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Abstract

Based on the multitude of industrial applications, benchmarks for model hierarchies will be created that will
form a basis for the interdisciplinary research and for the training programme. These will be equipped with
publically available data and will be used for training in modelling, model testing, reduced order modelling,
error estimation, efficiency optimization in algorithmic approaches, and testing of the generated MSO/MOR
software. The present document includes a detailed description of the computer implementation of these bench-
marks involving not only the required publically available data but also the used software packages, libraries
and any other relevant information, which guarantee a fully reproducibility of the reported numerical results.
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Part I.
A benchmark for atmospheric tomography
Bernadett Stadler, Ronny Ramlau, Andreas Obereder

Abstract

The new generation of ground-based extremely large telescopes requires highly efficient algorithms to achieve
an excellent image quality in a large field of view. These systems rely on adaptive optics (AO), where one
aims to compensate the rapidly changing optical distortions in the atmosphere in real-time . Many of systems
require the reconstruction of the turbulence layers, which is called atmospheric tomography. Mathematically,
this problem is ill-posed, due to the small angle of separation. The dimension of the problem depends on the
telescope size and has increased in the last years. Altogether, efficient solution methods are of great interest.
Within this benchmark case we will use the standard, however, not most efficient method, called Matrix Vector
Multiplication, to deal with the problem of atmospheric tomography.

Keywords: Adaptive optics, atmospheric tomography, benchmark, MVM.

1.1. Introduction

The new generation of planned earthbound Extremely Large Telescopes (ELT) aims at excellent image quality
in a large field of view. Such systems rely on Adaptive Optics (AO) with the task to correct optical distortions
caused by atmospheric turbulences. To achieve such a correction, the deformations of optical wavefronts,
emitted by natural or artificial guide stars, are measured via wavefront sensors and, subsequently, corrected
using deformable mirrors. Many of those systems require the reconstruction of the turbulence profile in the
atmosphere, which is called atmospheric tomography.

Before we define the mathematical problem of atmospheric tomography, we first introduce some basics about
adaptive optics (AO) such as the concept of guide stars, operating systems, turbulence statistics, deformable
mirrors and wavefront sensors. For more details about AO we refer to [1].

1.1.1. Guide Stars

Guide stars (GS) are either natural stars up in the sky near the object of interest or generated by a laser beam.

1.1.1.1. Natural Guide Star

A natural guide star (NGS) is a bright star that serves as a reference point for the WES to detect atmospheric
distortions. The star is modelled as a point source at a height of infinity. Assuming the layered atmospheric
model, the wavefront aberrations in the direction 6 of a NGS are given by

~

o(x) = (B950)(x) := > di(w + Ohy), (1.1)

(=1

where ¢y is the turbulent layer at altitude h; for £ = 1, ..., L. We call PGN &S the geometric propagation operator
in the direction of the NGS.

Within our benchmark case we assume that the photon noise from the NGS, that affects the WFS measurements,
is modeled by a Gaussian random variable with zero mean and covariance matrix C;,. The noise is identically
distributed in each subaperture and the x- and y-measurements noise is uncorrelated. Thus, the covariance

% |
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1.1. Introduction

matrix can be defined by

C, = ao’I, (1.2)
where o2 is the noise variance of a single measurement, which is given by
1
o? = : (1.3)
Nphotons

where 7,40t0ns 1 the number of photons per subaperture.

1.1.1.2. Laser Guide Star

For a laser guide star (LGS) the model is slightly more complicated than for NGS. In particular, two important
effects are taken into account in our benchmark case.

Cone effect

In contrast to the infinite height that is assumed for a NGS, the LGS is considered to be a fixed point at a finite
height H. Due to the finite altitude, the light detected by the telescope passes through a cone-like volume in
the atmosphere (see Figure 1.1). This behaviour is referred to as the cone effect.

turbulence
layer 2

layer 1

telescope pupil

WFS 1

Figure 1.1: Active Subapertures

Assuming a layered model of the atmosphere, as for the NGS case, the incoming wavefront aberrations in the
direction 6 of a LGS are given by

Bi((1~ F)w -+ 6he), (14

M=

po(x) = (P “59)(x) =
(=1

where PQLGS is called the geometric propagation operator in the direction of the LGS.

Spot elongation

For a LGS the sodium layer thickness has to be taken into account for modelling the photon noise. As the
sodium layer has a certain width, the scattering of the laser beam happens in a vertical stripe, instead of in a
single point. This stripe is observed as an elongated spot by the charge-coupled device (CCD) detector of the

% 2
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1.1. Introduction

WES. Thus, this effect is called spot elongation.

The vertical density profile of the laser beam scatter is modelled by a Gaussian random variable with mean H
and a full width at half maximum (FWHM) parameter, which is defined by

FWHM = 2+/2In(2)o. (1.5)
Further, we define the laser launch positions as (x{%, zZ*) and the midpoint of a subaperture {2; j by

X+ T4

T 5 (1.6)
for 0 < i < ng where the x; are given by (1.19).
The elongation vector in a subaperture {2;; is given by
FWHM ,, _ _
Bij = (Bij1, Bij2) = — o (@i, 75) — (a1", 257)). (1.7)
The spot elongated noise covariance matrix in a subaperture is given by
2 2
o 7 BijaBij2
C,.:J2 I—i-l ( 17,1 13,1M1g, ), 1.8
" ( f2) Bijibij2 B (18)

where o is defined as in (1.3), f is the FWHM of the non-elongated spot and «, is a fine-tuning parameter to
cope with other sources of noise (e.g. read out noise).

