectively, an indication that these research areas are
still immature. There is only one publication covering all three QA-related
challenges (i.e. [38]). Another interesting aspect is the automation level of ap-
proaches using QAs: the results reported in half of the approaches show that
10 of them are “manual” and six use semi-automatic processes to calculate the
priority of the QAs for decision making and trade-off evaluation. The findings
have revealed that there is a mature set of baseline approaches for supporting
QAs in AK methods and tools. However, it seems to be difficult to achieve more
sophisticated automation, e.g. in QA-based architectural decision making.

7.1 Implications for researchers and practitioners

The size and scope of the industrial use cases analyzed show an early adoption
of methods and tools that support the interplay between ADDs and QAs, but
the maturity of the approaches and their adoption are in an early adoption
phase. Furthermore, the traditional QA trade-off evaluation in software archi-
tecture can benefit from approaches relating the decisions with the qualities
of the system, so that software architects can better understand the under-
pinning reasons for selecting the best quality properties of a system as well as
how the selection of a quality property influences the decisions for technology
selection, and use these results to train novice architects. In addition, indus-
try practitioners provided a certain amount of evidence for successful use of
ADD entangled with QAs in specific domains or application cases (e.g. SOA
decisions, control systems, smart systems, financial IT systems), but the size
of the decision set tends to be small, maybe because of the cost for capturing
them.

At the same time, the size of the studies show that the techniques analyzed
in this literature review can be applied with relatively low effort compared to
the size of real software projects and no significant investment other than
learning and simplistic tool development is needed to start out. Our analysis
has also revealed that a large majority of the studies (85%) report evaluation of
the presented approaches. Even though some of the studies present industry-
related cases in the majority of the studies scientifically less rigorous evaluation
approaches such as “non-industrial case studies”, “example applications”, and
“motivating examples” have been used. In addition, the size of the decision sets
in some of these industrial cases is sometimes low, which does not necessarily
diminish the relevance of the evaluation approach adopted, as such decisions
may belong to a subset of the architecture or system under study. Therefore,

20 Ioanna Lytra et al.

more real examples where significant sets of decisions are made, based on
stringent quality requirements, are needed.

Finally, one interesting finding for academics and professional software en-
gineers is the frequencies of appearance of the QAs found in AKM approaches
(see Table 2). Of about 40 QAs identified, only seven show frequencies of six or
more. In particular, performance, security, cost, reliability, usability, maintain-
ability, and modifiability exhibit the highest frequencies of appearance. These
results might indicate that a reduced set of QAs seem to be more important
or useful than others even for different domains and applications, which are at
least in the scope of publications analyzed. The QAs with a higher frequency
are more likely to be considered in relation to the ADDs than the QAs with a
lower frequency, therefore, the most frequent QAs should be considered first
by software engineers when designing software-intensive systems.

7.2 Limitations

The limitations of our study are the following: In many cases, we needed to
interpret the implicit use of QAs in the ADD related approaches, as some
of the results reflect our understanding given the missing or blurry specifi-
cation. Therefore, the extraction and evaluation results of the related infor-
mation may have led to inaccuracies. As many of the tools we discussed are
not available online, we had to base our findings only on the reported results
in the publications under study. There might also be some bias of the au-
thors during the selection and classification of the candidate papers, as they
have worked for years in the field and are active researchers in the area. We
tried to mitigate this risk by reading and interpreting the primary studies
independently in several iterations, and by double-checking each other. Also,
the fact that the authors are based in different institutions and have different
backgrounds helped to mitigate this risk. Finally, our systematic review may
have inevitably missed some relevant tools and methods that were excluded
during the search process and the implementation of our inclusion/exclusion
criteria. We tried to mitigate that risk by querying and aggregating results
from four databases (i.e. ACM DL, IEEEXplore, DBLP, Springer), by using
general search terms (e.g. “software architecture”) and alternative terms (e.g.
“quality attributes” and “non-functional requirements”), and by using forward
and backward snowballing.

8 Conclusions and future trends

This paper reports a systematic literature review on QAs in architecture de-
cision making and documentation approaches. While the findings of this lit-
erature review identify promising research and practice areas, there are still
a number of factors that challenge a broader adoption of ADD methods us-
ing QAs. While the knowledge capturing problem and the relationships to

Quality Attributes Use in ADD Methods: Research and Practice 21

other software artifacts like requirements seems solved, the majority of the
approaches examined cannot provide more automatic procedures to evaluate
QAs using decisions and make decisions for the selection of the required QAs.
Only some prioritization mechanisms for QAs and alternative decisions as well
as the making of trade-offs can be partially automated. In addition, as QA in-
terdependencies have been poorly discussed by ADD approaches, we provided
additional insight motivating the importance of bi-directional links between
ADDs and QAs to show that decisions can be motivated by changes in the
quality attributes or the selection and evaluation of a particular quality is
driven by a design decision. Thus, we also identified the relevant works sup-
porting the explicit and documented trace links between both artifacts and
which of these approaches use the trace links to evaluate QAs using decisions
and the other way around, but also to understand how a change in a QA may
affect other related QAs.

