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Abstract

Based on the multitude of industrial applications, benchmarks for model hierarchies will be created that will
form a basis for the interdisciplinary research and for the training programme. These will be equipped with
publically available data and will be used for training in modelling, model testing, reduced order modelling,
error estimation, efficiency optimization in algorithmic approaches, and testing of the generated MSO/MOR
software. The present document includes a detailed description of the computer implementation of these bench-
marks involving not only the required publically available data but also the used software packages, libraries
and any other relevant information, which guarantee a fully reproducibility of the reported numerical results.
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Part I.
A benchmark for atmospheric tomography
Bernadett Stadler, Ronny Ramlau, Andreas Obereder

Abstract

The new generation of ground-based extremely large telescopes requires highly efficient algorithms to achieve
an excellent image quality in a large field of view. These systems rely on adaptive optics (AO), where one
aims to compensate the rapidly changing optical distortions in the atmosphere in real-time . Many of systems
require the reconstruction of the turbulence layers, which is called atmospheric tomography. Mathematically,
this problem is ill-posed, due to the small angle of separation. The dimension of the problem depends on the
telescope size and has increased in the last years. Altogether, efficient solution methods are of great interest.
Within this benchmark case we will use the standard, however, not most efficient method, called Matrix Vector
Multiplication, to deal with the problem of atmospheric tomography.
Keywords: Adaptive optics, atmospheric tomography, benchmark, MVM.

1.1. Introduction

The new generation of planned earthbound Extremely Large Telescopes (ELT) aims at excellent image quality
in a large field of view. Such systems rely on Adaptive Optics (AO) with the task to correct optical distortions
caused by atmospheric turbulences. To achieve such a correction, the deformations of optical wavefronts,
emitted by natural or artificial guide stars, are measured via wavefront sensors and, subsequently, corrected
using deformable mirrors. Many of those systems require the reconstruction of the turbulence profile in the
atmosphere, which is called atmospheric tomography.

Before we define the mathematical problem of atmospheric tomography, we first introduce some basics about
adaptive optics (AO) such as the concept of guide stars, operating systems, turbulence statistics, deformable
mirrors and wavefront sensors. For more details about AO we refer to [1].

1.1.1. Guide Stars

Guide stars (GS) are either natural stars up in the sky near the object of interest or generated by a laser beam.

1.1.1.1. Natural Guide Star

A natural guide star (NGS) is a bright star that serves as a reference point for the WFS to detect atmospheric
distortions. The star is modelled as a point source at a height of infinity. Assuming the layered atmospheric
model, the wavefront aberrations in the direction θ of a NGS are given by

ϕθ(x) = (PNGSθ φ)(x) :=

L∑
`=1

φl(x+ θh`), (1.1)

where φ` is the turbulent layer at altitude hl for ` = 1, ..., L. We call PNGSθ the geometric propagation operator
in the direction of the NGS.

Within our benchmark case we assume that the photon noise from the NGS, that affects the WFS measurements,
is modeled by a Gaussian random variable with zero mean and covariance matrix Cη. The noise is identically
distributed in each subaperture and the x- and y-measurements noise is uncorrelated. Thus, the covariance
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1.1. Introduction

matrix can be defined by
Cη = σ2I, (1.2)

where σ2 is the noise variance of a single measurement, which is given by

σ2 =
1

nphotons
, (1.3)

where nphotons is the number of photons per subaperture.

1.1.1.2. Laser Guide Star

For a laser guide star (LGS) the model is slightly more complicated than for NGS. In particular, two important
effects are taken into account in our benchmark case.

Cone effect
In contrast to the infinite height that is assumed for a NGS, the LGS is considered to be a fixed point at a finite
height H . Due to the finite altitude, the light detected by the telescope passes through a cone-like volume in
the atmosphere (see Figure 1.1). This behaviour is referred to as the cone effect.

Figure 1.1: Active Subapertures

Assuming a layered model of the atmosphere, as for the NGS case, the incoming wavefront aberrations in the
direction θ of a LGS are given by

ϕθ(x) = (PLGSθ φ)(x) :=

L∑
`=1

φl((1−
h`
H

)x+ θh`), (1.4)

where PLGSθ is called the geometric propagation operator in the direction of the LGS.

Spot elongation
For a LGS the sodium layer thickness has to be taken into account for modelling the photon noise. As the
sodium layer has a certain width, the scattering of the laser beam happens in a vertical stripe, instead of in a
single point. This stripe is observed as an elongated spot by the charge-coupled device (CCD) detector of the
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1.1. Introduction

WFS. Thus, this effect is called spot elongation.

The vertical density profile of the laser beam scatter is modelled by a Gaussian random variable with mean H
and a full width at half maximum (FWHM) parameter, which is defined by

FWHM = 2
√

2ln(2)σ. (1.5)

Further, we define the laser launch positions as (xLL1 , xLL2 ) and the midpoint of a subaperture Ωij by

x̄i =
xi + xi+1

2
, (1.6)

for 0 ≤ i < ns where the xi are given by (1.19).
The elongation vector in a subaperture Ωij is given by

βij = (βij,1, βij,2) =
FWHM

H2
((x̄i, x̄j)− (xLL1 , xLL2 )). (1.7)

The spot elongated noise covariance matrix in a subaperture is given by

Cij = σ2(I +
α2
η

f2
)

(
β2
ij,1 βij,1βij,2

βij,1βij,2 β2
ij,2

)
, (1.8)

where σ is defined as in (1.3), f is the FWHM of the non-elongated spot and αη is a fine-tuning parameter to
cope with other sources of noise (e.g. read out noise).

Summarized, the noise model for the WFS associated to an LGS is given by a Gaussian random variable with
zero mean and covariance matrix

Cη = diag(Cij), (1.9)

with 0 ≤ i, j < ns for an active subaperture Ωij .

1.1.2. Operating Modes

Depending on the number of NGS and LGS the AO systems operates in different modes, which are listed in the
following subsections.

1.1.2.1. Single Conjugate AO

If the object of interest, e.g., a star or a galaxy, is located near a bright NGS, the classical AO system Single
Conjugate AO (SCAO) is used. In a SCAO system the wavefront is reconstructed using one WFS, that measures
the data, and one DM, where the shape is chosen according to the reconstruction. One issue with SCAO systems
is that the further away the object of interest is from the NGS, the worse is the correction of the wavefront.

1.1.2.2. Laser Tomography AO

If no NGS is available in the vicinity of the object of interest, the usage of an SCAO system is not possible.
The idea is to generate LGS to obtain a good correction. This LGS is combined with at least one NGS to
correct for the low order modes, which are not available using only LGS. In the general, a combination of
several LGS and NGS is possible.

Within the framework of a laser tomography AO (LTAO) GLGS and GNGS are used in combination with a
single mirror to reconstruct the wavefront. The correction is performed through two steps. The first step
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1.1. Introduction

Figure 1.2: Principle of LTAO Figure 1.3: Principle of MOAO

is called atmospheric tomography, where the turbulent layers are reconstructed from sensor measurements.
In the second step, the shape of the DM is chosen according to the projection of the wavefront through the
reconstructed layers in the direction of interest.

1.1.2.3. Multi Object AO

In contrast to LTAO multi object AO (MOAO) corrects for multiple directions of interest, simultaneously, by
using several mirrors. Each mirror corrects for a specific direction. As in the LTAO case a combination of NGS
and LGS is used for reconstructing the layers.

1.1.2.4. Multi Conjugate AO

As in MOAO, a Multi Conjugate AO (MCAO) system corrects for multiple directions, however, with the aim
to achieve a uniformly optimal correction over the whole field of view and not into specific directions. For that
purpose, several DMs are used conjugated to different heights in the atmosphere.

1.1.3. Turbulence Statistic in the Atmosphere

The main source of distortions of the wavefront are atmospheric turbulences, which emerge from irregular
mixing of cold an hot air affected by the sun and wind. Due to these irregularities the refractive index of air
is inhomogeneous. This leads to a distorted wavefront arriving at the telescope pupil. Within atmospheric
tomography, we assume a layered model of the atmosphere with the goal to reconstruct the turbulent layers.
Since these turbulence effects are not predictable, we model the turbulent layers as a Gaussian random variable
with zero mean and covariance matrix Cφ.

Each layer ` = 1, ..., L is statistically independent, thus, the layers’ covariance matrix Cφ = diag(C1, ..., CL).
Based on the Karman turbulence model [2] these sub-matrices are given by

C` = F−1φ`F , for ` = 1, ..., L. (1.10)
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1.1. Introduction

The operator F is the Fourier transform and φ` is the spectral density of the turbulent layer given by

φ`(κ) :=
0.023r

−5/3
0 C2

n(h`)

4π(|κ|2 + |κ0|2)11/6
, (1.11)

for a κ0 < |κ| < 2πl−1
0 with κ0 = 2πL−1

0 .

1.1.4. Deformable Mirror

A deformable mirror (DM) typically consists of a thin surface to reflect light and a set of actuators that drive
the mirror. Within this benchmark case we assume the simple model of a bilinear DM. The shape of a bilinear
DM is described using a piecewise continuous bilinear function a.

We define the domain on which the DM operates, also called actuator grid, by

Ω := [−D/2, D/2]2, (1.12)

where D is the telescope diameter. Further, we denote by n2
a the number of actuators or nodal points

of the piecewise bilinear function and assume that they are arranged in a rectangular grid with spacing
d := D/(na − 1). Due to the circular shape of the telescope, not all of these actuators need to be active.

The actuator positions are given by (xi, xj) for 0 ≤ i, j ≤ na, where

xi := −D/2 + i · d. (1.13)

In relation to this, we define the square sub-domains of Ω by

Ωij := [xi, xi+1]× [xj , xj+1]. (1.14)

To each subdomain we associate a bilinear function defined on [0, 1]2

bij(x, y) = aij(1− x− y + xy) + ai,j+1(x− xy) + ai+1,j(y − xy) + ai+1,j+1xy, (1.15)

where the values aij are called actuator commands.

1.1.4.1. Mirror Fitting

In the fitting step, mirror shapes are fit to the reconstructed atmosphere. This is different for each AO system.
For an SCAO system, the reconstructed layer is located at the altitude of the DM, hence, the grid points of the
reconstructed layer are aligned with the mirror nodal values and nothing has to be done.

For a LTAO system, the mirror is optimized towards a certain direction of interest θ1. Thus, the fitting step is
defined by projecting through the reconstructed layers towards θ1

a1 = [PNGSθ1,1 · · · P
NGS
θ1,L ]

φ1
...
φL

 , (1.16)

where PNGSθ1,`
is a bilinear interpolation on layer ` = 1, ..., L towards the direction θ1.

The difference to MOAO is that we are optimizing towards M directions of interest θ1, ..., θM , instead of only
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1.1. Introduction

one, leading to  a1
...
aM

 =

P
NGS
θ1,1

· · · PNGSθ1,L
...

...
PNGSθM ,1

· · · PNGSθM ,L


φ1

...
φL

 . (1.17)

For a MCAO system, the fitting operator is more complex, since fitting here requires aligning M mirrors at
various altitudes to obtain a good correction over a wide field of view. For the sake of simplicity we omit this
case here for the benchmark.

1.1.5. Wavefront Sensor

A wavefront sensor (WFS) measures the wavefront aberrations indirectly. The most common WFS is called
Shack-Hartmann WFS [3], which utilizes an array of little lenses, each focused on a CCD detector plane. The
vertical and horizontal shifts of the focal points determine the average slope of the wavefront over the area of
the lens, known as subaperture. Similar to the actuator grid in (1.12) we define the subaperture grid for n2

s

subapertures by
Ω := [−D/2, D/2]2, (1.18)

and the points with equidistant spacing inside the grid by

(xi, xj) : 0 ≤ i, j ≤ ns, where xi := −D/2 + i · d. (1.19)

A subaperture is then defined as an open square sub-domain of Ω

Ωij := (xi, xi+1)× (xj , xj+1). (1.20)

Figure 1.4: Active subapertures

The Shack-Hartmann measurement vector is defined by s := (sx, sy). The vectors sx and sy are a concatenation
of values sxij and syij for (i, j) a set of indices that belongs to an active subaperture Ωij . The subapertures where
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no measurements are available are excluded from s. To the above defined relation between measurements s
and wavefront aberrations ϕ we associate a Shack-Hartmann WFS operator which we denote by Γ = (Γx, Γy),
where Γx and Γy determine the slopes in x- and y-direction, respectively

s =

(
sx

sy

)
=

(
Γxϕ
Γyϕ

)
= Γϕ. (1.21)

The incoming wavefront aberration is approximated by a continuous piecewise bilinear function ϕ with nodal
values ϕij at points defined by Equation (1.19)

sxij '
(ϕi,j+1 − ϕi,j) + (ϕi+1,j+1 − ϕi+1,j)

2
, (1.22)

syij '
(ϕi+1,j − ϕi,j) + (ϕi+1,j+1 − ϕi,j+1)

2
. (1.23)

1.2. Mathematical Problem Formulation - Atmospheric Tomography

Atmospheric Tomography is the fundamental problem in many AO systems used in the new generation of ex-
tremely large telescopes. Assuming a layered model of the atmosphere, the goal of the atmospheric tomography
problem is to reconstruct the turbulent layers from the wavefront sensor measurements.

Figure 1.5: Atmospheric Tomography

The atmospheric tomography problem is defined by

s = (sg)
G
g=1 = Aφ, (1.24)

where φ = (φ1, ..., φL) denote the L turbulent layers, s the sensor measurements and A is the tomographic
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operator. This operator is a concatenation of a Shack-Hartmann operator Γ , as described in Equation (1.21),
and a geometric propagation operator P , defined by (1.1) and (1.4), in the direction of the guide star. This leads
to the following equivalent formulation of Equation (1.24)

sg = ΓgPgφ for g = 1, ..., G. (1.25)

A common way of dealing with the problem of atmospheric tomography is the Bayesian framework [4]. The
advantage here is that it allows to incorporate the statistics of turbulence and noise. Within this framework
we consider S and φ to be random variables corresponding to the vectors of measurements and turbulence
layers, respectively. Further, we assume the presence of noise and model that via a noise random variable η.
Altogether, leading to a re-formulation of Equation (1.24)

S = Aφ+ η. (1.26)

The optimal solution of Equation (1.26) is given by the maximum a-posteriori estimate (MAP), which is ob-
tained by solving the linear system of equations

(ATC−1
η A+ C−1

φ )φ = ATC−1
η s, (1.27)

where C−1
φ and C−1

η are the inverse covariance matrices of layers φ and noise η.
This problem is ill-posed, due to the small angle of separation. The size of the matrix A depends on the number
of subapertures, which is in general higher for bigger telescopes and has increased in the last years. Moreover,
the solution has to be computed in real-time. Altogether, efficient solution methods are of great interest for
such problems. The standard way of solving this equation, however, not the most efficient one, is called Matrix
Vector Multiplication (MVM). This method will serve as benchmark method throughout this document and is
described in the following subsection.

1.2.1. Matrix Vector Multiplication

The standard approach to solve Equation (1.27) is called Matrix Vector Multiplication (MVM) [5], where the
inverse of the discretized left-hand side matrix is computed explicitly by

R := (ATC−1
η A+ C−1

φ )−1ATC−1
η . (1.28)

and then multiplied with the sensor measurements. Typically, a mirror fitting operator F (as defined in Section
1.1.4) is combined with the atmospheric reconstruction, mapping sensor measurements onto mirror shapes

a = (FR)s. (1.29)

The calculation of FR is often referred to as soft real-time, since the re-computation has to be done whenever
the noise level, which changes the entries of Cη, or the turbulence parameters, that effect Cφ, change. In
contrast, the multiplication with the vector of sensor measurements s, which is done at approximately 500 -
1000 Hz, is called hard real-time.

1.2.1.1. Algorithm

The algorithm described above can be summarized as follows:

1. Compute the tomographic operator A as a concatenation of
• The Shack-Hartmann operator Γ which is given by equations (1.21), (1.22) and (1.23).
• The geometric propagation operator P which is defined by (1.4) for LGS and (1.1) for NGS.
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2. Set up the inverse covariance matrix of noise C−1
η by using Equation (1.2) and Equation (1.9) for NGS

and LGS, respectively.
3. Set up the inverse covariance matrix of layers C−1

φ by Equation (1.10) and Equation (1.11).
4. Calculate the reconstruction operator

R := (ATC−1
η A+ C−1

φ )−1ATC−1
η . (1.30)

Use Cholesky Decomposition for inverting the matrix (ATC−1
η A+ C−1

φ ).
5. Set up the fitting operator F depending on the operating mode of the telescope (see Section 1.1.4).
6. Multiply R by the fitting operator F to obtain the control matrix (FR).
7. Multiply the vector of sensor measurement s by the control matrix to obtain the mirror commands

a = (FR)s. (1.31)

1.3. Implementation and Computer Requirements

We implemented the benchmark algorithm in C++ using common libraries for matrix and vector operations,
Cholesky decomposition and Fourier transformation. If you want to set-up an environment for C++, you just
need to have a text editor to write your program and a C++ compiler to compile your source code into the final
executable program. However, we highly recommend to use an integrated development environment (IDE) for
C++, as Visual Studio, Eclipse or CLion, instead to profit from an easier way to debug and re-factor your code.
We simply followed the algorithm described in Section 1.2.1.1 step by step to implement the MVM in C++.
First, we set up the required matrices A,C−1

η , C−1
φ and F as described in the introduction. Afterwards, we

computed the FR matrix and, in a last step, we multiplied these matrix by the vector of sensor measurements
s.

1.3.1. Building Code

One of the most common C++ compiler is called GNU Compiler Collection (GCC) and can be simply down-
loaded and installed from the GCC website (https://gcc.gnu.org/). GCC is just our recommendation, you can
use any C++ compiler you prefer.
Beside GCC, we use CMake, which manages the build process in an operating system in a compiler-
independent manner. A simple configuration file called CMakeLists.txt, placed inside the source directory,
is used to generate standard build files (e.g. Makefiles). The most basic CMakeLists.txt without using any
libraries in the code and any further subdirectories looks as follows

cmake_minimum_required (VERSION 2.6)
project(MVM)
SET(CMAKE_C_COMPILER gcc)
SET(CMAKE_CXX_COMPILER g++)
add_executable(MVM mvm.cpp)

Including the libraries required for the benchmark case the CMakeLists.txt changes to

cmake_minimum_required (VERSION 2.6)
project(MVM)
find_package(BLAS)
find_package(LAPACK)
if(LAPACK_FOUND AND BLAS_FOUND)
set(lapackblas_libraries ${BLAS_LIBRARIES} ${LAPACK_LIBRARIES})
endif()
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add_executable(MVM mvm.cpp)
target_link_libraries(MVM ${BLAS_LIBRARIES} ${LAPACK_LIBRARIES} fftw3)

1.3.2. Libraries

The Basic Linear Algebra Subprograms (BLAS) library provides routines for performing basic vector and
matrix operations. The Linear Algebra Package (LAPACK) is a C++ library that provides routines for solving
systems of linear equations, least-squares solutions of linear systems of equations, eigenvalue problems
and singular value problems. Moreover, matrix factorizations, such as LU or Cholesky decomposition,
are provided. BLAS and LAPACK are free libraries that can be downloaded on the following website:
http://www.netlib.org/lapack/ and http://www.netlib.org/lapack/. For the benchmark case we use BLAS for
matrix- and vector operations and LAPACK to perform Cholesky decomposition for inverting the matrix in
Step 4 of the MVM (see Section 1.2.1.1).

Fastest Fourier Transform in the West (FFTW) is a C library for computing the discrete Fourier trans-
form in one or more dimensions. It is a free software and can be downloaded on the FFTW website
(http://www.fftw.org/download.html). Within the benchmark case we use this library to perform the Fourier
transform and inverse Fourier transform when computing the layers covariance matrixCφ with Equation (1.10).

1.4. Numerical Example

The numerical example we consider within our benchmark case uses LTAO (see 1.1.2.3 for details) for per-
forming atmospheric tomography. Utilizing the input parameters, which are listed in the following subsection,
we can use the algorithm described in Section 1.2.1.1 to deal with the problem of atmospheric tomography and,
finally, obtain as output the actuator commands to control the deformable mirror.

1.4.1. Input Parameters

To obtain the actuator and subaperture mask Iact and Isub, respectively, we can use the provided data files
I act.txt and I sub.txt. These two files contain 0 at positions where the actuator or subaperture is inactive and 1
for active actuators or subapertures. Both matrices are stored as an 1D-array inside the data files. The relation
between an index k in the 1d-array and entries (i, j) of the corresponding n× n matrix is given by

k = i · n+ j.
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Operating mode LTAO
Telescope diameter D 42 m
Type of WFS Shack-Hartmann
Number of WFS 9
Number of layers L 9
Layer heights h` [0, 140, 281, 562, 1125, 2250, 4500, 9000, 18000]
Layer strength c2

n [0.5224, 0.0260, 0.0444, 0.1160, 0.0989, 0.0295, 0.0598, 0.0430, 0.0600]
Discretization spacing on layer δ` [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1]
Number of subapertures ns 84 x 84 = 7056
Number of actuators na 85 x 85 = 7225
Number of photons nphotons 100
Number of LGS GLGS 6
LGS positions (3.75, 0), (3.75/2, 3.75·

√
3/2), (-3.75/2, 3.75 ·

√
3/2), (-3.75, 0),

(-3.75/2, -3.75·
√

3/2), (3.75/2, -3.75 ·
√

3/2)
LGS wavelength λLGS 589 nm
LGS FWHM 11.4 km
LGS height H 90 km
Laser launch positions (xLLi , xLLj ) (16.26, -16.26), (16.26, 16.26), (-16.26, 16.26), (-16.26, 16.26),

(-16.26, -16.26), (16.26, -16.26)
Number of NGS GNGS 3
NGS positions (-5, 0), (5/2, 5·

√
3/2), (5/2, -5 ·

√
3/2)

NGS wavelength λNGS 500 nm
FWHM of non-elongated spot f 1.1
Outer scale L0 25 m
Fine-tuning parameter αη 0.4
Fried parameter r0 0.129
Number of measurements nmeas 84 · 84 · 2 · 9 = 127008

Sensor measurements s [1, ..., 1] ∈ R127008

If for a parameter in the table above no unit is specified, the SI-Unit is meant.

Based on these input parameters we can start with the algorithm described in Section 1.2.1.1. First, we set up
the required matrices A,Cφ and Cη. Then we use the libraries described in Section 1.3 to perform matrix and
vector operations and Cholesky Decomposition.

1.4.2. Ouput - DM commands

The output of the MVM algorithm are the mirror commands, with whom the deformable mirror can be adjusted
such that atmospheric distortions are corrected. For our specific benchmark case the resulting DM commands
are stored in an array of size 85 × 85, thus, we omitted to put the output inside this document and provided a
data file output.txt where all DM commands are listed.
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Part II.
Implementing acoustic scattering simulations for external
geometries within a porous enclosure
Ashwin Nayak, Andrés Prieto, Daniel Fernández

Abstract

The details in implementing an acoustic scattering simulation of a rigid exterior domain enclosed in a porous
layer are outlined. Details of the mathematical model used are highlighted alongside numerical procedures im-
plemented in obtaining an approximate solution. An elaborate end-to-end strategy using open-source software
tools to compute the solution is also provided. The developed tool is validated for a test case spherical geometry
and the methodology to reproduce the same is thoroughly indicated.
Keywords: Scattering, aeroacoustics, porous materials.

2.1. Introduction

Sound sensors are generally housed in a casing and use porous enclosures to filter noise - a critical component
in acoustic measurements. Understanding the transmission of sound through different media is key in designing
and improving accuracy of an acoustic sensor. Of relevance in the project is the Microflown sensor, distinguised
by their ability to measure both the intensity and direction of sound. The sensor is commercially available in
a variety of housings and porous enclosures, suiting different acoustic environments. A computational model
is sought to accurately predict the sound transmission in windy conditions in presence of porous enclosures.
While the physics dictates a different sound transmission model in porous media and flow conditions, the
model needs to couple these behaviors effectively to capture the combined influence on the incident signal.
An earlier report[6] proposed a progressive development of such a model in stages, given as benchmark cases.
This article highlights the software implementation of the model-in-development, currently highlighting the
implementation of coupling between a still fluid and a rigid-frame porous media. A similar procedure is utilized
in further developments and will be reported in future.
The implementation considered is one of the benchmark stages of the project i.e. to solve for the acoustic
scattering effect of a rigid object represented by the external domain ΩS, enclosed entirely by a porous layer
ΩP. The setup is placed in an acoustic field represented by the unbounded domain ΩF, as shown in the
schematic Fig.2.1a. To be more generic with possible configurations - a fluid-filled gap is considered between
the structure and the porous enclosure. An acoustic wave of a certain kind (plane wave, spherical etc.) is
assumed to be incident on the setup and a model is sought to compute the scattering of the incident wave due
to the object.

(a) (b)

ΩS

ΩF

ΩP

ΩPML

Figure 2.1: Schematic of the original problem configuration on unbounded domain (a),
and the model configuration with perfectly matched layers (b).
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The problem can be mathematically formulated in various physically-relevant variables e.g scalar fields like
pressure, displacement potential or velocity potential; or vector fields like displacement or velocity, the choice
often being the vector fields for coupled systems [7]. In this particular implementation, the acoustic oscillations
are chosen to be represented by the displacement vector field.
A series of assumptions are considered to arrive at a feasible mathematical model for the problem. The acoustic
fluid is assumed to be homogeneous, non-viscous, compressible, isotropic and isentropic. Also, the porous
layer is considered to be made of homogeneous, isotropic and isothermal material. The acoustic fields are
assumed to be time-harmonic. The problem configuration is also posed in an unbounded domain which ensures
a complete dissipation of all outgoing waves. Pragmatically, this is mimicked by a model configuration with
a finite truncation of the domain and an artificial boundary enclosing it with absorbing properties, known in
literature as the perfectly matched layers (PML) technique [8, 9]. It is represented by the Cartesian box ΩPML

in Fig.2.1b.
The mathematical formulation for the coupled problem may be surmised as the following system of equations:
for a particular frequency, ω,

−∇(ρFc
2
F divuF)− ρFω

2uF = fF in ΩF, (2.1)

−∇(KP(ω) divuP)− ρP(ω)ω2uP = fP in ΩP, (2.2)

−div(ρFc
2
FC̃(∇uPML))− ρFω

2M̃uPML = fPML in ΩPML, (2.3)

uF · n = g on ΓS, (2.4)

uF · n− uP · n = 0 on ΓC, (2.5)

ρFc
2
F divuF −KP(ω) divuP = 0 on ΓC, (2.6)

uF · n− uPML · n = 0 on ΓPML, (2.7)

divuF − divuP = 0 on ΓPML. (2.8)

Here, uF, uP and uPML are the displacement vector fields in the fluid, porous and PML domains respectively.
ΓS, ΓC and ΓPML represent the boundaries making up the interfaces between structure-fluid, fluid-porous and
fluid-PML domains with outward facing normals, n. The model includes material properties like fluid mass
density ρF, sound speed in the fluid cF, the dynamic porous mass density ρP and the dynamic porous bulk
modulus KP. Equations (2.1)-(2.3) represent the Helmholtz-like equations in each of the domains. Equation
(2.4) is a boundary condition at the object boundary and (2.5)-(2.8) represent the pressure and displacement
continuity conditions on the interfaces. The source-terms fF, fP, fPML and function g appear according to
initial sources of disturbances and are explained later in this document.
The porous material properties are determined either through experiments conducted apriori or through suitable
models. A wide range of porous material models provide the material response along a range of frequencies e.g
the Zwikker-Kosten model, Miki model, Johnson-Champoux-Allard-Lafarge Model, the Johnson-Champoux-
Allard-Pride-Lafarge model among others [9, 10]. The fairly detailed six-parameter Johnson-Champoux-
Allard-Lafarge (JCAL) model is chosen in the current article to obtain the dynamic porous mass density and
bulk modulus, given by equations,

ρP(ω) =
ρF

φ
α∞

(
1− i

σφ

ωρFα∞

√
1 + i

4α2
∞ηρFω

σ2Λ2φ2

)
, (2.9)

KP(ω) =
γPF/φ

γ − (γ − 1)

1− i
ηφ

ρFk′0ωPr

√
1 + i

4k′0
2ρFωPr

ηΛ′2φ2

−1 . (2.10)

The JCAL model is reliable for porous materials with arbitrarily shaped pores. The parameters in the model:
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porosity φ, flow resistivity σ, tortuosityα∞, viscous characteristic lengthΛ, thermal characteristic lengthΛ′ and
static thermal permeability k0

′; effectively capture the macroscopic thermal, viscous and inertial characteristics
of the porous material. The model also requires the fluid state properties like density ρF, specific heat ratio γ,
Prandtl Number Pr, and equilibrium fluid pressure PF.
The Helmholtz-like PML governing Equation (2.3) ensures absorption of outgoing waves. This is achieved by
a complex stretching of spatial variables[11] by the fourth-order tensor C̃ and the second-order tensor M̃ given
by,

C̃(∇w) =

 3∑
j=1

1

γj

∂wj
∂xj

 I (2.11)

and M̃ =
3∑
j=1

γjej ⊗ ej , (2.12)

where, I is the fourth-order identity tensor and ej’s are the unit vectors along the spatial directions. The
optimally-tuned functions provided by Bermudez et al.[12] are chosen among the various choices for the com-
plex stretching functions γj’s, giving,

γj(xj) =

1 |xj | ≤ Lj ,
1 + i

cF

ω(L∞j − |xj |)
Lj ≤ |xj | ≤ L∞j .

(2.13)

Here, Lj and L∞j are respectively the lengths of the Cartesian box of the truncated fluid domain and the PML
domain, along the direction xj from the origin. The definition of γj as a piece-wise function ensures the
absorption of waves only along the outward direction of propagation. Consequently, the tensors C̃ and M̃ are
piece-wise and needs to be considered with care during the implementation.
The model described in Equations (2.1)-(2.8) explain the propagation of a generic acoustic field and needs
adaptation for our initial problem of computing the acoustic scattering of an incident wave. The total normal
displacement at the object boundary are zero (g = 0) since the structure is assumed rigid. The principle of
superposition may then be utilized to split the total field into the incident field and scattered field components.
The equations are then rewritten in terms of the scattered part of the field to obtain right-hand-sides, some of
which are non-null.
Considering that the displacement vector fields, uF, uP and uPML, are defined in exclusive domains albeit with
different smoothing requirements, it may be unified to be a member of a functional space V introduced as,

V =
{
v ∈ [L2(Ω)]3 : v|ΩF

∈ H(div, ΩF), v|ΩP
∈ H(div, ΩP), M̃v|ΩPML

∈ [L2(ΩPML)]3,

3∑
j=1

1

γj

∂vj
∂xj

∣∣∣
v∈ΩPML

∈ L2(ΩPML),v · n = 0 on Γ∞
}
, (2.14)

which also ensures the necessary continuity and differentiable properties at the interfaces. The variational form
can then be deduced from Equations (2.1)-(2.3) by multiplying a test function v ∈ V and utilizing the Green’s
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theorem : Find u ∈ V such that,∫
ΩF

ρFc
2(divu)(div v) dV −

∫
ΩF

ρFω
2u · v dV

+

∫
ΩP

KP(ω)(divu)(div v) dV −
∫
ΩP

ρP(ω)ω2u · v dV

+

∫
ΩPML

ρFc
2C̃(∇u) : ∇v dV −

∫
ΩPML

ρFω
2M̃u · v dV =

∫
ΩF

fF · v dV +

∫
ΩP

fP · v dV

+

∫
ΩPML

fPML · v dV (2.15)

holds for all v ∈ V and also, v = 0 at ΓS. The Equation (2.15) maybe more conveniently expressed in the
general form of a linear variational problem with A and L being the sesquilinear and linear functionals as,

A(u,v) = L(v). (2.16)

A practical implementation of this model would require the approximation of an infinite dimensional functional
space V, with a discrete n-dimensional space Vh with a finite set of basis functions ψh, h = 1, 2, ..., n. This
reforms Equation (2.16) as,

n∑
r=1

A(ψr, ψs)µr = L(ψs) for s = 1, 2..., n; (2.17)

with the µr’s as coefficients of the basis functions. A solution may then be obtained by solving this system of
equations. The following sections details the implementation of this model along with a specific example of
acoustic transmission across a porous layer around a vibrating sphere.