Summarized, the noise model for the WFS associated to an LGS is given by a Gaussian random variable with
zero mean and covariance matrix
077 = diag(Cij), (19)

with 0 < ¢, 7 < n, for an active subaperture {2;;.
1.1.2. Operating Modes

Depending on the number of NGS and LGS the AO systems operates in different modes, which are listed in the
following subsections.

1.1.2.1. Single Conjugate AO

If the object of interest, e.g., a star or a galaxy, is located near a bright NGS, the classical AO system Single
Conjugate AO (SCAO) is used. In a SCAO system the wavefront is reconstructed using one WFS, that measures
the data, and one DM, where the shape is chosen according to the reconstruction. One issue with SCAO systems
is that the further away the object of interest is from the NGS, the worse is the correction of the wavefront.

1.1.2.2. Laser Tomography AO

If no NGS is available in the vicinity of the object of interest, the usage of an SCAO system is not possible.
The idea is to generate LGS to obtain a good correction. This LGS is combined with at least one NGS to
correct for the low order modes, which are not available using only LGS. In the general, a combination of
several LGS and NGS is possible.

Within the framework of a laser tomography AO (LTAO) Ggs and G ygs are used in combination with a
single mirror to reconstruct the wavefront. The correction is performed through two steps. The first step

% 3
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1.1. Introduction

Laser Tomography AC Multi-Object Adaptive Optics

: " . -
Laser Guide . Laser Guide .
Stars Stars \ .

High

Altitude e
Layer | High
Altitude
Ground Layer

Layer

Ground

Telescope Layer

Telescope

Wide field mode

Ground conj. DM Ground Conj. DM

Narrow field
mode DM

WFS

Camera

Figure 1.2: Principle of LTAO Figure 1.3: Principle of MOAO

is called atmospheric tomography, where the turbulent layers are reconstructed from sensor measurements.
In the second step, the shape of the DM is chosen according to the projection of the wavefront through the
reconstructed layers in the direction of interest.

1.1.2.3. Multi Object AO

In contrast to LTAO multi object AO (MOAO) corrects for multiple directions of interest, simultaneously, by
using several mirrors. Each mirror corrects for a specific direction. As in the LTAO case a combination of NGS
and LGS is used for reconstructing the layers.

1.1.2.4. Multi Conjugate AO

As in MOAO, a Multi Conjugate AO (MCAO) system corrects for multiple directions, however, with the aim
to achieve a uniformly optimal correction over the whole field of view and not into specific directions. For that
purpose, several DMs are used conjugated to different heights in the atmosphere.

1.1.3. Turbulence Statistic in the Atmosphere

The main source of distortions of the wavefront are atmospheric turbulences, which emerge from irregular
mixing of cold an hot air affected by the sun and wind. Due to these irregularities the refractive index of air
is inhomogeneous. This leads to a distorted wavefront arriving at the telescope pupil. Within atmospheric
tomography, we assume a layered model of the atmosphere with the goal to reconstruct the turbulent layers.
Since these turbulence effects are not predictable, we model the turbulent layers as a Gaussian random variable
with zero mean and covariance matrix Cl.

Each layer ¢ = 1, ..., L is statistically independent, thus, the layers’ covariance matrix Cy = diag(C1, ..., CL).
Based on the Karman turbulence model [2] these sub-matrices are given by

Cp=F ¢, F, fort =1,.., L. (1.10)

% 4
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1.1. Introduction

The operator F is the Fourier transform and ¢, is the spectral density of the turbulent layer given by

—5/3 ~9
Bu() == 0.023r, """ C; (he) (L11)

A (|k[? + |ro )1/

fora kg < || < 2l " with ko = 2L "

1.1.4. Deformable Mirror

A deformable mirror (DM) typically consists of a thin surface to reflect light and a set of actuators that drive
the mirror. Within this benchmark case we assume the simple model of a bilinear DM. The shape of a bilinear
DM is described using a piecewise continuous bilinear function a.

We define the domain on which the DM operates, also called actuator grid, by
2 :=[-D/2,D/2? (1.12)

where D is the telescope diameter. Further, we denote by n? the number of actuators or nodal points
of the piecewise bilinear function and assume that they are arranged in a rectangular grid with spacing
d := D/(nq — 1). Due to the circular shape of the telescope, not all of these actuators need to be active.

The actuator positions are given by (z;, ;) for 0 <4, j < n,, where
xi:=—-D/2+1-d. (1.13)
In relation to this, we define the square sub-domains of {2 by
25 = x5, Tip1] X [, j41] (1.14)
To each subdomain we associate a bilinear function defined on [0, 1]2
bij(z,y) = ai;(1 —z —y +2y) + i j+1(z — 2y) + aiv1,;(y — 2Y) + @it1,j412y, (1.15)
where the values a;; are called actuator commands.

1.1.4.1. Mirror Fitting

In the fitting step, mirror shapes are fit to the reconstructed atmosphere. This is different for each AO system.

For an SCAO system, the reconstructed layer is located at the altitude of the DM, hence, the grid points of the
reconstructed layer are aligned with the mirror nodal values and nothing has to be done.