Another challenging area for knowledge sharing and collaborative approaches
where decisions are not made by one single person is Group Decision Making
(GDM), as well as how GDM approaches can be used in agile development
contexts. Moreover, making decisions under uncertainty is another challenging
area and green field to train software architects in making decisions with in-
complete information. Finally, future research should provide better support
and tools for attribute evaluation at decision making and for making architec-
tural decisions sustainable over time.

Acknowledgments. This work was supported by: FFG (Austrian Research
Promotion Agency) project DECO, no. 846707; FWF (Austrian Science Fund)
project ADDCompliance: I 2885-N33; Spanish research network MCIU-AEI
TIN2017-90664-REDT.

References

1. (2011) ISO/IEC 25010:2011 Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE). ISO/IEC
25010:2011 pp 1–34

2. (2011) ISO/IEC/IEEE 42010:2011 Systems and software engineering –
Architecture description. ISO/IEC/IEEE 42010:2011 pp 1–46

3. Al-Naeem T, Gorton I, Babar MA, Rabhi F, Benatallah B (2005) A
Quality-driven Systematic Approach for Architecting Distributed Software
Applications. In: 27th International Conference on Software Engineering,
ACM, New York, NY, USA, ICSE’05, pp 244–253

4. Alebrahim A, Hatebur D, Heisel M (2011) A method to derive software
architectures from quality requirements. In: 18th Asia Pacific Software
Engineering Conference, APSEC 2011, Ho Chi Minh, Vietnam, December
5-8, 2011, pp 322–330

5. Ameller D, Franch X (2014) Assisting software architects in architectural
decision-making using Quark. CLEI electronic journal 17(3):1–20

22 Ioanna Lytra et al.

6. Babar MA, Capilla R (2008) Capturing and Using Quality Attributes
Knowledge in Software Architecture Evaluation Process. In: First Inter-
national Workshop on Managing Requirements Knowledge, IEEE CS, pp
53–62

7. Bachmann F, Bass L, Klein M (2003) Moving from quality attribute re-
quirements to architectural decisions. In: ICSE 2003 - Proceedings of 2nd
International Software Requirements to Architectures Workshop, STRAW
2003, May 9, 2003, Portland, Oregon, USA, pp 122–129

8. Bachmann F, Bass L, Klein M, Shelton C (2005) Designing Software Ar-
chitectures to Achieve Quality Attribute Requirements. Software, IEEE
Proceedings 152(4):153–165

9. Bass L, Clements P, Kazman R (2012) Software Architecture in Practice
(Third Edition). Pearson Education Inc., New Jersey, USA

10. Berntsson-Svensson R, Regnell B (2015) A Case Study Evaluation of the
Guideline-Supported QUPER Model for Elicitation of Quality Require-
ments. In: Requirements Engineering: Foundation for Software Quality -
21st International Working Conference, REFSQ 2015, pp 230–246

11. Bode S, Riebisch M (2010) Impact evaluation for quality-oriented archi-
tectural decisions regarding evolvability. In: Software Architecture, 4th
European Conference, ECSA 2010, Copenhagen, Denmark, August 23-26,
2010. Proceedings, pp 182–197

12. de Boer R, Lago P, Telea A, Van Vliet H (2009) Ontology-driven visualiza-
tion of architectural design decisions. In: Software Architecture, European
Conference on Software Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on, Springer-Verlag, Berlin, Heidelberg, pp 51–60

13. Capilla R, Jansen A, Tang A, Avgeriou P, Babar MA (2016) 10 years of
software architecture knowledge management: Practice and future. Jour-
nal of Systems and Software 116:191–205

14. Carrillo C, Capilla R (2018) Ripple effect to evaluate the impact of changes
in architectural design decisions. In: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings, ECSA
2018, Madrid, Spain, September 24-28, 2018, pp 41:1–41:8

15. Cui X, Sun Y, Mei H (2008) Towards Automated Solution Synthesis and
Rationale Capture in Decision-Centric Architecture Design. In: Proceed-
ings of the Seventh Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA), IEEE CS, Washington, DC, USA, pp 221–230

16. Dermeval D, Pimentel J, Silva C, Castro J, Santos E, Guedes G, Lucena
M, Finkelstein A (2012) STREAM-ADD - Supporting the Documentation
of Architectural Design Decisions in an Architecture Derivation Process.
In: Proceedings of the 2012 IEEE 36th Annual Computer Software and Ap-
plications Conference, IEEE CS, Washington, DC, USA, COMPSAC’12,
pp 602–611