2.2. Implementation

The implementation follows the requirements of the model and may be divided into three main stages viz.,
mesh generation, solving equations and visualizing solutions. The different stages of the implementation and
the overall workflow is illustrated in Fig.2.2. The mesh generation stage requires the user inputs on geometrical
configuration of the setup. This includes the exact dimensions of the structure, porous layer, fluid domain
and PML. Considering that the variational form includes integrals which differ in sub-domains, it is necessary
to mark the mesh cells according to region requiring conformality of the mesh with the geometry of sub-
domains. Furthermore, user inputs may be needed to suggest local refining of the mesh in a particular region
or surface to capture the geometry accurately. The generated mesh also needs to be adapted to the file format
compatible with the solver. The solver imports the mesh data and categorizes cells according the sub-domain
regions. It is responsible for implementing the finite-element method - defining the discrete functional space
with chosen basis functions and assembling the system of equations before solving them. The solution obtained
may also include processing for analysis before being saved in a memory-efficient storage format. Finally, the
visualization tool reads the simulated solution from the disk to provide graphical representations aiding the
user in deriving information and performing analysis. The following sections explain the usage of each of the
stages and the related tools in detail. The software tools used in the implementation of the project require a
minimal UNIX system with atleast 1GB of memory and about 500MB of disk space (swap) for execution. It is
recommended to have some higher configuration would ease the workflow and be capable of handling problems
of larger order.
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Mesh

+ 

Mesh 

Conversion Tools

Geometry 

+ Mesh Parameters

Solver

Model 

Parameters

Visualization

Solution Analysis

.xdmf

Simulation 

Data

.xml.gz

Mesh file

Figure 2.2: Workflow representing implementation stages and their interfaces.

2.2.1. Geometry and Meshing

The digital representation of the setup is first done by modeling the geometry and then discretizing it to form a
mesh. While several tools and techniques are available for this, the open-source modules offered by SALOME
are used in this article, which provides capabilities for interfacing with various numerical simulation tools. It
has a flexible cross-platform architecture made of reusable components allowing for customized integration and
handling of complex geometrical objects. It allows for creation of geometry and meshes using either (or both)
the graphical user interface (GUI) and a text user interface (TUI). The following sections explains the usage
of creating geometries and meshes using the TUI, a powerful Python-based scripting interface. The same may
also be achieved either in part or entirety by using the GUI which allows for exporting the equivalent state in a
TUI script.
The TUI provides geomBuilder, a Python module for the creating and editing geometry. An instance of the
geomBuilder class contains a list of function attributes for operations useful in creating complex geometrical
objects. It allows for creating basic objects and primitives in 1D, 2D, 3D; perform boolean operations like fuse,
common, cut and section operations; execute extrusion, rotation and other linear operations; create higher order
topological objects like solids and compounds grouped from primitives; and implement an advanced partition
or gluing between geometrical structures, among others. Table 1 lists some useful TUI commands available as
function attributes, whereas a detailed description along with other functions are available in the documentation
[13].
The meshing section is again accessed through another Python module, smeshBuilder. It presents differ-
ent algorithms to create meshes on the basis of geometrical models created by geomBuilder.The module
also provides control on mesh generation like maintaining conformality between subgroups, splitting, edit-
ing, boolean operations and marking. These are handy in segregating subdomains accurately in a mesh. The
NETGEN-1D2D3D algorithm is utilized for the purposed for the project which provides a range of control
parameters like tetrahedral or hexahedral mesh elements, specifying the global maximum or minimum size of
the edges and also control locally-permissible edge sizes on a lower-order geometrical construct - useful in
refining the mesh near a point or a face.
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The instance of the smeshBuilder class is provided with the geometrical object to mesh and the algorithm
specifications. The snippet code below illustrates access to the parameters of NETGEN-1D2D3D algorithm
and specify the relevant conditions for the mesh. The most useful functions are listed in table 1. The mesh is
computed after all the parameters are set.

from salome.smesh import smeshBuilder
smesh = smeshBuilder.New() #Instantiate the smeshBuilder class
domain_mesh = smesh.Mesh(Domain) #Domain is a geometrical object

# Select type of elements and algorithm to compute them
NETGEN_3D = domain_mesh.Tetrahedron(algo=smeshBuilder.NETGEN_1D2D3D)
NETGEN_3D_Params = NETGEN_3D.Parameters() #Access parameters.

GeomBuilder

MakeVertex Creates a vertex
MakeVectorDXDYDZ Creates a vector
MakeBoxTwoPnt Creates a Cuboid defined by ends of a body diagonal
MakeSphereR Creates a Sphere at origin given the radius
MakeCylinder Creates a Cylinder
TranslateDXDYDZ Linear translation of a geometrical object
MakeCutList Boolean operation between two geometrical object
MakePartition Group various sub-shapes into one geometrical object
SubShapeSortedCentres Obtain sub-structures of a complex object

Mesh
Tetrahedron Set cells to be tetrahedral
Compute Compute the Mesh
Reorient2DBy3D Order the cell normals to face either outward or inward

NETGEN Parameters
SetMaxSize Limit global maximum edge length in mesh
SetMinSize Set global minimum edge length in mesh
SetLocalSizeOnShape Set local size on a sub-shape

Table 1: Useful functions in SALOME’s geom and smesh modules

The SALOME classes are provided only in its own environment and the scripts are executed through a wrapper
offered as,

$ salome -t script.py # Runs script.py in SALOME's shell

2.2.2. Solver

The solver of choice is FEniCS, a popular open-source finite-element library for solving partial differential
equations(PDEs). It offers a rich interface with data-structures and optimized algorithms for finite-element
code which makes it easy to write PDEs. The library is optimized and parallel by design and it is easy to deploy
and scale the code into high-performance computing clusters. With its Python and C++ interfaces, FEniCS
offers powerful capabilities to integrate into workflows.
The FEniCS library offers a number of component modules and the interfacing is done mainly through its
DOLFIN and UFL modules. DOLFIN is the highly optimized computational back-end written in C++ respon-
sible for finite-element machinery. It provides abstract data-structures similar to mathematical terms such as
mesh, finite element, function spaces and functions. It also includes compute-intensive algorithms such as
finite-element assembly and mesh refinement, and, interfaces to various linear algebra solvers and libraries like
PETSc. UFL, on the other hand, provides an abstract mathematical language to express variational problems
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which are interpreted automatically and connected to DOLFIN classes.
The powerful feature of the solver is its ability to interpret the variational form in an easily readable UFL
framework. The Python module also allows for finer control through a detailed interface to the underlying
C++ code enabling sub-classing and base class overloading. Among others, it provides an Expression class
which can be used for user-defined expressions specified by C++ code and compiled during execution by a
just-in-time (JIT) compiler for efficiency. A detailed documentation along with numerous examples are offered
by Langtangen et al.[14] and at the official FEniCS documentation webpage[15]. It is to be noted that the
library is limited by its inability to handle complex numbers and needs additional care to ensure that the real
and imaginary parts of the equations and function spaces are represented separately.

2.2.3. Post-processing and Visualization

Visualization of generated simulation data is critical in understanding the physical process. Implementing and
representing this data in a simple and effective manner is extremely useful for deriving information, presenting
results, and also in testing and debugging. The post-processing operations on the solution is dependent on
the study undertaken by the user. In this specific use case, some routine cases of analysis include validation
of the solver for a test case, measure of a field at a particular point in space and directivity patterns of fields
around the object amongst many others. The implementation of these could either be included in the solver
phase or during the visualization phase. Within the solver phase, these could just be operations on the solution
data done using Python and plotted using some common user preferred graphing libraries like Matplotlib[16].
The approach quickly gets overwhelming while dealing with 3D datasets and it is useful to use a dedicated
visualization tool like ParaView. It is a widely used open-source visualization tool for plotting and viewing
solutions and graphs. It offers a powerful and an intuitive 3D visualization interface allowing for heavy in-situ
customization and processing of simulation data. Furthermore, it also provides a Python scripting interface to
automate visualization for batch processing.
ParaView uses a three-stage procedure for visualization of data: reading, filtering and rendering, all done
using the user interface. The simulation data from the solver is read into memory through many supported
file formats. The dataset being typically large, the XDMF (eXtensible Data Model and Format) file format is
used for storage, which is able to manage extremely large datasets and is scalable for parallel systems. Filters
provide the ability to extract or analyze this data into information. There are a wide range of filters available for
analysis and visualization including plotting graphs, contours, surface plots, vector field plots etc. In addition,
it is also possible to define user-defined filters to perform customized operations. The rendering stage deals
with generating images or interactive plots from the filtered information. ParaView provides a user guide[17]
and many tutorials[18] highlighting the usage and relevance of each of the stages along with the available
functionalities to fully exploit its potential.

2.3. Case study : Acoustic transmission of a vibrating sphere in a porous enclosure

The implementation considered is a test case to validate our model, the acoustic transmission of a vibrating
sphere placed in a spherical porous enclosure in illustrating the use of the described tools. The solution for the
case can also be computed analytically.

2.3.1. Description of test case sphere

A sphere of radius R0 is placed at the origin within an acoustic fluid of density ρF. It is enclosed in a hollow
spherical porous disk with an inner radius of R1 and an outer radius of R2. Given that the surface of the sphere
vibrates at a constant rate producing oscillations of frequency ω, the problem is then to compute the distortion
of the acoustic field due to the porous layer.
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ΩF ΩP

R0R1

R2

ΩF ΩP ΩPML

R0R1

R2

Figure 2.3: Schematic of the spherical test case posed in an unbounded domain (left)
and modeled using perfectly matched layers (right).

2.3.2. Exact solution

The exact solution maybe obtained by enforcing a constant Neumann boundary condition on the surface of the
sphere. The Helmholtz equation then only has radially dependent solutions which may be expressed as a linear
combination of incoming and outgoing waves. Writing in term of pressure fields the exact solution is obtained
as,

p(r) =



A1
e−ikFr

r
+ B1

eikFr

r
, r ∈ [R0, R1],

A2
e−ikPr

r
+ B2

eikPr

r
, r ∈ [R1, R2],

B3
eikFr

r
, r ∈ [R2,∞).

(2.18)

where Al’s correspond to the coefficients of incoming waves (for l = 1, 2), and Bm’s to the coefficients of
outgoing waves(for m = 1, 2, 3). In an unbounded domain, since there are no incoming waves from infinity,
the coefficient of the incoming component is zero. Considering that the pressure and displacement field needs
to satisfy conditions on structure boundary (at R0) and continuity conditions at fluid-porous media interfaces
(R1 and R2), it follows that,

∂p

∂r
(R0) = ρFω

2g0, g0 = constant, (2.19)

p(R−1 ) = p(R+
1 ), (2.20)

ρP
∂p

∂r
(R−1 ) = ρF

∂p

∂r
(R+

1 ), (2.21)

p(R−2 ) = p(R+
2 ), (2.22)

ρF
∂p

∂r
(R−2 ) = ρP

∂p

∂r
(R+

2 ). (2.23)

Substituting the general solution (2.18) in (2.19)-(2.23) and rewriting in terms of the coefficients,Ai’s andBi’s,
a 5 × 5 system of equations is obtained and is solved to compute the exact solution.
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2.3.3. Geometry and Mesh

SALOME’s batch scripting is utilized to prepare the geometry and mesh for the problem. The parameters of the
sphere is set initially in the script. Once the geometry building module is instantiated, it is conventional to create
an origin and the axes. The volumetric spherical object may be created using the MakeSphereR function. The
porous layer is then created by an intersection of two concentric spheres using the MakeCutList function
which performs a boolean deletion of the volume of one by another. The two-part fluid region is also made
using a similar boolean operation on a Cartesian box where the ”unbounded” domain is truncated.

from salome.geom import geomBuilder

# Parameters
L_0 = L_1 = L_2 = 0.2
R_0 = 0.5
R_1 = 2 * R_1
R_2 = 2.25 * R_2

# Create an instance of the geometry builder class
geompy = geomBuilder.New()

# Origin and Axes
O = geompy.MakeVertex(0, 0, 0)
OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)

# Sphere
Sphere = geompy.MakeSphereR(R_0)

# Porous Layer
porous_in = geompy.MakeSphereR(R_1)
porous_out = geompy.MakeSphereR(R_2)
porous_layer = geompy.MakeCutList(porous_out, [porous_in], True)

# Fluid Domain
b0 = geompy.MakeVertex(L_0, L_1, L_2)
b1 = geompy.MakeVertex(-L_0, -L_1, -L_2)
B = geompy.MakeBoxTwoPnt(b0, b1)
Fluid1 = geompy.MakeCutList(B, [porous_out], True)
Fluid2 = geompy.MakeCutList(porous_in, [Sphere], True)

While the basic domains of interest are created in an obvious manner outlined above, care is taken in construct-
ing the PML layer. The integration of the variational form (2.15) within the PML domain contains the terms
C̃ and M̃ which are dependent on the axial orientation. To ensure mesh conformality , the layer is formed
by blocked subdomains along each axis. Highlighted below is creation of one such layer enveloping the fluid
domain on the x0 direction,

# x0-direction subdomain
be0 = b0
be1 = geompy.MakeVertex( L_0+L_pml, -L_1, -L_2)
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Be = geompy.MakeBoxTwoPnt(be0,be1)

Similar such blocks are created enveloping the fluid domain along all the directions - two each along the x0, x1

and x2 directions, four each along x0x1, x1x2 and x2x0 directions and eight along the corners i.e. the x0x1x2

direction. All the layers formed are unified in a single geometrical object achieved by the function attribute
MakePartition as,

Domain = geompy.MakePartition(Domainlist)

where, Domainlist is a Python list of all the separate subdomains. The function
SubShapeSortedCentres is then used to obtain any sub-structure identifiers, useful in specifying
local mesh refinements. Figure 2.4a shows a cross-section of the generated geometry.

(a) (b)

Figure 2.4: View of the geometry(left) and the cross-section of the Mesh(right).

The meshing operation is then carried out using the smesh module of SALOME as was similarly suggested
in 2.2.1 . Fig.2.4b illustrates a cross-sectional view of the computed mesh volume along with local refinements
within the porous layers and around the spherical boundary using the SetLocalSizeOnShape function.
The Reorient2DBy3D function was also used to ensure that all boundary face normals pointed outwards of
the enclosure. The step is crucial considering that the boundary condition is specified across these faces using
expressions. The computed mesh is then be exported to file in .unv file format using function attributes of
the mesh object. Conversion to .xml.gz for interfacing with the solver is achieved using FEConv [19] and
dolfin-convert (provided by FEniCS) utilities as,

$ feconv -gm mesh.unv mesh.msh
$ dolfin-convert mesh.msh mesh.xml
$ gzip mesh.xml
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2.3.4. Solver

The solver section handles details of the finite element implementation of the model and is made concise only
due to the features of the FEniCS library. The geometrical parameters regarding the physical dimensions of
the various subdomains and the model parameters related to frequency of choice, the user-defined boundary
parameters etc are provided. Subsequently, the mesh is read into memory and each of the subdomains are
marked by different identifiers, which is illustrated below.

### Fluid domain lengths : L[0], L[1], L[2] in x,y,z directions
### Porous domain radii : r_min (inner) and r_max (outer)
### Mesh object : mesh

# Obtain list of all cell identifiers
subdomains = MeshFunction("size_t", mesh, mesh.topology().dim())

# # Sub-domain specifications
tol = DOLFIN_EPS_LARGE

pml_cond = "fabs(x[0])>Lx-tol || fabs(x[1])>Ly-tol || fabs(x[2])>Lz-tol"
pml_layer = CompiledSubDomain(pml_cond,

Lx=L[0], Ly=L[1], Lz=L[2], tol=tol)

por_cond = "x.norm() > r_min-tol && x.norm() < r_max + tol"
por_layer = CompiledSubDomain(por_cond,

r_min=r_min, r_max=r_max, tol=tol)

# # Mark Sub-domains
subdomains.set_all(0) # Fluid_Marker = 0
pml_layer.mark(subdomains, 1) # PML_Marker = 1
por_layer.mark(subdomains, 2) # Porous_Marker = 2

A similar procedure is also used to mark the boundary faces by different identifiers so as to specify boundary
conditions. The function space is initialized with Raviart-Thomas finite elements, which define basis functions
as unit vectors along the normals of the faces. To substitute a complex function space, it is necessary to initialize
a hybrid function space made of two real parts,

# # Define function space (1st order Raviart-Thomas elements)
RT = d.FiniteElement("RT", mesh.ufl_cell(), 1)
Q = d.FunctionSpace(mesh, RT)

# # Define 2-part real function spaces to substitute for complex space
V = d.FunctionSpace(mesh, RT * RT)

(u_re, u_im) = d.TrialFunctions(V)
(v_re, v_im) = d.TestFunctions(V)

The variational form maybe expressed in three separate stages - one each for the fluid, porous and PML subdo-
mains. The primary task is to represent each term on the Equation (2.15) in real and imaginary portions. This
may be achieved easily by splitting Equations (2.1)-(2.8) into real and imaginary parts and following in the
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same process to achieve a similar variational form like (2.15). The wave equations being linear help separate
each of the term into two,∫

ΩF

ρFc
2(div Re(u))(div Re(v)) dV −

∫
ΩF

ρFω
2Re(u) · Re(v) dV∫

ΩF

ρFc
2(div Im(u))(div Im(v)) dV −

∫
ΩF

ρFω
2Im(u) · Im(v) dV

+

∫
ΩP

[KP(ω)(div Re(u))] (div Re(v)) dV −
∫
ΩP

[
ρP(ω)ω2Re(u)

]
· Re(v) dV

+

∫
ΩP

Im(KP(ω)(divu))(div Im(v)) dV −
∫
ΩP

Im(ρP(ω)ω2u) · Im(v) dV

+

∫
ΩPML

ρFc
2Re(C̃(∇u)) : ∇Re(v) dV −

∫
ΩPML

ρFω
2Re(M̃u) · Re(v) dV

+

∫
ΩPML

ρFc
2Im(C̃(∇u)) : ∇Im(v) dV −

∫
ΩPML

ρFω
2Im(M̃u) · Im(v) dV = 0. (2.24)

Note that the right-hand term is null since there are no source terms in the configuration. The Equation (2.24)
can be easily specified in FEniCS using UFL. Since the subdomains are marked with identifiers already, the
bilinear form within the fluid layer maybe specified directly as,

# FLUID LAYER : SubDomain Marker 0
# Define Bilinear form within the fluid layer
a = (rho * c**2 * div(u_re) * div(v_re) * dx(0)

+ rho * c**2 * div(u_im) * div(v_im) * dx(0)
- rho * omega**2 * inner(u_re, v_re) * dx(0)
- rho * omega**2 * inner(u_im, v_im) * dx(0))

The PML and the porous layer require operating between complex arithmetic and UFL operations. These are
made simpler by declaring a complex container class with the necessary operations like multiplication, division
and conjugation. This reduces the complex arithmetic into UFL operations and increases readability of the
code. The Complex class declared below shows a simple structure of such a container class which contains
member functions to return just the real or imaginary parts of the common operations. The return values of
each of them translates the arithmetic into UFL operations.

class Complex(object):
def __init__(self,real_part, imag_part):

self.real=real_part
self.imag=imag_part

# Define inner-(conjugated) product
def dot_re(f, g):

return f.real*g.real + f.imag*g.imag

def dot_im(f, g):
return f.imag*g.real - f.real*g.imag

# Define product
def prod_re(f, g):

return f.real*g.real - f.imag*g.imag
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def prod_im(f, g):
return f.imag*g.real + f.real*g.imag

# Define division
def div_re(f, g):

return dot_re(f, g)/dot_re(g, g)

def div_im(f, g):
return dot_im(f, g)/dot_re(g, g)

Further consideration is needed to specify piece-wise functions (γj’s) into the variational form. A direct ap-
proach would be segregating the PML domain into smaller domains defined by intervals where γj’s are resolved,
and specify the operations separately. While this approach saves the assembling time, it can quickly get tedious
and instead be expressed using logical operators offered by UFL [20], specifically the conditional opera-
tor. This leaves the evaluations to be performed during the assembling phase. The following code illustrates the
bilinear form expression using the Complex class and the UFL logical operators. The real and imaginary parts
of the tensor product C̃(∇u) : ∇v and the inner product M̃u · v are expressed by simplifying the operation.

# PML LAYER : SubDomain Marker 1
s = lambda j : conditional(gt(abs(x[j]), L[j] + tol),

c / abs(abs(x[j]) - (L[j] + Lpml)) / omega,
Constant("0."))

gamma = lambda j : Complex(Constant("1.0"), s(j))
du_dx = lambda ure, uim, i: Complex(Dx(ure[i], i), Dx(uim[i], i))

# # Divergence operator in the PML domain
Div_re = sum(prod_re(Complex(1., 0.) / gamma(i), du_dx(u_re, u_im, i))

for i in range(3))
Div_im = sum(prod_im(Complex(1., 0.) / gamma(i), du_dx(u_re, u_im, i))

for i in range(3))

# # Scaled PML displacement vector to be used in the mass matrix
coef = lambda ure, uim, i: Complex(ure[i], uim[i])
u_scaled_re = as_vector([prod_re(gamma(i), coef(u_re, u_im, i))

for i in range(3)])
u_scaled_im = as_vector([prod_im(gamma(i), coef(u_re, u_im, i))

for i in range(3)])

dx_pml = dx(1, scheme='default', degree=6)

# # Define bilinear form in the PML layer
a += (rho * c**2 * Div_re * d.div(v_re) * dx_pml

+ rho * c**2 * Div_im * d.div(v_im) * dx_pml
- rho * omega2 * inner(u_scaled_re, v_re) * dx_pml
- rho * omega2 * inner(u_scaled_im, v_im) * dx_pml)

The expression for porous layer requires the porous density and bulk modulus obtained from the JCAL model.
These are easily computed from expressions (2.9) and (2.10) using Python’s inbuilt complex arithmetic support
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and the results are subsequently cast into Complex class type. The resulting bilinear expressions can then be
specified as,

# POROUS LAYER : SubDomain Marker 2
div_u = Complex(div(u_re), div(u_im))
a += (prod_re(BulkMod_P, div_u) * div(v_re) * dx(2)

+ prod_im(BulkMod_P, div_u) * div(v_im) * dx(2)
- omega**2 * inner(prod_re(Rho_P, u), v_re) * dx(2)
- omega**2 * inner(prod_im(Rho_P, u), v_im) * dx(2))

The boundary conditions at the structure are also divided into real and imaginary parts and the expressions
are specified using the Expression class. They can then be applied over the relevant faces using the
DirichletBC class.

# BC at Structure Boundary (Marker 2)
bc = [DirichletBC(V.sub(0), g_re, bdry_markers, 2), # Real subspace

DirichletBC(V.sub(1), g_im, bdry_markers, 2)] # Imag subspace

The system is now completely determined and can be assembled and solved using the MUMPS (MUltifrontal
Massively Parallel Sparse direct Solver) linear algebra solver. The resulting solution is separated into real and
imaginary parts using the split attribute of the Function class and are then written into XDMF files using
the DOLFIN provided XDMFFile class.

2.3.5. Visualization

The saved XDMF file are directly compatible and can be easily visualized using ParaView. The user interface is
very intuitive and once the file is opened is allows the user to select the solution fields to import from the dataset
into memory. Once the datasets are imported, it renders the volumetric data on the viewer. The toolbar offers
some commonly used filters and are also accessible from the menu options. Initially, the dataset is bifurcated
into truncated fluid domain and the PML. This can be achieved using the ExtractCellsByRegion filter
used with its ’box’ configuration scaled appropriately to omit the cells in the PML. To obtain cross-sections of
the volumetric data, as shown in Fig. 2.5, the filter Clip or Slice is used and the specifications of the cutting
plane is provided. It is also possible to compute from the saved fields on the interface directly by using the
filter Calculator. This filter allows the user to define an expression using the fields in memory and compute
a derived field. It is useful in computing the total displacement field putting together the real and imaginary
portions. The same filter can also be used to compute the errors provided the exact solution is also in memory.
Fig. 2.6 shows the contours of obtained error fields on a plane passing through the origin. ParaView offers a
lot more features like plotting, thresholding etc. which can help the user gain further understanding from the
simulation data. Certain computations like pressure-at-a-point and directivity computations are better handled
in the solver stage and can then visualized using other Python graphing libraries.

2.4. Conclusion

The objective of developing a coupled model for fluid-porous media interactions in designing an acoustic sensor
is approached in stages. One such benchmark case with a porous coupling under no-flow conditions has been
highlighted and a model has been developed. The porous layer is represented in the model by a fluid-equivalent
layer with absorption properties and certain interface conditions. The material properties of the porous medium
is modeled by a fairly detailed 6-parameter Johnson-Champoux-Allard-Lafarge (JCAL) model. The perfectly-
matched layers (PML) technique is also utilized to replicate the behaviour of an unbounded domain.
A comprehensive implementation of the model is provided in the article entirely using open-source software.
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Figure 2.5: Cross-sectional contour views of the magnitude of the real part (left)
and the magnitude of the imaginary part (right) of the computed displacement field.

Figure 2.6: Cross-sectional contour views of the errors in the magnitude of the real part (left)
and magnitude of the imaginary part (right) of the displacement field.

The scripting interface interlace with the graphical interface for mesh generation provided by SALOME is
useful in meshing complex geometry and automating the procedure either entirely or partly. The solver stage
with the intricate finite element machinery is handled by the FEniCS library offering ease-of-use to the user
while focusing their attention towards the development and prototyping of the model. The visualization tool,
ParaVIEW is feature-rich providing access to many post-processing algorithms along with an intuitive inter-

Deliverable D5.2
26



2.4. Conclusion

face. The entire toolchain can also be controlled on Python scripts allowing for easier development and future
customization.
The workflow is meticulously described in solving for acoustic transmission of a vibrating sphere within a
porous enclosure. The implementation of this benchmark case sheds light into every detail of running a sim-
ulation and obtaining and visualizing results, and hopes to enable the reader to reproduce the results in its
entirety.
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Part III.
Software implementation description for Point Source Far
field Reflector computation using Sinkhorn algorithm
Jean-David Benamou, Wilbert IJzerman, Giorgi Rukhaia

Abstract

This work describes framework where software for Point Source Far field Reflector computation will be imple-
mented using Sinkhorn algorithm and it’s modifications. It works in C++ environment, using C based memory
containers and Intel’s MKL libraries.
Keywords: FreeForm Optics, Software framework, C++ implementation, Sinkhorn algorithm, MKL libraries.

3.1. Introduction

This software finds solution for far field reflector problem with a point source. The model consists of a point
source of light at the originO of R3, a reflecting surface Γ which is a radial graph over Ω ⊂ S2 in the northern
hemisphere,

Γ = {xρ(x);x ∈ Ω} ρ > 0 (3.1)

and a target area which is far enough from reflector that reflected rays can be identified with their direction, i.e
the domain Ω∗ ⊂ S2 represents reflected rays in terms of their reflection direction.
Software uses Sinkhorn’s algorithm (described in corresponding Benchmark) with several modifications to
receive solution surface.
By changing test case file described below, this software solves all 3 corresponding benchmark cases.

3.2. Implementation

Software is written in C++, but most of computational data structures are C-style fixed size Arrays and most of
computational work is done either by basic operations available in C as well, or by Intel’s Math Kernel Library.
No manually written classes are used and C++ standard library functions are mostly used for secondary tasks,
such as data filling, data sorting or time counting.
Intel’s Math Kernel Library (MKL) is a library of optimized math routines. It includes BLAS, LAPACK,
ScaLAPACK, sparse solvers, fast Fourier transforms, and vector math. The routines in MKL are hand-
optimized specifically for Intel processors. In this software, only BLAS and vector math functions are used.
The library is available free of charge under the terms of Intel Simplified Software License which al-
low redistribution. Commercial support is available when purchased as a standalone software or as part
of Intel Parallel Studio XE or Intel System Studio. It can be downloaded from Intel’s official web-page
https://software.intel.com/mkl where installation instructions are also provided.
Due to high importance of good memory management, and software’s primary purpose for now being develop-
ment of method, code doesn’t follow standard suggestions for C++ code development.
It consists of two files:
One is test case file, where data structures for discretization and density cloud are declared, together with
corresponding functions filling them. Also where functions describing source and target density are declared
and can be changed manually to receive different test cases.
Second file is main file, where, together with main function, data structures and solving functions, which
are independent of test case except dimension and total number of points in discretization, are declared and
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implemented.

3.3. Computer requirements

C++ compiler with version 11 or higher is required, as code uses timing functions and arithmetic of ”inf” and
”nan” values introduced in this version.
Code is completely OS independent as long as appropriate compiler and ability to link with MKL library are
available, except, for convenience of output handling, system command is called to create and move folders.
Right now code uses linux commands ”mkdir ” and ”mv ”. For other operating systems one could just change
those commands in main function.
Due to use of Intel’s MKL library, software will be much more efficient when run on Intel processor, compared
to other processors of same power. Other then capability of installing Intel’s MKL Library, there is no other
definitive hardware requirement, but for computational stability it is desirable for double precision floating
point variable to hold numbers up to 16 digit precision, so it is recommended that hardware is be capable of
handling such precision.
To compile software, one should link both code files and intel’s MKL library file according to instructions from
Intel.
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Part IV.
Data driven model adaptations of coil sensitivities in
magnetic particle imaging
S oren Dittmer, José Carlos Gutiérrez Pérez, Lena Hauberg-Lotte, Tobias Kluth, Pe-
ter Maass, Daniel Otero Baguer

Abstract

In Section 4.1 first basic ideas of magnetic particle imaging (MPI) are introduced, model and data based cases
are discussed and different problem scenarios are formulated. In the following the basic ideas behind scenarios
of applying Deep Learning to Inverse Problems are presented and five broad categorizations are introduced:
1. Learned Penalty Terms, 2. Plug-and-Play Prior Methods, 3. Gradient-Descent-by-Gradient-Descent type
Methods, 4. Regularization by Architecture (Deep Prior), 5. Image Post-Processing via Deep Learning. The
application of Deep Learning to MPI is described with two approaches, surrogate data sets and regularization
via architecture. In Section 4.2 the implementation as well as the underlying network is explained in detail.
The computer requirements are stated (Section 4.3) and numerical examples are given by using the publically
available data sets generated by the Bruker preclinical MPI system at the Medical Center Hamburg-Eppendorf
(Section 4.4).
Keywords: Deep Learning, neural networks, inverse problems, deep image priors.

4.1. Introduction and literature

The content of this section is a slightly modified version of the corresponding sections in the description of
’Benchmark Case 4’ described in the first report.
Magnetic particle imaging (MPI) is a relatively new non-invasive tomographic imaging technique that
directly detects superparamagnetic iron oxide nanoparticles (SPIO). It combines high tracer sensitivity with
submillimetre resolution and imaging is performed in milliseconds to seconds.

MPI is suitable for several medical applications: The nonlinear magnetization behaviour of nanoparticles in
an applied magnetic field is employed to reconstruct a spatial distribution of the concentration of nanopar-
ticles in the cardiovascular system. A high temporal resolution and a potentially high spatial resolution
make MPI suitable for several in-vivo applications without the need for harmful radiation. The potential
for imaging blood flow was demonstrated first in in-vivo experiments using a healthy mouse [21]. The
usability of a circulating tracer for long-term monitoring was recently investigated [22]. The high temporal
resolution of MPI is advantageous for potential flow estimation [23] and for tracking medical instruments
[24]. Recently, MPI was also shown to be suitable for tracking and guiding instruments for angioplasty [25].
Further promising applications of MPI include cancer detection [26] and cancer treatment by hyperthermia [27].

The main goal of MPI is to reconstruct the spatially dependent concentration of particles and for that
computationally efficient reconstruction methods are required to allow real time observations. Therefore
mathematical models are advantageous for the development of such new methods.

Inverse Problems have been a key tool in many areas of science, technology in general, and more particularly
in the field of medical imaging for many years now. The key idea is to calculate causes from effects, opposed
to so-called direct problems trying to predict effects from causes.

Deep Learning (DL) on the other hand is a relatively new field which studies big machine learning models.
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4.1. Introduction and literature

It is not clear what all the strength of DL are, but a major one is the ability to predict labels from data via
supervised learning, e.g., a label of a computer tomographic (CT) image could be cancer or no cancer. A ma-
jor problem with this is the fact that one usually needs massive amounts of labeled data to train a learning model.

The success of neural networks (NN) in many computer vision tasks in the past has motivated attempts at
using Deep Learning to achieve better performance in solving Inverse Problems [28]. It was proposed to apply
data-driven approaches to inverse problems, using neural networks as a regularization functional. The network
learns to discriminate between the distribution of ground truth images and the distribution of unregularized
reconstructions and the approach was used for computer tomography reconstruction [29]. Furthermore, deep
learning was used in medical applications such as tumour classification with MALDI Imaging [30], magnetic
resonance imaging (MRI) [31] [32], low-dose X-ray CT [33] as well as positron emission tomography (PET)
[34].