For a LTAO system, the mirror is optimized towards a certain direction of interest §;. Thus, the fitting step is
defined by projecting through the reconstructed layers towards 6;

b1
ar = [P5% - PR | (1.16)
oL
where PQJY C;S is a bilinear interpolation on layer ¢ = 1, ..., L towards the direction 6;.

The difference to MOAO is that we are optimizing towards M directions of interest 01, ..., 0, instead of only

% 5
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1.1. Introduction

one, leading to

NGS NGS
ai Ppi3° - By T o1
= : : - (1.17)
NGS NGS
am P9MJ o PQALL oL

For a MCAO system, the fitting operator is more complex, since fitting here requires aligning M mirrors at
various altitudes to obtain a good correction over a wide field of view. For the sake of simplicity we omit this
case here for the benchmark.

1.1.5. Wavefront Sensor

A wavefront sensor (WFS) measures the wavefront aberrations indirectly. The most common WEFS is called
Shack-Hartmann WES [3], which utilizes an array of little lenses, each focused on a CCD detector plane. The
vertical and horizontal shifts of the focal points determine the average slope of the wavefront over the area of
the lens, known as subaperture. Similar to the actuator grid in (1.12) we define the subaperture grid for n?
subapertures by

2 :=[-D/2,D/2]? (1.18)

and the points with equidistant spacing inside the grid by
(wi,25) : 0 < 0,4 < ng, where z; := —D/2 + i - d. (1.19)
A subaperture is then defined as an open square sub-domain of {2

i = (T3, Tig1) X (T4, Tj41)- (1.20)

- T - -0 -
I I

r 1
I I
- =
I I

Kl

I I
- - -
] J

I I
- 1 _ - 1 _

Figure 1.4: Active subapertures

The Shack-Hartmann measurement vector is defined by s := (s%, s¥). The vectors s* and s¥ are a concatenation
of values s;; and s;’] for (7, j) a set of indices that belongs to an active subaperture {2;;. The subapertures where

% 6
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1.2. Mathematical Problem Formulation - Atmospheric Tomography

no measurements are available are excluded from s. To the above defined relation between measurements s
and wavefront aberrations ¢ we associate a Shack-Hartmann WFS operator which we denote by I" = (17, I),
where I'; and I’ determine the slopes in x- and y-direction, respectively

(s (I
s = <3y> = <Fytp> =Tp. (1.21)

The incoming wavefront aberration is approximated by a continuous piecewise bilinear function ¢ with nodal
values ¢;; at points defined by Equation (1.19)

o (pit1,; — pig) + (2302'+1,j+1 - %‘,j+1). (1.23)

1.2. Mathematical Problem Formulation - Atmospheric Tomography

Atmospheric Tomography is the fundamental problem in many AO systems used in the new generation of ex-
tremely large telescopes. Assuming a layered model of the atmosphere, the goal of the atmospheric tomography
problem is to reconstruct the turbulent layers from the wavefront sensor measurements.

telescope pupil

WFS1 WFS2 WFS3

Figure 1.5: Atmospheric Tomography

The atmospheric tomography problem is defined by
5 = (s9)g=1 = A0, (1.24)

where ¢ = (¢1, ..., ¢r) denote the L turbulent layers, s the sensor measurements and A is the tomographic

.‘ﬁ’ 7

ROMSOC Deliverable D5.2




1.2. Mathematical Problem Formulation - Atmospheric Tomography

operator. This operator is a concatenation of a Shack-Hartmann operator I, as described in Equation (1.21),
and a geometric propagation operator P, defined by (1.1) and (1.4), in the direction of the guide star. This leads
to the following equivalent formulation of Equation (1.24)

sg =14Pypforg=1,..,G. (1.25)

A common way of dealing with the problem of atmospheric tomography is the Bayesian framework [4]. The
advantage here is that it allows to incorporate the statistics of turbulence and noise. Within this framework
we consider S and ¢ to be random variables corresponding to the vectors of measurements and turbulence
layers, respectively. Further, we assume the presence of noise and model that via a noise random variable 7.
Altogether, leading to a re-formulation of Equation (1.24)

S=A¢p+n. (1.26)

The optimal solution of Equation (1.26) is given by the maximum a-posteriori estimate (MAP), which is ob-
tained by solving the linear system of equations

(ATCTA+C e = AT O s, (1.27)

where C(;l and Cy ! are the inverse covariance matrices of layers ¢ and noise 7).

This problem is ill-posed, due to the small angle of separation. The size of the matrix A depends on the number
of subapertures, which is in general higher for bigger telescopes and has increased in the last years. Moreover,
the solution has to be computed in real-time. Altogether, efficient solution methods are of great interest for
such problems. The standard way of solving this equation, however, not the most efficient one, is called Matrix
Vector Multiplication (MVM). This method will serve as benchmark method throughout this document and is
described in the following subsection.

1.2.1. Matrix Vector Multiplication

The standard approach to solve Equation (1.27) is called Matrix Vector Multiplication (MVM) [5], where the
inverse of the discretized left-hand side matrix is computed explicitly by

R:=(ATC A+ ) TA e (1.28)

and then multiplied with the sensor measurements. Typically, a mirror fitting operator F' (as defined in Section
1.1.4) is combined with the atmospheric reconstruction, mapping sensor measurements onto mirror shapes

a= (FR)s. (1.29)

The calculation of F'R is often referred to as soft real-time, since the re-computation has to be done whenever
the noise level, which changes the entries of C,, or the turbulence parameters, that effect Cy, change. In
contrast, the multiplication with the vector of sensor measurements s, which is done at approximately 500 -
1000 Hz, is called hard real-time.