17. Egyed A, Grünbacher P (2004) Identifying Requirements Conflicts and
Cooperation: How Quality Attributes and Automated Traceability Can
Help. IEEE Software 21(6):50–58

Quality Attributes Use in ADD Methods: Research and Practice 23

18. Esfahani N, Malek S, Razavi K (2013) Guidearch: guiding the exploration
of architectural solution space under uncertainty. In: 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA,
May 18-26, 2013, pp 43–52

19. Falessi D, Cantone G, Kazman R, Kruchten P (2011) Decision-making
Techniques for Software Architecture Design: A Comparative Survey.
ACM Computing Survey 43(4):33:1–33:28

20. Hafiz M, Adamczyk P, Johnson RE (2007) Organizing security patterns.
IEEE software 24(4):52–60

21. Harrison NB, Avgeriou P, Zdun U (2007) Using Patterns to Capture Ar-
chitectural Decisions. IEEE Software 24(4):38–45

22. van Heesch U, Avgeriou P, Hilliard R (2012) Forces on Architecture De-
cisions – A Viewpoint. In: Joint Working IEEE/IFIP Conference on Soft-
ware Architecture and European Conference on Software Architecture,
WICSA/ECSA, IEEE CS, pp 101–110

23. Jansen A, Bosch J (2005) Software Architecture as a Set of Architectural
Design Decisions. In: The 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), IEEE Computer Society, pp 109–120

24. Kassab M, El-Boussaidi G, Mili H (2011) A quantitative evaluation of the
impact of architectural patterns on quality requirements. In: Software En-
gineering Research, Management and Applications 2011 [selected papers
from the 9th International Conference on Software Engineering Research,
Management and Applications, SERA 2011, Baltimore, MD, USA, August
10-12, 2011]., pp 173–184

25. Kitchenham B, Charters S (2007) Guidelines for performing Systematic
Literature. Tech. Rep. EBSE 2007-001, Keele University and Durham Uni-
versity Joint Report

26. Kitchenham B, Brereton O, Budgen D, Turner M, Bailey J, Linkman S
(2009) Systematic literature reviews in software engineering: a systematic
literature review. Information and Software Technology 1(51):7–15

27. Lee L, Kruchten P (2007) Capturing Software Architectural Design De-
cisions. In: 2007 Canadian Conference on Electrical and Computer Engi-
neering, IEEE CS, pp 686–689

28. Letier E, Stefan D, Barr ET (2014) Uncertainty, risk, and information
value in software requirements and architecture. In: 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, pp 883–894

29. Lopes Silva IC, Brito PHS, dos S Neto BF, Costa E, Silva AA (2015) A
decision-making tool to support architectural designs based on quality at-
tributes. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, ACM, New York, NY, USA, SAC’15, pp 1457–1463

30. Lytra I, Sobernig S, Zdun U (2012) Architectural Decision Making for
Service-Based Platform Integration: A Qualitative Multi-Method Study.
In: Joint 10th Working IEEE/IFIP Conference on Software Architecture
& 6th European Conference on Software Architecture (WICSA/ECSA),
Helsinki, Finland, IEEE CS, pp 111–120

24 Ioanna Lytra et al.

31. Lytra I, Engelbrecht G, Schall D, Zdun U (2015) Reusable architectural
decision models for quality-driven decision support: A case study from a
smart cities software ecosystem. In: Proceedings of the Third International
Workshop on Software Engineering for Systems-of-Systems, IEEE Press,
Piscataway, NJ, USA, SESoS’15, pp 37–43

32. Makki M, Bagheri E, Ghorbani AA (2008) Automating Architecture
Trade-Off Decision Making through a Complex Multi-attribute Decision
Process. In: 2nd European Conference on Software Architecture (ECSA),
Springer, Lecture Notes in Computer Science, pp 264–272

33. Malakuti S, Goldschmidt T, Koziolek H (2018) A catalogue of architectural
decisions for designing iiot systems. In: Software Architecture - 12th Eu-
ropean Conference on Software Architecture, ECSA 2018, Madrid, Spain,
September 24-28, 2018, Proceedings, pp 103–111

34. Monteserin A, Pace JAD, Gatti I, Schiaffino SN (2017) Agent negotiation
techniques for improving quality-attribute architectural tradeoffs. In: Ad-
vances in Practical Applications of Cyber-Physical Multi-Agent Systems:
The PAAMS Collection - 15th International Conference, PAAMS 2017,
Porto, Portugal, June 21-23, 2017, Proceedings, pp 183–195

35. Nowak M, Pautasso C (2013) Team Situational Awareness and Archi-
tectural Decision Making with the Software Architecture Warehouse. In:
Proceedings of the 7th European Conference on Software Architecture,
Springer-Verlag, Berlin, Heidelberg, ECSA’13, pp 146–161

