
Cooperative Arithmetic-Aware Approximation Techniques
for Energy-Efficient Multipliers

Vasileios Leon, Konstantinos Asimakopoulos, Sotirios Xydis, Dimitrios Soudris, Kiamal Pekmestzi
School of Electrical & Computer Engineering, National Technical University of Athens, Greece

{vleon,asimakopoulos,sxydis,dsoudris,pekmes}@microlab.ntua.gr

ABSTRACT

Approximate computing appears as an emerging and promising so-

lution for energy-efficient system designs, exploiting the inherent

error-tolerant nature of various applications. In this paper, tar-

geting multiplication circuits, i.e., the energy-hungry counterpart

of hardware accelerators, an extensive exploration of the errorś

energy trade-off, when combining arithmetic-level approximation

techniques, is performed for the first time. Arithmetic-aware ap-

proximations deliver significant energy reductions, while allowing

to control the error values with discipline by setting accordingly

a configuration parameter. Inspired from the promising results of

prior works with one configuration parameter, we propose 5 hy-

brid design families for approximate and energy-friendly hardware

multipliers, consisting of two independent parameters to tune the

approximation levels. Interestingly, the resolution of the state-of-

the-art Pareto diagram is improved, giving the flexibility to achieve

better energy gains for a specific error constraint imposed by the

system. Moreover, we outperform prior works in the field of ap-

proximate multipliers by up to 60% energy reduction, and thus, we

define the new Pareto front.

KEYWORDS

Approximate Computing, Computer Arithmetic, ASIC, Energy Effi-

ciency, Design Space Exploration

1 INTRODUCTION

Due to the recent failure of Dennard scaling, power consumption

and the related energy dissipation have raised as first class con-

cerns in the design of integrated circuits. In addition, the pervasive

nature of modern computing systems has led to an increased need

for high performance and energy efficiency. Towards this direction,

approximate (or inexact) computing is considered as a promising

paradigm shift for energy-efficient systems design [6], exploiting

the inherent resilience of various applications. This relaxation in

the requirements for exactness is evident in several emerging do-

mains, e.g., machine learning, multimedia, etc. [2], favored due to

several factors, such as the limited human perception, the proba-

bilistic/statistical calculations, the user’s intention to accept results

of lower quality, etc.[1]. Thus, error is considered as a commodity

that can be traded for significant gains in performance, area, power,

and energy [15].

Targeting to take advantage of the error tolerance, massive re-

search has been reported in the field of approximate computing

at various layers of software and hardware [18]. Focusing on the

hardware level, approximations can be applied at different design

layers of abstraction, i.e., the application, algorithmic, gate and tran-

sistor layers [5]. Regarding circuit designs, the main targets are the

adders [8] and the multipliers [13], i.e., the core units of hardware

accelerators. Extensive research has also been conducted in approx-

imate processors, using neural networks [4], quality programmable

vectors [26] and approximate custom instructions [11].

Approximate methods have been extensively applied in the de-

sign of inexact circuits, due to delivering lower dynamic and leakage

power consumption. Circuit approximations can be introduced via

voltage over-scaling (VOS) [21], over clocking (OC) [10], and logic

simplification [8, 9, 12, 13, 17]. In this paper, we focus on approxi-

mations applied in arithmetic circuits, and specifically the hardware

multipliers, the most energy-hungry components of accelerators

involving computationally intensive kernels (DSP, neural networks,

etc.). The majority of existing works on inexact multipliers explores

approximations either on the partial product generation [12, 13, 27]

or the partial product accumulation [16, 19, 22]. These approxi-

mation targets are synergistic and can be applied in collaboration,

increasing the total energy/area savings [9, 17].

