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Abstract

Grey Wolf Optimizer (GWO) is inspired by how
grey wolves (Canis Lupus) searching its prey.
The GWO relatively new swarm-based intelli-
gence and the only algorithms that are based on
the leadership hierarchy. In GWO, four types of
grey wolves such as alpha, beta, delta and omega
are employed simulating the leadership hierarchy.
Additionally, there are three main steps of hunt-
ing, searching for prey, encircling prey and at-
tacking prey are implemented. To improve the
GWO search ability, this study proposed Lvy -
GWO based on Lvy walk. Five well define bench-
mark functions were selected in this study. The
five benchmark functions were selected based on
its features that have many local minima. The
results indicate that Lvy -GWO did improve the
original GWO based on the error value. Based
on Lvy - GWO algorithm. It will be then pro-
posed serving as an optimizer in training multi-
layer perceptron (MLP) with Decouple Neural In-
terface (DNI).

1 INTRODUCTION

Metaheuristics optimizations techniques have
become a very popular in the last few decades.
The concept of metaheuristics is mostly based on

a fairly simple concept and is typically inspired
by physical phenomena, animals, behaviors or
evolutionary concepts [1].

Many swarm-based optimization algorithms
have been developed based on various intelli-
gence creature such as ant, wolf, honey bees,
birds, whales etc. have been proven its ability to
deal with non-linear, non-convex, discontinuous
and discrete optimization problems [2].

GWO is based on swarm-based intelligence
and have been proven to have great potential
to deal with real world optimization problems
[3, 4, 5, 6, 7, 8, 9].

Lvy distribution is the foundation of the Lvy
walk (or flight). Lvy walk started gaining a lot
of interest around 1999, when [10] published an
article in Nature showing it an optimal search
strategy for finding sparsely, randomly distributed
targets. A stunning variety of organisms, includ-
ing bacteria, flies, monkeys and sharks, have been
described as performing Lvy walks. To perform a
Lvy walk, the walker selects a random direction
in space, and moves in that direction in a straight
line. Depending on how you formulate the walk,
any of the duration, length or speed of the walker
is drawn from a Lvy distribution.
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Training directed neural networks typically
requires forward-propagating data through a
computation graph, followed by backpropagating
error signal, to produce weight updates. All
layers, or more generally, modules of the network
are therefore locked, in the sense that they must
wait for the remainder of the network to execute
forwards and propagate error backwards before
they can be updated [11]. In DNI, the weights
are updated by predicting the value of gradients
(which is called synthetic gradients) using only
local information. This has allowed the backprop-
agation process to be eliminated and therefore
greatly improve computational cost in terms of
computational time and hardware resources.

2 PROPOSED WORK

To meet the objectives of this research, several
proposed works has been proposed. First, the pro-
posed GWO and Lvy-GWO will be benchmark
and the performance will be compared. Second
an improved Lvy GWO will be benchmark and the
performance will be compared against backprop-
agation with gradient descent and DNI. Third, the
proposed Lvy-GWO with DNI or Lvy-GWO-DNI
will be benchmark and compared against the re-
sult gathered in the second objective.

3 PRELIMINARY RESULTS

GWO algorithm is inspired by how Grey wolves
hunting its prey. Grey wolves mostly prefer to
live in a pack with the group size between 5-12
wolves on average [1, 2]. Social hierarchy is the
main feature of this pack. There are four types
of wolves which is alpha wolf (↵), beta wolf (�),
omega wolf (!) and delta wolves (�). The alpha
wolf is the leader and responsible for all decisions
of the pack. The beta wolf is the second category
of wolf that responsible helping the alpha wolf in
decision making. The third category of wolf is the

delta wolf that helps to prevent internal problems
of fighting.

By analyzing the social behavior of wolves
pack the candidate having best fit is considered as
alpha wolf or ↵ solution. Candidates having the
second best and third best fit are called as Beta
wolf or � solution and delta wolf or � solution and
the remaining solutions are considered as Omega
wolves or ! Solutions. The ! Solutions are
iteratively improved by following other leading
wolves.

The drawback of the GWO algorithm is, all
the wolves in the pack will update their position
based on the leading wolves of the pack. This
has raised the natural question which the wolves
in the pack should take guidance from the alpha
wolf and not the beta, delta or omega wolves.
This is the main drawbacks and could be the
main caused why the pack not converge to global
optima.