36. Rosa NS, Ribeiro-Justo GR, Cunha PRF (2001) A framework for building
non-functional software architectures. In: Proceedings of the 2001 ACM
Symposium on Applied Computing (SAC), March 11-14, 2001, Las Vegas,
NV, USA, pp 141–147

37. Saadatmand M, Tahvili S (2015) A fuzzy decision support approach for
model-based tradeoff analysis of non-functional requirements. In: 12th In-
ternational Conference on Information Technology : New Generations,
IEEE, pp 112–121

38. Schneider Y, Busch A, Koziolek A (2018) Using informal knowledge for
improving software quality trade-off decisions. In: Software Architecture -
12th European Conference on Software Architecture, ECSA 2018, Madrid,
Spain, September 24-28, 2018, Proceedings, pp 265–283

39. Sedaghatbaf A, Abdollahi Azgomi M (2018) Sqme: A framework for mod-
elling and evaluation of software architecture quality attributes. Software
and Systems Modeling pp 1–24

40. Shahin M, Liang P, Khayyambashi M (2009) Architectural design deci-
sion: Existing models and tools. In: Software Architecture, 2009 European
Conference on Software Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on, IEEE CS, pp 293–296

41. Shen L, Peng X, Zhao W (2012) Quality-driven self-adaptation: Bridging
the gap between requirements and runtime architecture by design decision.
In: 36th Annual IEEE Computer Software and Applications Conference,
COMPSAC 2012, Izmir, Turkey, July 16-20, 2012, pp 185–194

Quality Attributes Use in ADD Methods: Research and Practice 25

42. Stoll P, Wall A, Norstrom C (2008) Guiding Architectural Decisions with
the Influencing Factors Method. In: Proceedings of the Seventh Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA), IEEE CS,
Washington, DC, USA, WICSA’08, pp 179–188

43. Svahnberg M, Wohlin C, Lundberg L, Mattsson M (2003) A quality-driven
decision-support method for identifying software architecture candidates.
International Journal of Software Engineering and Knowledge Engineering
13(5):547–573

44. Tang A, Avgeriou P, Jansen A, Capilla R, Babar MA (2010) A comparative
study of architecture knowledge management tools. Journal of Systems
and Software 83(3):352–370

45. Tibermacine C, Fleurquin R, Sadou S (2006) On-Demand Quality-oriented
Assistance in Component-based Software Evolution. In: 9th International
Conference on Component-Based Software Engineering, Springer-Verlag,
Berlin, Heidelberg, CBSE’06, pp 294–309

46. Tofan D, Galster M, Avgeriou P, Schuitema W (2014) Past and future of
software architectural decisions – A systematic mapping study. Informa-
tion and Software Technology 56(8):850–872

47. Ton That M, Sadou S, Oquendo F, Fleurquin R (2014) Preserving ar-
chitectural decisions through architectural patterns. Automated Software
Engineering Journal 22:1–41

48. Tyree J, Akerman A (2005) Architecture Decisions: Demystifying Archi-
tecture. IEEE Software 22(2):19–27

49. van der Ven J, Jansen A, Avgeriou P, Hammer D (2006) Using Archi-
tectural Decisions, Universitaet Karlsruhe, Fakultaet fuer Informatik, pp
1–10

50. Wohlin C (2014) Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering. In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software En-
gineering, ACM, New York, NY, USA, EASE’14, pp 38:1–38:10

51. Wojcik R, Bachmann F, Bass L, Clements P, Merson P, Nord R, Wood B
(2006) Attribute-Driven Design (ADD), version 2.0. Tech. Rep. CMU/SEI-
2006-TR-023 ESC-TR-2006-023, Software Engineering Insttitute

52. Xu B, Huang Z, Wei O (2010) Making architectural decisions based on re-
quirements: Analysis and combination of risk-based and quality attribute-
based methods. Ubiquitous, Autonomic and Trusted Computing, Sym-
posia and Workshops on pp 392–397

53. Zdun U (2007) Systematic Pattern Selection Using Pattern Language
Grammars and Design Space Analysis. Software: Practice & Experience
37(9):983–1016

54. Zimmermann O, Gschwind T, Küster J, Leymann F, Schuster N (2007)
Reusable Architectural Decision Models for Enterprise Application Devel-
opment. In: 3rd International Conference on Quality of Software Architec-
tures (QoSA), Springer, pp 15–32

55. Zimmermann O, Zdun U, Gschwind T, Leymann F (2008) Combining
Pattern Languages and Reusable Architectural Decision Models into a

26 Ioanna Lytra et al.

Comprehensive and Comprehensible Design Method. In: Proceedings 7th
Work. IEEE/IFIP Conference Software Architecture, IEEE, pp 157–166