Past research activities on approximate multipliers have shown

that the direct application of inexact adders in the partial product

accumulation is not very efficient in terms of accuracy, hardware

complexity and other performance metrics [19]. On the other hand,

approximations on the partial product generation deliver simpler

partial product arrays, and thus, there is significant reduction in the

critical paths and the accumulation complexity [13]. Although ver-

tical cross-layer approximation techniques have recently emerged

[25, 28] showing promising results, the full potential of horizontal,

i.e., within the same level of design abstraction, and cooperative

approximation techniques still remains an open issue for further

exploration and exploitation. In this work, we explore for the first

time, the efficiency of cooperative arithmetic-level approximate

techniques targeting energy-efficient multiplier designs. We focus

and analyze cooperative approximation on the arithmetic level, i.e.,

the algorithmic level of arithmetic design, due to its high impact on

both the dynamic and the static power consumption of the underly-

ing arithmetic circuits. Moreover, the implementation delivered at

this level can be straightforwardly adopted in a vertical cross-level

design approach and further optimized.

More specifically, we introduce 5 design families for inaccurate

yet energy-friendly multipliers, that can configure their accuracy

with two independent parameters. To further motivate the impact



0 0.3 0.6 0.9 1.2 1.5
950

1250

1550

1850

2150

2450

2750

3050

Mean Error (%)

E
n
e
r
g
y
C
o
n
s
u
m
p
ti
o
n
(µ
W

n
s
)

 

 

Cumulative Perforation or Rounding

Cooperative Perforation and Rounding
r

r
r

r

r
r

r

r
p

p

p

p
Error

Bound:

1.3%

50.41%
Energy Gain

41.23%
Energy Gain

Figure 1: Energy-Error Pareto plot showing the benefits of

applying cooperative approximate techniques: (i) increased

Pareto resolution (ii) better energy gains w.r.t. an error con-

straint.

and the potential of the proposed cooperative arithmetic-aware ap-

proximation, Fig. 1 shows the Pareto points of Perforation, Rounding,

and Cooperative Perforation-Rounding. The blue points label two

different perforation configurations, with each one being combined

with five rounding configurations. As observed, except for forming

the Pareto front, the combination of the two techniques increases

the resolution. Moreover, it provides a better circuit in terms of

energy for a specific error constraint, i.e., 50.41% and 41.23% en-

ergy gains vs. the solutions delivered by Perforation and Rounding,

respectively.

The main contributions of our work are summarized as follows:

• An extensive exploration of the error-energy trade-off, when

combining arithmetic-aware approximation techniques, is

performed for the first time.

• The resolution of the state-of-the-art error-energy Pareto

front is improved, as the approximations are tuned by multi-

ple parameters.

• A rigorous error analysis is attached for each hybrid tech-

nique in order to study the error scaling w.r.t. the aggressive-

ness of the applied approximations.

• A detailed experimental evaluation of industrial strength is

provided, showing the constant efficiency of the proposed

designs, compared to prior Pareto fronts, in two design sce-

narios (high performance, ISO-delay).

The rest of this paper is organized as follows. Section 2 includes a

brief overview of prior works in the field of approximate multipliers.

In Section 3, the proposed approximate multipliers are introduced

by describing the applied approximations, and presenting their

impact on the accuracy. Section 4 includes the experimental evalu-

ation of our design through comparisons with similar approximate

circuits of the literature. Finally, Section 5 concludes this work.

2 PRIOR ART

Arithmetic-aware approximations in circuits have been extensively

studied in the past, as they deliver significant energy gains at the

application/system level. Interestingly, we attempt to categorize

the approximate techniques of the literature into the following

groups: (i) Pruning/Elimination, (ii) Radix Encoding, (iii) Rounding,

(iv) Dynamic Scaling. More specifically, we provide a closer look

at each category, by describing their basic approximation concept

and presenting representative state-of-the-art works.

Elimination/Pruning: targeting logic minimization, approximations

are introduced by discarding either bits, terms, or nodes of any

arithmetic circuit. In [23], the authors presented a methodology

and a CAD tool to automatically trade accuracy for area, power and

delay savings, by applying gate level pruning to any combinational

circuit. This methodology is quite effective especially on arithmetic

circuits where there is a notion of bit significance. Moreover, proba-

bilistic pruning has been presented in [14] using a greedy approach

to implement approximate circuits. One of the main techniques of

elimination/pruning is the partial product perforation, as proposed

by Zervakis et al. [27]. In this technique, partial products are omit-

ted, and thus, simpler partial product matrices are generated. One

possible downside is that error is increased exponentially while

more partial products are excluded.