To solve this problem this study proposed an
improved random walk called Lvy walk applied
to the alpha, beta and delta wolves. An experi-
ment has been carried out to test an improvement
gain by implementing Lvy walk. Five benchmark
functions have been proposed (refer to Table 1).
These five functions were chosen because of its
features that contain many local optima. Each
of these five functions was run five times and an
error for each value was recorded.

GWO and Lvy-GWO were tested using the
benchmark functions on table 1 with 10 and 30
dimensions. The results indicate that Lvy-GWO
did improve compared to GWO (refer table 2
and 3). However, based on table 2 and table 3, it
is observed that both Lvy-GWO and GWO still
suffer high-dimensionality problem.
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Appendix

Table 1: Mathematical Formulae of the Benchmark Functions.

Name Mathematical Formulae

Ackley
f(x0 · · · xn) = �20exp(�0.2

q
1
n

Pn
i=1 x

2
i )� exp( 1n

Pn
i=1 cos(2⇡xi)) + 20 + e

Where� 32  xi  32
minimum at f(0, · · ·, 0) = 0

Rastrigin
f(x1 · · · xn) = 10n+

Pn
i=1(x

2
i � 10cos(2⇡xi))

Where� 5.12  xi  5.12
minimum at f(0, · · ·, 0) = 0

Schwefel

f(x1 · · · xn) =
Pn

i=1(�xisin(
p
|xi|)) + ↵ · n

Where ↵ = 418.982887
�512  xi  512

minimum at f(420.968746, 420.968746, · · ·, 420.968746) = 0

Styblinski & Tang
f(x) = f(x1, ..., xn) =

1
2

Pn
i=1(x

4
i � 16x2

i + 5xi)
Where� 5  xi  5

minimum at f(x⇤) = �39.16599 at x⇤ = (�2.903534, · · ·,�2.903534)

Lvy
f(x, y) = sin2(3⇡x) + (x� 1)2(1 + sin2(3⇡y)) + (y � 1)2(1 + sin2(2⇡y))

Where� 10  xi  10
minimum at f(x⇤) = 0 at x⇤ = (1, · · ·, 1)

Table 2: Average, Standard Deviation, Median, Minimum, and Maximum Error Value Obtained by
GWO and Lvy-GWO for 10-Dimentional.

Function Algorithm Mean Std. Dev. Median Minimum Maximum

Ackley GWO 2.102495 3.168036 0.153160 0.000005 12.575494
Lvy-GWO 0.004571 0.006149 0.000926 0.000000 0.025631

Rastrigin GWO 0.333264 0.458114 0.036082 0.000459 1.007058
Lvy-GWO 0.000000 0.000000 0.000000 0.000000 0.000000

Schwefel GWO 345.309354 288.641078 351.151407 0.738600 920.968700
Lvy-GWO 324.548010 273.565424 278.390433 0.272665 795.860180

Styblinski & Tang GWO 1.707613 2.333746 0.036469 0.001535 5.675073
Lvy-GWO 1.510281 2.198881 0.106733 0.000579 5.736688

Levy GWO 0.000138 0.000219 0.000062 0.000000 0.001210
Lvy-GWO 0.000081 0.000284 0.000000 0.000000 0.001456
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Table 3: Average, Standard Deviation, Median, Minimum, and Maximum Error Value Obtained by
GWO and Lvy-GWO for 30-Dimentional.

Function Algorithm Mean Std. Dev. Median Minimum Maximum

Ackley GWO 2.355670 3.603498 0.326560 0.001792 12.607918
Lvy-GWO 0.028989 0.051345 0.000567 0.000008 0.362579

Rastrigin GWO 0.419499 0.532169 0.072865 0.000758 1.996776
Lvy-GWO 0.000000 0.000000 0.000000 0.000000 0.000000

Schwefel GWO 401.818669 193.808557 417.712496 0.094674 920.968700
Lvy-GWO 385.254972 252.298695 398.345495 0.694297 920.968700

Styblinski & Tang GWO 2.275447 2.118585 2.621894 0.001815 5.775527
Lvy-GWO 2.140668 2.111256 2.439622 0.001811 5.775527

Levy GWO 0.000165 0.000263 0.000097 0.000000 0.002194
Lvy-GWO 0.000068 0.000236 0.000004 0.000000 0.002133
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