The need for massive amounts of data is also a major challenge in bringing Deep Learning and Inverse
Problems together, since it creates a chicken-and-egg-problem. The problem lies therein that one can think
about the ”cause” in Inverse Problems as (or at least connected to) the label in Deep Learning. This means
that one usually doesn’t have labels for Inverse Problems which are required to train a deep model to solve the
Inverse Problem. Most approaches that try to bring Deep Learning to Inverse Problems ignore this fact and
only focus on problems where there is enough ground truth data for the cause already – due to some special
circumstances. In fact they can simplify the practical application of already solved Inverse Problems massively,
but they can usually not be applied to novel unsolved Inverse Problems. In summary: there exists some kind of
”information gap” that creates a boot strap problem. We are planning on exploring ways to solve this problem,
in particular forMPI.

4.1.1. Magnetic Particle Imaging

To determine the distribution of nanoparticles, which is the quantity c(x), the nonlinear magnetization behavior
of ferromagnetic nanoparticles is exploited as follows, see also [35]: A static magnetic field (selection field),
which is given by a gradient field, generates a field free point (FFP) (or alternatively a field free line (FFL)
[36]). The larger the distance between nanoparticles and FFP, the more is the magnetization caused by the
nanoparticles in saturation. The superposition with a spatially homogeneous but time-dependent field (drive
field) moves the field free region along a predefined trajectory defining the field-of-view (FOV). An interplay
between gradient strength and drive field amplitude determines the FOV size but when guaranteeing a certain
resolution the FOV is strictly limited due to safety reasons. The rapid change of the applied field H(x, t) causes
a measurable change of the magnetization M(x, t) of the nanoparticles.
In the first approximation the change of the magnetization can be characterized by using the Langevin function.
Neglecting the interactions between multiple particles and doing the transition from microscopic to macroscopic
scale (see [37]) allows the approximation of the magnetization M by multiplying the particles’ mean magnetic
moment vector m̄(x, t) and the particle concentration c(x).
The temporal change of the particles’ magnetization induces a voltage uP (t) in the receive coil units. Using
a quasi-static approximation in the induction principle and the law of reciprocity (see [38]) allows for the
description via a linear integral operator with respect to the particle concentration:

uP (t) = −µ0

∫
Ω

pR(x) · ∂
∂t

M(x, t) dx =

∫
Ω
c(x)(−µ0p

R(x) · ∂
∂t

m̄(x, t))︸ ︷︷ ︸
=s(x,t)

dx. (4.1)

Here, pR is the receive coil sensitivity, which is the magnetic field which is generated by the receive coil unit
when applying a unit current. Analogously, the applied field H(x, t) also induces a voltage uE(t) which is
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known as direct feedthrough. Since this value is several orders of magnitude larger than that of the particle
signal, it must be removed prior to digitization. This is done by applying an analog filter which is described
by a temporal convolution with a kernel function a(t) (ã denotes its periodic continuation). The measured
signal v(t) is then given by v = (uP + uE) ∗ a. One common choice for the analog filter is a band-stop
filter such that some frequency bands of the particle signal are also removed. The resulting integral kernel
s̃(x, t) = (s(x, ·) ∗ a)(t) is primarily determined by the analog filter (receive-unit-dependent), the receive
coil sensitivity (receive-unit-dependent), the behavior of the nanoparticles, the particle parameters, and the
applied magnetic fields. Due to missing accurate models for the particle magnetization, the whole function s̃ is
commonly determined in a time-consuming calibration process limiting the FOV size as well as the resolution.
As the calibration data strictly relies on the particle properties and the measurement sequence, changing tracer
material or measurement sequences requires a complete recalibration. Model-based approaches including less
simplified behavior of the particles’ magnetic moments in the applied fields are highly desirable to reduce the
calibration costs and to enable more sophisticated measurement sequences.

4.1.1.1. Scenarios in MPI

The main problem in MPI is given by the forward operator

F :X(Ω)→ Y (0, T )L

c 7→ (Akc+ ak ∗ uEk )k=1,...,L,

for L ∈ N receive coil units with suitable function spaces X(Ω) and Y (0, T ) (assumed to be Hilbert spaces
in the following). Ak : X(Ω) → Y (0, T ), c 7→

∫
Ω s̃k(x, t)c(x) dx, k = 1, . . . , L, is the forward operator

mapping to the analog filtered particle signal for individual receive coil units. The operator F describes the
actual measurement process. In MPI we are mainly aiming for solving problems given by the linear operator

A :X(Ω)→ Y (0, T )L

c 7→ (Akc)k=1,...,L.

We thus need to get rid of the direct feedthrough uEk . In an ideal situation it holds A = F as one assumes
ak ∗ uEk = 0 but in general this not the case. We can now distinguish two cases in MPI regarding a formal
description of the forward operator, the data-based case where a full calibration of the linear forward operator
is performed and the model-based case where a suitable model for the mean magnetic moment m̄ is formulated.
Due to the fact that finding a suitable model for the particles’ magnetization is still an unsolved problem and the
full system matrix calibration is still state of the art in MPI, we distinguish these two cases in the following. As
it is possible to specify physical models which might not include relevant aspects, hybrid approaches combining
best of both are also desirable. In MPI possible problem setups are as follows (to improve reading convenience,
we formulate the scenarios for one coil unit only, i.e., L = 1):

• Data-based case: Let Γ ⊂ R3 be a reference volume placed at the origin. The data-based approach uses
single measurements of a small sample at predefined positions {x(i)}i=1,...,N ∈ ΩN . The concentration
phantoms are given by c(i) = c0χx(i)+Γ for some reference concentration c0 > 0. Typical choices for Γ
are small cubes (∼ 1 mm × 1 mm × 1 mm). The measurements v(i) = 1

c0
Fc(i), i = 1, . . . , N , are then

used to characterize the data-based forward operator.
Background subtraction case (D1): Let v(0) = F0. Assuming the calibration positions are chosen such
that x(i) + Γ are pairwise disjoint and Ω = ∪Ni=1x

(i) + Γ , the specific discretised problem of the model-
based approach corresponds to the data-based approach (solving Ac = v− v(0)) with Sc̃ = v− v(0) with
S = [v(1) − v(0)| . . . |v(N) − v(0)] and where c =

∑N
i=1 c̃iχx(i)+Γ . The full discrete setup is obtained by

a finite dimensional approximation in YM ⊂ Y (0, T ), i.e., assume v =
∑M

i=1〈φi, v〉φi where {φj}j∈N
is an ONB of Y (0, T ). It then reads: Find c̃ ∈ RN for given measurement ṽ ∈ KM , K ∈ {R,C},
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(v ∈ Y (0, T ) obtained from an evaluation of F ) such that

S̃D1c̃ = ṽ − ṽ(0), S̃D1 = [ṽ(1) − ṽ(0)| . . . |ṽ(N) − ṽ(0)] (4.2)

where ṽ = (〈φi, v〉)i=1,...,M (ṽ(k) obtained analogously).
Partial temporal information case (D2): Alternative strategies to remove the influence of the back-
ground signal v(0) (due to the structure of v(0) in a certain basis) is to restrict the problem to partial
data. The discretisation of Y (0, T ) is again obtained via the ONB {φi}i=1,...,M . Let {ψj}j∈N be another
ONB of Y (0, T ) (can also be equal to {φi}i=1,...,M ). We further assume v(0) is sparse in {ψj}j∈N, i.e.
|〈v(0), ψj〉| 6= 0, j ∈ J , |J | < ∞. We thus formulate the reduced data problem within the data-based
case: It then reads finding c̃ ∈ RN for given measurement ṽ ∈ KM , K ∈ {R,C}, (v ∈ Y (0, T ) obtained
from an evaluation of F ) such that

〈Sc̃, ψj〉 = 〈v − v(0), ψj〉, j ∈ N \ J, S = [v(1) − v(0)| . . . |v(N) − v(0)] (4.3)

Exploiting the sparsity assumption on v(0) and using the finite-dimensional approximation in YM yields
the final problem

〈S̃D2c̃, (〈φi, ψj〉)i=1,...,M 〉 = 〈ṽ, (〈φi, ψj〉)i=1,...,M 〉, j ∈ N \ J,
S̃D2 = [ṽ(1)| . . . |ṽ(N)] (4.4)

The crucial part is to obtain the correct index set J . In the literature this is commonly done by an SNR-
threshold technique with respect to {ψj}j∈N being the Fourier basis for T -periodic signals. If the index
set is determined incorrectly, one inverts an affine linear system assuming it is linear causing additional
artifacts in the reconstruction (i.e., in a noise-free case the reconstruction c∗ of a true c† is obtained via
c∗ = A−1Fc† = c† +A−1v(0)).

• Model-based case: The challenging part in the model-based case is formulating the correct model for the
mean magnetic moment m̄.
Equilibrium model (monodisperse / polydisperse) (M1): One of the most extensively studied models
in MPI is based on the Langevin function. This model is motivated by the assumptions that the applied
magnetic field is static and the particles are in equilibrium. Under these assumptions, we assume that the
mean magnetic moment vector of the nanoparticles immediately follows the magnetic field, i.e.:

m̄(x, t) = m0Lβ(|H(x, t)|) H(x, t)

|H(x, t)|
(4.5)

where Lβ : R→ R is given in terms of the Langevin function by the following:

Lβ(z) =

(
coth(βz)− 1

βz

)
(4.6)

for m0, β > 0. The final problem with respect to the Langevin function is to obtain the concentration c
from the following system of equations:

v(t) = −
∫ T

0

∫
Ω
c(x)ãk(t− t′)sk(x, t′) dx dt′

s = µ0m0(pR)T
∂

∂t

(
Lβ(|H|) H

|H|

) (4.7)

I3 ∈ R3×3 being the identity matrix . The equilibrium model in (4.7) can be extended to polydisperse
tracers by adapting the function defining the length of the mean magnetic moment vector in (4.6). The
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tracer material is then modeled by a distribution of particles with different diameters D > 0. Assuming
that the particle’s diameter distribution is given by the density function ρ : R+ → R+ ∪ {0} with
‖ρ‖L1(R+) = 1, we obtain the extended problems by the following:

v(t) = −
∫ T

0

∫
Ω
c(x)ã(t− t′)s(x, t′) dx dt′

s = µ0(pR)T
∂

∂t

(
Lρ(|H|)

H

|H|

) (4.8)

where Lρ : R→ R is given in terms of the Langevin function by

Lρ(z) =

∫
R+

ρ(D)m0(D)Lβ(D)(z) dD (4.9)

with m0, β : R+ → R+ describing the influence of the particle diameter on the volume of the core,
respectively the magnetic moment.
Imperfect models suitable for lower quality image reconstruction (M2): This category includes a
rather large number of possible model approaches. Generally spoken, this comprises models which
approximate the behavior of the system matrix (commonly fitting some model parameters to real data)
but cannot reach the reconstruction quality of the data-based case. For example, one can treat the analog
filter a as one unknown parameter and fit the model in (M1) to real data.
Suitable model for magnetization dynamics (M3): The operator is properly described by a mathe-
matical model including a sufficient model for the magnetization behavior of the tracer. This requires
considering (or approximating) Brownian and Neél rotation mechanisms in the magnetic moment rota-
tion of the nanoparticles. The important difference to (M2) is that here we assume that this model is
qualitatively an alternative to the data-based case. This is still an unsolved problem but it is added to the
list of possible cases to emphasize the opportunities in the context of Deep Learning approaches.

Using the previously formulated standard setups in MPI we can formulate different problem scenarios (S) which
are discussed in the context of Deep Learning in the remainder of this article:

• Scenario (S1):
Given information (D1): measured and background-corrected system matrix (S̃D1), background mea-
surements ṽ(0), a phantom measurement ṽ.
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain cleaned particle signal

• Scenario (S2):
Given information (D2): measured system matrix (S̃D2), background measurements ṽ(0) (optional), a
phantom measurement ṽ.
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain correct index set J , (iv) obtain completed particle signal

• Scenario (S3):
Given information (D1 or D2, M1): measured system matrix (S̃D1 or S̃D2), background measurements
ṽ(0) (in (D2) optional), a phantom measurement ṽ, similar but oversimplified model for m̄ (see M1).
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions), (ii)
obtain fast and improved concentration reconstructions, (iii) obtain memory-efficient representation, (iv)
obtain correct index set J (in (D2)) , (iv) obtain completed particle signal, (v) measured signal correction
(background), completion, and mapping to range of oversimplified model (reconstruction is than obtained
via oversimplified model).
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• Scenario (S4):
Given information (M1): background measurements ṽ(0), a phantom measurement ṽ, similar but over-
simplified model for m̄ (see M1).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain improved operator,
(iii) obtain cleaned particle signal from measured phantom data.

• Scenario (S5):
Given information (M2): background measurements ṽ(0), a phantom measurement ṽ, imperfect model
for m̄ which allows reasonable reconstruction (see M2).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain improved operator,
(iii) obtain cleaned particle signal from measured phantom data.

• Scenario (S6):
Given information (D1 or D2, M2): measured system matrix (S̃D1 or S̃D2), background measurements
ṽ(0) (in (D2) optional), a phantom measurement ṽ, imperfect model for m̄ which allows reasonable re-
construction (see M2).
Possible targets: (i) reduce number of calibration scans (larger delta sample and/or missing regions),
(ii) obtain fast and improved concentration reconstructions (e.g., post-processed reconstruction of lower
quality), (iii) obtain memory-efficient representation, (iv) obtain correct index set J (in (D2)) , (iv) ob-
tain completed particle signal, (v) measured signal correction (background), completion, and optional
mapping to range of imperfect model (reconstruction is than obtained via oversimplified model).

• Scenario (S7) (hypothetical):
Given information (M3): background measurements ṽ(0), a phantom measurement ṽ, suitable model for
m̄ (see M3).
Possible targets: (i) obtain fast and improved concentration reconstructions, (ii) obtain cleaned particle
signal from measured phantom data.

4.1.2. Deep Learning and Inverse Problems

In the following subsections we will present the basic ideas behind scenarios of applying Deep Learning to
Inverse Problems and briefly introduce explicit methods to deploy them.
We use the following naming conventions:

• The forward operator:
A : X → Y,

where X (a Banach space) the reconstruction space and Y (a Banach space) the signal space.
• pX : X → R≥0 the probability density function of the elements/images/concentrations that we want to

reconstruct.
• pY : Y → R≥0 the probability density function of the elements/signals/voltages that we are measuring.
• pXY : X × Y → R≥0 the joint probability density function.

4.1.2.1. A: Learned Penalty Terms

In variational approaches to Inverse Problems one usually incorporates a so-called penalty function

φ : X → R≥0

to favor good reconstructions, via minimizing a Tikhonov-type functional

min
x
||Ax− y||22 + φ(x)
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(or similar). This penalty function is usually handcrafted and at best a very rough approximation of what one
would want to have as a penalty term. Given enough data to be representative of pX , one can use neural
networks to learn the “ideal” penalty function. This approach has been explored in [39] [40].
Like for the Plug-and-Play Prior Methods, (B), these methods only require knowledge about pX . This can
be provided via handcrafted parts, via known ground truth data or via surrogate, which represents pX good
enough.

• What do we learn:
The parametrization θ of a penalty function φθ : X → R≥0 (for example represented by a neural
network).

• Intrinsically required knowledge:
Ground truth data about pX e. g. in the form of many samples.

4.1.2.2. B: Plug-and-Play Prior Methods

This approach is in some sense (w. r. t. proximal operators) dual to approach A.
Plug-and-Play Prior where introduced in [41], outside the Deep Learning context. The authors pointed out that
the alternating direction method of multipliers (ADMM) algorithm used for reconstruction in Inverse Problems
could easily be adapted to incorporate any type of denoising method (or more general, any type of algorithm)
as a prior during reconstruction. The prior is incorporated by replacing the proximal-operator, proxφ : X → X ,
of some penalty function, φ (within the reconstruction algorithm e.g. ADMM) with some other operator. It
is worth noting, that this operator does not have to be a proximal operator of some penalty function anymore.
With the rise of Deep Learning methods people started to learn these proximal-operator which are replaced by
neural networks.
It was also possible to extend the basic idea to other algorithms like proximal descent or primal dual hybrid
gradient, not just ADMM, see for example [42, 43].

• What do we learn:
The parametrization θ of an operator pθ : X → X that – incorporated in some reconstruction algorithm,
in which it replaces the proximal operator of some penalty function – improves the reconstruction.

• Intrinsically required knowledge:
Ground truth data about pX , e. g., in the form of many samples.

4.1.2.3. C: Gradient-Descent-by-Gradient-Descent type Methods

A major field of research in Inverse Problems and Deep Learning is to learn an iterative method from data. This
field makes implicit use of the Plug-and-Play prior idea but goes way further. Two very prominent papers in
this field are the “Learning Fast Approximations of Sparse Coding” (LISTA) paper [44] and the “Learning to
learn by gradient descent by gradient descent” paper [45]. Despite the fact that the paper [45] is not explicitly
solving an Inverse Problem their method can be seen as the most data driven form of this type of method. Other
authors applied the ideas from [45] directly to solve Inverse Problems [46].
The basic idea of this method has be extended in multiple ways to incorporate prior knowledge e.g. by unrolling
existing iteration methods up until a fixed number of iterations and replacing different parts of them by neural
networks [47, 48, 49, 50, 51, 52].
One tries to learn parameters θ of a function fθ : Y → X , such that it produces “nice” reconstructions via

min
θ

EpXY [d(fθ(y), x)],

where d is some measure of distance.

• What do we learn:
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The parametrization θ of an operator fθ : Y → X that directly produces “nice” reconstructions.
• Intrinsically required knowledge:

Ground truth data about pXY e. g. in the form of many samples.

4.1.2.4. D: Regularization by Architecture

From an abstract point most (if not all) of machine learning methods – and therefore all methods above – can be
seen as parameter identification problems. Despite this being the case for all of the above mentioned types this
one is the closest to the original notion of parameter identification problems, since no training data is required;
one solely fits the parameters θ of a function

Fθ : G→ R≥0

for (usually) a single point of data, g ∈ G via

min
θ
Fθ(g).

These methods are very new, there is only some internal work by us and one very recent paper by a group from
the University of Texas [53]. Both works are inspired by a recent paper [54] that noticed, that the inherent
structure of so-called convolutional neural networks (CNN) is a good prior for images (even without training).
This inspired the authors in [54] to solve Inverse Problems with the prior that the reconstructed image has to lie
in the range of a CNN-architecture (non-specific to a given parameterization of the network).

• Deep Image Prior:
Fθ(u) = ||u−Ac(θ)||22,

where u is the measured signal, A the MPI operator and c (the output of an untrained neural network
parameterized by θ whose input is a constant) the concentration.

• Our “Deep Operator Priors” are all of the form:

Fθ(A) =

N∑
i=1

wi||Ai − fθ(ci)||22 + φ(fθ, ci),

where fθ is a neural network representing and enforcing the form of the forward operator in its architec-
ture, Ai usually the columns of a measured operator corresponding to sample concentrations ci and φ a
penalty function enforcing structures on weights in the internal representations of fθ. The wi are weights
to incorporate SNR and similar knowledge. Possible architectures are mixtures of CNN for the spatial
structure and RNN (recurrent neural network) for the temporal (frequency) structure.

It is also a still open question whether the || · ||2-loss is really the best way to enforce the regression, we are also
thinking about using the Wasserstein loss [49].
We see huge potential in these methods, since they allow one to incorporate abstract structural knowledge
about the object one ones to regularize. The main difference to “classic” parameter identification is, that one
uses deep models as structures (instead of e. g. differential equations). This allows one to incorporate more
abstract and less precise knowledge about some underlying structure of a given point of data These methods
relate to traditional parameter identification problems, like Deep Learning relates to machine learning.
We not only want to use these type of methods via the one described in [53], but also via own approaches. We
see massive potential in applying these types of ideas to the forward operator via casting abstract knowledge
about it into into the architectural design of a neural network that in-turn is fitted to a measured (noisy and error
prone, maybe incomplete) version of the forward operator.
These methods are especially interesting for Magnetic Particle Imaging, since they do not rely on ground truth
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data. This is crucial, since forMPI – as well as for nearly any other novel Inverse Problem – one can not expect
to have sufficient ground truth data, see chicken-and-egg-problem.

• What do we learn:
A regularized version of some data point (e. g. an image or even an operator itself).

• Intrinsically required knowledge:
Any kind of abstract knowledge about the data point could potentially be incorporated.

4.1.2.5. E: Image Post-Processing via Deep Learning

Of course, all kinds of image post-processing techniques can be applied to improve MPI reconstructions: in-
painting, denoising, deblurring, etc. The leading methods in this field are mostly Deep Learning based nowa-
days. The amount of literature is expanding rapidly, see for examples [55, 56, 57, 58, 59, 60, 61].

4.1.3. Applying Deep Learning to Magnetic Particle Imaging

In MPI we have to deal with the full extend of the chicken-and-egg problem described earlier. Therefore many
of the methods described above that rely on ground truth data (and which in general do not solve new Inverse
Problems) are not applicable. This makes MPI an example par excellence for bringing Inverse Problems and
Deep Learning together in solving previously unsolved Inverse Problems.
Possible approaches to tackle this union:

• Use surrogate data sets.
• Regularization via Architecture.

Using surrogate data sets means to use data that is presumably similar to MPI data, like MRI data, to boot strap
a Deep Learning approach. Approaches that lean to that are especially approaches of the kind, where on learns
a penalty term, since theses methods a intrinsically from the Inverse Problem itself.
Using architecture as a regularization is a very new field. Obviously Deep Image Prior should be implement for
MPI, but there are a myriad of other opportunities to evaluate. For example one could use the structure provided
by an recurrent neural network, like a long-short-term-memory network (LSTM) combined with a convolutional
neural network to do inpainting/deblurring on the measured operator to reconstruct measurements with bad
signal-to-noise ratios. This could be done via one big optimization in which one optimizes the structure of an
extremely deep LSTM that reaches over all frequency-(or time) measurements of an operator at the same time.
The goal of the optimization is to fit the output of the network to the measured operator (learning its structure)
weighted by the signal-to-noise ratio of the measurements.

4.2. Implementation

We will now describe the network we are using to deploy our deep image prior / regularization by architecture
approach to magnetic particle imaging as described above. Since it is not clear what a good prior for MPI is
or how one would encode one would cast it into a regularizing architecture. Here, we use the deep image prior
introduced by [62], specifically their U-net architecture. Our implementation is based on Tensorflow [63] and
Keras [64] and has the following specifications: Between the encoder and decoder part of the U-net our skip
connection have 4 channels. The convolutional encoder goes from the input to 32, 32, 64 and 128 channels
each with strides of 2×2 and filters of size 3×3. Then the convolutional decoder has the mirrored architecture
plus first a resize-nearest-neighbor layer to reach the desired output shape and second an additional ReLU
convolutional layer with filters of size 1. The number of channels of this last layers is 3 for DS1 to accommodate
for the 3 slices and 1 for DS2. The input of the network is given by a fixed Gaussian random input of size
1× 32× 32 or 3× 32× 32. For further details on this architecture we refer to [62].
Since Tensorflow does not support auto gradients for complex numbers, we split up our loss function into the
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form

‖AφW (z)− yδ‖2 = ‖real(A)φW (z)− real(yδ)‖2 (4.10)

+ ‖imag(A)φW (z)− imag(yδ)‖2, (4.11)

where real and imag denote the real and imaginary parts respectively. If nothing else is said we used
Adam [65] for out optimizations. Sometimes our optimization apparently got stuck in some undesirable lo-
cal minimum early on, such that it quickly became apparent that the result would not be anything close
desirable. In those cases we simply restarted the optimization (with a new random initialization of the net-
work). The implementation can be found at Google Drive https://drive.google.com/open?id=
1F_Pp5VYhrnLDXh3FEhaEnJ-HQNJYCrf5.
The implementation was made in Python, an interpreted, high-level, general-purpose programming language.
Python’s design philosophy emphasizes code readability with its notable use of significant whitespace. Its
language constructs and object-oriented approach aim to help programmers write clear, logical code for small
and large-scale projects.
For presentation we used Jupyter, which is a non-profit, open-source project, born out of the IPython Project
in 2014 as it evolved to support interactive data science and scientific computing across all programming lan-
guages. Jupyter will always be 100% open-source software, free for all to use and released under the liberal
terms of the modified BSD license.
For plotting and visualisation was used Matplotlib, a Python 2D plotting library which produces publication
quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can
be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and
four graphical user interface toolkits. Matplotlib tries to make easy things easy and hard things possible. You
can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc., with just a few lines of
code.
Also SciPy, a free and open-source Python library used for scientific computing and technical computing was
used. SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions,
FFT, signal and image processing, ODE solvers and other tasks common in science and engineering. SciPy
builds on the NumPy array object and is part of the NumPy stack which includes tools like Matplotlib, pandas
and SymPy, and an expanding set of scientific computing libraries. This NumPy stack has similar users to other
applications such as MATLAB, GNU Octave, and Scilab. The NumPy stack is also sometimes referred to as
the SciPy stack.
For the deep learning part we mainly used two libraries. The first one Tensorflow, is an end-to-end open source
platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community
resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML
powered applications. Tensorflow allow you to build and train state-of-the-art models without sacrificing speed
or performance. TensorFlow gives you the flexibility and control with features like the Keras Functional API
and Model Subclassing API for creation of complex topologies. For easy prototyping and fast debugging, use
eager execution.
The other deep learning tool used was Keras, a high-level neural networks API, written in Python and capable
of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimen-
tation. Being able to go from idea to result with the least possible delay is key to doing good research. we use
Keras because it allows for easy and fast prototyping (through user friendliness, modularity, and extensibility),
supports both convolutional networks and recurrent networks, as well as combinations of the two, and runs
seamlessly on CPU and GPU.
Those libraries need to be installed for run the codes. To simplify package management and deployment was
used Anaconda, a free and open-source distribution of the Python and R programming languages for scientific
computing (data science, machine learning applications, large-scale data processing, predictive analytics, etc.).
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4.3. Computer requirements

The Anaconda distribution is used by over 15 million users and includes more than 1500 popular data-science
packages suitable for Windows, Linux, and MacOS. The main reason to use Anaconda was that it has installed
almost all libraries that we use, except Tensorflow and Keras, which were installed separately.

4.3. Computer requirements

The codes provided were runned in a SuperServer 4028GR-TR with the following enviroment:
• Operating system: Ubuntu 16.04.5 LTS
• Processor: Intel Xeon E5-2630 v4 (10 cores, 20 threads)
• System RAM: 64 GiB
• Graphic cards: 4xnVidia GeForce GTX 1080 Ti (3584 cores, 11Gbps memory speed, 11GB GDDR5X

Standard Memory Config)
• Storage: 2x 240GB Intel SSD DC S4500 240BG SATA, 8x 2TB SATA3-HD Seagate Exox E7E2000

Since the implementation is in Python, there is no need to compile or build the code, the notebooks can be
runned once all the required libraries are installed. So no Makefiles or other computer setting environment files
are needed. It is recommended to have at least one GPU to run the code.

4.4. Numerical examples

Figure 4.1: Experimental platform used to obtain dataset DS1 with FFP Lissajous trajectory in blue. Photo
taken at University Medical Center Hamburg-Eppendorf by T. Kluth.

We test the capability of the Deep Imaging Prior approach to improve image reconstruction. This is done by
using two datasets generated by using the Bruker preclinical MPI system at the University Medical Center
Hamburg-Eppendorf. A 2D excitation in the x/y-direction is used with excitation frequencies of 2.5/102 MHz
(≈ 24.51 kHz) and 2.5/96 MHz (≈ 26.04 kHz) resulting in a 2D Lissajous trajectory with a period of ap-
proximately 0.6528 ms. The drive field amplitude in x- and y-direction is 12 mT/µ0 respectively. The gradient
strength of the selection field is 2 T/m/µ0 in z-direction and -1 T/m/µ0 in x- and y-direction. The time-dependent
voltage signal is sampled with a rate of 2.5 MHz from L = 3 receive coil units. The discretization in time and
the real-valued signal results in 817 available Fourier coefficients (for ψj , j ∈ {0, . . . , 816}) for each receive
coil. Thus each system matrix S has at most 3 · 817 = 2451 rows. The two datasets are as follows:
DS1 2D phantom dataset: The system matrix is obtained by using a cubic sample with edge length of 1 mm.

The calibration is done with Resovist® tracer with a concentration of 0.25 mol/l. The field-of-view has
a size of 29 mm × 29 mm × 3 mm and the sample positions have a distance of 1 mm in each direction
resulting in a size of 29 × 29 × 3 voxels, i.e., 2523 columns in the system matrix. System matrix entries
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4.4. Numerical examples

are averaged over 200 repetitions and empty scanner measurements are performed every 29 calibration
scans. It is ensured that the used phantoms are positioned within the calibrated FOV by moving an
experimental platform in the desired region, see Figure 4.1. The phantom measurements are averaged
over 10000 repetitions of the excitation sequence. We use the three following phantoms:

– “4mm”: Two cylindrical glass capillary with an inner diameter of 0.7 mm filled with Resovist®

with a concentration of 0.25 mol/l are placed in the x/y-plane oriented in y-direction. The height
of the tracer in the capillaries are 10 mm (left capillary) and 21 mm (right capillary). The distance
between the capillaries in x-direction is 4 mm. See also Table 2 for an illustration.

– “2mm”: Like the “4mm” phantom with 2 mm distance in x-direction between the glass capillary.
See also Table 2 for an illustration.

– “one”: The same capillaries from the “4mm” phantom are used and arranged as the digit one.
DS2 Open MPI dataset: The dataset is publicly available at [66]. From the dataset the 2D calibration system

matrix for the x/y-plane located at z=0 mm is used for the reconstruction. Here, the system matrix is
obtained by using a cuboid sample with an edge length of 2 mm × 2 mm × 1 mm. The calibration is
done with Perimag® tracer with a concentration of 0.1 mol/l. The considered field-of-view has a size
of 38 mm × 38 mm × 1 mm and the sample positions have a distance of 2 mm in x- and y-direction
resulting in a size of 19 × 19 × 1 voxels, i.e., 361 columns in the system matrix. System matrix entries
are averaged over 1000 repetitions and empty scanner measurements are performed every 19 calibration
scans. In contrast to the previous dataset the used phantoms are not limited to the covered field of view
of the system matrix. The phantom measurements are averaged over 1000 repetitions of the excitation
sequence. According to the description on [66] we have the following three phantoms:

– “concentration”: This phantom consists of 8 cubes of 2mm edge length resulting in 8µl volume
each. The distance of the cubes is 12 mm between centers (10 mm between edges) within the x/y-
plane and 6 mm between centers (4 mm between edges) in z-direction. The sample chambers are
numbered from 1 to 8 starting with the top layer on the top left position (positive x- and y-direction),
counting clockwise. Then starting with the lower layer with number 5 on the top left (positive X
and Y direction), counting clockwise. The concentrations in the 8 sample chambers are diluted with
a factor of 1.5 in each step and the values are 100.0, 66.6, 44.4, 29.6, 19.7, 13.1, 8.77, and 5.85
mmol/l. See also Table 2 for an illustration.

– “shape”: The phantom is a cone defined by a 1 mm radius tip, an apex angle of 10 deg, and a height
of 22 mm. The total volume is 683.9 µL. Perimag® tracer with a concentration of 0.05 mol/L is
used. See also Table 2 for an illustration.

– “resolution”: The resolution phantom consists of 5 tubes filled with Perimag® with a concentration
of 0.05 mol/l. The 5 tubes have a common origin on one side of the phantom. From there they
extend in different angles from this origin within the x/y- and the y/z-plane. In z-direction the
angles in the y/z-plane are chosen smaller (10 deg and 15 deg) than in x/y-plane (20 deg and 30
deg). See also Table 2 for an illustration.

All data is provided in the Magnetic Particle Imaging Data Format Files (MDF) encoded according to [67, 68].
In MPI there exist two standard approaches which are commonly combined to determine the index sets J`,
l = 1, 2, 3, for the purpose of preprocessing: a band pass approach and an SNR-type thresholding. Let
IBP = {j ∈ Z| b1 ≤ |j|/T ≤ b2} be the band pass indices for frequency band limits 0 ≤ b1 < b2 ≤ ∞. For
the SNR-type thresholding one standard quality measure is determined by computing a ratio of mean absolute
values from individual measurements v(i)

` (as previously described) and a set of empty scanner measurements
{v(k)
`,0 }

K
k=1 [69]:

d`,j =
1
N

∑N
i=1 |〈v

(i)
` − µ

(i)
` , ψj〉|

1
K

∑K
k=1 |〈v

(k)
`,0 − µ`, ψj〉|

(4.12)
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where µ` = 1
K

∑K
k=1 v

(k)
0 and µ(i)

` = κiv
(ki)
`,0 + (1− κi)v(ki+1)

`,0 is a convex combination of the previous (ki-th)
and following (ki + 1-th) empty scanner measurement with respect to the i-th calibration scan; κi ∈ [0, 1]
chosen equidistant for all calibration scans between two subsequent empty scanner measurements. For a given
threshold τ ≥ 0 we thus obtain

J` = {j ∈ IBP|d`,j ≥ τ} (4.13)

for ` = 1, 2, 3.
We will now describe the general setup we use to apply the deep inversion prior approach to the reconstruction
of 2 dimensional magnetic particle imaging data. We do the processing of the data in the following manner:

1. We build the system matrix S and the measurement v which are associated with the index sets J`, ` =
1, 2, 3, based on an SNR-type thresholding with τ = 2 ((d`,j)j,` also provided by the MDF file) and the
bandpass index set with the passband boundaries b1 = 80 kHz and b2 = 625 kHz.