Radix Encoding: A wide range of approximate multiplication cir-

cuits is based on inexact radix encodings. All the techniques that

have been proposed in the literature lead to less partial product bits

or even reductions in the total number of the partial products. Liu

et al. [17] designed approximate radix-4 encoders by transforming

the Karnaugh map of the accurate encoding, and combined them

with an inexact compressor. Moving to radix-8 multipliers, Jiang et

al. [9] employed an approximate adder for producing ±3A. In [12],

the authors tackled the increased circuit complexity of the very

high radix-2k encoding by rounding the high radix values to their

nearest power of two, creating simple partial product generators.

Rounding: several approximate multipliers are designed by apply-

ing rounding or truncation and correction techniques on the partial

products. A representative work is the truncated multiplier pro-

posed in [24], where partial product LSBs are eliminated vertically,

and a correction constant is added to reduce the total error. Never-

theless, this correction constant produces a non-zero component.

Finally, Zhang et al. [29] designed an approximate multiplier by

dividing the partial product matrix into two parts: the main part

(MP) that is accurately accumulated, and the truncated part (TP),

that is further partitioned into TPmajor and TPminor, with the latter

being produced through a probabilistic approach.

Dynamic Scaling: in this category, the aggressiveness of the approx-

imations is defined either by the system or according to the inputs.

In [20], the authors statically capture and multiplym-bit segments,

either starting from the MSB or ending at the LSB, achieving scal-

able accuracy. A limitation of the above technique is the difficulty in

scaling to higher inputs widths, and thus, its benefits are reduced as

the input size grows. Based on the varying bit significance, Hashemi

et al. [7] proposed a more fine-grained input segmentation, using

leading one detector circuits to locate themost significant ’1’ in each

operand. However, this dynamic segmentation implies extra circuits

for the signed multiplications, increasing the total hardware over-

head. Recently, in [13] the authors proposed a hybrid approximate

multiplier by combining two orthogonal techniques: the partial

product perforation [27] and a new partial product rounding. The

approximation is tuned on the runtime by multiplexing the input

bits, and thus, perforation and rounding are configured according

to the desired accuracy.



1

1

1

1

1

1

1

1

1

(a) Accurate

1

1

1

1

1

1

1

(b) High Radix

1

1

1

1

1

1

1

1

1

(c) Rounding

1

1

1

1

1

1

1

(d) Perforation

Figure 2: Partial product matrices of 16-bit multipliers: (a) accurate design and (b), (c), (d) inexact designs using the state-of-

the-art approximate techniques.

3 COOPERATIVE ARITHMETIC-AWARE
APPROXIMATION TECHNIQUES

Before presenting the proposed inexact multipliers, we make a

brief introduction in the examining state-of-the-art approximation

techniques. For the rest of the discussion, we consider a n × n

multiplier. As a baseline, we consider the accurate radix-4 multiplier

of Fig. 2a.

High Radix [12]: considering a configuration parameter k ≥ 4, that

is an even number, the multiplicand B is partitioned in two seg-

ments: the MSB part that consists of n−k bits and the LSB part of k

bits. The MSB part is encoded using the radix-4 encoding, whereas

the LSB part is encoded with the approximate radix-2k encoding.

In Fig. 2b, the partial product matrix of High Radix for k = 6 is

presented. The least significant partial product (black triangles) is

approximately produced from the radix-64 encoding, substituting

two accurate radix-4 partial products.

