THE ROLE OF THE LMC IN THE EXTRAGALACTIC DISTANCE SCALE: CEPHEIDS AND MIRAS

LUCAS MACRI

GEORGE P. & CYNTHIA WOODS MITCHELL INSTITUTE FOR FUNDAMENTAL PHYSICS & ASTRONOMY

DEPARTMENT OF PHYSICS & ASTRONOMY

TEXAS A&M UNIVERSITY

OUTLINE

- Introduction & motivation
- Results on Cepheids
- Results on Miras
- Recent developments and future work

WHAT IS DARK ENERGY?

• Equation of state of dark energy & "figure of merit":

$$\begin{split} \hline w &= P/\rho c^2 \\ \hline w(a) &= w_0 + w_a(1-a) \\ \hline FoM &= [\sigma(w_0) \times \sigma(w_a)]^{-1} \\ \end{split}$$
Coupled with additional priors (such as H₀)
$$\begin{split} & \int e^{\sigma(w_0)} &= \frac{1}{2} \int e^{\sigma(w_0)} e^{-1} e^{$$

INITIAL MOTIVATION FOR FURTHER IMPROVEMENT IN H_0

BASED ON WEINBERG+ (2013)

THE "CLASSICAL" DISTANCE SCALE

- First "rung": independent geometrical methods
 - Milky Way: π 's from *Hubble*; eventually *Gaia* (systematics...)
 - LMC: eclipsing binaries (previous talk)
 - N4258: Masers orbiting central supermassive black hole
- Second "rung": different stellar populations
 - Cepheids (Leavitt Law)
 - Miras
 - Tip of the Red Giant Branch
 - RR Lyrae, Red Clump, Blue supergiants, ...
- Hubble flow
 - SNe Ia; others? (SBF, Tully-Fisher, FP...)

OUTLINE

Introduction & motivation

Results on Cepheids

- Results on Miras
- Recent developments and future work

100+ YEARS OF THE LEAVITT LAW

PERIODS OF 25 VARIABLE STARS IN THE SMALL MAGELLANIC CLOUD.

A SPIRAL NEBULA AS A STELLAR SYSTEM MESSIER 33¹

Hubble (1926)

LOG PERIOD [DAYS]

100+ YEARS OF THE LEAVITT LAW

 $W_I = I - 1.55(V - I) = \alpha \log P + \beta$

pulsation		α	β	σ
F 10 20 30	LMC LMC LMC LMC	$\begin{array}{c} -3.314 \pm 0.008 \\ -3.431 \pm 0.007 \\ -3.548 \pm 0.027 \\ -4.000 \pm 0.134 \end{array}$	$\begin{array}{c} 15.888 \pm 0.005 \\ 15.393 \pm 0.002 \\ 15.025 \pm 0.008 \\ 14.486 \pm 0.077 \end{array}$	0.077 0.081 0.087 0.071
F 10 20	SMC SMC SMC	$\begin{array}{c} -3.460 \pm 0.011 \\ -3.548 \pm 0.017 \\ -3.651 \pm 0.098 \end{array}$	$\begin{array}{c} 16.493 \pm 0.005 \\ 15.961 \pm 0.004 \\ 15.545 \pm 0.025 \end{array}$	0.155 0.169 0.154

THE LMC NEAR-INFRARED Synoptic Survey

- Early 2006: Wonderful OGLE-II PLRs in BVI
- Nothing comparable at NIR wavelengths
 - Largest sample: 92 Cepheids with JHK_S observations (Persson+ 04)
- Advantages of NIR Cepheid PLRs were already known:
 - Reduced sensitivity to dust, metallicity: lower systematic uncertainties
 - Narrower intrinsic width (from instability strip): lower statistical unc.
- Large-format NIR camera coming to CTIO 1.5-m for a few years → let's seize this opportunity!