1.2.1.1. Algorithm

The algorithm described above can be summarized as follows:

1. Compute the tomographic operator A as a concatenation of
* The Shack-Hartmann operator I' which is given by equations (1.21), (1.22) and (1.23).
* The geometric propagation operator P which is defined by (1.4) for LGS and (1.1) for NGS.
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2. Set up the inverse covariance matrix of noise C,’ ! by using Equation (1.2) and Equation (1.9) for NGS
and LGS, respectively.

3. Set up the inverse covariance matrix of layers C(;l by Equation (1.10) and Equation (1.11).
4. Calculate the reconstruction operator

R:=(ATC A+ C )y tA e (1.30)

Use Cholesky Decomposition for inverting the matrix (ATC’U_ 1A+ C’;l).
5. Set up the fitting operator F' depending on the operating mode of the telescope (see Section 1.1.4).
6. Multiply R by the fitting operator F' to obtain the control matrix (F'R).

7. Multiply the vector of sensor measurement s by the control matrix to obtain the mirror commands
a=(FR)s. (1.31)

1.3. Implementation and Computer Requirements

We implemented the benchmark algorithm in C++ using common libraries for matrix and vector operations,
Cholesky decomposition and Fourier transformation. If you want to set-up an environment for C++, you just
need to have a text editor to write your program and a C++ compiler to compile your source code into the final
executable program. However, we highly recommend to use an integrated development environment (IDE) for
C++, as Visual Studio, Eclipse or CLion, instead to profit from an easier way to debug and re-factor your code.

We simply followed the algorithm described in Section 1.2.1.1 step by step to implement the MVM in C++.
First, we set up the required matrices A, C,’ L C’(;l and F' as described in the introduction. Afterwards, we
computed the F'R matrix and, in a last step, we multiplied these matrix by the vector of sensor measurements
s.

1.3.1. Building Code

One of the most common C++ compiler is called GNU Compiler Collection (GCC) and can be simply down-
loaded and installed from the GCC website (https://gcc.gnu.org/). GCC is just our recommendation, you can
use any C++ compiler you prefer.

Beside GCC, we use CMake, which manages the build process in an operating system in a compiler-
independent manner. A simple configuration file called CMakeLists.txt, placed inside the source directory,
is used to generate standard build files (e.g. Makefiles). The most basic CMakeLists.txt without using any
libraries in the code and any further subdirectories looks as follows

cmake_minimum_required (VERSION 2.6)
project (MVM)

SET (CMAKE_C_COMPILER gcc)

SET (CMAKE_CXX_COMPILER g++)
add_executable (MVM mvm.cpp)

Including the libraries required for the benchmark case the CMakeLists.txt changes to

cmake_minimum_required (VERSION 2.6)

project (MVM)

find_package (BLAS)

find_package (LAPACK)

if (LAPACK_FOUND AND BLAS_FOUND)

set (lapackblas_libraries ${BLAS_LIBRARIES} ${LAPACK_LIBRARIES})
endif ()
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add_executable (MVM mvm.cpp)
target_link_libraries (MVM ${BLAS_LIBRARIES} S${LAPACK_LIBRARIES} fftw3)

1.3.2. Libraries

The Basic Linear Algebra Subprograms (BLAS) library provides routines for performing basic vector and
matrix operations. The Linear Algebra Package (LAPACK) is a C++ library that provides routines for solving
systems of linear equations, least-squares solutions of linear systems of equations, eigenvalue problems
and singular value problems. Moreover, matrix factorizations, such as LU or Cholesky decomposition,
are provided. BLAS and LAPACK are free libraries that can be downloaded on the following website:
http://www.netlib.org/lapack/ and http://www.netlib.org/lapack/. For the benchmark case we use BLAS for
matrix- and vector operations and LAPACK to perform Cholesky decomposition for inverting the matrix in
Step 4 of the MVM (see Section 1.2.1.1).

Fastest Fourier Transform in the West (FFTW) is a C library for computing the discrete Fourier trans-
form in one or more dimensions. It is a free software and can be downloaded on the FFTW website
(http://www.fftw.org/download.html). Within the benchmark case we use this library to perform the Fourier
transform and inverse Fourier transform when computing the layers covariance matrix Cy with Equation (1.10).

1.4. Numerical Example

The numerical example we consider within our benchmark case uses LTAO (see 1.1.2.3 for details) for per-
forming atmospheric tomography. Utilizing the input parameters, which are listed in the following subsection,
we can use the algorithm described in Section 1.2.1.1 to deal with the problem of atmospheric tomography and,
finally, obtain as output the actuator commands to control the deformable mirror.