Rounding [13], [3]: this technique discards bits from the partial

products and introduces correction terms in order to compensate

the losing accuracy. There exist two types of rounding: the Sym-

metric Rounding, which eliminates the same number of bits from

each partial product, and the Asymmetric Rounding, where less bits

are eliminated from the most significant partial products. In this

work, we focus on Asymmetric Rounding, but the same exploration

can be performed using Symmetric Rounding. Fig. 2c illustrates the

partial product matrix of Asymmetric Rounding, with rounding per-

formed at the t = 8 column of the matrix. The red squares are the

corrections terms

Perforation [27]: this technique eliminates p successive partial prod-

ucts starting from the least significant ones. In Fig. 2d, the partial

product matrix of Perforation for p = 2 is presented.

High Radix and Rounding are considered approximations in the

logic level of design abstraction, while, Perforation is an algorithmic-

level approximation. Thereby, we designed approximate multipliers

using all the possible combinations of the logic-level techniques

(High Radix & Rounding and High Radix & High Radix ś Rounding

& Rounding is not viable), and we further employed Perforation in

these designs. Moreover, we explored the viability of combining

each one of the logic-level techniques with Perforation. Interest-

ingly, we combined only Rounding and Perforation, as High Radix

& Perforation is equivalent to Perforation, and thus, it can be safely

excluded for further examination.

3.1 High Radix & High Radix

In this technique, B is encoded using radix-4 (MSB part) and ap-

proximate radix-2k (LSB part) as in High Radix [12], whereas A is

divided in two parts, and only the LSB is encoded with approximate

radix-2m . The following equations define the encoding of B and A:

B = −2n−1bn−1 +

n−2∑

i=0

2ibi = B1 + y
R2k

0 (1)

where B1 =

n/2−1∑

j=k/2

4jyR4j , yR4j = −2b2j+1 + b2j + b2j−1 (2)

and yR2
k

0 = −2k−1bk−1 + 2
k−2bk−2 + · · · + b0 (3)

A = −2n−1an−1 +

n−2∑

i=0

2iai = A1 + x
R2m

0 (4)

where A1 = −2
n−1an−1 +

n−2∑

j=m

2iai + 2
m−1am−1 (5)

and xR2
m

0 = −2m−1am−1 + 2
m−2am−2 + · · · + a0 (6)

Regarding B, the MSB part is encoded with (n − k )/2 digits yR4
j

∈ {0, ±1, ±2}, while the LSB part is encoded with yR2
k

0 ∈ {0, ±1, ±2,

±3, . . . , ±(2k−1−1), −2k−1}. Similarly, the LSB part ofA is encoded

using xR2
m

0 . Considering (1) and (4), the multiplication A × B can

now be performed as A1B1 + B1x
R2m

0 +AyR2
k

0 .

Due to the increased logic complexity of calculating the radix

values of yR2
k

0 , all the values that are not power of two and the

k −4 smallest powers of two are rounded to their nearest of the four

largest powers of two or 0 [12]. Thereby, the LSB part of B is ap-

proximately encoded with ŷR2
k

0 ∈ {0, ±2k−4, ±2k−3, ±2k−2, ±2k−1}.

Similarly, we encode the LSB part of A, using x̂R2
m

0 . Therefore, the

multiplication is performed approximately as follows:

A × B |k,m = A1B1 + B1x̂
R2m

0 +AŷR2
k

0 (7)

The partial product matrix of the approximate multiplier that

uses double high radix encoding (DRAD) is shown in Fig. 3a. The

least significant partial product (triangles) is AŷR2
k

0 , while the next

one (squares) is B1x̂
R2m

0 . The rest partial products denote the ac-

curate part A1B1. Fig. 4a presents how the Mean Relative Error

Distance (MRED) of DRAD is affected by the parameters k ,m, when

using uniform distribution as input. The derived results show that,

even though the error range is small ([0.15%, 1.65%]), it increases

rapidly creating blank error segments.



1

1

1

1

1

(a) DRAD |8,8

1

1

1

1

1

1

(b) DRADP |8,8

1

1

1

1

1

1

1

1

(c) RADR |6,8

1

1

1

1

1

1

1

(d) RADRP |3,8

1

1

1

1

1

1

(e) ROUP |3,10

Figure 3: Proposed partial productmatrices of 16-bit inexact multipliers using cooperative approximation techniques: (a)High

Radix & High Radix, (b) High Radix & High Radix with Perforation, (c) High Radix & Rounding, (e) High Radix & Rounding

with Perforation, (e) Rounding with Perforation.