2. We subtract the signal of an empty scanner measurement from the phantom data to correct for the back-
ground signal.

3. The resulting linear equation system Sc = v is multiplied with a diagonal matrix W with the reciprocal
of the 2-norm of the respective row of the system matrix on the diagonal.

This leaves us with the a processed system matrix, to which we will from now on refer to asA = WS ∈ CM×N ,
and signals to which we will from now on refer to as yδ = W (v − v0) ∈ CM M =

∑L
`=1 |J`|. For DS1 we

end up with M = 211 and N = 292 · 3 = 2523 and for DS2 with M = 842 and N = 192 = 361.
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Table 2: Different Reconstructions. Photos for phantoms “4mm” and “2mm” taken at University Medical
Center Hamburg-Eppendorf by T. Kluth. Photos for phantoms “concentration”, “shape”, and “resolution” as

provided by [66].
Phantom Kaczmarz with `2 `1 DIP Photo

“4mm” (DS1)

λ̃ = 5e− 4 λ̃ = 5e− 3 η = 5e− 5

“2mm” (DS1)

λ̃ = 5e− 4 λ̃ = 5e− 3 η = 5e− 5

“concentration” (DS2)

λ̃ = 5e− 3 λ̃ = 1e− 2 η = 5e− 5

“shape” (DS2)

λ̃ = 5e− 3 λ̃ = 1e− 2 η = 5e− 5

“resolution” (DS2)

λ̃ = 5e− 3 λ̃ = 5e− 3 η = 5e− 5
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Part V.
Multirate time integration and model order reduction for
coupled thermal electrical systems
M.W.F.M. Bannenberg, M. Günther

Abstract

The coupled multiphysics systems arising in circuit simulation are both high dimensional and exhibit different
internal time scales. These two properties can be exploited by numerical techniques. The high dimensional
systems can be reduced by model order reduction. Then the different intrinsic time scales are efficiently
handled by a multirate time integration scheme. The combination of these techniques is applied to coupled
differential-algebraic circuit equations and a nonlinear thermal system. The result is a significant decrease in
the computational effort.
Keywords: Model Order Reduction, Multirate, Differential Algebraic Equations, Coupled Systems, Circuit
Simulation.

5.1. Introduction

In the simulation of nanoelectronics there are a great many things to consider. Trying to accurately model the
natural phenomena happening inside a microchip leads to very large coupled systems. Which can become un-
feasible to solve numerically. As specific type of coupled system this project focuses on systems with different
intrinsic time scales i.e. due to thermal-electric coupling. The objective of this project is to combine multirate
time integration and model order reduction to drastically improve the simulation speed. By using MR one can
exploit the different intrinsic time scales of subsystems as to improve the overall computation efficiency, whilst
preserving a level of global accuracy. MOR aims to reduce the size of large subsystems and decrease the nu-
merical effort for each time step, again within a certain level of global accuracy. The outline of the report is as
follows: First the benchmark problem is described. Next a mathematical definition of both techniques is given,
followed by a detailed description of the implementation. Then to demonstrate the effect of this combination
this new approach will be applied to generate a numerical example.

5.1.1. Thermal-Electric Benchmark Circuit

For this benchmark a test circuit is needed which contains both coupling and different intrinsic time scales. To
this end the thermal-electric test circuit as described in [70] is used, Figure 5.1.

v(t)

u1 u2

R(T )

u3 u4

C RL

Figure 5.1: Electric description of the benchmark circuit.

This circuit consists of an operational amplifier, two resistors, a diode and a capacitor. The resistor R(T )
produces and transports heat and is temperature dependent. The amplifier is a heat source and the diode has a
temperature dependent characteristic curve. The electric behaviour of the circuit is modelled by nodal analysis
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yielding from Kirchhoff’s laws. Following the discretisation as done in the original paper we arrive at the
following thermal-electric system:

Electric network:

0 = (Av(t)− u3)/R(T ) + idi(u3 − u4, Tdi),

Cu̇4 = idi(u3 − u4, Tdi)− u4/RL,

Coupling interfaces:

Pop = |(vop − |v(t)| · (Av(t)− u3)/R|, Pw = (Av(t)− u3)2/R,

R(T ) =

(
1

2
(ρ(0, T0) +

N−1∑
i=1

ρ(Xi, Ti) +
1

2
ρ(l, TN )

)
· h,

Heat equation:

M ′w,ihṪi, = Λ
Ti+1 − 2Ti + Ti−1

h
+ Pw

ρ̃(Xi, Ti)

R
h,

− γS′w,ih(Ti − Tenv), (i = 1, ..., N − 1).,

(M ′w,0 ·
h

2
+Mop)Ṫ0 = Λ

T1 − T0

h
+ Pw

ρ̃(0, T0)

R

h

2

− γ(S′w,0
h

2
+ Sop) · (T0 − Tenv) + Pop,

(M ′w,N ·
h

2
+Mdi)ṪN = Λ

TN−1 − TN
h

+ Pw
ρ̃(XN , TN )

R

h

2

− γ(S′w,N
h

2
+ Sdi) · (TN − Tenv)

5.1.2. Multirate time integration

To efficiently integrate the thermal-electric system through time we use a multirate scheme, [71]. First consider
a more general notation of the thermal-electric system:

Meu̇ = fe(t,u,T ),

MtṪ = ft(t,u,T ).

We can distinguish a natural partition by splitting the system into thermal and electric equations. Note that
the coupling between the two systems is handled by a coupling interface which is omitted from the general
notation. Now the multirate scheme starts by integrating the whole system with a macro-step H . This yields
solutions for time t0 + H . From these solutions only one for the slow changing subsystem is accepted. Then
the fast changing subsystem is integrated from t0 to t0 + H with micro-steps h. For the coupling linearly
interpolated values from the slow subsystem are used. As the system total system is an index 1 DAE it can be
integrated by implicit Runge-Kutta schemes, following the approach as outlined in chapter VI of [72]. In this
report the stiffly accurate implicit Runge-Kutta schemes are used as means to use the State Space Form Method.
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This results in the system, where A and c are obtained from the Butcher Tableau,

ku =

{
u0 +H · f(t0 + c ·H,ku,kT ) ·A Differential,
f(t0 + c ·H,ku,kT ) Algebraic,

kT = T0 +H · f(t0 + c ·H,ku,kT ) ·A,

Which has to be solved with respect to ku and kT . For the macro-step the complete system is solved. Then for
the intermediate micro-steps the system is solved with interpolated values k̄u for ku in the coupling interface.
To solve this system different methods are available. In this implementation the multidimensional root finder
algorithm by GSL is used for this system of nonlinear equations, [73].

5.1.3. Model order reduction

As the discretised number of thermal equations can be made arbitrarily large model order reduction is applied
to this part of the system. To avoid linearisation of the thermal part the proper orthogonal decomposition (POD)
method is chosen as it can handle nonlinear systems. Following [74], POD starts out with a snapshot matrix
X = [x(t0), ...,x(tNs)] ∈ Rn×Ns of collected state evolutions of the whole system. From this snapshot matrix
an orthonormal basis V is derived. This is done by computing the singular value decomposition ofX:

X = UΣT T

From the scaled singular values matrix Σ = diag(σ1, ..., σn)/
∑
σi the degree of truncation r can be obtained

by a threshold value ε. To construct basis V , POD chooses the left singular vectors corresponding to the r
largest singular values.

V = [u1, ...,ur].

With this orthonormal basis the reduced system is given by

W TMtV
˙̃
T = W T ft(t,u,V T̃ ).

And thus the total system with the reduced thermal subsystem is

Meu̇ = fe(t,u,V T̃ ),

W TMtV
˙̃
T = W T ft(t,u,V T̃ ).

5.2. Implementation

The code for the implementation of the problem sketched in the introduction is written in C++. In this section
of the report an overview of the structure of the software is given.
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Benchmark

Output

Eigen

solver.cpp

pod.cpp

pod.hpp

problem.hpp

RootFinder.cpp

RootFinder.hpp

utils.hpp

5.2.1. Parameters and functions

In the Benchmark folder the main function is in the file solver.cpp, compiled this results in main that can
to be run. In this file first all the numerical parameters of the benchmark problem are declared. These are de-
clared as global variables for accessibility and for single allocation purposes. The problem specific parameters
are declared in the file problem.hpp which is included in solver.cpp, see below. After the numerical pa-
rameter declaration the objective function declaration takes place. As these are linked to the numerical scheme
they are declared in solver.cpp and use the problem specific functions from problem.hpp. Following
the declaration style of solver.cpp the thermal and circuit parameter declarations in problem.hpp¿ are
defined as globals. Then the following functions are defined:

• v, i di, rho, a, S prime: Declared for their respective functions in the system.
• coupling update: Function for updating the coupling parameters. Note that there are multiple ver-

sions depending on the integration rate.
• f: Function values of the DAEs, again there are several depending on activity and MOR.

5.2.2. Setting up the IRK iteration

In the main function, solver.cpp, first the fifth order Radau IIA Butcher Tableau is set up by filling matrix
A and vector c. Then index arrays, iA and iD, for the algebraic and dynamic equations are filled. Next the fast
and slow index arrays are constructed and their local counterparts, indices A/L and iA/D local. This is
done for ease of index access in the objective f A function. The solution destination array, y tot, is then
setup and filled with the initial conditions, y 0, of this specific problem. Then the IRK iteration is started. For
the IRK iteration a RootFinder object is used to solve the ki. This solver is encapsulated in its own class.

5.2.3. The IRK iteration

In this for-loop the computation of the solution for each time-step takes place. As the goal is to use the
multirate IRK loop this is the one that will be described in the section below. The loop starts with initialising
the seed of the solver, for which the current state is used. Then a macro-step ofmmicro steps is performed. For
this large step size the solution is calculated and stored in the the destination matrix. Then the interpolated m
values and if needed extrapolated values are constructed by linear interpolation of the current state value and the
received solution. Note that this is only done for the latent values. Then the internal loop for the m micro-steps
is started. This begins again with the construction of a seed vector for the RootFinder object. However this time
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the seed is only the size of the active dimension. The needed interpolated values is stored in the global array to
be accessible for the objective function. The active subsytem is then solved for the seed value and the results
are stored in the destination matrix. Then the time and global state values are updated.

5.2.4. The POD algorithm

To encapsulate this process this functionality is stored in the POD class as defined by pod.cpp and pod.hpp.
The class is first initiated with the desired reduction number as to allocate global storage arrays. Then once
the snapshot matrix is obtained from the solution matrix the POD object is updated. The update starts by
constructing the SVD of the snapshot matrix. This is done by a EIGEN subroutine, for which two types can be
chosen. Note that one of them is commented in the file. After the SVD the necessary matrices are constructed
an stored in the POD object for ease of access.

Deliverable D5.2
48



5.3. Requirements

5.3. Requirements

The program is compiled by the running the make command inside the Benchmark folder. For this the follow-
ing libraries are used: -lgsl -lgslcblas. Furthermore the folder of the 3.3.4 version of third party library Eigen,
[75], must be included in the the Benchmark folder. The program is currently compiled with g++ version 4.2.1.
Note that the -03 optimiser flag is used for a faster runtime. The specs of the computer which is used for the
numerical examples are:

• 2,6 GHz Intel Core i5.
• 8 GB 1600 Mhz DDR3.

5.4. Numerical examples

To get an impression of the impact of applying model order reduction and multirate time integrating a numerical
experiment is done. For this test case the following simulation parameter values are chosen:

t0 = 0 tend = 0.025,

Hsr = 1.25e− 4 Hmr = 2.5e− 4,

hmr = 2.5e− 5 m = 10,

N = 100 r = 8,

Butcher Tableau

2
5 −

√
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7
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√

6
75

2
5 +

√
6
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√
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11
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√
6
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√
6
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1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

The experiment is setup in following way. First the full system is simulated with single rate time integration.
Then the full system is simulated with multirate time integration. The singlerate solution is then used to con-
struct the snapshot matrix for the POD procedure. Then lastly the reduced system is simulated using multirate
time integration.
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5.4.1. Results

To give an impression of the solution of the circuit a reference solution is shown in Figure 5.2. This solution is
obtained by a very coarse time and spatial discretisation and using the singlerate time integration. Shown is the
desired output, the voltage at u3 and the development of the heat in the middle voxel of the thermal resistor.
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Figure 5.2: Reference solution
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To measure the impact of the multirate time integration and model order reduction the error between the refer-
ence solution and the experiment solution is defined as the difference between the voltage at node u3 of both
solutions, as this would be the desired output of the circuit simulation. In Figure 5.3 the results of the experi-
ments are shown. First we see that the solutions for u3 overlap nicely and thus that the simulations are correct.
Then below the first plot the error introduced by the singlerate and multirate time integration techniques are
shown for the full system, the second and third plot. We see that although the error in the multirate plot is
slightly higher, the errors are within the same magnitude. Then the fourth and final plot illustrates the error
induced by the multirate time integration and POD methods combined. Here we see that due to the POD re-
duction the error is increased and more irregular. However, the error does not stray from the previous errors’
magnitudes.
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Figure 5.3: The results of the simulations

Lastly, in Table 3 the computation time of the three different approaches is shown. These times have been mea-
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sured for 20 runs and then the average is shown. It now shows that the multirate approach roughly doubles the

SR MR MR+MOR
Time 54.8243 28.3296 4.0325

Table 3: Computation time of the solver.

integration speed whilst maintaining accurate. If this is combined with the POD the solver is amost fourtheen
times as fast for the same error magnitude.

5.5. Conclusion

From the numerical example it shows that the combination of multirate time integration and model order reduc-
tion looks quite promising. A decrease of computation time can be seen by applying the two methods whilst
the accuracy is preserved. These preliminary results are a positive indicator for further research. As only one
type of nonlinear model order reduction has been introduced in this benchmark there is much to gain in this
territory. Furthermore different types of coupling need to be elaborated on.
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Part VI.
Model order reduction for parametric high dimensional
interest rate models in the analysis of financial risk
Andreas Binder, Onkar Jadhav, Volker Mehrmann

Abstract

The European Parliament has introduced regulations (No 1286/2014) on packaged retail investment and insur-
ance products (PRIIPs). According to this regulation, PRIIP manufacturers must provide a key information
document (KID) describing the risk and the possible returns of these products. The formation of a KID re-
quires expensive valuations rising the need for efficient computations. To perform such valuations efficiently,
we establish a model order reduction approach based on a proper orthogonal decomposition (POD) method.
The study involves the computations of high dimensional parametric convection-diffusion reaction partial dif-
ferential equations. POD requires to solve the high dimensional model at some parameter values to generate
a reduced-order basis. We propose a greedy sampling technique for the selection of the sample parameter set
that is analyzed, implemented, and tested on the industrial data. The results obtained for the numerical example
of a floater with cap and floor under the Hull-White model indicate that the MOR approach works well for the
short-rate models.
Keywords: PRIIP, model order reduction, POD-greedy approach, interest rate modeling.

6.1. Introduction

Packaged retail investment and insurance products (PRIIPs) are at the essence of the retail investment market.
PRIIPs offer considerable benefits for retail investors which make up a market in Europe worth up to e10
trillion. However, the product information provided by financial institutions to investors can be overly compli-
cated and contains confusing legalese. To overcome these shortcomings, the EU has introduced new regulations
on PRIIPs (European Parliament Regulation (EU) No 1286/2014) [76]. According to this regulation, a PRIIP
manufacturer must provide a key information document for an underlying product that is easy to read and un-
derstand. The PRIIPs include interest rate derivatives such as the interest rate cap and floor [77], interest rate
swaps [78] etc.
A key information document includes a section about ’what could an investor get in return?’ for the invested
product which requires costly numerical simulations of financial instruments. This work evaluates interest rate
derivatives based on the dynamics of the short-rate models [79]. For the simulations of short-rate models,
techniques based on discretized convection-diffusion reaction partial differential equations (PDEs) are often
superior [80]. We implement the finite difference method (FDM) for such simulations [81]. The FDM method
has been proven to be efficient for solving the short-rate models [82, 83, 84]. The model parameters are usually
calibrated based on market structures like yield curves, cap volatilities, or swaption volatilities [79]. The regula-
tion demands to perform yield curve simulations for at least 10,000 times. A yield curve shows the interest rates
varying with respect to the 20-30 time points known as Tenor points. These time points are the contract lengths
of an underlying instrument. The calibration based on several thousand simulated yield curves generates a high
dimensional model parameter space as a function of these tenor points. We need to solve the high dimensional
model (HDM) obtained by discretizing the short-rate PDE for such a high dimensional parameter space [85].
These simulations are computationally costly and additionally, have the disadvantage of being affected by the
so-called curse of dimensionality [86].
To avoid this problem, we establish a parametric model order reduction (MOR) approach based on the proper
orthogonal decomposition (POD) method [87, 88]. The method is also known as the Karhunen-Loéve de-
composition [89] or principal component analysis [90] in statistics. The combination of a Galerkin projection
approach and POD creates a powerful method for generating a reduced order model (ROM) from the HDM
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that has a high dimensional parametric space [91]. This approach is computationally feasible as it always looks
for a linear (or affine) subspaces [92, 93]. Also, it is necessary to note that the POD approach considers the
nonlinearities of the original system. Thus, the generated reduced order model will be nonlinear if the HDM is
nonlinear as well. POD generates an optimally ordered orthonormal basis in the least squares sense for a given
set of computational data. Further, the reduced order models are obtained by projecting a high dimensional
system onto a low dimensional subspace obtained by truncating the optimal basis called reduced order basis
(ROB). The selection of the data set plays an important role and most prominently obtained by the method of
snapshots introduced in [94]. In this method, the optimal basis is computed based on the set of state solutions.
These state solutions are known as snapshots and are calculated by solving the HDM for some parameter val-
ues. The quality of the ROM is bounded by the parameters used to obtain the snapshots. Thus, it is necessary
to address the question of how to generate the set of potential parameters which will create the optimal pro-
jection subspace. Most of the previous work has implemented either some form of fixed sampling or often
only uniform sampling techniques [95]. These approaches are straightforward, but they may neglect the vital
regions in the case of large dimensional parameter spaces. In the current work, the greedy sampling algorithm
has been implemented to determine the best suitable parameter set. The basic idea is to select the parameters
at which the error between the ROM and HDM is maximal. Further, we compute the snapshots using these
parameters and thus obtaining the best suitable ROB. The calculation of the relative error between ROM and
HDM is expensive, so instead, we use the error estimators like the residual errors.
In this report, we illustrate the implementation of numerical algorithms and methods in detail. It is necessary
to note that the choice of a short rate model depends on the type of financial instrument. We present the results
with a numerical example of a floater with cap and floor under the Hull-White one-factor model. However, we
can and will implement the developed model order reduction technique for other models as well. The current
research findings indicate that the MOR approach works well for the short-rate models. Also, we will apply the
Monte Carlo techniques for the simulation of short rate models.

6.2. Mathematical Description

The management of interest rate risks, i.e., the control of change in future cash flows due to the fluctuations
in interest rates is of great importance. Especially, the pricing of products based on the stochastic nature of
the interest rate creates the necessity for mathematical models. Before introducing the stochastic differential
equations (SDEs), we present some basic concepts required to construct the short-rate models.

6.2.1. Bank Account and Short-Rate

Firstly we introduce the definition for a bank account or also called as a money-market account. When investing
a certain amount in a bank account, we expect it to grow at some rate over time. A money-market account
represents a risk-less investment with a continuous profit at a risk-free rate.

Definition 1. Bank account (Money-market account). Let B(t) be the value of a bank account at time t ≥ 0.
We assume that the bank account evolves according to the following differential equation with B(0) = 1,

dB(t) = B(t)rtdt, (6.1)

where rt is a short-rate. This gives

B(t) = exp

(∫ t

o
rsds

)
. (6.2)

According to the above definition, investing a unit amount at time t = 0 yields the value in (6.2) at time t, and
rt is the short-rate at which the bank account grows.
For simplicity, assume that the interest rate r and the bank account B are deterministic processes. If we deposit
C units in the bank account at time t = 0, then we will have C × B(T ) units at time T . Therefore, to have
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exactly one unit at time T , i.e.,
CB(T ) = 1, (6.3)

we need to invest 1/B(T ) units in the bank account. So, the value at time t of the C units invested at the initial
time is

CB(t) =
B(t)

B(T )
. (6.4)

This ratio is know as a discount factor.

Definition 2. Discount factor. The discount factor DF (t, T ) between time t and T is the amount at time t that
is equal to one unit of currency payable at time T , and is given by

DF (t, T ) =
B(t)

B(T )
= exp

(
−
∫ t

o
rsds

)
(6.5)

However, when working with interest-rate products, the study about the variability of the interest rates is es-
sential. Therefore, it is necessary to drop the assumption that the process is deterministic and to consider the
evaluation of r in time as a stochastic process. Thus, the bank account (6.1) and the discount factors (6.5) will
be stochastic processes too. We introduce some stochastic differential equations (SDEs) based on a short-rate
rt later on in this report.

6.2.2. Yield Curve

A fundamental curve that can be obtained from the market data is the zero coupon curve or also known as the
yield curve. It depends on maturity dates and interest rates for an underlying instrument.

Definition 3. Maturity or maturity date. A maturity or maturity date is the final payment date of a financial
instrument, at which the principal (along with the remaining interest) is due to be paid.

Definition 4. Yield curve. The yield curve or a zero-copoun curve at time t is a curve showing interest rates
plotted against different maturities for a similar financial instrument.

Such a curve is also known as the term structure of interest rates at time t. It is a plot of simply-compounded
interest rates for all maturities T up to one year and of annually compounded rates for maturities T larger than
one year. The maturity time points are also known as tenor points. We plot the yields at each tenor point T for
0 ≤ T ≤ T ∗ where T ∗ is the last maturity date. An example of such a curve is shown in Fig. 6.1.

5 10 15 20 25 30 40 50
-0.5

0

0.5

1

1.5

Figure 6.1: Sample yield curve
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6.2.3. Zero-Coupon Bonds

Definition 5. Zero-Coupon bond. A T -maturity zero-coupon bond is a contract that ensures its holder the
payment of one unit of a currency at time T , with no intermediate payments. The contract value at time t < T
is denoted by B(t, T ). Evidently, B(T, T ) = 1.

Based on the stochastic discount factor, we can define a price for a zero-coupon bond paying e1 at time
T . If the rate r is a deterministic quantity, then the DF (t, T ) is a deterministic quantity as well and hence,
D(t, T ) = B(t, T ). However, if the rate r is a stochastic process, then the DF (t, T ) will also be a stochastic
process. So, it is necessary to take the weighted average of all the values of the stochastic discount factor, where
each possible value is weighted by its respective probability. This weighted average is known as the expected
value.

Definition 6. Expected value. Consider a stochastic variable X defined on a probability space Ω, then the
expected value of X , denoted by E[X], is defined by Lebesgue integral [96]

E[X] =

∫
Ω
X(ω)dP (ω), (6.6)

where P denotes probability.

The price of a zero-coupon bond based on the stochastic discount factor is given as

B(t, T ) = E
[
exp

(
−
∫ T

t
rsds

)]
, (6.7)

where r is the short rate.

6.2.4. Forward Rate

The forward rate is a future yield calculated using the yield curve. Assume that the interest rates are continu-
ously compounded, i.e., (6.1) describes the growth of a bank account continuously compounded by the interest
rate r. If the continuous interest rate r depends on t0 and on t1 = t0 +∆t, then from (6.5) we can write

DF (t0, t1) = exp(−r(t0, t1)(t1 − t0)), (6.8)

for the discount factor from time t1 to t0.

Definition 7. Present value. The present value PV (t0) is the current value of a stream of cash flows C(ti) for
a given bank account with a given specified rate of returns. The future cash flows are discounted at the discount
rates DF (t0, ti), and the higher the discount rates, the lower the present value.
Based on a definition of a discount factor DF (t0, t), the present value PV (t0) is given by

P (t0) =
n∑
i=1

C(ti)DF (t0, ti). (6.9)

Now suppose we are trying to find the future interest rate r1,2 for the time period (t1, t2), where t1 and t2 are
expressed in years. Assume that we know the interest rate r1 for the time period (t0, t1) and the rate r2 for the
time period (t0, t2) from the yield curve. Also, at time t2, we are entitled to get a cash flow C and we want to
calculate the fair value F of this cash flow at time t1.
The present value of the cash flow C will be, C · DF (t0, t2). Also, the present value of the cash flow F will
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be, F ·DF (t0, t1). Now, we can write

F ·DF (t0, t1) =C ·DF (t0, t2),

F · exp(−r(t0, t1)(t1 − t0)) =C · exp(−r(t0, t2)(t2 − t0)).
(6.10)

Therefore

log(F/C) = −r(t0, t2)(t2 − t0)− r(t0, t1)(t1 − t0)

t2 − t1
· (t2 − t1), (6.11)

is the discount factor used for calculating F from C. Here the rate

r1,2 =
r(t0, t2)(t2 − t0)− r(t0, t1)(t1 − t0)

t2 − t1
, (6.12)

is known as the forward rate.

6.2.5. Options

An option is a right, but not an obligation, to purchase or sell the underlying instrument at some time t ≥ 0 at
a pre-defined price. This price is known as a strike price. There are two types of options: call options and put
options.
The call option gives a buyer the right to buy the asset at an agreed price, whereas the put option gives the right
to sell. The payoff of an option is its value at the time of its exercise. In the case of a call option with a strike
price K and an underlying instrument with a value V at the expiry T , the payoff for a call option CV is given
as

CV =

{
V −K, if V > K

0, if V ≤ K
CV =max(V −K, 0) = (V −K)+.

(6.13)

For a call option, in the case of V ≤ K, the asset can be purchased at a lower price than K in the market, and
the buyer will not exercise the call option.
Similarly, for the put option, the payoff will be

PV = max(K − V, 0) = (K − V )+. (6.14)

For a put option, in case of V ≥ K, the asset can be sold at a higher price than K in the market.

6.2.6. Interest Rate Cap and Floor

Assume that a borrower pays a floating interest rate (e.g., quarterly payments of Euribor3M1) on some out-
standing loan. The borrower may not be able to pay the interest payments if the Euribor3M rises substantially
so, it is agreed that the interest rate shall not exceed 5 %. That means the interest rate is capped at 5 %.
Typically, the interest rate at time ti is fixed by the interest rate at time ti−1. For our example, the interest rate
can be written as

min(Euribor3M(ti−1), 5%).

Here Euribor3M is know as the reference interest rate R. The payoff (R − K)+ is called a caplet with the
strike price K, and is similar to the call option. For the fixed income products, the interest payments are made
on scheduled dates (t1, · · · , tn). The collection of caplets for these single payments into one contract gives a

1The Euro Interbank Offered Rate (Euribor) is a daily reference rate, published by the European Money Markets Institute, based on
the averaged interest rates at which Eurozone banks offer to lend unsecured funds to other banks in the euro wholesale money
market.
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so-called cap. A cap has a discounted payoff

n∑
i=1

DF (ti)(ti − ti−1)(R(ti−1)−K)+. (6.15)

Similarly, the interest rate floor is a contract in which the buyer receives payments at the end of each period
in the case of the reference interest rate is below the strike price. The payoff (K − R)+ gives a floorlet and
collection of such floorlets gives a floor. The floorlet is similar to the put option.

6.2.7. No-Arbitrage Pricing

Consider a contract which pays cash flow Ck at time t = k, where k = 1, · · · , T . One has to pay the price p
at t = 0 to get this contract. The no-arbitrage condition bounds this price p for the underlying contract. There
are two types of no-arbitrage conditions: a weak no-arbitrage and a strong no-arbitrage.

• Weak no-arbitrage:
The weak no-arbitrage condition states that if the cash flow Ck is non-negative for all time points k ≥ 1, then
the price p for this contract must be greater than or equal to zero, i.e.

If Ck ≥ 0 for all k ≥ 1 then p ≥ 0.

• Strong no-arbitrage:
The strong no-arbitrage condition states that if the cash flow Ck is non-negative for all time points k ≥ 1, and
there exist some time tl, in the future, such that Cl > 0, then the price p must be strictly positive.

If Ck ≥ 0 for all k ≥ 1 and Cl > 0 for some l ∈ k then p > 0.

These no-arbitrage conditions have the following importance. In a market, if there are contracts for which one
gets something for nothing, then prices for these contracts will be adjusted based on the arbitrage conditions
such that one can not take advantage of this unbalance.
Suppose the price p satisfies p < 0, then the buyer has to pay−p price to purchase the contract. In other words,
we can say that the buyer will receive an amount p. Also, the seller can keep on increasing the price p as long
as p ≤ 0, and still buyers will be interested in purchasing the contract. The no-arbitrage condition avoids this
problem and puts a bound on the price p.

6.2.8. Short-Rate Models

When working with the interest-rate products, the study about the variability of interest rates is essential. There-
fore, it is necessary to consider the interest rate as a stochastic process.
Let S be the price of a stock at the end of the nth trading day. The daily return from day n to day n+ 1 is given
by (Sn+1 − Sn)/Sn. In general, it is common to work with log returns since the log return of k days can be
easily computed by adding up the daily log returns:

log(Sk/S0) = log(S1/S0) + · · ·+ log(Sk/Sk−1). (6.16)

Based on the assumption that the log returns over disjoint time intervals are stochastically independent, and are
equally distributed, the central limit theorem [97] of probability theory implies that the log returns are normally
distributed [98].
So, it is necessary to define a stochastic model in continuous time in which log returns over arbitrary time
intervals are normally distributed. The Brownian motion provides these properties [99].
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6.2.8.1. Brownian Motion

Definition 8. A Brownian motion. A standard Brownian motion is a stochastic process W (t) where t ∈ R,
i.e., a family of random variables W (t), indexed by non-negative real numbers t with the following properties:

• At t = 0, W0 = 0.

• With probability 1, the function W (t) is countinous in t.

• For t ≥ 0, the increment W (t+ s)−W (s) is normally distributed with mean 0 and variance t, i.e.,

W (t+ s)−W (s) ∼ N(0, t). (6.17)

• For all n and times t0 < t1 < · · · < tn−1 < tn, the increments W (tj) −W (tj−1) are stochastically
independent.

Another important property of the Brownian motion is that [100]

(dW (t))2 = dt. (6.18)

Equation (6.18) says that the (dW (t))2 is a deterministic quantity but not random, and has a magnitude of dt.
Based on the definition of the Brownian motion, we can establish an SDE. Consider an ordinary differential
equation (ODE)

dx(t)

dt
= a(t)x(t), (6.19)

with an initial condition x(0) = x0. When we consider ODE (6.19) with an assumption that the parameter a(t)
is not a deterministic but rather a stochastic parameter, we get an SDE.
In our case, the stochastic parameter a(t) is given as [100]

a(t) = f(t) + h(t)Ξ(t), (6.20)

where Ξ(t) is a white noise process.
Thus, we get

dX(t)

dt
= f(t)X(t) + h(t)X(t)Ξ(t). (6.21)

This equation is known as Langevin equation [101]. Here X(t) is a stochastic variable having the initial
condition X(0) = X0 with a probability one. The Langevin force Ξ(t) = dW (t)/dt is a fluctuating quantity
having Gaussian distribution.
Substituting dW (t) = Ξ(t)dt in (6.21), we get

dX(t) = f(t)X(t)dt+ h(t)X(t)dW (t) (6.22)

In the general form an SDE is given by

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), (6.23)

where f(t,X(t)) ∈ R, and g(t,X(t)) ∈ R are sufficiently smooth functions.

6.2.8.2. Ito’s Lemma

Consider a function ξ(x, y) which depends on variables x and y. According to the chain rule for total deriva-
tives, we can write

dξ =
∂ξ

∂x
dx+

∂ξ

∂y
dy. (6.24)
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If we have a function ξ which depends not only on a real variable t but also on a stochastic random variable
X(t), i.e., ξ = f(t,X(t)), then Ito’s lemma provides an answer to this problem which is the stochastic calculus
counterpart of the chain rule.