1.4.1. Input Parameters

To obtain the actuator and subaperture mask I,.; and I, respectively, we can use the provided data files
L_act.txt and I_sub.txt. These two files contain O at positions where the actuator or subaperture is inactive and 1
for active actuators or subapertures. Both matrices are stored as an 1D-array inside the data files. The relation
between an index k in the 1d-array and entries (i, j) of the corresponding n x n matrix is given by

k=i-n+j.
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Operating mode LTAO

Telescope diameter D 42 m

Type of WES Shack-Hartmann

Number of WFS 9

Number of layers L 9

Layer heights hy [0, 140, 281, 562, 1125, 2250, 4500, 9000, 18000]

2
Layer strength c;,

[0.5224, 0.0260, 0.0444, 0.1160, 0.0989, 0.0295, 0.0598, 0.0430, 0.0600]

Discretization spacing on layer d,

[0.5,0.5,0.5,0.5,0.5,0.5,0.5,1, 1]

Number of subapertures 74 84 x 84 =7056
Number of actuators n, 85 x 85=7225
Number of photons 72,40t0ns 100

Number of LGS Gras 6

LGS positions (3.75, 0), (3.75/2, 3.75-1/3/2), (-3.75/2, 3.75 -\/3/2), (-3.75, 0),
(-3.75/2, -3.75-V/312), (3.75/2, -3.75 -\/3/2)

LGS wavelength A\;gs 589 nm

LGS FWHM 11.4 km

LGS height H 90 km

LL xLL)

Laser launch positions (z;", j

(16.26, -16.26), (16.26, 16.26), (-16.26, 16.26), (-16.26, 16.26),
(-16.26, -16.26), (16.26, -16.26)

Number of NGS G nas 3

NGS positions (-5,0), (52, 5/312), (5/2, -5 -v/3/2)
NGS wavelength Aygs 500 nm

FWHM of non-elongated spot f 1.1

Outer scale L 25 m

Fine-tuning parameter o, 0.4

Fried parameter 7 0.129

Number of measurements 7,¢4s

84-84-2-9=127008

Sensor measurements s

(1, ..., 1] € R127008

If for a parameter in the table above no unit is specified, the SI-Unit is meant.

Based on these input parameters we can start with the algorithm described in Section 1.2.1.1. First, we set up
the required matrices A, Cy and C;,. Then we use the libraries described in Section 1.3 to perform matrix and
vector operations and Cholesky Decomposition.

1.4.2. Ouput - DM commands

The output of the MVM algorithm are the mirror commands, with whom the deformable mirror can be adjusted
such that atmospheric distortions are corrected. For our specific benchmark case the resulting DM commands
are stored in an array of size 85 x 85, thus, we omitted to put the output inside this document and provided a
data file output.txt where all DM commands are listed.

%

ROMSOC Deliverable D5.2

11




Part Il.

Implementing acoustic scattering simulations for external
geometries within a porous enclosure

Ashwin Nayak, Andrés Prieto, Daniel Ferndndez

Abstract

The details in implementing an acoustic scattering simulation of a rigid exterior domain enclosed in a porous
layer are outlined. Details of the mathematical model used are highlighted alongside numerical procedures im-
plemented in obtaining an approximate solution. An elaborate end-to-end strategy using open-source software
tools to compute the solution is also provided. The developed tool is validated for a test case spherical geometry
and the methodology to reproduce the same is thoroughly indicated.

Keywords: Scattering, aecroacoustics, porous materials.

2.1. Introduction

Sound sensors are generally housed in a casing and use porous enclosures to filter noise - a critical component
in acoustic measurements. Understanding the transmission of sound through different media is key in designing
and improving accuracy of an acoustic sensor. Of relevance in the project is the Microflown sensor, distinguised
by their ability to measure both the intensity and direction of sound. The sensor is commercially available in
a variety of housings and porous enclosures, suiting different acoustic environments. A computational model
is sought to accurately predict the sound transmission in windy conditions in presence of porous enclosures.
While the physics dictates a different sound transmission model in porous media and flow conditions, the
model needs to couple these behaviors effectively to capture the combined influence on the incident signal.
An earlier report[6] proposed a progressive development of such a model in stages, given as benchmark cases.
This article highlights the software implementation of the model-in-development, currently highlighting the
implementation of coupling between a still fluid and a rigid-frame porous media. A similar procedure is utilized
in further developments and will be reported in future.

The implementation considered is one of the benchmark stages of the project i.e. to solve for the acoustic
scattering effect of a rigid object represented by the external domain {2g, enclosed entirely by a porous layer
2p. The setup is placed in an acoustic field represented by the unbounded domain {2r, as shown in the
schematic Fig.2.1a. To be more generic with possible configurations - a fluid-filled gap is considered between
the structure and the porous enclosure. An acoustic wave of a certain kind (plane wave, spherical etc.) is
assumed to be incident on the setup and a model is sought to compute the scattering of the incident wave due
to the object.

/// \\\\ DQS
// \\
l/ \\ DQF
! /
\ 1
\\ /’ D.QP

\ /

\\\\___/,/ C2pML
(a) (b)

Figure 2.1: Schematic of the original problem configuration on unbounded domain (a),
and the model configuration with perfectly matched layers (b).
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The problem can be mathematically formulated in various physically-relevant variables e.g scalar fields like
pressure, displacement potential or velocity potential; or vector fields like displacement or velocity, the choice
often being the vector fields for coupled systems [7]. In this particular implementation, the acoustic oscillations
are chosen to be represented by the displacement vector field.

A series of assumptions are considered to arrive at a feasible mathematical model for the problem. The acoustic
fluid is assumed to be homogeneous, non-viscous, compressible, isotropic and isentropic. Also, the porous
layer is considered to be made of homogeneous, isotropic and isothermal material. The acoustic fields are
assumed to be time-harmonic. The problem configuration is also posed in an unbounded domain which ensures
a complete dissipation of all outgoing waves. Pragmatically, this is mimicked by a model configuration with
a finite truncation of the domain and an artificial boundary enclosing it with absorbing properties, known in
literature as the perfectly matched layers (PML) technique [8, 9]. It is represented by the Cartesian box {2pr,
in Fig.2.1b.