6

8

10

6

8

10
0

0.3

0.6

0.9

1.2

1.5

1.8

mk

M
R
E
D

(%
)

(a) DRAD |k,m

6

8

10

6

8

10
0

1

2

3

4

5

6

mk

M
R
E
D

(%
)

(b) DRADP |k,m

6

8

10

6

8

10
0

1

2

3

4

5

6

tk

M
R
E
D

(%
)

(c) RADR |k,t

6

8

10

1

2

3

4
0

0.5

1

1.5

2

2.5

tp

M
R
E
D

(%
)

(d) RADRP |p,t

8

10

12

1

2

3

4
0

0.5

1

1.5

2

2.5

rp

M
R
E
D

(%
)

(e) ROUP |p,r

Figure 4: Mean Relative Error Distance (MRED) variation w.r.t. the approximation configuration parameters for the 16-bit

proposed inexact multipliers.

3.2 High Radix & High Radix with Perforation

Targeting to increase the approximations, we employed Perforation

[27] in the DRAD multiplier, creating DRADP. More explicitly, we

eliminated the least significant partial product that is labeled by

the factor AŷR2
k

0 in (7), as shown in Fig. 3b. Regarding MRED, this

technique delivers higher error values (Fig. 4b), starting from 0.49%,

while the rapid error scaling is again observed.

3.3 High Radix & Rounding

Using only the approximate encoding of B, i.e., B̂ = B1 + ŷ
R2k

0 , we

combine High Radix with Rounding, creating the RADR multiplier.

More specifically, we truncate the t least significant columns of the

partial product matrix generated by the radix-4 encoding (AB1):

A × B |k,t = AB1 |t +Aŷ
R2k

0 (8)

Considering the encoding signals onej and twoj for y
R4
j
, the

correction term [3] presented in (9) is inserted for each partial

product. Additionally, an extra "1" is added to the correction terms’

column as a form of rounding up, in order to reduce the total error,

as shown in Fig. 3c.

cor j = onej ∨ twoj (9)

The benefit of this technique is that it smooths the rapid er-

ror scaling of RAD [12], by adding multiple values between two

consecutive RAD errors, especially for the small k values.

3.4 High Radix & Rounding with Perforation

As in DRAD, we employed Perforation [27] in the RADR multiplier,

and thus, we eliminated the partial product produced by the high-

radix encoding, i.e., AŷR2
k

0 . We note that this technique (RADRP)

is equivalent to combining Rounding [3] with Perforation [27], as

the removal of the radix-2k partial product is equal to the perfora-

tion of k/2 radix-4 partial products. As a result, the approximation

configurations of RADRP are p for perforation and t for rounding.

The MRED diagram of RADRP is presented in Fig. 4d. This tech-

nique is characterized by small error scaling, i.e., from 0.04% (p = 1)

to 2.47% (p = 4), with several intermediate values.

3.5 Rounding with Perforation

Since the RADRP multiplier practically implements Rounding [3]

with Perforation [27], we chose to combine the rounding technique

proposed in [13] with Perforation. In this hybrid technique, we

perforate thep least significant partial products, and apply rounding

to the ri -bit of the i non-perforated partial product, with i = p +

1,p + 2, . . . ,n/2. Specifically, the ri − 1 LSBs ofA are truncated, and

ari−1 is added with the remaining part:

Âri = ⟨an−1an−2 · · ·ari ⟩ + ari−1 (10)

As can be observed, A is rounded to a different bit for each

partial product (Asymmetry Rounding), contrary to [13], where the



0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
950

1250

1550

1850

2150

2450

2750

3050

3350

MRED (%)

E
n
e
r
g
y
(µ
W

n
s
)

 

 

RAD [12]

PR [13]

DRAD

DRADP

RADR

RADRP

ROUP

(a) EnergyśError

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
1200

1500

1800

2100

2400

2700

3000

3300

3600

MRED (%)