Theorem 1. Ito’s Lemma. [102] Let ξ(X(t), t) be a sufficiently smooth function and let the stochastic process
X(t) be given by (6.23), then with probability one,

dξ(X(t), t) =

(
∂ξ

∂X(t)
f(X(t), t) +

∂ξ

∂t
+

1

2

∂2ξ

∂X2(t)
g2(X(t), t)

)
dt

+
∂ξ

∂X(t)
g(X(t), t)dW (t).

(6.25)

Based on the Ito’s lemma, we can derive a general partial differential equation for any interest rate derivative
depending on the short-rate rt. An SDE with rt as a stochastic random variable can be written as

drt = f(t, rt)dt+ g(t, rt)dW (t). (6.26)

Consider a risk-neutral portfolio2 Πt that depends on a short-rate rt, and consists of (i) a call option on the
original interest rate product with maturity T1 and price V1, (ii) ∆ units in another product with different
maturity T2 and price V2, and (iii) the position of V1 − ∆V2 in the risk-less asset. Now consider the value
change of the portfolio over an infinitesimal time interval:

• the call option: the change in the product price is described by dV1(t) = V1(t+ dt)− V1(t),
• the underlying units: the value change in the second product will be dV2, so for ∆ units, the change will

be ∆dV2,
• the risk-free asset: the interest rate is paid/received so that the change in this position will be (V1 −
∆V2)rtdt.

The total change in the portfolio will be

dΠt = ∆dV2 + (V1 −∆V2)rdt− dV1. (6.27)

According to Ito’s lemma, we can define dV as

dV =

(
∂V

∂rt
f(rt, t) +

∂V

∂t
+

1

2

∂2V

∂r2
t

g2(rt, t)

)
dt+

∂V

∂rt
g(rt, t)dW (t). (6.28)

Substituting dV1 and dV2 in (6.27) we get

dΠt = (V1 −∆V2)rtdt

−
[(

∂V1

∂rt
f(rt, t) +

∂V1

∂t
+

1

2

∂2V1

∂r2
t

g2(rt, t)

)
dt+

∂V1

∂rt
g(rt, t)dW (t)

]
+∆

[(
∂V2

∂rt
f(rt, t) +

∂V2

∂t
+

1

2

∂2V2

∂r2
t

g2(rt, t)

)
dt+

∂V2

∂rt
g(rt, t)dW (t)

]
.

(6.29)

Choosing ∆ = ∂V1
∂rt

/∂V2∂rt
eliminates the stochastic term dW from (6.29). Also, to avoid arbitrage opportunities,

the rate of return of this portfolio must be equal to the rate of return of the risk-free asset, rt, and remains zero

2In finance, a portfolio is a collection of investments held by an investment company, a hedge fund, a financial institution or an
individual.
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due to the zero net investment requirement, i.e., dΠt = 0.

0 =

[
V1 −

(
∂V1

∂rt

/
∂V2

∂rt

)
V2

]
rtdt

−
[(

∂V1

∂rt
f(rt, t) +

∂V1

∂t
+

1

2

∂2V1

∂r2
t

g2(rt, t)

)
dt+

∂V1

∂rt
g(rt, t)dW (t)

]
+

(
∂V1

∂rt

/
∂V2

∂rt

)[(
∂V2

∂rt
f(rt, t) +

∂V2

∂t
+

1

2

∂2V2

∂r2
t

g2(rt, t)

)
dt+

∂V2

∂rt
g(rt, t)dW (t)

]
.

(6.30)

Eliminating the stochastic term[
V1 −

(
∂V1

∂rt

/
∂V2

∂rt

)
V2

]
rtdt

=

[
∂V1

∂t
+

1

2

∂2V1

∂r2
t

g2(rt, t)−
(
∂V1

∂rt

/
∂V2

∂rt

)(
∂V2

∂t
+

1

2

∂2V2

∂r2
t

g2(rt, t)

)]
dt.

(6.31)

Rearranging the terms, and using notation r = rt, we get

∂V1
∂t + 1

2
∂2V1
∂r2

g2(r, t)− rV1

∂V1
∂r

=
∂V2
∂t + 1

2
∂2V2
∂r2

g2(r, t)− rV2

∂V2
∂r

. (6.32)

Denoting either of the quotients as u(r, t)

∂V1
∂t + 1

2
∂2V1
∂r2

g2(r, t)− rV1

∂V1
∂r

= u(r, t). (6.33)

Using notation V = V1, we obtain a PDE for V depending on r

∂V

∂t
+

1

2
g2(r, t)

∂2V

∂r2
− u(r, t)

∂V

∂r
− rV = 0, (6.34)

where functions g and u depend on market structures like yield curves.
In the next subsection we will introduce some well-known one state variable short-rate models.

6.2.8.3. Vasicek and Cox-Ingersoll-Ross Models

The following models describe the dynamics of the short-rate r as

drt = b(θ − rt)dt+ σrβdW (t), (6.35)

where b, θ, σ, and β are positive constants. The model proposed in [103] considers β = 0 and is well known
as the Vasicek model while the Cox-Ingersoll-Ross model introduced in [104] considers β = 0.5. One of the
drawbacks of the Vasicek model is that the short-rate can be negative. On the other hand, in the case of the
Cox-Ingersoll-Ross model, the square root term does not allow negative interest rates. However, the major
drawback of these models is that the model parameters are constant, so we can not fit the model to the market
structures like yield curves.
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6.2.8.4. Hull-White Model

The Hull-White model [105, 106] is an extension of the Vasicek model which can be fitted to the market
structures like yield curves. The SDE is given as

drt = b(t)(θ(t)− rt)dt+ σ(t)dW (t), (6.36)

where the model parameters b(t), θ(t), and σ(t) are time dependent. Equation (6.36) can also be represented as

drt = (a(t)− b(t)rt)dt+ σ(t)dW (t), (6.37)

where a(t) = b(t)θ(t) is a deterministic function of time. The term (a(t) − b(t)rt) is a drift term and a(t) is
known as deterministic drift.

Definition 9. Drift. The drift is a rate at which the expected value of the process changes.

Theorem 2 presents the exact solution for the model (6.37).

Theorem 2. Consider an SDE for a Hull-White model

drt = (a(t)− b(t)rt)dt+ σ(t)dW (t),

with the initial condition r(0) = r0. The exact solution is given as

rt = e−κ(t)

[
r0 +

∫ t

0
eκ(s)a(s)ds+

∫ t

0
eκ(s)σ(s)dW (s)

]
, (6.38)

where κ(t) =
∫ t

0 b(s)ds.

We can define a PDE for any underlying instrument based on the Hull-White model depending on r. We recall
(6.34),

∂V

∂t
+

1

2
g2(r, t)

∂2V

∂r2
− u(r, t)

∂V

∂r
− rV = 0.

In the case of a Hull-White model, g(r, t) = σ(t), and −u(r, t) = (a(t) − b(t)r). Substituting g(r, t) and
u(r, t), we get,

∂V

∂t
+ (a(t)− b(t)r)∂V

∂r
+

1

2
σ2(t)

∂2V

∂r2
− rV = 0, (6.39)

where the parameters a(t), b(t), and σ(t) depend on the yield curves and cap/swap rates. The following
sections present the simulation procedure for yield curves and the calibration of model parameters based on
these simulated yield curves.

6.2.9. Yield Curve Simulation

The calibration of financial models is based on market structures like yield curves. The problem of determining
the model parameters is relatively complex. These time-dependent parameters are derived from yield curves
which determine the average direction in which short-rate r moves. The PRIIP’s regulation demands to perform
yield curve simulations for at least 10,000 times. We explain the detailed yield curve simulation procedure in
this section.

• Collect the historical data for the interest rates.
The data set must contain at least 2 years of daily interest rates for an underlying instrument or 4 years of
weekly interest rates or 5 years of monthly interest rates. Further, we construct a data matrix D ∈ Rn×m of
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the interest rates from the collected historical data, where each row of the matrix forms a yield curve, and each
column is a tenor point, m. For example, we have collected the daily interest rate data at 20-30 tenor points
in time over the past five years. Each year has approximately 260 working days also known as observation
periods. Thus, there are n ≈ 1306 observation periods and m ≈ 20 tenor points in time.

• Calculate the log return over each period.
We take the natural logarithm of the ratio between the interest rate at each observation period and the interest
rate at the preceding period. To avoid problems while taking the natural logarithm, we have to ensure that all
elements of the data matrix D are positive.

D̄ = D + γE,

d̄ij = dij + γβij , βij = 1 ∀ i, j
(6.40)

where γ is a correction factor ensuring all elements of matrix D are positive and matrix E ∈ Rn×m is a binary
matrix having all entries as 1. The selection of γ does not affect the final simulated yield curves as we are
compensating this shift at the bootstrapping stage by subtracting it from the simulated rates. Now we calculate
the log returns over each period and store them into a new matrix D̂ = d̂ij ∈ Rn×m as

d̂ij =
ln(d̄ij)

ln(d̄(i−1)j)
. (6.41)

• Correct the returns observed at each tenor so that the resulting set of returns at each tenor point has a zero
mean.

We calculate the arithmetic mean, µj of each column of a matrix D̂,

µj =
1

n

n∑
i=1

d̂ij . (6.42)

Further, we subtract this arithmetic mean µj from each element of the corresponding jth column of a matrix D̂
and store the obtained results in the matrix, ¯̄D ∈ Rn×m,

¯̄dij = d̂ij − µjβij . (6.43)

• Compute the singular value decomposition [107] of the matrix ¯̄D.
The singular value decomposition of the matrix ¯̄D is

¯̄D = ΦΣΨT , (6.44)

¯̄D =

φ11 · · · φ1m
...

...
...

φm1 · · · φmm


m×m

·


Σ11 0 · · ·

0
. . .

...
... · · · Σmm


m×m

·

ψ11 · · · ψ1m
...

...
...

ψm1 · · · ψmm


m×m

(6.45)

where Σ is a diagonal matrix having singular values arranged in the descending order. The columns of Φ are
the normalized eigenvectors φ ∈ Φ which are also known as principal components.

• Select the principal components corresponding to the maximum energy.
The relative importance of ith principal component is determined by the relative energy Ei of that component
defined as

Ei =
Σi∑m
i=1Σi

, (6.46)
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where the total energy is given by
∑n

i=1Ei = 1. We select p singular vectors correspond to maximum energies
from the matrix Φ. We construct a matrix Φ̄ ∈ Rm×p composed of these selected singular vectors

Φ̄ =

φ11 · · · φ1p
...

...
...

φm1 · · · φmp


m×p

(6.47)

• Calculate the matrix of returns to be used for the simulation of yield curves.
We project the matrix ¯̄D onto the matrix of selected singular vectors Φ̄.

X = ¯̄D × Φ̄, X ∈ Rn×p. (6.48)

Furthermore, we calculate the matrix of returns MR ∈ Rn×m by multiplying the matrix X with the transpose
of the matrix of singular vectors Φ̄.

MR = X× Φ̄T . (6.49)

PCA simplifies the statistical data ¯̄D that transforms m correlated tenor points into p uncorrelated principal
components. It allows reproducing the same data by simply reducing the total size of the model.

• Bootstrapping
According to the PRIIP regulations, we have to perform the following procedure for the yield curve simulation
for at least 10,000 times. The regulations state that a standardized key information document shall include the
minimum recommended holding period (RHP).

Definition 10. Holding period. A holding period is a period between the acquisition of an asset and its sale.
It is the length of time during which an underlying instrument is ’held’ by an investor.

Remark 1. The recommended holding period gives an idea to an investor that for how long should an investor
hold the product to minimize the risk. Generally, the RHP is given in years.

The time step in the simulation is one observation period. Let, h be the RHP in days (For example, h ≈ 2600
days or 10 years). So, there are h observation periods in the RHP. For each observation period in the RHP, we
select a row at random from the matrix MR, i.e., we select h random rows from the matrix MR. We construct a
matrix S = sij ∈ Rh×m of these selected random rows. Further, we sum over the selected rows of the columns
corresponding to the tenor point j,

s̄j =

h∑
i=1

sij , j = 1, · · · ,m. (6.50)

Thus, we obtain a row vector s̄ ∈ R1×m such that

s̄ = [s̄1 s̄2 · · · s̄m].

The final simulated yield rate yj at tenor point j is the rate at the last observation period d̄nj at the corresponding
tenor point j,

1. multiplied by the exponential of the s̄j ,
2. adjusted for any shift γ used to ensure positive values for all tenor points.
3. adjusted for the forward rate so that the expected mean matches current expectations.

From the forward rate formula given by (6.12)

r1,2 =
r(t0, t2)(t2 − t0)− r(t0, t1)(t1 − t0)

t2 − t1
.

Deliverable D5.2
64



6.2. Mathematical Description

Thus, the final simulated rate rj is given by

yj = d̄nj × exp(s̄j)− γβnj + r1,2, j = 1, · · · ,m. (6.51)

Finally, we get the simulated yield curve from the calculated simulated returns yj as

y = [y1 y2 · · · ym], j = 1, · · · ,m. (6.52)

We perform the bootstrapping procedure for at least s = 10, 000 times and construct a simulated yield curve
matrix Y ∈ Rs×m as,

Y =

y11 · · · y1m
...

...
...

ys1 · · · ysm


s×m

(6.53)

Section 6.2.10 explains the parameter calibration based on simulated yield curves.

6.2.10. Parameter Calibration

The model parameters a(t), b(t), and σ(t) are calibrated based on simulated yield curves. In this work, we
present the parameter calibration for a one-factor Hull-White model only. See [108] for the parameter calibra-
tion procedures of other financial models.
From (6.7), the price at time t = 0 of a zero-coupon bond paying 1 at time T is,

B(0, T ) = E
[
exp

(
−
∫ T

0
rtdt

)]
.

The expected value of the exponential function is obtained using a moment-generating function [109].

Definition 11. Moment-generating function. The moment-generating function of a random variable X is

MX(α) = E[eαX ], α ∈ R.

In the case of a normal distribution, MX(α) is given as

MX(α) = exp(αE[X] +
1

2
var(X)α2). (6.54)

Based on this definition

E
[
exp

(
−
∫ T

0
rtdt

)]
= exp

{
(−1)E

[ ∫ T

0
rtdt

]
+

1

2
(−1)2var

(∫ T

0
rtdt

)}
. (6.55)

From equation (6.38), we obtain

rt = e−κ(t)

[
r0 +

∫ t

0
eκ(s)a(s)ds

]
+ e−κ(t)Θ1(t), (6.56)

where Θ1(t) =
∫ t

0 e
κ(s)σ(s)dW (s). Furthermore, using notation Θ2(t) =

∫ T
0 e−κ(t)Θ1(t)dt, we get∫ T

0
rtdt =

∫ T

0
e−κ(t)

[
r0 +

∫ t

0
eκ(s)a(s)ds

]
+Θ2(t). (6.57)
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According to [108], the expected value and the variance of (6.57) are given respectively as

E
∫ T

0
rtdt =

∫ T

0
e−κ(t)

[
r0 +

∫ t

0
eκ(s)a(s)ds

]
,

Var

(∫ T

0
rtdt

)
= E[Θ2

2(T )],

=

∫ T

0
e2κ(v)σ2(v)

(∫ T

v
e−κ(z)dz

)2

dv.

(6.58)

From (6.55),

B(0, T ) = exp

{
− r0

∫ T

0
e−κ(t)dt−

∫ T

0

∫ t

0
e−κ(t)+κ(s)a(s)ds dt

+
1

2

∫ T

0
e2κ(v)σ2(v)

(∫ T

v
e−κ(z)dz

)2

dv

}
,

= exp{−r0Γ (0, T )− Λ(0, T )},

(6.59)

where

Γ (0, T ) =

∫ T

0
e−κ(t)dt,

Λ(0, T ) =

∫ T

0

∫ t

0
e−κ(t)+κ(s)a(s)ds dt− 1

2

∫ T

0
e2κ(v)σ2(v)

(∫ T

v
e−κ(z)dz

)2

dv.

(6.60)

We consider the parameter b(t) and σ(t) as constants. Hull and White questioned whether parameters b and σ
should be made functions of time [110]. The problem is the term structure of volatility σ at future times might
be different from the volatility structure today. Authors realized that the volatility at future times can collapse
and may reach zero, which ultimately could result in implausible option prices. Thus, Hull and White advocate
for making b and σ independent of time t. Nonetheless, we can calibrate b(t) and σ(t) based on cap data for
various strike prices. See Appendix 6.5 for more details.
Based on (6.59), we obtain B(0, T ) for all T ∈ [0, T ∗] from the simulated yield returns. We take following
input data for the calibration:

1. The zero-coupon bond prices for all maturities T ∗, 0 ≤ T ≤ T ∗.
2. The initial value of a(t) at t = 0 as a(0).
3. The value of the volatility σ(t) of the short-rate rt at all maturities 0 ≤ T ≤ T ∗ is assumed to be constant.
4. The value of the parameter b(t) is known and constant for all maturities 0 ≤ T ≤ T ∗.

We then determine the value of Γ (0, T ) as follows:

Γ (0, T ) =

∫ T

0
e−κ(t)dt

and then
∂

∂T
Γ (0, T ) = e−κ(T ),

κ(T ) = −ln
∂

∂T
Γ (0, T ),

∂

∂T
κ(T ) =

∂

∂T

∫ T

0
b(s)ds = b(T ).

(6.61)

Based on the known value of b(t), we have computed Γ (T ).
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Recall the formula for Λ(0, T ),

Λ(0, T ) =

∫ T

0

∫ t

0
e−κ(t)+κ(s)a(s)ds dt− 1

2

∫ T

0
e2κ(v)σ2(v)

(∫ T

v
e−κ(z)dz

)2

dv.

We further simplify Λ(0, T ) by the change of variables s and t such that z = t; v = s,

Λ(0, T ) =

∫ T

0

[
eκ(v)a(v)

(∫ T

v
e−κ(z)dz

)
− 1

2
e2κ(v)σ2(v)

(∫ T

v
e−κ(z)dz

)2]
dv. (6.62)

We can use Λ(0, T ) to determine a(t), for 0 ≤ T ≤ T ∗,

∂

∂T
Λ(0, T ) =

∫ T

0

[
eκ(v)a(v)e−κ(T )

− e2κ(v)σ2(v)e−κ(T )

(∫ T

v
e−κ(z)dz

)]
dv,

eκ(T ) ∂

∂T
Λ(0, T ) =

∫ T

0

[
eκ(v)a(v)− e2κ(v)σ2(v)

(∫ T

v
e−κ(z)dz

)]
dv,

∂

∂T

[
eκ(T ) ∂

∂T
Λ(0, T )

]
= eκ(T )a(T )−

∫ T

0
e2κ(v)σ2(v)e−κ(T )dv,

eκ(T )

[
eκ(T ) ∂

∂T
Λ(0, T )

]
= e2κ(T )a(T )−

∫ T

0
e2κ(v)σ2(v)dv,

∂

∂T

[
eκ(T )

[
eκ(T ) ∂

∂T
Λ(0, T )

]]
=
∂a(T )

∂T
e2κ(T ) + 2a(T )e2κ(T ) ∂

∂T
κ(T )− e2κ(T )σ2(T ),

∂

∂T

[
eκ(T )

[
eκ(T ) ∂

∂T
Λ(0, T )

]]
=
∂a(T )

∂T
e2κ(T ) + 2a(T )e2κ(T )b(T )− e2κ(T )σ2(T ).

(6.63)

The yield y(T ) at time T is given by
y(T ) = −lnB(0, T ). (6.64)

From (6.59), we can obtain
Λ(0, T ) = [y(T )− r0Γ ]. (6.65)

This gives an ordinary differential equation (ODE) for a(t)

∂

∂T
a(T )e2κ(T ) + 2a(T ) · b(T ) · e2κ(T ) − e2κ(T )σ2(T )

=
∂

∂T

[
eκ(T )

[
eκ(T ) ∂

∂T
(y(T )− r0Γ (0, T ))

]]
,

(6.66)

where y(T ) is the simulated yield rate at tenor point T . We can solve (6.66) numerically with the given initial
conditions and yield rates for 0 ≤ T ≤ T ∗. For all T ∈ [0, T ∗], we know b(T ), σ(t) and Γ (0, T ) from the
given initial conditions and (6.61) respectively. Thus, the right hand side of the (6.66) is the known function in
time.
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We divide (6.66) by e2κ(T )

∂

∂T
a(T ) + 2a(T ) · b(T )− σ2(T )

= e−2κ(T ) ∂

∂T

[
eκ(T )

[
eκ(T ) ∂

∂T
((T ∗ − T )y(T )− r0Γ (0, T ))

]]
,

∂

∂T
a(T ) + 2a(T ) · b(T )− σ2(T ) = e−2κ(T ) ∂

∂T

[
e2κ(T ) ∂

∂T
((T ∗ − T )y(T )− r0Γ (0, T ))

]
,

(6.67)

If we would assume a(T ) to be piecewise constant with values ai in ((i+1).∆T, i.∆T ), then we could calculate
ai iteratively for 0 ≤ T ≤ T ∗. This leads to a triangular system of linear equations for the vector with non-zero
diagonal elements, and therefore holds a unique solution.
In practice, the authors of [111] found that the right-hand side of the system contains noise. Hence, the use
of a naive approach like finite difference scheme may result in some numerical errors. In this work, we use
the inbuilt UnRisk PRICING ENGINE functions for the parameter calibrations [112]. The UnRisk engine
implements a classical Tikhonov regularization approach to stabilize the ill-posed problems. Based on 10,000
different simulated yield curves, we obtain s =10,000 different parameter vectors a(t). In the matrix form, we
write

a(t) =

a11 · · · a1m
...

...
...

as1 · · · asm

 (6.68)

where m is the number of tenor points. All parameters are assumed to be piecewise constant changing their
values only on tenor points, i.e., on model term dates. Thus, if there are m tenor points, then there will be m
values for a single parameter vector.

6.3. Numerical Methods

6.3.1. Finite Difference Method

The PDEs obtained for the short-rate models can be interpreted as convection-reaction-diffusion PDEs [113].
Consider a Hull-White PDE given by (6.34)

∂V

∂t
+ (a(t)− b(t)rt)

∂V

∂r︸ ︷︷ ︸
Convection

+
1

2
σ2(t)

∂2V

∂r2︸ ︷︷ ︸
diffusion

− rV︸︷︷︸
reaction

= 0. (6.69)

In this work, we apply the finite difference method to solve the Hull-White PDE. The convection term in the
above equation may lead to numerically unstable results. Thus, we implement the so-called upwind scheme
[114] to obtain a stable solution. We incorporate the semi-implicit scheme called the Crank-Nicolson method
[115] for the time discretization.

6.3.1.1. Spatial Discretization

Consider the following one-dimensional linear advection equation

∂ζ

∂t
+ U

∂ζ

∂x
= 0, (6.70)
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describing a wave propagation along the x−axis with a velocity U . We define a discretization of the computa-
tional domain in sd spatial dimensions as

[αk, βk]
sd × [0, T ] = [α1, β1]× · · · × [αd, βd]× [0, T ] =

( sd∏
k=1

[αk, βk]

)
× [0, T ],

where α and β are the cut off limits of the spatial domain. T denotes the final time of the computation. The
corresponding indices are, ik ∈ {1, . . . ,Mk} for the spatial discretization and n ∈ {1, . . . , N} for the time
discretization. The first order upwind scheme of the order O(∆x) is given by

ζn+1
i − ζni
∆t

+ U
ζni − ζni−1

∆x
= 0 for U > 0 (6.71a)

ζn+1
i − ζni
∆t

+ U
ζni+1 − ζni
∆x

= 0 for U < 0 (6.71b)

Let’s say,
U+ = max(U, 0), U− = min(U, 0),

and

ζ−x =
ζni − ζni−1

∆x
, ζ+

x =
ζni+1 − ζni
∆x

Combining (6.71a) and (6.71b) in the compact form, we can write

ζn+1
i = ζni −∆t[U+ζ−x + U−ζ+

x ]. (6.72)

We implement the above defined upwind scheme for the convection term. The diffusion term is discretized
using the second order central differencing scheme of order O(∆x)2.

∂2ζ

∂x2
=
ζni+1 − 2ζni + ζni−1

(∆x)2
(6.73)

6.3.1.2. Time Discretization

Consider a time-dependent PDE for a quantity ζ

∂ζ

∂t
+ Lζ = 0, (6.74)

where L is the linear differential operator containing all spatial derivatives. Using the Taylor series expansion,
we write

ζ(t+∆t) = ζ(t) +∆
∂ζ

∂t
+
∆t2

2

∂2ζ

∂t2
. (6.75)

Neglecting terms of order higher than one

∂ζ

∂t
=
ζ(t+∆t)− ζ(t)

∆t
+O(∆t). (6.76)

From (6.76),
ζ(t+∆t) = ζ(t)−∆t(L(t)ζ(t)). (6.77)

Let us introduce a new parameter Θ such that

ζ(t+∆t)− ζ(t)

∆t
= (1−Θ)(L(t)ζ(t)) +Θ(L(t+∆t)ζ(t+∆t)) (6.78)
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We can construct different time discretization schemes for different values of Θ. Setting Θ = 0, we obtain
a fully explicit scheme known as the forward difference method, while considering Θ = 1, we get a fully
implicit scheme known as the backward difference method [113]. Here we set Θ = 1/2 and obtain a semi-
implicit scheme known as the Crank-Nicolson method.(

1− 1

2
∆tL(t+∆t)

)
ζ(t+∆t) =

(
1 +

1

2
∆tL(t)

)
ζ(t) (6.79)

6.3.1.3. FDM for a Hull-White Model

The computational domain for a spatial dimension r is [α, β]. According to [80], the cut off values α and β are
given as,

α = rsp +
√
TKσmax and β = rsp −

√
TKσmax, (6.80)

where K = 7 and rsp is a yield at the maturity T also known as a spot rate.
σmax = max(σ(t)), t ∈ [0, T ]. We divide the spatial domain into M equidistant grid points which generate a
set of points {r1, r2, . . . , rM}. The time interval [0, T ] is divided into N − 1 time points (N points in time that
are measured in days starting from t = 0).
Equation (6.74) can be represented as,

∂V

∂t
+ L(t)V (t) = 0. (6.81)

We specify the spatial discretization operator L(n), where the index n denotes the time-point. From (6.71) and
(6.73),

L(n)V n
i =

1

2
σ2(n)

V n
i+1 − 2V n

i + V n
i−1

(∆x)2
+ (a(n)− b(n)ri)

V n
i − V n

i−1

∆x
− riV n

i

if (a(n)− b(n)ri) > 0

L(n)V n
i =

1

2
σ2(n)

V n
i+1 − 2V n

i + V n
i−1

(∆x)2
+ (a(n)− b(n)ri)

V n
i+1 − V n

i

∆x
− riV n

i

if (a(n)− b(n)ri) < 0

(6.82)

From (6.78), we can write

V (t+∆t)− V (t)

∆t
= (1−Θ)(L(t)V (t)) +Θ(L(t+∆t)V (t+∆t)) (6.83)

For Θ = 1/2, we write (
1− 1

2
∆tL(t+∆t)

)
︸ ︷︷ ︸

A(ρs(t))∈RM×M

V (t+∆t) =

(
1 +

1

2
∆tL(t)

)
︸ ︷︷ ︸
B(ρs(t))∈RM×M

V (t), (6.84)

where matrices A(ρs(t)), and B(ρs(t)) depend on parameters a(t), b(t) and σ(t). For the simplicity of nota-
tions, we denote ρs as the sth group of these parameters. Here

A(ρs(t)) = I − σ2(n)∆t

2(∆x)2
X − ∆t

2∆x
(Z+Y − + Z−Y +) +R, (6.85)

and

B(ρs(t)) = I +
σ2(n)∆t

2(∆x)2
X +

∆t

2∆x
(Z+Y − + Z−Y +)−R, (6.86)
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where

X =



−2 1 0 · · · 0

1 −2 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −2



Y − =



1 0 0 · · · 0

−1 1 0
. . .

...

0 −1
. . . . . . 0

...
. . . . . . . . . 0

0 · · · 0 −1 1


Y + =



1 −1 0 · · · 0

0 1 −1
. . .

...

0 0
. . . . . . 0

...
. . . . . . . . . −1

0 · · · 0 0 1



Z+ =



max(a(n)− b(n)r(1)) 0 0 · · · 0

0 max(a(n)− b(n)r(2)) 0
. . .

...

0 0
. . . . . . 0

...
. . . . . . . . . 0

0 · · · 0 0 max(a(n)− b(n)r(M))



Z− =



min(a(n)− b(n)r(1)) 0 0 · · · 0

0 min(a(n)− b(n)r(2)) 0
. . .

...

0 0
. . . . . . 0

...
. . . . . . . . . 0

0 · · · 0 0 min(a(n)− b(n)r(M))



R =



r(1) 0 0 · · · 0

0 r(2) 0
. . .

...

0 0
. . . . . . 0

...
. . . . . . . . . 0

0 · · · 0 0 r(M)


The above discretization of the PDE generates a parametric HDM of the following form (6.87). We need to
solve this system at each time step n with an appropriate boundary condition and a known initial value of the
underlying instrument.

A(ρs(t))V
n+1 = B(ρs(t))V

n, V (0) = V0, (6.87)

where the matrices A(ρ) ∈ RM×M , and B(ρ) ∈ RM×M are parameter dependent matrices. V ∈ RM is a high
dimensional state vector. M is the total number of spatial discretization points. t is the time variable. t = [0, T ]
where T is the final term date. Within the interval [0, T ], if we have m tenor points, then we have m values
for the parameter a(t) such that as = as1, . . . , asm. We consider the parameters b(t) and σ(t) as constants.
For example, if we consider an instrument with a contract period of 10 years, then in this case T = 10 years.
If there are m tenor points such that m := 0, 1y, 2y, · · · , 10y, then we will get 11 different values for the
parameter vector a(t). That is, considering the time interval of 1 day, for the period of n = 0 to 260, an = as1
(1 year ≈ 260 days). For the simplicity of notations, we denote ρs = [(as1, . . . , asm), b, σ] as the sth group
of model parameters where s = 1, . . . , 10000. Each parameter group ρs has values ranging from ρs1 to ρsm
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where m is the total number of tenor points. We need to solve the system (6.87) for at least 10,000 parameter
groups ρ generating a parameter space P of 10000×m.

6.3.2. Parametric Model Order reduction

We employ the projection based MOR technique to solve the HDM (6.87). The idea is to project a high
dimensional space onto a low dimensional subspace, Q as

V̄ n = QV n
d , (6.88)

where Q ∈ RM×d is a reduced order basis (ROB) with d � M , Vd is a vector of reduced coordinates,
and V̄ ∈ RM is the solution obtained using the reduced order model. Substituting (6.88) into the system of
equations (6.87) gives the residual of the reduced state as

rn(Vd, ρs) = A(ρs)QV
n+1
d −B(ρs)QV

n
d . (6.89)

In the case of the Galerkin projection, the residual r(Vd, ρs) is orthogonal to the ROB Q

QT rn(V n
d , ρs) = 0. (6.90)

Multiplying (6.89) by QT , we get

QTA(ρs)QV
n+1
d = QTB(ρs)QV

n
d ,

Ad(ρs)V
n+1
d = Bd(ρs)V

n
d ,

(6.91)

where the matrices Ad(ρs) ∈ Rd×d and B(ρs) ∈ Rd×d are the parameter dependent reduced matrices. We
obtain the parametric reduced order model (6.91) based on a proper orthogonal decomposition method (POD).
POD generates an optimal order orthonormal basis Q which serves as the ROB in the least square sense for
a given set of computational data. We aim to obtain the subspace Q independent of parameter space P . In
this work, we obtain the optimal basis set by the method of snapshots. We compute snapshots by solving the
HDM (6.87) for the selected parameter groups (i.e., snapshots taken for some parameter groups ρ1 · · · ρl ∈ [ρ1

ρs]). Further, we construct a snapshot matrix composed of these snapshots. Finally, we generate an optimally
ordered orthonormal basis by performing a singular value decomposition of the snapshot matrix.
A solution Vs of the HDM for a single parameter group ρs can be represented as

Vs =


Vs(r1, t1) Vs(r1, t2) · · · Vs(r1, tN )
Vs(r2, t1) Vs(r2, t2) · · · Vs(r2, tN )

...
...

...
...

Vs(rM , t1) Vs(rM , t2) · · · Vs(rM , tN )

 (6.92)

We obtain such solutions of the HDM for selected parameter groups and combined them to form a snapshot
matrix, V̂ such that

V̂ =


V1(r1, t1) · · · V1(r1, tN ) · · · Vl(r1, t1) · · · Vl(r1, tN )
V1(r2, t1) · · · V1(r2, tN ) · · · Vl(r2, t1) · · · Vl(r2, tN )

...
...

...
...

...
...