The mathematical formulation for the coupled problem may be surmised as the following system of equations:
for a particular frequency, w,

—V(prct divup) — prwup = fr  in 0, 2.1
—V(Kp(w)divup) — pp(w)w?up = fp in 2p, (2.2)

— div(ppEC(Vupmr)) — pro’ Mupyr, = fomn  in Qpy, (2.3)
up-n =g onlg, 2.4)

up-n—up-n=0 onlg, (2.5

prck divup — Kp(w)divup =0 on I, (2.6)

up-n —upmr,-n =0 on Ipym, 2.7

divup —divup =0 on I'pyr,. (2.8)

Here, ur, up and upyg, are the displacement vector fields in the fluid, porous and PML domains respectively.
I's, I'c and I'py, represent the boundaries making up the interfaces between structure-fluid, fluid-porous and
fluid-PML domains with outward facing normals, . The model includes material properties like fluid mass
density pr, sound speed in the fluid cp, the dynamic porous mass density pp and the dynamic porous bulk
modulus Kp. Equations (2.1)-(2.3) represent the Helmholtz-like equations in each of the domains. Equation
(2.4) is a boundary condition at the object boundary and (2.5)-(2.8) represent the pressure and displacement
continuity conditions on the interfaces. The source-terms fr, fp, fpmr, and function g appear according to
initial sources of disturbances and are explained later in this document.

The porous material properties are determined either through experiments conducted apriori or through suitable
models. A wide range of porous material models provide the material response along a range of frequencies e.g
the Zwikker-Kosten model, Miki model, Johnson-Champoux-Allard-Lafarge Model, the Johnson-Champoux-
Allard-Pride-Lafarge model among others [9, 10]. The fairly detailed six-parameter Johnson-Champoux-
Allard-Lafarge (JCAL) model is chosen in the current article to obtain the dynamic porous mass density and
bulk modulus, given by equations,

PF . 09 AaZ nprw
=M [1- 1+ i-——oelPEE ) 2.
pp(w) 5 o ( lprOéoo +1i 2127 > (2.9)
Kp(w) = Pk /¢ — (2.10)
e Ak}’ prwPr
7-r=1) 1_1;W\/1+17W

The JCAL model is reliable for porous materials with arbitrarily shaped pores. The parameters in the model:
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porosity ¢, flow resistivity o, tortuosity .., viscous characteristic length A, thermal characteristic length A’ and
static thermal permeability kq'; effectively capture the macroscopic thermal, viscous and inertial characteristics
of the porous material. The model also requires the fluid state properties like density pr, specific heat ratio v,
Prandtl Number Pr, and equilibrium fluid pressure Pr.

The Helmholtz-like PML governing Equation (2.3) ensures absorption of outgoing waves. This is achieved by
a complex stretching of spatial variables[11] by the fourth-order tensor C and the second-order tensor M given
by,

3

~ 1 Ow;
Cvw) = [ S 22 | @.11)
jz; " Oz
3
and M = Z’Yjej ® e, (2.12)
j=1

where, | is the fourth-order identity tensor and e;’s are the unit vectors along the spatial directions. The
optimally-tuned functions provided by Bermudez et al.[12] are chosen among the various choices for the com-
plex stretching functions «y;’s, giving,

1 lzj| < Lyj,

W)= T < |a] < L
w(LP —ag)) 7= T

(2.13)

Here, L; and L7° are respectively the lengths of the Cartesian box of the truncated fluid domain and the PML
domain, along the direction x; from the origin. The definition of 7; as a piece-wise function ensures the
absorption of waves only along the outward direction of propagation. Consequently, the tensors C and M are
piece-wise and needs to be considered with care during the implementation.

The model described in Equations (2.1)-(2.8) explain the propagation of a generic acoustic field and needs
adaptation for our initial problem of computing the acoustic scattering of an incident wave. The total normal
displacement at the object boundary are zero (g = 0) since the structure is assumed rigid. The principle of
superposition may then be utilized to split the total field into the incident field and scattered field components.
The equations are then rewritten in terms of the scattered part of the field to obtain right-hand-sides, some of
which are non-null.

Considering that the displacement vector fields, up, up and wpyr,, are defined in exclusive domains albeit with
different smoothing requirements, it may be unified to be a member of a functional space V introduced as,

V= {'u € [L2(2)P : v|g, € H(div, 2p), v|op € H(div, 2p), Mv|opy, € [L2(2pw)]%,
s Loy
" 9%

=1

€ L2((2pML),v -n=0o0n FOO}, (2.14)

vENPML

which also ensures the necessary continuity and differentiable properties at the interfaces. The variational form
can then be deduced from Equations (2.1)-(2.3) by multiplying a test function v € V and utilizing the Green’s

>
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theorem : Find u € V such that,

/ prc? (div ) (dive) dV — / prwiu - vdV
QF -QF

: i — w)w?u - v
+/QP Kp(w)(divu)(dive)dV /QP pp(w) dv

+/ pFCQE(VU) : V'vdV—/ pmﬂﬁu-vdv = fr-odV + fp-vdV
2pML 2pML p 2p

+ / fPML -odV (2.15)
2pML

holds for all v € V and also, v = 0 at I'y. The Equation (2.15) maybe more conveniently expressed in the
general form of a linear variational problem with A and £ being the sesquilinear and linear functionals as,

A(u,v) = L(v). (2.16)

A practical implementation of this model would require the approximation of an infinite dimensional functional
space V, with a discrete n-dimensional space V, with a finite set of basis functions ¥, h = 1,2, ..., n. This
reforms Equation (2.16) as,

> AWy, e = L(s)  fors =1,2....n; (2.17)

r=1

with the p,’s as coefficients of the basis functions. A solution may then be obtained by solving this system of
equations. The following sections details the implementation of this model along with a specific example of
acoustic transmission across a porous layer around a vibrating sphere.