A
r
e
a
(µ
m

2
)

 

 

RAD [12]

PR [13]

DRAD

DRADP

RADR

RADRP

ROUP

(b) AreaśError

Figure 5: Pareto analysis of the inexact multipliers when synthesized at their critical path delay. RAD [12] and PR [13]: prior

state-of-the-art Pareto fronts.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
650

950

1250

1550

1850

2150

2450

MRED (%)

E
n
e
r
g
y
(µ
W

n
s
)

 

 

RAD [12]

PR [13]

DRAD

DRADP

RADR

RADRP

ROUP

(a) EnergyśError

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
700

1000

1300

1600

1900

2200

2500

2800

MRED (%)

A
r
e
a
(µ
m

2
)

 

 

RAD [12]

PR [13]

DRAD

DRADP

RADR

RADRP

ROUP

(b) AreaśError

Figure 6: Pareto analysis of the inexact multipliers when synthesized at the same relaxed clock. RAD [12] and PR [13]: prior

state-of-the-art Pareto fronts.

rounding of A is the same for all the partial products. Finally, we

note that the addition of ari−1 is implemented by adding only a

XOR gate in the conventional radix-4 correction terms (non-filled

circles in Fig. 2a), as explained in the algorithmic optimizations of

[13], and thus, the correction term is modified as shown in (11). The

correction terms cor j are labeled with the gray squares in Fig. 3e.

cor j = (siдnj ⊕ ari−1) ∧ (onej ∨ twoj ) (11)

The MRED values of ROUP (Fig. 4e) are similar to those of

RADRP. However, the maximum error is smaller (2.07%) compared

to RADRP (2.47%).

4 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the efficiency of the

cooperative approximation techniques in terms of energy (power

dissipation × delay) and occupied area, by providing comparative

results w.r.t. prior state-of-the-art Pareto fronts [12, 13] and similar

approximate multipliers of the literature [7, 9, 17, 24].

The following families of state-of-art approximate multipliers are

considered for comparison: (i) RAD [12] that applies the high radix

encoding, (ii) PR [13] that combines perforation with symmetric

rounding, (iii) R8-ABM [9] that employs the radix-8 encoding by

approximating the generation of 3A, (iv) R4-ABM [17] that uses

inexact radix-4 encoders, (v) TMC [24] that truncates columns of the

partial product matrix and inserts correction terms, (vi) DRUM [7]

selects a bit segment from each operand starting from the leading

’1’, and sets the LSBs of the truncated values to ’1’.

Several designs from each family have been synthesized to cover

an extended range of MRED values, utilized as error bounds. We use

industrial-strength tools for our experimentation. The synthesis of

the designs is performed with Synopsys Design Compiler and the

TSMC 65-nm standard cell library. Mentor Graphics QuestaSim has

been employed for simulation purposes, while the power consump-

tion is measured with Synopsys PrimeTime. Moreover, synthesis and

simulation were performed at 1V , i.e., the nominal supply voltage.

All the designs were synthesized and simulated under two different

design scenarios: (i) at their circuit-specific critical path delay and

(ii) at the same relaxed clock constraint, i.e., 0.8ns , enabling the

study of both their effectiveness but also their sustainability under

relaxed design margins.

In Fig. 5, we present the energyśerror and areaśerror Pareto

plots, when all the multipliers are synthesized at their critical path

delay, while Fig. 6 includes the same Pareto analysis at a relaxed

clock. The purpose of these schemes is to highlight themost efficient

circuits in terms of energy and area under different circumstances,

i.e., critical path delay and ISO delay. Regarding the high radix mul-

tipliers (DRAD, DRADP and RADR), they increase the resolution

of the RAD [12] front, with DRADP constituting an even better



0

10

20

30

40

50

60

70
E
n
e
r
g
y
G
a
in

(%
)

R8-ABM

R4-ABM

TMC

DRUM

0.15%      0.61%       0.25%       1.21%       0.22%       1.19%       1.47%

Figure 7: Energy gains of the most efficient proposed multi-

plier (ROUP) w.r.t. previous state-of-the-art multipliers for

the same error constraint (mentioned in X axis).