V1(rM , t1) · · · V1(rM , tN ) · · · Vl(rM , t1) · · · Vl(rM , tN )

 (6.93)
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We perform a truncated SVD of the matrix V̂ to obtain the ROB Q

V̂ =
k∑
i=1

Σiφiψ
T
i ,

V̂ = ΦΣΨT ,

(6.94)

where φi and ψi are the left and right singular vectors of the matrix V̂ respectively. Σi are the singular values.

V̂ =
[
φ1 · · · φk

]
M×k


Σ1 0 · · ·

0
. . .

...
... · · · Σk


k×k

[
ψ1 · · · ψk

]
k×k (6.95)

The truncated (economy-size) SVD computes only first k columns of matrix Φ. The optimal projection sub-
space Q consists of d left singular vectors φi known as POD modes. Here, d makes the dimension of the
reduced order model.
The quality of the parametric reduced model mainly depends on the selection of parameters for which the snap-
shots are computed. Thus, it necessitates defining an efficient sampling technique for the high dimensional
parameter space. We could consider standard sampling techniques like uniform or random sampling to gener-
ate snapshots. However, the computational cost for the uniform sampling may become too expensive due to
the combinatorial explosion of samples used to cover the parameter domain [116]. On the other hand, random
sampling might neglect the vital regions in the parameter space. The greedy sampling method introduced in
[117] is proven to be an efficient method for sampling a high dimensional parameter space in the framework of
MOR.

6.3.3. Greedy Sampling Method

The greedy sampling technique selects the parameter groups at which the error between the ROM and the
HDM is maximum. Further, we compute the snapshots using these parameter groups so that we can obtain the
best suitable ROB Q. However, the computation of a relative error ‖e(., ρ)‖ = ‖V (., ρ)− V̄ (., ρ)‖/‖V (., ρ)‖
between the HDM and the ROM is expensive. Thus, usually, the error is replaced by the error bounds or the
relative residual for the approximate solution V̄ . We discuss the error estimators ε(ρ) in Subsubsect. 6.3.3.1.
The greedy sampling method is explained in Algorithm 1.
The POD greedy algorithm runs for Imax iterations. At each iteration I = 1, ..., Imax, we choose the parameter
group as the maximizer

ρI = argmax
ρ∈P

ε(ρ). (6.96)

We solve the problem over a pre-defined set of random candidate parameter groups P̄ = {ρ1, ρ2, ..., ρC} from
the parameter space P .

6.3.3.1. Error Estimators

To avoid the computational expenses, the error ‖e(., ρ)‖ is usually replaced by the error estimators ε like error
bounds and the norm of the residual.

• Error Bonds: Error bounds δe(ρ) tell the maximum possible error in the approximation and can be given
as

‖e(., ρ)‖ ≤ δe(ρ) ∀ρ ∈ P (6.97)

However, in some cases, it is not possible to define the error bounds or the error bounds do not exist. In
such cases, the relative residual of the approximate solution is a common alternative.
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Input: Maximum number of iterations Imax, maximum parameter groups C, Parameter space P
Output: Q
Choose first parameter group ρ1 = [(a11, ..., a1m), b, σ] from P
Solve the HDM for a parameter group ρ1 and store the results in V1

Compute an SVD of the matrix V1 and construct Q1

Randomly select a set of parameter groups P̄ = {ρ1, ρ2, ..., ρC} ⊂ P
for i = 2 to Imax do

for j = 1 to C do
Solve ROM for the parameter group ρj with the projection subspace Qi−1

Compute the error estimator ε(ρj)
end
Find ρI = argmax

ρ∈P
ε(ρ)

if ε(ρI) ≤ εtol then
Q = Qi−1

break
end
Solve the HDM for the parameter group ρI and store the result in Vi
Construct a snapshot matrix V̂ by concatenating the solutions Vs for s = 1, ..., i

Compute an SVD of the matrix V̂ and construct Qi
end

Algorithm 1: POD-Greedy Sampling Algorithm

• Residual: The relative error ‖e(., ρ)‖ is bounded by the residual as

‖r(Vd, ρs)‖
‖A(ρs)‖

≤ ‖e(., ρ)‖ ≤ ‖A−1(ρs)‖ · ‖r(Vd, ρs)‖ (6.98)

This error bound holds if and only if A(ρ) is a well-conditioned matrix [116, 118]. The quantity
‖r(Vd,ρ)‖
‖A(ρ)‖·‖V̄ ‖ is known as the relative residual.

The above estimates require the knowledge of the norm of the matrix A and its inverse. According to [119], in
some cases, the ‖r‖/‖A‖ can be a bad estimate of ‖e(., ρ)‖. In this work, we use the error estimator proposed
in [119] for the solution of linear systems. Here the error estimator ε(ρ) is an excellent approximation of
‖e(., ρ)‖.

ε2(ρ) =
C2

0

C1
, (6.99)

where

C0 =
k∑
i=1

(φi, r(Vd, ρs))
2,

C1 =
k∑
i=1

Σ2
i (ψi, r(Vd, ρs))

2.

where φi and ψi are the left and right singular vectors of the matrix A(ρs) respectively. Σi are the singular
values of A(ρs).

6.3.3.2. Drawbacks

The greedy sampling method computes the inexpensive a posteriori error estimator for the ROM. However, it
is not feasible to calculate the error estimators for all of the parameter space P . An error estimator is based on
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the norm of the residual which scales with the dimension of the HDM, M . With an increase in dimension, it is
not computationally reasonable to calculate the residual for 10,000 parameter groups. Hence, the POD-greedy
technique chooses the pre-defined parameter set P̄ randomly as a subset of P . Random sampling is designed
to represent the whole parameter space P , but there is no guarantee that P̄ is the complete reflective of P . The
random selection of a parameter set may neglect the parameter vectors corresponding to the most significant
error. These observations motivate to design a new criterion for the selection of the subset P̄ . In this work, we
implement the adaptive greedy sampling technique.

6.3.4. Adaptive Greedy Sampling Method

To avoid the drawbacks associated with classical POD-greedy sampling technique, we implement an adaptive
greedy approach. We propose to select the parameter groups adaptively at each iteration of the greedy
procedure, using an optimized exploration approach. We construct a surrogate model ε̄ to approximate the
error estimator ε over the entire parameter space. Further, we use the surrogate model to locate the parameter
groups P̄ , where the probability of having larger values of ε is the highest. The adaptive greedy sampling
methods in the framework of MOR are well addressed in [120, 121, 116]. This approach is also implemented
to obtain the reduced order models for a parameterized steady Navier Stokes equation [122], for elliptical
PDEs [123], and for parabolic PDEs [124].

This report comprises the results obtained from the classical POD-greedy algorithm only. The future work will
involve an implementation of the adaptive greedy POD approach and numerical results. Also, we will apply the
Monte Carlo method to solve the short rate model. Furthermore, we aim to establish the same MOR approach
associated with the newly defined Monte Carlo method.
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6.4. Numerical Example

In this section, we compare the results of the POD method introduced in Subsect. 6.3.2 and the HDM results
obtained based on the finite difference method (see Subsect. 6.3.1). We use a floater with cap and floor as a test
example.

Table 4: Numerical Example of a floater with cap and floor.

Reference interest rate Euribor3M
Fixing of Euribor3M in advance
Coupon frequency quarterly
Cap rate 2.25 % p.a.
Floor rate 0.5 % p.a.
Maturity and Nominal value 10 years with face value of e1000

We calculate the present value of an underlying instrument as a function of a short-rate r and time t. The
interest rates are capped at 2.25 % p.a. and floored at 0.5 % p.a. with the reference rate as Euribor3M. The
coupon rates can be written as

c = min(2.25%,max(0.5%,Euribor3M)) (6.100)

According to [80], if the yield curve r(t0, t) at time t0 is given, then the Euribor3M can be computed using
forward rate calculations as presented in Subsect. 6.2.4. Note that, the coupon rate c(n) at time tn is set in
advanced by the coupon rate at tn−1. Consider an instrument with the 10 years of maturity and the coupons
are paid quarterly, i.e., a total of 40 coupons need to be paid based on the coupon rate given by (6.100). (For
example, if an instrument has a face value of e1000, and a coupon rate is 2% at a particular coupon date, then
it pays a coupon of e20 at that date).
We can solve this problem using the Hull-White partial differential equation presented in Subsubsect. 6.2.8.4.
In the following, we present details of the algorithm used for the valuation.

6.4.1. Technical and Software Details

All computations are carried out on a PC with 4 cores and 8 logical processors at 2.90 GHz (Intel i7 7th
generation). We use MATLAB R2018a for the yield curve simulations. The numerical method for the yield
curve simulations is tested with real market based historical data. We have collected the daily interest rate data
at 26 tenor points in time over the past five years. Each year has 260 working days. Thus, there are 1300
observation periods. We have retrieved this data from the State-of-the-art stock exchange information system,
”Thomson Reuters EIKON.”
We have used the inbuilt UnRisk tool for the parameter calibration, which is well integrated with Mathematica
(version used: Mathematica 11.3). Further, we use calibrated parameters for the construction of a Hull-White
model. We have designed the FDM and MOR techniques for the solution of the Hull-White model in MATLAB
R2018a.

6.4.2. Model Parameters

We compute the model parameters as explained in Sect. 6.2.10. The yield curve simulation is the first step to
compute the model parameters. Based on the procedure described in Sect. 6.2.9, we perform the bootstrapping
process for the recommended holding period of 10 years, i.e., for the maturity of the floater. The collected
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historical data has 19 tenor points and 1306 observation periods as follows (D: Day, M: Month, Y: Year):

m =: {1D, 6M, 1Y, 2Y, 3Y, · · · , 10Y, 12Y, 15Y, 20Y, 25Y, 30Y, 40Y, 50Y }
n =: {1306 daily interest rates at each tenor point}

The ten thousand simulated yield curves are presented in Fig. 6.2. Furthermore, we calculate the model

Figure 6.2: 10,000 simulated yield curves obtained by bootstrapping for 10 years in future.

parameters using the procedure explained in Section 6.2.10. For the floater example, we need parameter values
only until 10Y tenor point (maturity of the floater). Henceforth, we consider the simulated yield curves with
only first 12 tenor points. The calibration generates the real parameter space of dimension R10000×12 for the
parameter a(t). We consider the volatility σ(t) and the mean reversion b(t) of the short-rate r as constants
and equal to 0.005 and 0.1, respectively. The Figure 6.3 presents one of the 10,000 parameter vectors a(t)
as a function of time. All parameters are assumed to be piecewise constants between the tenor points (0 −
6M, 6M − 1Y, 1Y − 2Y, 2Y − 3Y, · · · , 9Y − 10Y ).

Figure 6.3: One of the 10,000 parameter vectors a(t) as a function of time.
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6.4.3. Finite Difference Method

The computational domain for a spatial dimension r is restricted to r ∈ [α, β]. Here, α = 0.1 and β = −0.1.
Also, we apply Neumann boundary condition of the form

∂V

∂r
|r=α = 0,

∂V

∂r
|r=β = 0. (6.101)

We divide the spatial domain into M equidistant grid points which generate a set of points {r1, r2, . . . , rM}.
The time interval [0, T ] is divided into N − 1 time points. N points in time that are measured in days starting
from t = 0 till the maturity T , i.e., in our case, the number of days until maturity are assumed to be 2600 with
an interval ∆t = 1 (10 years ≈ 2600 days). Rewriting (6.87),

A(ρs(t))V
n+1 = B(ρs(t))V

n, V (0) = V0,

We can apply the first boundary condition by updating the first and the last rows (A1 and AM ) of the matrix
A(ρs). Using an FDM, the discretization of (6.101) writes

A1 = (−1, 1, 0, . . . , 0) and AM = (0, . . . , 0, 1,−1).

The second Neumann boundary condition can be applied by changing the last entry of the vector BV n to zero.
Starting at t = 0 with the known initial condition V (0) as the principal amount, at each time step, we solve the
system of linear equations (6.87). Note that, if we reach the coupon date, then we update the value of the grid
point ri by adding coupon fn based on the coupon rate given by (6.100). Figure 6.4 shows the results obtained
for the floater with cap and floor as a function of r and time t. The following results are obtained using the
parameter vector a(t) as illustrated in the Fig. 6.3, whereas b = 0.1, and σ = 0.005. We discretize the spatial
domain into 800 equidistant greed points and the time interval [0, T ] is divided intoN−1 time points. N points
in time that are measured in days starting from t = 0 till the maturity T , i.e., in our case, the number of days
until maturity are assumed to be 2600 with an interval ∆t = 1 (10 years ≈ 2600 days).

0

-0.1

50

100

-0.05 10

150

9

200

8
70

250

6
5

300

40.05 3
2

10.1

Figure 6.4: The value of the floater with 10 years of maturity and a face value of 1000 as a function of r and t.
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6.4.4. Model Order Reduction

We implement the parametric model order reduction approach, as discussed in Subsect. 6.3.2. The quality of
a ROM depends on the parameter groups selected for the construction of the ROB Q. In this work, we use
the POD-greedy method to obtain Q. At each greedy iteration, the algorithm constructs a ROB using the POD
approach as presented in the Algorithm 1. We set the maximum number of pre-defined candidates to construct
a set P̄ to 40 and the maximum number of iteration Imax to 10.
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Figure 6.5: Evolution of maximum and average residuals with each iteration of the greedy-POD algorithm.
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Figure 6.6: Evolution of the maximum residual error for three different cardinalities of set P̄ .

The progression of the maximum and average residuals with each iteration of the POD-greedy algorithm is
presented in the Fig. 6.5. It is observed that the maximum residual error decreases with each proceeding
iteration. We can say that the proposed greedy algorithm efficiently locates the optimal parameter groups and
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construct the desired ROB Q. Furthermore, we test the effect of change in the cardinalities of the set P̄ . The
proposed algorithm is applied with three different cardinalities of P̄ : |P̄1| = 20, |P̄2| = 30, |P̄3| = 40. Note
that, we construct P̄ by randomly selecting the parameter groups from the parameter space P . Figure 6.6 shows
the plot of the maximum residual against the number of iterations for three different cardinalities. It is evident
that with an increasing number of candidates, the maximum residual error decreases. However, the decrement
is not significant enough with an increase in the cardinality of P̄ even by 20. Thus, we can say that the twenty
randomly selected parameter groups are enough to obtain the parameter independent ROB Q.
Using this projection subspaceQ, we construct two different ROMs with two different parameter groups ρ1 and
ρ2. The relative errors between the HDMs and ROMs are presented in Fig. 6.7. It is observed that the increase
in reduced dimension d improves the quality of the result. Also, we observe that the relative error between the
ROM2 and HDM2 (dashed line) is larger than that of the ROM1 and HDM1 (solid line). This remark reveals

5 10 15 20 25 30 35 40 45 50
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10
-3

10
-2
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Figure 6.7: The relative error between the HDM and the ROM for two different parameter groups.

that the selection of trial candidates by random sampling may neglect the parameter groups corresponding to the
significant error. To overcome these drawbacks of classic greedy-POD approach, we aim to define an adaptive
greedy sampling technique. However, the results obtained with the reduced dimension d = 25 are still well
within the acceptable range.
Table 5 shows the computational times required to generate the ROB Q with different sets of P̄ .

Table 5: Computation time/ reduction time (TQ) to generate projection subspace.

Cardinality |P̄ | Maximum iterations Imax Computational time

20 10 56.82 s
30 10 82.54 s
40 10 95.04 s

The computational times required to solve the ROMs and the HDMs is presented in Table 6. The evaluation
columns give the time needed to solve the linear systems generated for both HDMs and ROMs. The time
required to solve the complete system with a parameter space of 10000×m for both HDMs and ROMs is given
in a total time column. We can see that the evaluation time required for the ROM is at least 8-10 times less
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Table 6: Evaluation time.

Model
Evaluation time

single ρs
Total Evaluation

time (Teva)
Total time
TQ + Teva

HDM, M = 800 0.1808 s 1895.87 s 1895.87 s
ROM, |P̄ | = 20 d = 5 0.0104 s 108.56 s 165.38 s
ROM, |P̄ | = 20 d = 10 0.0125 s 128.48 s 185.30 s
ROM, |P̄ | = 20 d = 15 0.0155 s 156.31 s 213.13 s
ROM, |P̄ | = 20 d = 25 0.0179 s 182.89 s 239.71 s
ROM, |P̄ | = 20 d = 30 0.0212 s 214.79 s 271.61 s

than that of the HDM model. However, there is a slight increase in total time due to the addition of reduction
time TQ. Despite of that, the reduced system is at least 7-8 times faster than the high dimensional system.
We can also observe that with an increase in the dimension of ROMs, the evaluation time increases as well.
Nonetheless, the results obtained with d = 25 are satisfactory enough as even in the worst case the relative
error is less than 10−2, and it provides a computational speed of order 8.

6.4.4.1. Floater Scenario Values

To design a KID, we need the values of the floater at different spot rates. The spot rate rsp is the yield rate at
the first tenor point ys1 from the simulated yield curve. The value of a floater at the spot rate rsp is nothing but
the value at the short rate r = rsp. For 10,000 simulated yield curves, we get 10,000 different spot rates and the
corresponding values for the floater. These several thousand values are further used to calculate three different
scenarios: (i) favorable scenario, (ii) moderate scenario, (iii) unfavorable scenario. The favorable, moderate,
and unfavorable scenario values are the values at 90th percentile, 50th percentile and 10th percentile of 10,000
values respectively.

Table 7: Results for a floater with cap and floor.

Scenario 5 years 10 years

Favorable 1075.9 1082.9
Moderate 1057.8 1061.5
Unfavorable 1018.3 1025.4

6.5. Calibration of Hull-White Model

In the section, we have considered the parameters b(t) and σ(t) of the Hull-White model as constants. However,
we can obtain those parameters as piecewise constants on the time interval. To calibrate the mean reversion
speed and volatility, we need additional information about the cap data. We collect cap data for various strikes
and various maturities. Consider a call option on a zero-coupon bond with strike price K and the expiration
time T1. The bond maturity is T with T > T1. Then according to [108], the price of the option in terms of
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zero-coupon bond is given by

PHWcap = E
[
exp

(
−
∫ T1

0
r(s)ds

)
(B(T1, T )−K)+

]
= E

[
exp

(
−
∫ T1

0
r(s)ds

)
(exp{−r(T1)Γ (T1, T )− Λ(T1, T )} −K)+

] (6.102)

The idea is to match the analytical cap prices PHWCap(Ki, Ti) with the market prices PMCap(Ki, Ti) by opti-
mizing the parameters b(t) and σ(t). Let a(t, b, σ) be the deterministic drift parameter obtain with the constant
b and σ. The typical procedure now is to optimize b(t) and σ(t) with the pre-calculated a(t) such that the
analytical price approaches the collected market price, i.e., we minimize

min︸︷︷︸
b(t),σ(t)

∑
(P aHWCap(Ki, Ti)− P aMCap(Ki, Ti)) (6.103)

where the superscript a, P a· (·), denotes that the parameter a(t) has been calculated previously based on simu-
lated yield curves.
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Part VII.
Software-based representation of an inverse heat
conduction problem
Umberto Morelli, Giovanni Stabile, Gianluigi Rozza, Federico Bianco, Gianfranco
Marconi, Peregrina Quintela, Patricia Barral

Abstract

To analyze different techniques for the solution of inverse heat conduction problems, we designed a benchmark.
In the first part of this document, we provide a description of the numerical formulation of this benchmark and
the method used for the solution of the inverse heat transfer problem. The second part of the document is then
devoted to the numerical solution of the inverse problem, its software implementation and all the information
needed for the reproducibility of the numerical results.
Keywords: Inverse problem, heat transfer, casting mold

7.1. Introduction

In this report, we discuss the numerical solution of the following inverse problem: the reconstruction of the
boundary condition of an heat transfer problem in a solid domain using temperature measurements inside the
domain.
We start considering the steady heat conduction problem in an homogeneous isotropic solid in the rectangular
parallelepiped domain Ω of Figure 7.1

Problem 1. Given k ∈ IR+, g ∈ L2(Γin), H ∈ IR+ and Tf ∈ L2(Γin). Find the temperature T : Ω → IR+

such that
− k∆T (x) = 0, ∀x ∈ Ω, (7.1)

with BC 
−k∇T (x) · n = g(x) ∀x ∈ Γin, (7.2)

−k∇T (x) · n = 0 ∀x ∈ Γex, (7.3)

−k∇T (x) · n = H(T (x)− Tf (x)) ∀x ∈ Γsf . (7.4)

We will call this the direct problem.
We state now the correspondent inverse problem. We assume to know the correct measured temperature T̃ (xi)
for all xi, i = 1, 2, . . . ,M . We interpolate the measured temperatures in a plane Σ, which is defined by the
thermocouples, obtaining an approximation of the function T̃ (x)|Σ . Then, we state the inverse problem as

Problem 2. Given the temperature measurements T̃ (x) ∈ IR+, for all x ∈ Σ, find g(x) ∈ L2(Γin) which
minimizes the functional

J [g] =
1

2

∫
Σ

(T [g](x)− T̃int(x))2dγ, (7.5)

where T [g](x) is solution of Problem 1.

To solve Problem 2, we used Alifanov’s regularization method [125]. It is an iterative procedure in which the
function g(x) is updated at each iteration

gn+1(x) = gn(x)− βnPn(x), n = 0, 1, 2, . . . (7.6)
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Figure 7.1: Schematic of the solid rectangular parallelepiped domain.

where n is the iteration counter, β is the stepsize in the search direction P given by

Pn(x) = J ′gn(x) + γnPn−1(x), (7.7)

where γn is the conjugate coefficient with γ0 = 0, and J ′g(x) is the Fréchet derivative (gradient) of J . It is the
element of L2(Γsin) that represents the Gâteaux derivative (directional derivative) of J , dJg, with respect to the
inner product < ·, · >L2(Γsin ) (see [126]), i.e. such that

dJg[b] =< J ′g, b >L2(Γsin ), ∀b ∈ L2(Γsin). (7.8)

Minimizing the functional J [gn+1] = J [gn − βPn] with respect to β, we find the search stepsize βn which
is used in (7.6). It is the solution of the critical point equation of the functional J , restricted to a line passing
through gn(x) in the direction defined by Pn, i.e. βn is the critical point of J [gn − βPn] which then satisfies

J [gn − βnPn] = min
β

{
1

2

M∑
i=1

{T [gn − βPn](xi)− T̂ (xi)}2
}
. (7.9)

In initial and boundary value problems for linear PDE, homogeneous or not, βn is given by (see [127])

βn =

∑M
i=1{T [gn](xi)− T̂ (xi)}δT [Pn](xi)∑M

i=1(δT [Pn](xi))2
. (7.10)
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where δT [P ](x) is the linear operator that solves the sensitivity problem with input P . The sensibility problem
is presented later in this section.
To conclude, we compute the conjugate coefficient minimizing J [gn − βnPn] with respect of the possible
choices of γn in the definition of Pn. We then write (see [127])

γn =

∫
Γsin

[J ′gn(x)]2dx∫
Γsin

[J ′
gn−1(x)]2dx

, (7.11)

which minimizes J [gn − βnPn] with respect of the possible choices of γn in the definition of Pn.
To use this iterative procedure, we have to compute at each iteration the gradient J ′g(x) and the variation δT [P ]
which are solutions of the adjoint and sensitivity problem respectively.
The sensitivity problem is obtained by perturbing the heat flux g → g+ δg, causing a variation of the tempera-
ture field, T → T + δT . The sensitivity problem corresponds to the problem satisfied by δT [127].

Problem 3. Find δT : Ω → IR+ such that

− k∆δT (x) = 0, ∀x ∈ Ω, (7.12)

with BC 
−k∇δT (x) · n = δg(x) ∀x ∈ Γin, (7.13)

−k∇δT (x) · n = 0 ∀x ∈ Γex, (7.14)

−k∇δT (x) · n = H(δT (x)) ∀x ∈ Γsf . (7.15)

The gradient of the functional J [g] evaluated at g, J ′g, is

J ′g(x) = −λ(x) ∀x ∈ Γin. (7.16)

Where λ is solution of

Problem 4. (Adjoint) Find λ : Ω → IR such that

1

k
∆λ(x) + (T [g](x)− T̃ (x))δ(x− xi) = 0, ∀x ∈ Ω,xi ∈ Σ, (7.17)

with BC 
1

k
∇λ(x) · n = 0 ∀x ∈ Γin ∪ Γex, (7.18)

1

k
∇λ(x) · n +

1

k2
Hλ(x) = 0 ∀x ∈ Γsf . (7.19)

Finally, the conjugate gradient algorithm is

Algorithm 1.
1. Let n = 0. Choose an estimate, g0(x).

2. Compute T [gn](xi), i = 1, . . . ,M , by solving Problem 1.

3. Examine the stopping criteria. Stop if it is satisfied.

4. Solve the Problem 4 to determine the gradient J ′gn .

5. Compute the conjugate coefficient, γn, by (7.11).
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6. Compute the search direction, Pn(x), by (7.7)

7. Solve the Problem 3 with δg(x) = Pn(x) and obtain δT [Pn](x).

8. Compute the stepsize in the search direction, βn, by (7.10).

9. Compute the new estimate gn+1(x), with (7.6).

10. Set n = n+ 1 and return to Step 2.

Regarding the numerical solution of the three problems, we use the finite volume method for the discretization.
Given a discretization of the domain T , we write the discrete unknowns (TC)C∈T , (λC)C∈T and (δTC)C∈T
into the real vectors T, λλλ and ffiT, respectively, belonging to IRNh with Nh = size(T ). Then, we write the
finite volume schemes as linear systems for the three problems. In the direct problem, we split the source tern
in one term due to the BC at Γin, bTg , and one due to the other BC,

ATT = bTg + bT . (7.20)

The source term of the adjoint problem includes a first term due to the BC, bλ, and a second due to the difference
between measured and computed temperatures, fλ,

Aλλλλ = bλ + fλ. (7.21)

Finally we treat the sensitivity problem as the direct problem obtaining

AδTffiT = bδT g + bδT , (7.22)

where AT,λ,δT ∈ IRNh×Nh and bT,λ,δT ∈ IRNh are the finite volume stiffness matrixes and source terms,
respectively. The elements of the stiffness matrices and source terms depend on the finite volume scheme used
for the discretization and the mesh used. For further details regarding the finite volume discretization we refer
to [128].

7.2. Implementation and Computer Requirements

All numerical computations are performed using ITHACA-FV [129] which is freely available under the GPL
3 License. It is an open-source C++ library based on the finite volume solver OpenFOAM [130]. All the
updated informations regarding installation and usage are available at https://mathlab.sissa.it/
ithaca-fv.

7.3. Numerical Example

We present here a numerical example. Considering the domain in Figure 7.1, the used parameters are sum-
marized in Table 8. Given the simple geometry, we use a structured, orthogonal mesh of 3 · 105 cells. The
elements are uniformly distributed in the three directions in the following way: 100 elements along the x-
and z-axis while 30 elements were used along the y-axis. We can then solve the direct problem obtaining the
temperature field in the domain.
The objective of this example is to reconstruct the heat flux g(x) based on temperature measurements which are
taken inside the domain. Here the temperature measurments are given by the solution of the direct problem. We
select 15 points in the middle plane of the domain as virtual thermocouples and we use the procedure previously
discussed to reconstruct the boundary condition g(x).
To have a measure of the goodness of the heat flux estimation, we define the relative error

εrel(x) =
ginv(x)− g(x)

g(x)
, (7.23)
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Table 8: Parameters used in the numerical example.
Parameter Value
Thermal conductivity, k 300.0 W/(mK)
Heat transfer coefficient, H 6000.0 W/(m2K)
Heat flux, g(x) −105x · z W/m2

Convective flow temperature, Tf 300 K
L 1.8 m
w 0.1 m
h 1.2 m

1.
2
m

0.
3
m

0.
3
m

z

x

0.3 m 0.3 m

1.8 m

Figure 7.2: Thermocouples locations at the plane y = 0.05 m. They are uniformly distributed along the z-
and x-axis.

where ginv(x) is the reconstructed boundary condition. Moreover, we define the surfaces

Σ = {(x) ∈ Ω|0.3 m ≤ x ≤ 1.5 m, y = 0.5 m, 0.3 m ≤ z ≤ 0.9 m}, (7.24)

which is the plane defined by the thermocouples, and

Σin = {(x) ∈ Γin|0.3 m ≤ x ≤ 1.5 m, 0.3 m ≤ z ≤ 0.9 m}, (7.25)

which is the projection of Σ on Γin. We interpolate the measurements on the plane Σ using radial basis
functions with Gaussian kernel functions.
The conjugate gradient algorithm meets the relative tolerance criterium in 81 iterations. Figure 7.3 illustrates
the convergence history and the behavior of the relative error norms. The minimum value of the functional J
at the 81st iteration is 1.0453 · 10−6 K2/m2. The correspondent L2(Σin)- and L∞(Σin)-norm of the relative
error are 1.287 · 10−2 m−1 and 1.474, respectively. In Figure 7.4 and Figure 7.5, we see a comparison of the
temperature fields at the thermocouples plane and of the heat fluxes.
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Figure 7.3: Convergence history and error norms of the conjugate gradient algorithm.

(a) Direct computation. (b) Inverse problem solution with interpolation.

Figure 7.4: Temperature field at y = 0.05 m.
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(a) Direct computation. (b) Inverse problem solution.

(c) Relative error.

Figure 7.5: Heat flux at Γin.
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Part VIII.
Software-based representation and XFEM-based
implementation of the benchmark entitled
’Experimental-based Validation of FSI Simulations in Blood
Pumps’
Marco Martinolli, Christian Vergara, Luc Polverelli

Abstract

The benchmark consists in the validation of a numerical model for the fluid-structure interaction arising in
membrane-based blood pumps against experimental data obtained by in vitro testings at CorWave Inc. The
goal is to numerically reproduce the pump system under the same working conditions of the documented
experimental sessions, in order to measure the pressure rise over the pump and the hydraulic power for different
inflow velocities and finally compare the results with the experimental PQ and HQ curves. The software for
the solution of the benchmark will be implemented in the C++ parallel library of finite elements LIFEV and
tackled using the Extended Finite Element Method. The report includes the plan for the Docker installation
of the LIFEV environment and the third-part packages, information on the future online availability of the
software, the licences of use of the main libraries and the computer requirements to run the benchmark.
Keywords: Fluid-Structure Interaction, Blood Pumps, Model Validation, LIFEV, PQ curves.
The benchmark consists in the validation of a numerical method to solve the Fluid-Structure Interaction (FSI)
problem in membrane-based blood pumps against real data provided by CorWave Inc. This report is structured
as follows: in Section 8.1, we briefly recall the most important details about the blood pump technology and the
fluid-structure model; in Section 8.2, we describe the structure and the format of the experimental data provided
by CorWave Inc.; in Section 8.3, we depict the plan for the benchmark for the model validation; and finally, in
Section 8.4, we shortly present our numerical approach to solve the benchmark, together with the details of the
software environment and the computer requirements to run the benchmark. Licences of use and configuration
files can be found in the Apendix 8.5.