2.2. Implementation

The implementation follows the requirements of the model and may be divided into three main stages viz.,
mesh generation, solving equations and visualizing solutions. The different stages of the implementation and
the overall workflow is illustrated in Fig.2.2. The mesh generation stage requires the user inputs on geometrical
configuration of the setup. This includes the exact dimensions of the structure, porous layer, fluid domain
and PML. Considering that the variational form includes integrals which differ in sub-domains, it is necessary
to mark the mesh cells according to region requiring conformality of the mesh with the geometry of sub-
domains. Furthermore, user inputs may be needed to suggest local refining of the mesh in a particular region
or surface to capture the geometry accurately. The generated mesh also needs to be adapted to the file format
compatible with the solver. The solver imports the mesh data and categorizes cells according the sub-domain
regions. It is responsible for implementing the finite-element method - defining the discrete functional space
with chosen basis functions and assembling the system of equations before solving them. The solution obtained
may also include processing for analysis before being saved in a memory-efficient storage format. Finally, the
visualization tool reads the simulated solution from the disk to provide graphical representations aiding the
user in deriving information and performing analysis. The following sections explain the usage of each of the
stages and the related tools in detail. The software tools used in the implementation of the project require a
minimal UNIX system with atleast 1GB of memory and about SO0MB of disk space (swap) for execution. It is
recommended to have some higher configuration would ease the workflow and be capable of handling problems
of larger order.
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Geometry Model
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Figure 2.2: Workflow representing implementation stages and their interfaces.

2.2.1. Geometry and Meshing

The digital representation of the setup is first done by modeling the geometry and then discretizing it to form a
mesh. While several tools and techniques are available for this, the open-source modules offered by SALOME
are used in this article, which provides capabilities for interfacing with various numerical simulation tools. It
has a flexible cross-platform architecture made of reusable components allowing for customized integration and
handling of complex geometrical objects. It allows for creation of geometry and meshes using either (or both)
the graphical user interface (GUI) and a text user interface (TUI). The following sections explains the usage
of creating geometries and meshes using the TUI, a powerful Python-based scripting interface. The same may
also be achieved either in part or entirety by using the GUI which allows for exporting the equivalent state in a
TUI script.

The TUI provides geomBuilder, a Python module for the creating and editing geometry. An instance of the
geomBuilder class contains a list of function attributes for operations useful in creating complex geometrical
objects. It allows for creating basic objects and primitives in 1D, 2D, 3D; perform boolean operations like fuse,
common, cut and section operations; execute extrusion, rotation and other linear operations; create higher order
topological objects like solids and compounds grouped from primitives; and implement an advanced partition
or gluing between geometrical structures, among others. Table 1 lists some useful TUI commands available as
function attributes, whereas a detailed description along with other functions are available in the documentation
[13].

The meshing section is again accessed through another Python module, smeshBuilder. It presents differ-
ent algorithms to create meshes on the basis of geometrical models created by geomBuilder.The module
also provides control on mesh generation like maintaining conformality between subgroups, splitting, edit-
ing, boolean operations and marking. These are handy in segregating subdomains accurately in a mesh. The
NETGEN-1D2D3D algorithm is utilized for the purposed for the project which provides a range of control
parameters like tetrahedral or hexahedral mesh elements, specifying the global maximum or minimum size of
the edges and also control locally-permissible edge sizes on a lower-order geometrical construct - useful in
refining the mesh near a point or a face.
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The instance of the smeshBuilder class is provided with the geometrical object to mesh and the algorithm
specifications. The snippet code below illustrates access to the parameters of NETGEN-1D2D3D algorithm
and specify the relevant conditions for the mesh. The most useful functions are listed in table 1. The mesh is

computed after all the parameters are set.

from salome.smesh import smeshBuilder
smeshBuilder.New ()
domain_mesh = smesh.Mesh (Domain)

smesh =

# Select type of
NETGEN_3D =
NETGEN_3D_Params =

#Instantiate the smeshBuilder class
#Domain is a geometrical object

elements and algorithm to compute them
domain_mesh.Tetrahedron(algo=smeshBuilder .NETGEN_1D2D3D)
NETGEN_3D.Parameters ()

#Access parameters.