alternative in most cases. We note that we present only three RAD

[12] multipliers (k = 6, 8, 10), as for k ≥ 12 large error values are

produced, a negative feature of this technique that is overcome with

the cooperative approximation techniques. Furthermore, for small

error values PR [13] is not considered the most energy-efficient so-

lution, as several configurations of the cooperative approximation

techniques provide better energy results. Overall, as shown in all fig-

ures, the Pareto front is formed exclusively by the ROUP multiplier,

that delivers the best energy/areaśerror trade-off, outperforming

the previous state-of-the-art fronts [12, 13].

Fig. 7 demonstrates the energy gains of using the most efficient

proposed multiplier, i.e., ROUP, by comparing it with the designs

of [7, 9, 17, 24]. Specifically, we introduce the same mean error, and

we compare the retried energy consumptions. To explore various

scenarios, such as the energy consumption at different acceptable

error bounds, for the multipliers R8-ABM [9], R4-ABM [17] and

TMC [24], we performed comparisons for small errors (i.e., up to

0.25%) and for larger values (i.e., up to 1.21%), while for DRUM [7]

we chose the most-efficient proposed configuration. The derived

results show that ROUP provides significant gains ranging from

28.51% to 62.55%.

5 CONCLUSION

In this work, we perform an exhaustive exploration of using co-

operative arithmetic-level approximation techniques for designing

inexact multipliers. Targeting to exploit the full potential of the

state-of-the-art approximate methods, we propose 5 hybrid mul-

tipliers that increase the flexibility of adjusting the energyśerror

trade-off. The efficiency of the cooperative techniques is evalu-

ated against an extensive design space exploration of industrial

strength, resulting in better energy solutions given an error bound,

increased Pareto resolution and a new Pareto front outperforming

state-of-the-art approximate techniques.

REFERENCES
[1] S. T. Chakradhar and A. Raghunathan. 2010. Best-Effort Computing: Re-thinking

Parallel Software and Hardware. In Design Automation Conference. 865ś870.
[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. 2013. Analysis and

Characterization of Inherent Application Resilience for Approximate Computing.
In Design Automation Conference. 1ś9.

[3] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi. 2004. Design of Low-Error
Fixed-Width Modified Booth Multiplier. IEEE Transactions on Very Large Scale
Integration Systems 12, 5 (May 2004), 522ś531.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. 2012. Neural Acceler-
ation for General-Purpose Approximate Programs. In IEEE/ACM International
Symposium on Microarchitecture. 449ś460.

[5] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. 2013. Low-Power Digital
Signal Processing Using Approximate Adders. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32, 1 (Jan 2013), 124ś137.

[6] J. Han and M. Orshansky. 2013. Approximate computing: An emerging paradigm
for energy-efficient design. In IEEE European Test Symposium (ETS). 1ś6.

[7] S. Hashemi, R. I. Bahar, and S. Reda. 2015. DRUM: A Dynamic Range Unbiased
Multiplier for Approximate Applications. In IEEE/ACM International Conference
on Computer-Aided Design. 418ś425.

[8] H. Jiang, J. Han, and F. Lombardi. 2015. A Comparative Review and Evaluation
of Approximate Adders. In Great Lakes Symposium on VLSI. 343ś348.

[9] H. Jiang, J. Han, F. Qiao, and F. Lombardi. 2016. Approximate Radix-8 Booth
Multipliers for Low-Power andHigh-Performance Operation. IEEE Trans. Comput.
65, 8 (Aug 2016), 2638ś2644.

[10] X. Jiao, Y. Jiang, A. Rahimi, and R. K. Gupta. 2017. SLoT: A supervised learning
model to predict dynamic timing errors of functional units. In Design, Automation
and Test in Europe. 1183ś1188.

[11] M. Kamal, A. Ghasemazar, A. Afzali-Kusha, and M. Pedram. 2014. Improving
efficiency of extensible processors by using approximate custom instructions. In
Design, Automation and Test in Europe. 1ś4.