8.1. Introduction

Blood pumps are medical devices used to support cardiac function in patients affected by end-stage heart
failure. These devices are implanted at the apex of the heart, where they expel the oxygenated blood collected
in the left ventricle into the ascending aorta via a flexible outlet cannula. Hence, these devices are called Left
Ventricular Assist Devices (LVADs). In this case, we will focus on a novel prototype of blood pumps that
is under development at CorWave Inc.(Paris), said progressive wave blood pumps [131]. Progressive wave
blood pumps are based on the interaction between an undulating elastic membrane and the blood, resulting in
a pumping mechanism that ejects blood in a physiologic pulsatile regime without exerting high forces on the
blood cells [132, 133]. You can find a cross sectional view of the pump device in the left panel of Figure 8.1. The
possibility to simulate the dynamics inside the pump allows to predict the device performance under different
operating conditions (changing parameters like the amplitude or the frequency of the membrane oscillation or
the velocity of the blood entering in the device) and in different pump designs (varying geometrical features,
like membrane diameter or thickness, or inlet/outlet section).
The intertwined dynamics arising inside a progressive wave pumps can be mathematically described in the
framework of FSI modeling, where a system of Partial Differential Equations (PDEs) describes separately the
behaviour of the fluid and of the structure in the respective domains, while proper coupling conditions define
their interaction at the interface. The FSI problem reads as follows: for each time t > 0, find fluid velocity
and pressure (u(t), p(t)) in the fluid domain Ωf (t) and membrane displacement d̂(t) in the reference structure
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Figure 8.1: Left: Cross section of the implantable progressive wave pump. The blood enters from the superior
inlet channel, it flows down along the sides of the central actuator body, it interacts dynamically with the wave

silicon membrane and it is ejected into the inferior outlet channel. Right: Sketch of the pump domain.

domain Ω̂s = Ωs(0), such that:

ρf (∂tu + u · ∇u)−∇ · Tf (u, p) = 0 in Ωf (df ), (8.1)

∇ · u = 0 in Ωf (df ), (8.2)

ρs∂ttd̂−∇ · T̂
s
(d̂) = 0 in Ω̂s, (8.3)

df = d on Σ(df ), (8.4)

u = ∂td on Σ(df ), (8.5)

Tf (u, p) n = Ts(d) n on Σ(df ). (8.6)

with proper boundary and initial conditions. Equations (8.1) and (8.2) are the Navier-Stokes (NS) equations
modeling the conservation of momentum and mass of an incompressible viscous Newtonian fluid. Equation
(8.3), written in the Lagrangian formulation with the quantities defined in the reference configuration ( ·̂ su-
percript), is the elastodynamic equation that models the structure deformation. Equation (8.4) provides the
adherence condition between the fluid and the solid domains, and Equations (8.5) and (8.6) guarantee the conti-
nuity of velocity and of stresses respectively at the fluid-structure interfaceΣ. Notice that both the fluid domain
Ωf and the interface Σ depend over time on the fluid displacement df and thus on the structure displacement
d due to the geometric condition (8.4). In particular, the physical quantities presented in the mathematical
formulation are:

• ρf and ρs are the mass densities of fluid and structure;
• nf and ns are the external normal vectors from fluid and structure domains, satisfying nf = −ns = n;
• Tf (u, p) = −pI + 2µfD(u) is the Cauchy stress tensor for a viscous Newtonian fluid with dynamic

viscosity µf and symmetric operator D(w) = 1
2(∇w +∇wT )

• T̂
s
(d̂) is the first Piola-Kirkhhoff tensor of the structure, such that T̂

s
(d̂) = J Ts (d)F−T with Ts being

the solid Cauchy stress tensor depending on the constitutive law of the structure, F = ∇x the gradient of
deformation and J = det F its determinant.
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In our FSI problem, the structures interacting with the fluid are two (as shown in the right panel of Figure
8.1): the silicon membrane and the magnet ring. Therefore, the system includes two structural problems in
Ω̂s

1 and in Ω̂s
2, to compute the displacement of the membrane d̂1 and of the magnet ring d̂2, and the two fluid-

structure interfaces Σ1 and Σ2, where the coupling conditions are prescribed. The forcing term of the system is
represented by the forced vibrations induced by the electromagnetic actuator on the periphery of the membrane
disc Γ s1 ( Σ1 and on the surface of the magnet ring Γ s2 ≡ Σ2. The imposed motion is modeled by means of a
pair of sinusoidal Dirichlet conditions:

d1 (t) = Φ sin (2π f t) ez on Γ s1 , (8.7)

d2 (t) = Φ sin (2π f t) ez on Γ s2 , (8.8)

where Φ and f are respectively the amplitude and the frequency of the forced oscillation of both the membrane
and the magnet ring. The other boundary conditions of the model are: parabolic velocity profile at the inlet sec-
tion Γ in (non-homogeneous Dirichlet condition), force-free condition at the outlet section Γ out (homogeneous
Neumann condition) and non-slip condition at the pump walls Γw (homogeneous Dirichlet condition).

8.2. Experimental Data

The experimental data used for the benchmark are Pressure-Flow (PQ) and Hydraulic power-Flow (HQ) curves,
which are obtained during the in vitro testings of the pump system in a Mock circulation loop, i.e., a system
of pipes that mimics the cardiac apparatus in physiologic conditions. Blood is replaced by a mixture of water
and glycerin (39% in weight), while a mechanical actuator reproduces the action of the implantable pump. The
system is also equipped with pressure sensors placed both at the inlet and at the outlet sections, to measure the
pressure gradient arisen over the pump, and an ultrasonic flowmeter clamped at the outlet pipe, to measure the
outflow volume rate of the pump. The PQ curves are obtained by varying the volume flow rate by means of
a control hand valve and diplaying the respective measurements of pressure in the PQ plan. Analogously, the
data can be represented in the HQ plan, computing the hydraulic power H as the product between the pressure
rise over the pump P and the flow volume rate Q and producing the HQ curves. Figure 8.2 shows the PQ and
the HQ curves of the pump system when the frequency of oscillation of the membrane is fixed to 120 Hz, while
the amplitude of oscillation - that is a function of the input voltage Vp of the actuator - passes from 0.53 mm
(grey triangles), to 0.63 mm (yellow crosses) and finally to 0.73 mm (blue dots).

Figure 8.2: PQ and HQ experimental curves for three different values of the voltage of the actuator.

Raw data are provided in Excel format for each experiment session and will be made publically available
in open-source spreadsheet applications. Each document consists of three separate data columns with the
measurements of:

• outflow volume rate, expressed in liters per minute [lpm] (1 lpm = 0.06 cm3/s);
• pressure rise over the pump, expressed in millimeters of mercury [mmHg] (1 mmHg = 1333.22 g /cm s2);
• hydraudynamic power, expressed in Watts [W] (1 W = 1e7 g cm2/s3).
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The software uses quantities expressed in the cgs system.
A separate table explicits the settings of each experimental sessions, including in particular the correspondence
between the values of the input voltage of the actuator Vp, expressed in Volts [V], shown in the Figure above,
and the respective amplitude of the induced membrane vibrations Φ, expressed in centimeters [cm].

8.3. Benchmark Plan

The aim of the proposed benchmark is to validate the FSI model via comparison of the experimental PQ and HQ
curves with the numerical results. Analogously to the approach for model validation used by Perschal et al. in
a similar scenario [134], the pump system is simulated under the same operative conditions of the experimental
sessions, so that we can measure the error between the real data and the predicted quantities and quantify the
goodness of the model.

1: [Q data, P data, H data, M data] = read data(PQcurves, HQcurves, settings);
2: [Q Ndata, P Ndata, H Ndata, M Ndata] = extract Ndata(N ); // N ≥ 1 data points
3: for n = 1 : N do
4: input flow = Q Ndata[n];
5: input frequency = M Ndata[n].f;
6: input amplitude = M Ndata[n].phi;
7: define bc(input flow, input frequency, input amplitude); // Boundary conditions
8: [u0, d0] = initialization()
9: while t < Tmax do // Time loop

10: [ut, pt, dt] = solve FSI(); // Solve the FSI problem
11: t = t + dt;
12: end while
13: P output[n] = mean(p|outlet) - mean(p|inlet); // Averages in space and time
14: H output[n] = P output[n]*input flow;
15: end for
16: plot(Q data, P data, Q Ndata, P output); // PQ curves
17: err PQ = norm2(P Ndata - P output);
18: plot(Q data, H data, Q Ndata, H output); // HQ curves
19: err HQ = norm2(H Ndata - H output);

Algorithm 2: Benchmark structure: Model validation against N data points.

The plan for the model validation is described in the Algorithm 2. First, the experimental data coming from
the PQ and the HQ curves are stored in separated variables: Q data contains the measurements of the out-
flow volume rate, P data collects the data of the pressure rise between outlet and inlet, H data contains the
measurements of the hydraulic power, and M data stores the input settings for the parameters of membrane dis-
placement (line 1). OnlyN data points are extracted by the curves to be reproduced via simulation and used for
the model validation (line 2). Therefore, for each of theN selected cases, the input parameters for the inlet flow
(line 4) and for the membrane oscillation (lines 5-6) are used to define the boundary conditions of the problem
(line 7). In this way, the pump system is simulated in the time interval [0, Tmax] using the XFEM numerical
approach (lines 8-12). Then, the pressure rise can be estimated as the difference between the mean values of
the pressure over the outlet and the inlet surfaces and averaged in time over the last 2 periods of membrane
oscillation (line 13); while the hydraulic power can be computed as the product between the predicted pressure
rise and the input inflow rate (line 14). Finally, the PQ curves and the HQ curves can be plotted together with
the numerical outputs and an error measure can be computed as the 2-norm of the deviation of the numerical
results from the experimental data (lines 15-19).
In conclusion, the proposed benchmark can be used for training in the fields of mathematical modeling of a
coupled system, model testing and error estimation.
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8.4. Implementation and Computer Requirements

In our solution of the benchmark, we will try to numerically reproduce the experimental results mimiking the
same working conditions of the pump in the experimental setup and solving the mathematical problem above in
three dimensions (3D) using the Extended Finite Element Method (XFEM) [135, 136]. The XFEM technique
is an unfitted method which has two main advantages compared with other approaches for FSI problems: i)
since the fluid mesh is kept fixed on the background, it avoids the remeshing procedure normally occurring in
case of element distortion; ii) the accuracy of the solution is maintained at the interface, thanks to the local
enrichment of the functional space of the extended finite elements. On the other side, since the structure mesh
moves in the foreground cutting the underlying fluid mesh, the XFEM approach requires to compute the mesh
intersections at each time istant to identify the fluid elements that are cut in multiple subportions (called split
elements), leading to a higher computational cost. For more details on the numerical formulation of the XFEM
with a Discontinuous Galerkin (DG) mortaring at the interface, the reader can find an exaustive explanation in
the reference paper [137].
The software for the benchmark will be implemented in LIbrary of Finite Elements V (LIFEV)
(https://bitbucket.org/lifev-dev/lifev-env.git) [138], a C++ parallel finite element library for the solution of
PDEs. In particular, the library is suitable for solving real problems in the field of cardiovascular applica-
tions. The XFEM module requires external libraries to handle the geometric intersections between the fluid
and the solid meshes and the treatment of the split elements. Therefore, Triangle (version 1.6) and TetGen
(version 1.15.0) [139] are used to mesh the polihedra generated by the cut of the fluid mesh in 2D and 3D
respectively. In particular, the source code of TetGen library has been modified to make it compliant with the
LIFEV environment. The licence of use is reported in the Appendix 8.5.A for each of these libraries.
Despite a release version of LIFEV is available online (accessible with a free bitbucket account), it does not
include the module for the XFEM numerical approach that is needed for the benchmark. The branch of the
library including the XFEM method will be made public soon, so that the codes will be open access.
LifeV requires some third-part libraries to be built. In particular, the following packages are required:

• cmake (latest version): to configdeldelure and create the necessary makefiles for building the source
code;

• openblas (v. 0.2.17): low level linear algebra package, providing both BLAS and LAPACK bindings;
• trilinos (v. 11.14.3): parallel linear algebra;
• metis (v. 5): graph partitioning library;
• parmetis (v. 4.0.3): parallel version of metis;
• hdf5 (v. 1.8.16): management of the HDF5 file format for storing data;
• suitesparse (v. 4.5.1): linear algebra library with linear solvers and utilities.

The software will be made publically available soon on Bitbucket. Moreover, in order to simplify the config-
uration of the system and increase the cross-platform compatibility with other benchmarks in ROMSOC, the
installation of the LIFEV environment and the necessary third-part libraries will be set via Docker. Therefore
free Docker and Bitbucket accounts will be necessary to run the software to run the benchmark.
Here we present the general idea of the installation procedure, detailing in the following list the steps required
for the Docker installation ansd the configuration procedure:
1. Set the Docker container with the required modules installed by typing in the terminal (it requires docker):

docker build -f Dockerfile

where the Dockerfile contains the instructions as follows:

# Use Ubuntu 16.04 as parent image
FROM ubuntu:xenial
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# Install LifeV dependencies
RUN apt-get update && \
apt-get install -y \
g++ \
cmake \
git \
libblacs-mpi-dev \
libscalapack-mpi-dev \
libsuitesparse-dev \
trilinos-all-dev \
libboost-program-options-dev \del
libparmetis-dev \
libmetis-dev \
libhdf5-openmpi-dev \
libmumps-dev \
libsuperlu-dev \
libtbb-dev \
libptscotch-dev \
binutils-dev \
libiberty-dev \
libtriangle-dev && \
groupadd -r lifev && \
useradd -l -m -g lifev lifev
# Set user 'lifev'
USER lifev
# Set working directory
WORKDIR /home/lifev
# Copy the content of the current dir into the WORKDIR
ADD --chown=lifev:lifev . /home/lifev

Listing 1: Dockerfile

2. Define the paths inside the container as in the defs.sh file below:

#!/bin/bash
LifeV_DIR=$PWD
LifeV_SRC=$LifeV_DIR/lifev-src
LifeV_BUILD=$LifeV_DIR/lifev-build
LifeV_LIB=$LifeV_DIR/lifev-install
TetGen_DIR=$LifeV_DIR/tetgen1.5.0
mkdir -p $LifeV_SRC
mkdir -p $LifeV_BUILD
mkdir -p $LifeV_LIB

Listing 2: defs.sh

3. Clone the source codes of LIFEV and TetGen from xx bitbucket repository into the container by executing
./clone.sh file:

#!/bin/bash
source defs.sh
git clone lifev-xfem_REPOSITORY ${LifeV_SRC}
git clone tetgen4lifev_REPOSITORY ${TetGen_DIR}

Listing 3: clone.sh

Notice that lifev-xfem REPOSITORY and tetgen4lifev REPOSITORY will be the url to the public repository
of the LIFEV software and to the modified version of TetGen library.
4. Build TetGen and configure LIFEV typing ./config.sh from the container:
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#!/bin/bash
source defs.sh
cd $TetGen_DIR
make tetlib
cd $LifeV_BUILD
cmake \
-D BUILD_SHARED_LIBS:BOOL=OFF \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
-D CMAKE_INSTALL_PREFIX:PATH=${LifeV_LIB}\
-D CMAKE_C_COMPILER:STRING="mpicc" \
-D CMAKE_CXX_COMPILER:STRING="mpicxx" \
-D CMAKE_CXX_FLAGS:STRING="-O3 -msse3

-Wno-unused-local-typedefs -Wno-literal-suffix"\
-D CMAKE_C_FLAGS:STRING="-O3 -msse3" \
-D CMAKE_Fortran_COMPILER:STRING="mpif90" \
-D CMAKE_Fortran_FLAGS:STRING="-Og -g" \
-D CMAKE_AR:STRING="ar" \
-D CMAKE_MAKE_PROGRAM:STRING="make" \
[...]
${LifeV_SRC}
cd $LifeV_DIR

Listing 4: config.sh

Here the config.sh is shown in a shorter form with the most important compiling options (mpicc compiler
for C, mpicxx compiler fo C++, O3 optimization). For a complete version with all compiling options and
dependancies we refer the reader to Appendix 8.5.B).
5. Build LIFEV from the container by executing ./build.sh:

#!/bin/bash
source defs.sh
cd $LifeV_BUILD
make -j 3
cd $LifeV_DIR

Listing 5: build.sh

The operative system has to be UNIX-based (like Oracle Solaris, Darwin or macOS), equipped qith C++ com-
piler an all basic system libraries required for software development, like FORTRAN, C++, HDF5 or MPI. It
is sufficient to type on the terminal

sudo apt-get install build_essentials

, to check if your operative system already has such fundamental libraries or, in case they are not present, install
them. The minimum requirements on the hardware are:

• CPU: 1 processor is sufficient to run the benchmark, but multi-thread CPU is needed in case you want to
employ parallel computing;

• rigid disk: at least 3 GB of available space in the rigid disk, considering the memory required for building
lifev and all third-part libraries, as well as the space required by data and results;

• RAM: a minimum of 40 GB of RAM is predicted to be required the benchmark in serial. Be aware that
in case of parallel runs, the demand of RAM increases.
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8.5. Appendix

8.5.A. Licences of Use

8.5.A.1. LIFEV (release version)

Copyright (C) 2004, 2005, 2007 EPFL, Politecnico di Milano, INRIA Copyright (C) 2010 EPFL, Politecnico
di Milano, Emory University Copyright (C) 2011,2012,2013 EPFL, Politecnico di Milano, Emory University
This file is part of LifeV.
LifeV is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
LifeV is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with LifeV. If not, see
http://www.gnu.org/licenses/.

8.5.A.2. TetGen

TetGen is distributed under a dual licensing scheme. You can redistribute it and/or modify it under the terms of
the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version. A copy of the GNU Affero General Public License is reproduced
below.
If the terms and conditions of the AGPL v.3. would prevent you from using TetGen, please consider the option
to obtain a commercial license for a fee. These licenses are offered by the Weierstrass Institute for Applied
Analysis and Stochastics (WIAS). As a rule, licenses are provided ”as-is”, unlimited in time for a one time fee.
Please send corresponding requests to: tetgen@wias-berlin.de. Please do not forget to include some description
of your company and the realm of its activities.

8.5.A.3. Triangle

Triangle A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. Version 1.6
Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk 2360 Woolsey H Berkeley, Cali-
fornia 94705-1927 Please send bugs and comments to jrs@cs.berkeley.edu
Created as part of the Quake project (tools for earthquake simulation). Supported in part by NSF Grant CMS-
9318163 and an NSERC 1967 Scholarship. There is no warranty whatsoever. Use at your own risk.
These programs may be freely redistributed under the condition that the copyright notices (including the copy
of this notice in the code comments and the copyright notice printed when the ‘-h’ switch is selected) are not
removed, and no compensation is received. Private, research, and institutional use is free. You may distribute
modified versions of this code under the condition that this code and any modifications made of it in the
same file remain under Copyright of the original author, both soruce and object code are made freely available
without charge, and clear notice is given of the modifications. Distribution of this code as part of a commercial
system is permissible only by direct agreement with the author. (If you are not directly supplying this code to
a customer, and you are instead telling them how they can obtain it for free, then you are not required to make
any arrangement with me.)

8.5.B. Configuration files

#!/bin/bash
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source defs.sh

cd $TetGen_DIR

make tetlib

cd $LifeV_BUILD

cmake \
-D BUILD_SHARED_LIBS:BOOL=OFF \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
-D CMAKE_INSTALL_PREFIX:PATH=${LifeV_LIB}\
-D CMAKE_C_COMPILER:STRING="mpicc" \
-D CMAKE_CXX_COMPILER:STRING="mpicxx" \
-D CMAKE_CXX_FLAGS:STRING="-O3 -msse3 -Wno-unused-local-typedefs -Wno-literal-suffix" \
-D CMAKE_C_FLAGS:STRING="-O3 -msse3" \
-D CMAKE_Fortran_COMPILER:STRING="mpif90" \
-D CMAKE_Fortran_FLAGS:STRING="-Og -g" \
-D CMAKE_AR:STRING="ar" \
-D CMAKE_MAKE_PROGRAM:STRING="make" \
\
-D TPL_ENABLE_AMD=ON \
-D AMD_INCLUDE_DIRS=/usr/include/suitesparse/ \
-D AMD_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D AMD_LIBRARY_NAMES=amd \
-D TPL_ENABLE_BLACS=ON \
-D BLACS_INCLUDE_DIRS=/usr/include/ \
-D BLACS_LIBRARY_DIRS=/usr/lib/ \
-D BLACS_LIBRARY_NAMES=blacs \
-D TPL_ENABLE_Boost=ON \
-D Boost_INCLUDE_DIRS=/usr/include/boost/ \
-D TPL_ENABLE_BoostLib=ON \
-D Boost_NO_BOOST_CMAKE:BOOL=ON \
-D BoostLib_INCLUDE_DIRS=/usr/include/boost/ \
-D BoostLib_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D TPL_ENABLE_HDF5=ON \
-D HDF5_INCLUDE_DIRS=/usr/include/hdf5/openmpi/ \
-D HDF5_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D TPL_ENABLE_SCALAPACK=ON \
-D SCALAPACK_INCLUDE_DIRS= \
-D SCALAPACK_LIBRARY_DIRS=/usr/lib/ \
-D SCALAPACK_LIBRARY_NAMES=scalapack \
-D TPL_ENABLE_MPI=ON \
-D MPI_BASE_DIR:PATH=/usr/ \
-D ParMETIS_INCLUDE_DIRS=/usr/include/ \
-D ParMETIS_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D TPL_ENABLE_UMFPACK=ON \
-D UMFPACK_INCLUDE_DIRS=/usr/include/suitesparse/ \
-D UMFPACK_LIBRARY_DIRS=/usr/lib/x86_64-linux-gnu/ \
-D UMFPACK_LIBRARY_NAMES=umfpack \
-D Trilinos_INCLUDE_DIRS:PATH="/usr/include/trilinos/" \
-D Trilinos_LIBRARY_DIRS:PATH="/usr/lib/x86_64-linux-gnu/" \
-D TetGen_INCLUDE_DIRS:PATH="${TetGen_DIR}" \
-D TetGen_LIBRARY_DIRS:PATH="${TetGen_DIR}" \
-D TetGen_LIBRARY_NAMES="tet" \
-D Triangle_INCLUDE_DIRS:PATH="/usr/include" \
-D Triangle_LIBRARY_DIRS:PATH="/usr/lib" \
-D Triangle_LIBRARY_NAMES="triangle" \
\
-D LifeV_ENABLE_DEBUG:BOOL=OFF \
-D LifeV_ENABLE_TESTS:BOOL=ON \
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\
-D LifeV_ENABLE_ALL_PACKAGES:BOOL=ON \
-D LifeV_ENABLE_Core:BOOL=ON \
-D LifeV_ENABLE_ETA:BOOL=ON \
-D LifeV_ENABLE_NavierStokes:BOOL=ON \
-D LifeV_ENABLE_BCInterface:BOOL=ON \
-D LifeV_ENABLE_Structure:BOOL=ON \
-D LifeV_ENABLE_ZeroDimensional:BOOL=ON \
-D LifeV_ENABLE_OneDFSI:BOOL=ON \
-D LifeV_ENABLE_LevelSet:BOOL=ON \
-D LifeV_ENABLE_Darcy:BOOL=ON \
-D LifeV_ENABLE_Electrophysiology:BOOL=ON \
-D LifeV_ENABLE_Heart:BOOL=ON \
-D LifeV_ENABLE_FSI:BOOL=ON \
-D LifeV_ENABLE_Multiscale:BOOL=ON \
-D LifeV_ENABLE_XFEM:BOOL=ON \
-D LifeV_ENABLE_Dummy:BOOL=ON \
\
-D LifeV_STRUCTURE_ENABLE_ANISOTROPIC:BOOL=ON \
-D LifeV_STRUCTURE_COLORING_MESH:BOOL=ON \
-D LifeV_STRUCTURE_COMPUTATION_JACOBIAN:BOOL=ON \
-D LifeV_STRUCTURE_EXPORTVECTORS:BOOL=ON \
\
-D BCInterface_ENABLE_TESTS:BOOL=ON \
-D Core_ENABLE_TESTS:BOOL=ON \
-D Darcy_ENABLE_TESTS:BOOL=ON \
-D Dummy_ENABLE_TESTS:BOOL=ON \
-D Electrophysiology_ENABLE_TESTS:BOOL=ON \
-D ETA_ENABLE_TESTS:BOOL=ON \
-D FSI_ENABLE_TESTS:BOOL=ON \
-D Heart_ENABLE_TESTS:BOOL=ON \
-D LevelSet_ENABLE_TESTS:BOOL=ON \
-D Multiscale_ENABLE_TESTS:BOOL=ON \
-D NavierStokes_ENABLE_TESTS:BOOL=ON \
-D OneDFSI_ENABLE_TESTS:BOOL=ON \
-D Structure_ENABLE_TESTS:BOOL=ON \
-D XFEM_ENABLE_TESTS:BOOL=ON \
-D ZeroDimensional_ENABLE_TESTS:BOOL=ON \
\
-D BCInterface_ENABLE_EXAMPLES:BOOL=ON \
-D Core_ENABLE_EXAMPLES:BOOL=ON \
-D Darcy_ENABLE_EXAMPLES:BOOL=ON \
-D Dummy_ENABLE_EXAMPLES:BOOL=ON \
-D Electrophysiology_ENABLE_EXAMPLES:BOOL=ON \
-D ETA_ENABLE_EXAMPLES:BOOL=ON \
-D FSI_ENABLE_EXAMPLES:BOOL=ON \
-D Heart_ENABLE_EXAMPLES:BOOL=ON \
-D LevelSet_ENABLE_EXAMPLES:BOOL=ON \
-D Multiscale_ENABLE_EXAMPLES:BOOL=ON \
-D NavierStokes_ENABLE_EXAMPLES:BOOL=ON \
-D OneDFSI_ENABLE_EXAMPLES:BOOL=ON \
-D Structure_ENABLE_EXAMPLES:BOOL=ON \
-D XFEM_ENABLE_EXAMPLES:BOOL=ON \
-D ZeroDimensional_ENABLE_EXAMPLES:BOOL=ON \
\
-D LifeV_ENABLE_STRONG_CXX_COMPILE_WARNINGS:BOOL=ON \
${LifeV_SRC}

cd $LifeV_DIR

Listing 6: config.sh
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Part IX.
Benchmark for numerical simulation of thermo-mechanical
phenomena arising in blast furnaces
Nirav Shah, Gianluigi Rozza, Alejandro Lengomin, Peregrina Quintela, Patricia
Barral, Michele Girfoglio

Abstract

High thermal stress inside the blast furnace hearth walls limits the lifetime of the blast furnace hearth and in
turn reduces the blast furnace campaign. We present here linear, time-invariant, weakly-coupled, axisymmetric
model for computing thermo-mechanical stress. Proper selection of function spaces along with symmetry
conditions ensure that the model is well defined and is well posed. In order to validate the simulation results,
benchmark tests are performed.
Keywords: Blast furnace hearth, thermo-mechanical coupled model, weak formulation, benchmark verification.

9.1. Conceptual model

Blast furnace is a metallurgical furnace used to produce iron from “charge”. The “charge” contains iron ore,
limestone, coke. The process involves an exothermic reaction, the oxidation of carbon. High temperature is
required to increase the oxidation rate of carbon. In the hearth, the hot air, supplied through the tuyeres, acts as
source of oxygen and is used for the oxidation of the carbon. The temperature in the hearth is as high as 1500
°C. The general layout of the blast furnace is shown in Figure 9.1.
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Figure 9.1: Blast furnace divided in zones [140]

As mentioned by Swartling M. et. al. [141], the hearth is made up of several refractory zones (Figure 9.2),
with each zone having specific functions and, accordingly, design requirements. The outside of the hearth is
covered with a steel shell. The wall and the bottom consist of five types of refractory materials, each with its
specific properties depending on type of environment the region is exposed to. The wall is made up of carbon
material having relatively high heat conductivity to keep the inner wall at a low temperature. The upper layer
of the bottom is a ceramic plate with the composition 23.5 % SiO2 , 73.5 % Al2O3, and some other additives.
It has high resistance to mechanical wear, which helps to keep the bottom layer intact and avoid cracks. That
is important to avoid penetration and solidification of liquid iron in the lower bottom layers, since this would
have impact on the heat flow. Between the steel shell and the bottom refractory, there is a layer of ramming
paste. The taphole region is made up of carbon refractory. It has a very high heat conductivity to transport heat
from the taphole during tapping and reduce the thermal stresses in the region.
The proper material selection ensures less heat loss and also less thermal stress. The thermal stresses and hot
metal flow cause mechanical design challenge. The shell of the hearth is subjected also to abrasive wear due
to oxidation, abrasion/deterioration due to chemical attack and erosion due to hot liquid flow. The heat transfer
through the furnace wall occurs by conduction. On the contrary, in the region of fluid flow such as taphole, heat
transfer occurs by convection. The high temperature induces thermal stresses in addition to the stresses due to
weight of other parts and fixations.
Wear of carbon refractory limits the hearth lifetime, which in turn restricts lifetime of blast furnace hearth. An
optimum design enlarges the hearth lifetime and consequently, the blast furnace campaign.
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Steel shell

Carbon
wall

Ceramic plate

Lower bottom layer

Ramming paste

Taphole

Figure 9.2: Typical cross section of Hearth geometry [141]

The design parameters which affect the hearth design are material properties, operating conditions and geomet-
ric dimensions. If carbon blocks are used, frictional contact occurs between block surfaces. Other materials
used are ceramic cup bricks or plastic material for ramming mix. The geometric parameters are the thickness
of hearth material, number of blocks.
The thermo-mechanical modelling of blast furnace hearth is based on the extensive experience of the global
Research and Development center of Arcellor Mittal (AMIII) in Asturias, Spain. The project is carried out
under supervision from ITMATI and SISSA.

9.2. Mathematical model

The governing equations for thermo-mechanical problems are linear momentum conservation and energy con-
servation from continuum mechanics. These equations will be described briefly in the following subsections.

9.2.1. Problem statement in strong formulation

Summarizing, in this document the following simplifications are considered:

• Taphole operation is not part of this study, i.e. only normal operating conditions are considered.
• We only consider steady state operations.
• We assume that the hearth is made up of a single, elastic and isotropic material.
• Heat transfer only by conduction within hearth walls will be considered. The temperature of the molten

metal inside the hearth is assumed constant and known. Therefore, the fluid region will not be part of the
problem.

In further works, some of the following non linearities will be considered: inhomogeneity, anisotropy, contact
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between refractory blocks and dependence of material properties on temperature.

(a) 3-dimensional hearth geometry [142] (b) Hearth 3-dimensional simplified domain Ω

(c) Top boundary Γ+ (d) Inner boundary Γsf

(e) Outer boundary Γout (f) Bottom boundary Γ−

Figure 9.3: Hearth geometry : 3-dimensional computational domain and its boundaries

We consider the three dimensional domain Ω as in Figure 9.3. Ω represents a simplified hearth geometry of the
furnace.
Based on the assumptions listed above, in the absence of heat source/sink, and in the absence of external forces,
the momentum conservation for small displacements, and the energy conservation can be written as,

−Div(σ) =
−→
0 in Ω , (9.1)

−Div(K∇T ) = 0 in Ω . (9.2)

In the case of isotropic material the thermal conductivityK is expressed as,

K = kI , k > 0 . (9.3)
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(a) Hearth 3-dimensional domain cross
section in r − y plane, ω

r

y

ymax

(0, 0)rmax

γout

γ+

γsf

γsγ−

ω

(b) Boundaries of hearth 3-dimensional
cross section in r − y plane

Figure 9.4: Hearth 3-dimensional domain cross section and corresponding boundaries

We represent displacement vector field as −→u and temperature scalar field as T .
The thermo-mechanical stress tensor σ is related to the strain tensor through the Hooke’s law:

σ(−→u )[T ] = λTr(ε(−→u ))I + 2µε(−→u )− (2µ+ 3λ)α(T − T0)I , (9.4)

where I refers to the identity tensor, ε(−→u ) is the strain tensor defined as,

ε(−→u ) =
1

2
(∇−→u +∇−→u T ) . (9.5)

In addition in (9.4), T0 is the reference temperature, α is the thermal expansion coefficient, and λ and µ are the
Lamé parameters of the material. The Lamé parameters can be expressed in terms of Young modulus, E, and
the Poisson ratio, ν, as:

µ =
E

2(1 + ν)
, λ =

Eν

(1− 2ν)(1 + ν)
. (9.6)

9.2.2. Boundary conditions

In the following, we introduce the notations for the boundaries of the domain Ω, and its vertical cross section
in r − y plane, ω (see Figure 9.3 and 9.4).

Γout = ∂Ω ∩ (r ≡ rmax) = γout × [0, 2π) ,

Γ+ = ∂Ω ∩ (y ≡ ymax) = γ+ × [0, 2π) ,

Γ− = ∂Ω ∩ (y ≡ 0) = γ− × [0, 2π) ,

Γsf = ∂Ω\(Γout ∪ Γ+ ∪ Γ−) = γsf × [0, 2π) ,

γs = ∂ω ∩ (r ≡ 0) ,

being rmax ∈ R+ and ymax ∈ R+.

• On the upper boundary, Γ+, the weight of the upper blast furnace components acts and no conduction
heat transfer occurs:
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(−K∇T ) · −→n = 0 ,

−→σt =
−→
0 ,

σn = |
−→
W | ,

(9.7)

where
−→
W is the weight per unit surface of the upper furnace components, supported by the upper hearth

walls, −→σt and σn are the tangential and normal forces defined by:

σn = (σ−→n ) · −→n ,
−→σt = σ−→n − σn−→n .

• On the bottom boundary, Γ−, the temperature is assumed to be known, TD, the normal displacement is
null and shear forces are assumed to be zero. Therefore, on this boundary,

T = TD ,
−→u · −→n = 0 ,

−→σt =
−→
0 .

(9.8)

• On the inner boundary, Γsf , a convection heat transfer with the liquid phase occurs and hydrostatic
pressure is acting. So, on this boundary the following boundary conditions are considered:

(−K∇T ) · −→n = hc,f (T − Tf ) ,

σ−→n = −ph−→n ,
(9.9)

where Tf is the fluid temperature, assumed to be constant at the steady state, hc,f the convective heat
transfer coefficient on Γsf and ph is the hydrostatic pressure, which depends on the (r, y) variables.

• On the outer boundary, Γout, a convective heat flux and a free surface condition are assumed:

(−K∇T ) · −→n = hc,out(T − Tout) ,

σ−→n =
−→
0 ,

(9.10)

hc,out being the convective heat transfer coefficient on Γout, and Tout the ambient temperature.