MakeVertex Creates a vertex
MakeVectorDXDYDZ Creates a vector
MakeBoxTwoPnt Creates a Cuboid defined by ends of a body diagonal
MakeSphereR Creates a Sphere at origin given the radius
GeomBuilder MakeCylinder Creates a Cylinder
TranslateDXDYDZ Linear translation of a geometrical object
MakeCutList Boolean operation between two geometrical object
MakePartition Group various sub-shapes into one geometrical object
SubShapeSortedCentres | Obtain sub-structures of a complex object
Tetrahedron Set cells to be tetrahedral
Mesh Compute Compute the Mesh
Reorient2DBy3D Order the cell normals to face either outward or inward
SetMaxSize Limit global maximum edge length in mesh
NETGEN Parameters | SetMinSize Set global minimum edge length in mesh
SetLocalSizeOnShape Set local size on a sub-shape

Table 1: Useful functions in SALOME’s geom and smesh modules

The SALOME classes are provided only in its own environment and the scripts are executed through a wrapper
offered as,

$ salome -t script.py # Runs script.py in SALOME's shell

2.2.2. Solver

The solver of choice is FEniCS, a popular open-source finite-element library for solving partial differential
equations(PDEs). It offers a rich interface with data-structures and optimized algorithms for finite-element
code which makes it easy to write PDEs. The library is optimized and parallel by design and it is easy to deploy
and scale the code into high-performance computing clusters. With its Python and C++ interfaces, FEniCS
offers powerful capabilities to integrate into workflows.

The FEniCS library offers a number of component modules and the interfacing is done mainly through its
DOLFIN and UFL modules. DOLFIN is the highly optimized computational back-end written in C++ respon-
sible for finite-element machinery. It provides abstract data-structures similar to mathematical terms such as
mesh, finite element, function spaces and functions. It also includes compute-intensive algorithms such as
finite-element assembly and mesh refinement, and, interfaces to various linear algebra solvers and libraries like
PETSc. UFL, on the other hand, provides an abstract mathematical language to express variational problems
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which are interpreted automatically and connected to DOLFIN classes.

The powerful feature of the solver is its ability to interpret the variational form in an easily readable UFL
framework. The Python module also allows for finer control through a detailed interface to the underlying
C++ code enabling sub-classing and base class overloading. Among others, it provides an Expression class
which can be used for user-defined expressions specified by C++ code and compiled during execution by a
just-in-time (JIT) compiler for efficiency. A detailed documentation along with numerous examples are offered
by Langtangen et al.[14] and at the official FEniCS documentation webpage[15]. It is to be noted that the
library is limited by its inability to handle complex numbers and needs additional care to ensure that the real
and imaginary parts of the equations and function spaces are represented separately.

2.2.3. Post-processing and Visualization

Visualization of generated simulation data is critical in understanding the physical process. Implementing and
representing this data in a simple and effective manner is extremely useful for deriving information, presenting
results, and also in testing and debugging. The post-processing operations on the solution is dependent on
the study undertaken by the user. In this specific use case, some routine cases of analysis include validation
of the solver for a test case, measure of a field at a particular point in space and directivity patterns of fields
around the object amongst many others. The implementation of these could either be included in the solver
phase or during the visualization phase. Within the solver phase, these could just be operations on the solution
data done using Python and plotted using some common user preferred graphing libraries like Matplotlib[16].
The approach quickly gets overwhelming while dealing with 3D datasets and it is useful to use a dedicated
visualization tool like ParaView. It is a widely used open-source visualization tool for plotting and viewing
solutions and graphs. It offers a powerful and an intuitive 3D visualization interface allowing for heavy in-situ
customization and processing of simulation data. Furthermore, it also provides a Python scripting interface to
automate visualization for batch processing.

ParaView uses a three-stage procedure for visualization of data: reading, filtering and rendering, all done
using the user interface. The simulation data from the solver is read into memory through many supported
file formats. The dataset being typically large, the XDMF (eXtensible Data Model and Format) file format is
used for storage, which is able to manage extremely large datasets and is scalable for parallel systems. Filters
provide the ability to extract or analyze this data into information. There are a wide range of filters available for
analysis and visualization including plotting graphs, contours, surface plots, vector field plots etc. In addition,
it is also possible to define user-defined filters to perform customized operations. The rendering stage deals
with generating images or interactive plots from the filtered information. ParaView provides a user guide[17]
and many tutorials[18] highlighting the usage and relevance of each of the stages along with the available
functionalities to fully exploit its potential.

2.3. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

The implementation considered is a test case to validate our model, the acoustic transmission of a vibrating
sphere placed in a spherical porous enclosure in illustrating the use of the described tools. The solution for the
case can also be computed analytically.

2.3.1. Description of test case sphere

A sphere of radius Ry is placed at the origin within an acoustic fluid of density pr. It is enclosed in a hollow
spherical porous disk with an inner radius of R; and an outer radius of Ro. Given that the surface of the sphere
vibrates at a constant rate producing oscillations of frequency w, the problem is then to compute the distortion
of the acoustic field due to the porous layer.
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Figure 2.3: Schematic of the spherical test case posed in an unbounded domain (left)
and modeled using perfectly matched layers (right).

2.3.2. Exact solution

The exact solution maybe obtained by enforcing a constant Neumann boundary condition on the surface of the
sphere. The Helmholtz equation then only has radially dependent solutions which may be expressed as a linear
combination of incoming and outgoing waves. Writing in term of pressure fields the exact solution is obtained
as,

6—ikF7’ eikpr
Ay + B , Tre [R(),R1],
T T
—ikpr ikpr
p(’l") = AQe + Bze , TreE [Rl,RQ], (2.18)
T T
eikpr
B3 p_— re [RQ, OO)

where A;’s correspond to the coefficients of incoming waves (for [ = 1,2), and B,;,’s to the coefficients of
outgoing waves(for m = 1,2, 3). In an unbounded domain, since there are no i