[12] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi. 2018. Approximate Hybrid
High Radix Encoding for Energy-Efficient Inexact Multipliers. IEEE Transactions
on Very Large Scale Integration Systems 26, 3 (March 2018), 421ś430.

[13] V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. 2018. Walking
through the Energy-Error Pareto Frontier of Approximate Multipliers. IEEE
Micro 38, 4 (Jul-Aug 2018), 40ś49.

[14] A. Lingamneni, C. Enz, K. Palem, and C. Piguet. 2013. Synthesizing Parsimonious
Inexact Circuits Through Probabilistic Design Techniques. ACM Transactions on
Embedded Computing Systems 12, 2s (May 2013), 93:1ś93:26.

[15] A. Lingamneni, C. Enz, K. Palem, and C. Piguet. 2014. Highly Energy-Efficient
and Quality-Tunable Inexact FFT Accelerators. In IEEE Custom Integrated Circuits
Conference. 1ś4.

[16] C. Liu, J. Han, and F. Lombardi. 2014. A Low-Power, High-Performance Approxi-
mate Multiplier with Configurable Partial Error Recovery. In Design, Automation
and Test in Europe. 1ś4.

[17] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi. 2017. Design of
Approximate Radix-4 Booth Multipliers for Error-Tolerant Computing. IEEE
Trans. Comput. PP (2017).

[18] S. Mittal. 2016. A Survey of Techniques for Approximate Computing. Comput.
Surveys 48, 4 (May 2016).

[19] A. Momeni, J. Han, P. Montuschi, and F. Lombardi. 2015. Design and Analysis
of Approximate Compressors for Multiplication. IEEE Trans. Comput. 64, 4 (Apr
2015), 984ś994.

[20] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim. 2015.
Energy-Efficient Approximate Multiplication for Digital Signal Processing and
Classification Applications. IEEE Transactions on Very Large Scale Integration
Systems 23, 6 (June 2015), 1180ś1184.

[21] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys. 2017. Pushing the limits of
voltage over-scaling for error-resilient applications. In Design, Automation and
Test in Europe. 476ś481.

[22] K. M. Reddy, Y. B. N. Kumar, D. Sharma, and M. H. Vasantha. 2015. Low power,
high speed error tolerant multiplier using approximate adders. In International
Symposium on VLSI Design and Test. 1ś6.

[23] J. Schlachter, V. Camus, K. V. Palem, and C. Enz. 2017. Design and Applications
of Approximate Circuits by Gate-Level Pruning. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 25, 5 (May 2017), 1694ś1702.

[24] M. J. Schulte and E. E. Swartzlander. 1993. Truncated Multiplication with Correc-
tion Constant. In IEEE Workshop on VLSI Signal Processing. 388ś396.

[25] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel. 2016. Invited
- Cross-layer Approximate Computing: From Logic to Architectures. In Design
Automation Conference. 99:1ś99:6.

[26] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.
2013. Quality programmable vector processors for approximate computing. In
IEEE/ACM International Symposium on Microarchitecture. 1ś12.

[27] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi. 2016. Design-
Efficient Approximate Multiplication Circuits Through Partial Product Perfora-
tion. IEEE Transactions on Very Large Scale Integration Systems 24, 10 (Oct 2016),
3105ś3117.

[28] G. Zervakis, S. Xydis, K. Tsoumanis, D. Soudris, and K. Pekmestzi. 2015. Hybrid
Approximate Multiplier Architectures for Improved Power-Accuracy Trade-Offs.
In International Symposium on Low Power Electronics and Design. 79ś84.

[29] Z. Zhang and Y. He. 2018. A Low-Error Energy-Efficient Fixed-Width Booth
Multiplier With Sign-Digit-Based Conditional Probability Estimation. IEEE Trans-
actions on Circuits and Systems II: Express Briefs (Feb 2018), 236ś240.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 12.60 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20190429080835
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     12.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Down
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