9.2.3. Mathematical model in cylindrical coordinates

We express now the governing equations and boundary conditions in cylindrical coordinate system (r, y, θ)
having corresponding unit vectors (−→er ,−→ey ,−→eθ ). As we will see in next section, this transformation leads to
significant simplification. The operators introduced during the previous sections need to be transformed ac-
cordingly. The normal vector will now be represented as −→n = nr

−→er + ny
−→ey + nθ

−→eθ .
The displacement vector −→u is expressed as,

−→u = ur(r, y, θ)
−→er + uy(r, y, θ)

−→ey + uθ(r, y, θ)
−→eθ , (9.11)

the temperature scalar, T , is expressed as,
T = T (r, y, θ) , (9.12)

and the material point p = (r, y, θ), with (r, y) ∈ ω (see Figure 9.4), and θ ∈ [0, 2π).

Deliverable D5.2
105



9.2. Mathematical model

The stress and strain tensors in cylindrical coordinate system (r, y, θ) are given by,

ε(−→u ) =


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 . (9.13)

We representA as the fourth order tensor defined as:

A =
E

(1− 2ν)(1 + ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

 . (9.14)

In Voigt notation, stress-strain relationship can be expressed as,

{σ(−→u )[T ]} = A{ε(−→u )} − (2µ+ 3λ)α(T − T0){I} , (9.15)

and the following column vectors have been considered:

{σ} =
[
σrr σyy σθθ σyθ σrθ σry

]T
,

{ε} =
[
εrr εyy εθθ 2εyθ 2εrθ 2εry

]T
,

{I} =
[
1 1 1 0 0 0

]T
.

(9.16)

• Stationary thermal model:
For the thermal model, we consider that the tensor of thermal conductivity is isotropic and no dependency
on time is considered. Therefore, the energy conservation equation (9.2) can be rewritten as:

− 1
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∂

∂r

(
rk
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− ∂
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(
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r
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(
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r
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∂θ

)
= 0 , in Ω . (9.17)

Boundary conditions:

on Γ+ : −k∂T
∂r
nr − k

∂T

∂y
ny −

k

r

∂T

∂θ
nθ = 0 ,

on Γ− : T = TD ,

on Γsf : −k∂T
∂r
nr − k

∂T

∂y
ny −

k

r

∂T

∂θ
nθ = hc,f (T − Tf ) ,

on Γout : −k∂T
∂r
nr − k

∂T

∂y
ny −

k

r

∂T

∂θ
nθ = hc,out(T − Tout) .

(9.18)

• Stationary mechanical model:
Vectorial equation (9.1) in cylindrical coordinates, with no time dependency, corresponds to the three
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following equations:

∂σrr
∂r

+
∂σry
∂y

+
1

r

∂σrθ
∂θ

+
σrr − σθθ

r
= 0 , in Ω ,

∂σrθ
∂r

+
∂σθy
∂y

+
1

r

∂σθθ
∂θ

+ 2
σrθ
r

= 0 , in Ω ,

∂σry
∂r

+
1

r

∂σθy
∂θ

+
∂σyy
∂y

+
σry
r

= 0 in Ω .

(9.19)

Boundary conditions:

on Γ+ : −→σt =
−→
0 , σn = |

−→
W | ,

on Γ− : −→u · −→n = 0, −→σt =
−→
0 ,

on Γsf : σ−→n = −ph−→n ,

on Γout : σ−→n =
−→
0 .

(9.20)

9.2.4. Axisymmetric model

It can be observed that the introduced 3-dimensional model (equations (9.17) - (9.20)) is independent of θ, and
hence a symmetry hypothesis is applicable. The axisymmetric model leads to significant computational savings
as the 3-dimensional model defined in Ω (see Figure 9.3) is replaced by the corresponding 2-dimensional
model defined in its vertical section, ω (see Figure 9.4). The normal vector will now be represented as −→n =
nr
−→er + ny

−→ey + 0−→eθ . In the axisymmetric system, we represent the displacement −→u and temperature T , both
independent of θ, as

−→u = ur(r, y)−→er + uy(r, y)−→ey ,
T = T (r, y) .

(9.21)

The associated axisymmetric model is reduced to consider conservation equations (9.17), (9.19) defined in ω
and the boundary conditions (9.18), (9.20) replacing the Γ boundaries by γ such that Γ = (γ\γs) × [0, 2π)
(see figures 9.3c, 9.3d, 9.3e, 9.3f and 9.4b), adding the usual symmetry conditions on γs :

−k∂T
∂r
nr − k

∂T

∂y
ny = 0 ,

−→u · −→n = 0 ,

−→σt =
−→
0 .

(9.22)

Under the assumption of axisymmetry, the strain and stress tensors in cylindrical coordinate system (r, y, θ)
given by (9.13) and (9.15), respectively, can be reduced to,

{ε} =


∂ur
∂r

1
2

(
∂ur
∂y +

∂uy
∂r

)
0

1
2

(
∂ur
∂y +

∂uy
∂r

)
∂uy
∂y 0

0 0 ur
r ,

 (9.23)

{σ} =

σrr σry 0
σry σyy 0
0 0 σθθ

 . (9.24)

Summarizing, the axisymmetric model considered is :
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• Thermal model:

− 1

r

∂

∂r

(
rk
∂T

∂r

)
− ∂

∂y

(
k
∂T

∂y

)
= 0 , in ω . (9.25)

Boundary conditions:

on γ+ : −k∂T
∂r
nr − k

∂T

∂y
ny = 0 =⇒ ∂T

∂y
= 0 ,

on γ− : T = TD ,

on γsf : −k∂T
∂r
nr − k

∂T

∂y
ny = hc,f (T − Tf ) ,

on γout : −k∂T
∂r
nr − k

∂T

∂y
ny = −k∂T

∂r
= hc,out(T − Tout) ,

on γs : −k∂T
∂r
nr − k

∂T

∂y
ny = 0 =⇒ ∂T

∂r
= 0 .

(9.26)

• Mechanical model :

∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r
= 0 , in ω ,

∂σry
∂r

+
∂σyy
∂y

+
σry
r

= 0 , in ω .
(9.27)

In Voigt notation, axisymmetric stress-strain relationship can be expressed as,

{σ(−→u )[T ]} = A{ε(−→u )} − (2µ+ 3λ)α(T − T0){I} ,

A =
E

(1− 2ν)(1 + ν)


1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
0 0 0 1−2ν

2

 ,

{σ} =
[
σrr σyy σθθ σry

]T
,

{ε} =
[
εrr εyy εθθ 2εry

]T
,

{I} =
[
1 1 1 0

]T
.

(9.28)

Boundary conditions :

on γ+ : −→σt =
−→
0 =⇒ σry = 0 , σn = σyy = −|

−→
W | ,

on γ− : −→u · −→n = uy = 0, −→σt =
−→
0 =⇒ σry = 0 ,

on γsf : σrrnr + σryny = −pnr , σrynr + σyyny = −pny ,
on γout : σrrnr + σryny = σrr = 0 , σrynr + σyyny = σry = 0 ,

on γs : −→u · −→n = ur = 0 , −→σt =
−→
0 =⇒ σry = 0 .

(9.29)

In simplifying boundary conditions in equation (9.26) and (9.29), we have used definition of unit normal vector
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on each boundary, as below :

on γ+ : −→n = −→ey ,
on γ− : −→n = −−→ey ,
on γsf : −→n = nr

−→er + ny
−→ey ,

on γout : −→n = −→er ,
on γs : −→n = −−→er .

9.3. Weak formulation of governing equations

We derive the weak formulation related to the conservation equations introduced in last section.

9.3.1. Function spaces

Before discussing the weak formulation, we introduce relevant function spaces.

• Test function space for Temperature is defined as,

T = {ψ ∈ H1
r (ω) , ψ = 0 on γ−} ,

where, H1
r (ω) is weighted Sobolev space equipped with inner product,

< ψ, T >H1
r (ω)=

∫
ω

(
ψT +

∂T

∂r

∂ψ

∂r
+
∂T

∂y

∂ψ

∂y

)
rdrdy ,

and norm,

||ψ||H1
r (ω) =

(∫
ω

(
ψ2 +

(
∂ψ

∂r

)2

+

(
∂ψ

∂y

)2
)
rdrdy

) 1
2

.

It is to be noted that ψ = 0 on γ− does not refer to absolute zero temperature, but temperature with
respect to some specified reference temperature, in this case TD.

• Test function space for displacement is defined as,

U = {
−→
φ ≡ [φr φy] ∈ R2 , φr ∈

(
L2

1
r

(ω) ∩H1
r (ω)

)
, φy ∈ H1

r (ω) ,

φy = 0 on γ− , φr = 0 on γs } ,

which is equipped with the inner product,

< −→u ,
−→
φ >U=∫

ω

(
φrur + φyuy +

∂ur
∂r

∂φr
∂r

+
∂ur
∂z

∂φr
∂z

+
ur
r

φr
r

+
∂uy
∂r

∂φy
∂r

+
∂uy
∂z

∂φy
∂z

)
rdrdy ,

and equipped with the norm,

||
−→
φ ||U =(∫

ω

(
φ2
r + φ2

y +

(
∂φr
∂r

)2

+

(
∂φr
∂z

)2

+

(
φr
r

)2

+

(
∂φy
∂r

)2

+

(
∂φy
∂z

)2
)
rdrdy

) 1
2

.
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Here, weighted Sobolev space L2
r(ω) is equipped with inner product,

< −→u ,
−→
φ >L2

r(ω)=

∫
ω

−→u ·
−→
φ rdrdy ,

and equipped with norm,

||
−→
φ ||L2

r(ω) =

(∫
ω

−→
φ ·
−→
φ rdrdy

) 1
2

.

• The stress tensor σ is symmetric and finite.

S = {σ = [σij ] ∈ [L2(ω)]3×3 , σij = σji} .

• The heat flux is also finite.
Q = {−→q ∈ [L2(ω)]2}.

• The thermal conductivityK is finite and is positive definite.

{K ∈ [L∞(ω)]2×2 , K is positive definite } .

• The material parameters are finite and positive. The poisson’s ratio is bounded so that A is positive
definite.

{E ∈ L∞(ω) , E > 0} ,
{ν ∈ L∞(ω) , 0 < ν < 0.5} .

• The convection coefficients hc,f and hc,out are also finite and positive.

{hc,f ∈ L∞(γsf ) , hc,f > 0 } ,
{hc,out ∈ L∞(γout) , hc,out > 0 } .

• Pressure ph and the weight
−→
W are finite.

{ph ∈ L∞(γsf ) } ,

{
−→
W ∈ [L∞(γ+)]2} .

9.3.2. Weak formulation of the energy equation

We multiply the energy equation (9.25) by test function ψ(r, y) ∈ T and integrate over axisymmetric domain
ω. It is important that the elemental volume in axisymmteric domain is rdrdy corresponds to elemental volume
in 3-dimensional domain rdrdθdy.∫

ω

ψ

r

∂

∂r

(
rk
∂T

∂r

)
rdrdy +

∫
ω
ψ
∂

∂y

(
k
∂T

∂y

)
rdrdy = 0 , (9.30)∫

ω

∂

∂r

(
rkψ

∂T

∂r

)
drdy −

∫
ω
rk
∂T

∂r

∂ψ

∂r
drdy+∫

ω

∂

∂y

(
rkψ

∂T

∂y

)
drdy −

∫
ω
rk
∂T

∂y

∂ψ

∂y
drdy = 0 . (9.31)
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By applying Gauss-Divergence theorem and representing boundary normal as −→n = nr
−→er + ny

−→ey ,∫
ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
=

∫
∂ω
ψk

(
∂T

∂y
ny +

∂T

∂r
nr

)
dS , (9.32)∫

ω
rk

(
∂T

∂y

∂ψ

∂y
+
∂T

∂r

∂ψ

∂r

)
=

∫
∂ω
ψk∇T · −→n dS . (9.33)

Here, dS is the boundary measure. In the case of axisymmetric model this is not the length of edge of
2-dimensional domain ω. We note the invariance with respect to θ. For example the length of Γout is∫ 2π

0

∫
γout

rdydθ = 2π
∫
γout

rdy =⇒ dS for γout is rdy.
By using boundary conditions from equation (9.26),∫

ω
rk

(
∂T

∂z

∂ψ

∂z
+
∂T

∂r

∂ψ

∂r

)
drdy +

∫
γsf

ψhc,fTrdl +

∫
γout

ψhc,outTrdy =∫
γsf

ψhc,fTsfrdl +

∫
γout

ψhc,outToutrdy .

(9.34)

The left hand side of the equation is bilinear,

aT (T, ψ) =

∫
ω
rk

(
∂T

∂z

∂ψ

∂z
+
∂T

∂r

∂ψ

∂r

)
drdy +

∫
γsf

ψhTrdl +

∫
γout

ψhTrdy , (9.35)

and the right hand side of the equation is linear,

lT (ψ) =

∫
γsf

ψhTsfrdl +

∫
γout

ψhToutrdy . (9.36)

The problem now reduces to, find T ∈ T such that,

aT (T, ψ) = lT (ψ) , ∀ ψ ∈ T . (9.37)

9.3.3. Weak formulation of the momentum equation

We multiply the equation (9.27) by
−→
φ (r, y) = [φr(r, y) φy(r, y)] ∈ U and integrate over ω,∫

ω

(
φr
∂σrr
∂r

+ φr
∂σry
∂y

+
φr
r

(σrr − σθθ) + φy
∂σry
∂r

+ φy
∂σyy
∂y

+ φy
σry
r

)
rdrdy = 0 . (9.38)

Now,

Div(σ
−→
φ ) =

σrrφr
r

+
σryφy
r

+
∂

∂r
(σrrφr) +

∂

∂r
(σryφy) +

∂

∂y
(σryφr) +

∂

∂y
(σyyφy) ,

and hence by using Gauss-divergence theorem and stress-strain relation,∫
ω
(Aε(−→u )) : ε(

−→
φ )rdrdy =

∫
∂ω

(σ
−→
φ ) · −→n dS +

∫
ω
(2µ+ 3λ)α(T − T0)I : ε(

−→
φ )rdrdy . (9.39)

It is useful here to recall, as explained in last section, the length of boundary measure dS for axisymmetric
model.
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By using boundary conditions (Equation (9.29)),∫
ω
(Aε(−→u )) : ε(

−→
φ )rdrdy =

∫
ω
(2µ+ 3λ)α(T − T0)I : ε(

−→
φ )rdrdy

−
∫
γ+

|
−→
W |−→n ·

−→
φ rdr −

∫
γsf

ph
−→n ·
−→
φ rdl .

(9.40)

The left side of the equation is bilinear,

aM (−→u ,
−→
φ ) =

∫
ω
(Aε(−→u )) : ε(

−→
φ )rdrdy , (9.41)

and the right hand side of he equation is linear,

lM [T ](
−→
φ ) =

∫
ω
(2µ+ 3λ)α(T − T0)I : ε(

−→
φ )rdrdy −

∫
γ+

|
−→
W |−→n ·

−→
φ rdr −

∫
γsf

ph
−→n ·
−→
φ rdl . (9.42)

The problem now reduces to find −→u ∈ U such that,

aM (−→u ,
−→
φ ) = lM [T ](

−→
φ ) , ∀

−→
φ ∈ U . (9.43)

9.4. Strong and weak formulation : general form

In this section, we introduce the general form of weak formulation.

9.4.1. Energy equation

The energy equation (9.25) in the presence of axisymmetric heat source Q(r, y) can be written as:

− 1

r

∂

∂r

(
rk
∂T

∂r

)
− ∂

∂y

(
k
∂T

∂y

)
= Q , k > 0 , in ω , (9.44)

subjected to boundary equations (q0 is known heat flux),

on γ+ : −k∂T
∂r
nr − k

∂T

∂y
ny = q0 =⇒ −k∂T

∂y
ny = q0 ,

on γ− : T = TD ,

on γsf : −k∂T
∂r
nr − k

∂T

∂y
ny = hc,f (T − Tf ) ,

on γout : −k∂T
∂r
nr − k

∂T

∂y
ny = −k∂T

∂r
nr = hc,out(T − Tout) ,

on γs : −k∂T
∂r
nr − k

∂T

∂y
ny = 0 =⇒ ∂T

∂r
= 0 .

(9.45)

In case of benchmark tests, we apply known temperature Tanalytical over the domain i.e. T (r, y) =
Tanalytical(r, y) in ω. In such case the source term is determined by equation (9.44) and environmental temper-
atures Tf and Tout are determined by equation (9.45) by substituting T = Tanalytical.
Correspondingly, weak form (9.34) with source term Q and known temperature T = Tanalytical is given by,∫

ω
rk

(
∂T

∂z

∂ψ

∂z
+
∂T

∂r

∂ψ

∂r

)
drdy =

∫
ω
Qrdrdy −

∫
∂ω
ψ−→q · −→n dS , ∀ψ ∈ T. (9.46)
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The source term Q(r, y) is given by equation (9.44) and heat flux at the boundary is given by equation (9.45)
considering T = Tanalytical.
In case of convection boundary, instead of heat flux, the environmental temperature is required. In case of γsf
this is given by equation (9.45),

Tf =
k

hc,f

(
∂T

∂r
nr +

∂T

∂y
ny

)
+ Tanalytical . (9.47)

Similarly in case of γout the temperature Tout is given by,

Tout =
k

hc,out

(
∂T

∂r
nr

)
+ Tanalytical . (9.48)

The equation (9.46) with convection boundary, considering dS = rdrdy, −→q · −→n = 0 on γs and by definition
of space T, ∫

ω
rk

(
∂T

∂z

∂ψ

∂z
+
∂T

∂r

∂ψ

∂r

)
drdy +

∫
γsf

hc,fψTrdrdy +

∫
γout

hc,outψTrdrdy =∫
ω
Qrdrdy +

∫
γsf

hc,fψTfrdrdy +

∫
γout

hc,outψToutrdy−∫
γ+

ψ−→q · −→n rdr −
∫
γs

ψ−→q · −→n rdy , ∀ψ ∈ T .

(9.49)

The aim of benchmark test now reduces to ensure that the magnitude of error T −Tanalytical between computed
solution T and known analytical Tanalytical should be negligible point wise.

9.4.2. Momentum equation

The momentum equation (9.27) in the presence of axisymmetric body source
−→
b (r, y) = br(r, y)−→er +by(r, y)−→ey

can be written as:

∂σrr
∂r

+
∂σry
∂y

+
σrr − σθθ

r
+ br = 0 , in ω ,

∂σry
∂r

+
∂σyy
∂y

+
σry
r

+ by = 0 , in ω ,
(9.50)

subjected to boundary conditions,

on γ+ : σ(−→u ) = σ(−→u analytical) ,
on γ− : −→u · −→n = uy = 0, −→σt(−→u ) = −→σt(−→u analytical) =⇒ σry(

−→u ) = σry(
−→u analytical) ,

on γsf : σ(−→u ) = σ(−→u analytical) ,
on γout : σ(−→u ) = σ(−→u analytical) ,

on γs : −→u · −→n = ur = 0 , −→σt =
−→
0 =⇒ σry = 0 .

(9.51)

In case of benchmark tests, we apply known displacement −→u analytical over the domain i.e. −→u (r, y) =
−→u analytical(r, y) in ω. In such case the body force term is determined by equation (9.50) and boundary dis-
placements are determined by equation (9.51).

Correspondingly, weak form (9.40) with source term
−→
b (r, y) and known displacement −→u = −→u analytical is
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given by, ∫
ω
σ(−→u )[T ] : ε(

−→
φ ) =

∫
∂ω

−→
φ · (σ−→n ) +

−→
b ·
−→
φ , in ω , ∀

−→
φ ∈ U . (9.52)

Applying the condition,
−→
φ · −→n = 0 on γs ∪ γ− and −→σt =

−→
0 on γs,∫

ω
σ(−→u )[T ] : ε(

−→
φ ) =

∫
γout

−→
φ · (σ(−→u analytical)−→n ) +

∫
γ+

−→
φ · (σ(−→u analytical)−→n )+∫

γsf

−→
φ · (σ(−→u analytical)−→n ) +

∫
γ−

−→
φ · −→σt(−→u analytical)

+

∫
ω

−→
b ·
−→
φ , in ω , ∀

−→
φ ∈ U .

(9.53)

The aim of benchmark test now reduces to ensure that the magnitude of error −→u − −→u analytical between com-
puted solution −→u and known analytical −→u analytical should be negligible point wise.

9.5. Numerical experiments and results

In this section, we first introduce the conditions, which are required to be fulfilled by benchmark test. There-
after, we provide results of benchmark tests to verify the numerical implementations. The benchmark tests are
based on our proposal in section 7.7 of [143]. The benchmark test results in sections 9.5.2, 9.5.3 and 9.5.4
are based on FEniCS [144] and the benchmark test results in section 9.5.5 are based on FEniCS [144] and
code aster [145].

9.5.1. Essential characteristic conditions

It is pertinent to mention that each benchmark test should satisfy “essential characteristic conditions”. These
conditions ensure that if a benchmark test is known to compute exact solution, the computed solution lies in
the required function space and in turn, ensure that benchmark problem is correct representative of the actual
problem.

• The heat flux normal to γs should be zero. From equation (9.26),

on γs : −k∂T
∂r
nr − k

∂T

∂y
ny = 0 =⇒ ∂T

∂r
= 0 .

• Zero displacement normal to the boundary on γs ∪ γ−. From equation (9.29),

on γs : ur = 0 ,

on γ− : uy = 0 .

• Zero shear force on γs. From equation (9.29) and (9.28),

on γs : σry = 0 =⇒ εry = 0 .

However, in real-life problem the analytical solution is not known and hence, the fulfillment of all of the es-
sential characteristic condition can be expected only when number of degrees of freedom is very high. This
is possible either with high polynomial degree approximation (p−convergence) or with very fine discretiza-
tion (h−convergence) or with both. However, increase in number of degrees of freedom results in increased
computational time.
It is important to note that we verify ∂T

∂r = 0 on γs and not −→q · −→n = 0 on γs. Numerically, the two conditions
are not same. Consider that the component of gradient of T in radial direction r, ∂T∂r is of the order of ≈ 10−11
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and the order of magnitude of thermal conductivity k is 10−6. The heat flux component qr ≈ 10−17, which
is less than machine precision. However, the computed temperature T does not satisfy one of the essential
characteristic condition but the low order of magnitude of thermal conductivity misleads into believing that the
computed temperature satisfies essential characteristic condition.
Similarly on γs, we verify that the computed displacement −→u satisfies εry = 0 and we do not verify σry = 0.
Consider a case in which εry ≈ 10−17, which is less than machine precision. Consider Young’s modulus E and
accordingly Lamé parameter λ is of the order of ≈ 106. The shear stress σry in this case becomes ≈ 10−11 i.e.
non-zero. Hence, it appears that the solution violates one of the essential characteristic condition although the
computed displacement −→u satisfies the essential characteristic condition.
As can be seen, due to round-off error, theoretically same conditions can give different results numerically and
it is necessary that the benchmark test is based on correct measurements.

9.5.2. Energy equation

We apply the known temperature,
Tanalytical = r2y ,

along with corresponding source term and compare the known analytical temperature with computed tempera-
ture [Figure 9.5].

Figure 9.5: Benchmark tests for energy equation

file_name :
1. benchmark_thermal
2. readme_benchmark_thermal

9.5.3. Momentum equation

In this section, we consider that the body is at reference temperature i.e. thermal stresses are not present. We
postpone the discussion of considering thermal stresses to benchmark test for coupling.
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We apply the known displacement function

−→u analytical = [ry2, r2y] (9.54)

to mechanical problem, without considering thermal stresses, along with corresponding body force term and
compare the known analytical displacement with computed displacement [Figure 9.6].

Figure 9.6: Benchmark tests for momentum equation

file_name :
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9.5.4. Coupling

Instead of applying the known spherical stress tensor and thermal stress tensor in separate tests, we apply
in our problem thermo-mechanical stress as defined during mechanical model. Also, we apply the known
displacement function,

−→u analytical = [r3, y3]

and known temperature function,
Tanalytical = r2y .

We compare the thermal part of the stress tensor with difference between the spherical part of thermo-
mechanical stress tensor and the spherical part of mechanical stress tensor [Figure 9.7].
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Figure 9.7: Benchmark tests for coupling

file_name :
1. coupling_benchmark
2. readme_coupling_benchmark

9.5.5. Software comparison for actual problem

We now present the temperature and displacement profiles obtained by FEniCS [144] and Code aster [145] for
the problem of blast furnace hearth described by equations (9.34) and (9.40) [Figures 9.8 and 9.9].

(a) Temperature profile (b) Displacement profile

Figure 9.8: Temperature and Displacement profile obtained by FEniCS
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(a) Temperature profile (b) Displacement profile (Magnitude)

Figure 9.9: Temperature and Displacement profile obtained by Code aster

For FEniCS [144]:

file_name :
1. benchmark_thermal_mechanical
2. readme_benchmark_thermal_mechanical

For code aster [145]:

file_name :
1. thermal_mech_benchmark (.comm)
2. thermal_mech_benchmark (.hdf)

9.6. Software installation and licensing

The libraries required for all the benchmark tests, its licensing and the software version used for benchmark
tests reported here are mentioned below. The operating system used is Ubuntu 16.04.5 LTS.

• FEniCS
1. Website : https://fenicsproject.org/
2. Download and installation : https://fenicsproject.org/download/
3. Licensing : The FEniCS Project is developed and maintained as a freely available, open-source

project by a global community of scientists and software developers. The project is developed
by the FEniCS Community, is governed by the FEniCS Steering Council and is overseen by the
FEniCS Advisory Board.

4. Version : 2019.1.0
• code aster and Salome meca

1. Website : https://www.code-aster.org/spip.php?rubrique2
2. Download and installation : https://www.code-aster.org/spip.php?rubrique21
3. Licensing : code Aster is distributed under GNU GPL licence (GNU General Public Licence, ver-

sion 2). Salome-Meca is distributed under GNU LGPL licence (GNU General Public Licence,
version 2.1).

4. Version : V2016
• Paraview

1. Website : https://www.paraview.org/
2. Download and installation : https://www.paraview.org/download/

Deliverable D5.2
118



9.6. Software installation and licensing

3. Licensing : https://www.paraview.org/paraview-license/
4. Version : 5.4.0

• Matplotlib
1. Website : https://matplotlib.org/
2. Download and installation : https://matplotlib.org/users/installing.html
3. Licensing : https://matplotlib.org/users/license.html
4. Version : 1.5.1

All benchmark tests performed in FEniCS[144] with python3 can be executed using bash command :

$ python3 file_name.py

The benchmark test in code aster is performed by starting the salome meca, loading the case study file ther-
mal mech benchmark.hdf by file→ open, activating mesh module and activating aster module. Thereafter, in
aster module go to object browser and right click on the case (such as linear-thermic) and run test. To visualize
the results, activate paravis module, go to file → Open paraview file → load the *.rmed file. The commands
executed in case file *.hdf are defined in *.comm file.
We advise users to read the readme file, if available and comments inside the code for step by step understand-
ing.
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[12] A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodrı́guez, “An optimal perfectly matched
layer with unbounded absorbing function for time-harmonic acoustic scattering problems,” Journal
of Computational Physics, vol. 223, no. 2, pp. 469 – 488, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0021999106004487

[13] “Salome documentation.” [Online]. Available: https://www.salome-platform.org/user-section/
documentation/current-release

[14] H. P. Langtangen and A. Logg, Solving PDEs in Python. Springer, 2017.
[15] “Fenics documentation.” [Online]. Available: https://fenicsproject.org/documentation/
[16] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9,

no. 3, pp. 90–95, 2007.
[17] U. Ayachit, The ParaView Guide: A Parallel Visualization Application. USA: Kitware, Inc., 2015.
[18] “Paraview tutorials.” [Online]. Available: https://www.paraview.org/Wiki/The ParaView Tutorial
[19] “Feconv project page.” [Online]. Available: http://victorsndvg.github.io/FEconv/
[20] “Ufl documentation.” [Online]. Available: https://fenics.readthedocs.io/projects/ufl/en/latest/
[21] J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke, and J. Borgert, “Three-dimensional real-time in vivo

magnetic particle imaging,” Physics in Medicine and Biology, vol. 54, no. 5, p. L1, 2009.
[22] A. Khandhar, P. Keselman, S. Kemp, R. Ferguson, P. Goodwill, S. Conolly, and K. Krishnan, “Evaluation

Deliverable D5.2
120

https://doi.org/10.14279/depositonce-7412
http://www.sciencedirect.com/science/article/pii/S0021999106004487
https://www.salome-platform.org/user-section/documentation/current-release
https://www.salome-platform.org/user-section/documentation/current-release
https://fenicsproject.org/documentation/
https://www.paraview.org/Wiki/The_ParaView_Tutorial
http://victorsndvg.github.io/FEconv/
https://fenics.readthedocs.io/projects/ufl/en/latest/


References

of peg-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging,”
Nanoscale, vol. 9, no. 3, pp. 1299–1306, 2017.

[23] J. Franke, R. Lacroix, H. Lehr, M. Heidenreich, U. Heinen, and V. Schulz, “Mpi flow
analysis toolbox exploiting pulsed tracer information – an aneurysm phantom proof,” International
Journal on Magnetic Particle Imaging, vol. 3, no. 1, 2017. [Online]. Available: https:
//journal.iwmpi.org/index.php/iwmpi/article/view/36

[24] J. Haegele, J. Rahmer, B. Gleich, J. Borgert, H. Wojtczyk, N. Panagiotopoulos, T. Buzug, J. Barkhausen,
and F. Vogt, “Magnetic particle imaging: visualization of instruments for cardiovascular intervention,”
Radiology, vol. 265, no. 3, pp. 933–938, 2012.

[25] J. Salamon, M. Hofmann, C. Jung, M. G. Kaul, F. Werner, K. Them, R. Reimer, P. Nielsen, A. vom
Scheidt, G. Adam, T. Knopp, and H. Ittrich, “Magnetic particle/magnetic resonance imaging: In-vitro
MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer
approach,” PloS ONE, vol. 11, no. 6, pp. e0 156 899–14, 2016.

[26] E. Y. Yu, M. Bishop, B. Zheng, R. M. Ferguson, A. P. Khandhar, S. J. Kemp, K. M. Krishnan,
P. W. Goodwill, and S. M. Conolly, “Magnetic particle imaging: A novel in vivo imaging platform
for cancer detection,” Nano Letters, vol. 17, no. 3, pp. 1648–1654, 2017. [Online]. Available:
http://dx.doi.org/10.1021/acs.nanolett.6b04865

[27] K. Murase, M. Aoki, N. Banura, K. Nishimoto, A. Mimura, T. Kuboyabu, and I. Yabata, “Usefulness of
magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia,” Open Journal
of Medical Imaging, vol. 5, no. 02, p. 85, 2015.

[28] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse
problems in imaging,” IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522, 2017.
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[83] A. Falcó, L. Navarro, and C. Cendón, “Finite difference methods for hull-white pricing of interest rate
derivatives with dynamical consistent curves,” SSRN Elec. J., 2014.

[84] A. Sepp. (2002) Numerical implementation of hull-white interest rate model: Hull-white tree vs finite
differences. Available from www.hot.ee/seppar.

[85] A. Cohen and R. DeVore, “Approximation of high-dimensional parametric pdes,” Acta Numerica,
vol. 24, pp. 1–159, 2015.

[86] I. Piotr and R. Motwani, “Approximate nearest neighbors: Towards removing the curse of dimensional-
ity,” in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing. New York, NY,
USA: ACM Press, 1998, pp. 604–613.

[87] A. Chatterjee, “An introduction to the proper orthogonal decomposition,” Curr. Sci., vol. 78, pp. 808–
817, 2000.

[88] G. Berkooz, P. Holmes, and J. Lumley, “The proper orthogonal decomposition in the analysis of turbulent
flows,” Annu. Rev. Fluid Mech., vol. 25, no. 1, pp. 539–575, 1993.

[89] M. Graham and I. Keverekidis, “Alternative approaches to the karhunen-loéve decomposition for model
reduction and data analysis,” Comput. Chem. Eng., vol. 20, no. 5, pp. 495–506, 1996.

[90] I. Jolliffe, Principal Component Analysis, 1st ed. Berlin: Springer-Verlag, 2014.
[91] M. Graham and I. Keverekidis, “Proper orthogonal decomposition and its applications part I: Theory,” J.

Sound Vib., vol. 252, no. 3, pp. 527–544, 2002.
[92] M. Rathinam and L. Petzold, “A new look at proper orthogonal decomposition,” SIAM J. Numer. Anal.,

vol. 41, no. 5, pp. 1893–1925, 2003.
[93] A. Vidal and D. Sakrison, “On the optimality of the karhunen-loéve expansion (corresp.),” IEEE Trans.
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