(Shashi Kanbur, Chow-Choong Ngeow, Lucas Macri)

LMCNISS PAPER 1 RESULTS

MACRI, NGEOW, KANBUR+ (2015)

IMPACT ON DISTANCE SCALE

 OGLE-III Cepheids (Periods, V & I magnitudes) and NIR magnitudes from LMCNISS (Soszyński, Poleski, Udalski+ 2008; Macri, Ngeow, Kanbur+ 2015)

• Extremely precise and accurate LMC distance based on OGLE detached eclipsing binaries (Pietrzyński, Graczyk, Gieren+ 2013)

• One of the three "anchors" of the Extragalactic Distance Scale used to measure H_0 with $\sigma=2.4\%$ by the SH0ES project (Riess, Macri, Hoffmann+ 2016)

SH0ES ANCHORS & SN HOST GALAXIES

RIESS, MACRI, HOFFMANN+ (2016)

SHOES CEPHEID P-L RELATIONS

2300 Cepheids with homogeneous H-band photometry enable a 2.4% determination of $\rm H_0$

LOG PERIOD [DAYS]

HST IMAGING OF 70 LMC CEPHEIDS

• Take advantage of new observing mode (DASH) to efficiently image many Cepheids at VIH in one orbit

HST IMAGING OF 70 LMC CEPHEIDS

• Take advantage of new observing mode (DASH) to efficiently image many Cepheids at VIH in one orbit

HST IMAGING OF 70 LMC CEPHEIDS

- Correct single-phase VIH observations to mean mags using OGLE and LMCNISS light curves
 - Even tighter PLRs (zero crowding), σ =0.075 mag
 - Same photometric system (HST) as all other Cepheids negates one source of systematic uncertainty
- Calibrate using improved DEB distance (previous talk) to obtain LMC-based H₀ with σ=2.5% (1.3% sys)
 Pietrzynski+2019, Riess+2019
- 3 anchors, all with HST photometry, yield σ(H₀)=1.9%
 Includes new maser distance to N4258 (Reid+2019)

OUTLINE

Introduction & motivation

Results on Cepheids

Results on Miras

• Recent developments and future work

WHY MIRAS?

• Plentiful in all galaxies \rightarrow go beyond face-on spirals

LMCNISS MIRA SAMPLE

- 690 Miras from Soszyński, Udalski, Szymański+ 2009
 668 with observations in all of JHK_S
- Issue: NIR observations concentrated at just three epochs for a given variable, due to long periods
- Solution: Use OGLE I-band light curves to generate JHK_S templates through regression techniques
- Derive PLRs for O- and C-rich Miras

GAUSSIAN PROCESS TEMPLATE DECOMPOSITION OF MIRA LIGHT CURVE (OGLE/LMC) $y_i = g(t_i) + \sigma_i \epsilon_i$ g(t) = m + p(t) + h(t)-4.8 -4.4 / [mag] 4.0 -3.6 $k(t, t') = \theta_1^2 \exp(-0.5(t - t')^2/\theta_2^2)$ $h(t) \sim \mathcal{GP}(0, k(t, t'))$ -0.3 Icomponent [mag] 0.0

3500

MJD

4000

4500

5000

3000

0.3

2500

REGRESSION MODEL

Based on ~82,000 individual JHK_S measurements + OGLE light curves

MIRA TEMPLATE LIGHT CURVES

USE 3 NIR PHASE POINTS + TEMPLATE TO ESTIMATE MAX, MEAN, MIN

LMC MIRA PLRS

BEYOND THE LMC

- LSST will be sensitive enough to detect over 10^5 Miras in ~200 galaxies with D < 15 Mpc
- How to detect periodic but irregular variables using sparsely-sampled light curves?
- Develop & test novel periodogram technique with existing high-cadence observations (OGLE)
- Apply to sparser observations of M33 (Pellerin & Macri 2011)

GAUSSIAN PROCESS PERIODOGRAM

APPLIED TO NOISIER & SPARSER SIMULATED LIGHT CURVE (OGLE)

GAUSSIAN PROCESS PERIODOGRAM Successfully recovered primary period for

74% of simulated light curves

FIRST RESULTS FROM M33

- Searched for Miras among 2.4×10^5 stars in M33
 - Based on I-band data only, spanning \sim 7 years
 - Used Random Forest classifier trained on 18 features
- Discovered >1800 Mira candidates

FIRST RESULTS FROM M33

- Searched for Miras among 2.4×10^5 stars in M33
 - Based on I-band data only, spanning \sim 7 years
 - Used Random Forest classifier trained on 18 features
- Discovered >1800 Mira candidates

M33 MIRAS IN NEAR-INFRARED

- Fit multi-band model to our JHK_S magnitudes (Gemini N, KPNO) and Javadi+2015 (UKIRT)
 - Significantly improved period recovery!

Leavitt laws for M33 Miras

OUTLINE

Introduction & motivation

Results on Cepheids

Results on Miras

>Recent developments and future work

"HUBBLE TENSION"

• Compare measurement of H_0 with <u>prediction</u> based on CMB+BAO (assuming Λ CDM): >4 σ discrepancy

VERY RECENT DEVELOPMENTS

online.kitp.ucsb.edu/online/enervac-c19/

- Gravitational time-delays (HOLICOW, STRIDES)
 - 6 lenses, blinded analysis: H₀=73.3±1.7 km s⁻¹ Mpc⁻¹ (Wong+, arXiv:1907.04869)
- Maser-based distances (MCP)
 - 4 hosts beyond N4258: $H_0=74.8\pm3.1$ km s⁻¹ Mpc⁻¹ (Reid, KITP workshop)
- Cepheids (improved LMC & N4258 distances)
 H₀=73.5±1.4 km s⁻¹ Mpc⁻¹ (Reid, Pesce & Riess, arXiv:1908.05625)
- Other indicators (share some "rungs" with Cepheids)
 - Miras: $H_0 = 73.3 \pm 3.9 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Huang+, arXiv:1908.10883)
 - TRGB: $H_0=69.8\pm1.9 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Freedman+, arXiv:1907.05922) \rightarrow 72.4 \pm 1.9 w/blending corr. (Yuan+, arXiv:1908.00993)

RECENT DEVELOPMENTS

${\rm flat}-\Lambda{\rm CDM}$

Adapted from Fig 1 of Verde, Treu & Riess (arXiv:1907.10625)

ONGOING SHOES EFFORTS

- Cepheid search in 15 additional hosts of SNe Ia
 - Increase calibrator sample to 38; should yield $\sigma(H_0)=1.6\%$
 - Mira search in nearest 4 (check Cepheid distances)
- HST observations of MW Cepheids (resolve Gaia sys.)

SUMMARY

- SH₀ES project: calibration of modern, high-quality SNe Ia using Cepheids in the near-infrared
 - $H_0 = 73.5 \pm 1.4 \text{ km s}^{-1} \text{ Mpc}^{-1} \rightarrow \sigma(H_0) = 1.9\%$
 - >4 σ tension wrt *Planck*+BAO \rightarrow New Physics in dark sector?
- Goal: $\sigma(H_0) = 1.3\%$ by early 2020s
 - HST, Gaia parallaxes to Milky Way Cepheids
 - 50 Cepheid distances to nearby SNe Ia
- Miras as "first rung" of an independent ladder
 - Absolute calibration via LMC and N4258
 - Gaussian process periodogram in M33 bodes well for LSST

Backup slides

TRGB IN LMC

RESOLUTION: EARLY DARK ENERGY?

Poulin+18, Smith+19: oscillating scalar field with ρ_{EDE}/ρ_{TOT} ~10% at z~3500 Slightly better fit to *Planck* data; 27 σ with CMB-S4!! (DoE CD-0)

arXiv:1908.06995; 1811.04083