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Abstract. This paper was written to young researches in Physics. We 

intend to briefly show that the Zitterbewegung is very difficult to be 

measured in real particles and that, on the other hand, the spectrum of 

measured masses of  neutral vector mesons can be reasonably described 

taking into account the Klein Paradox effects.                                                                                                                               
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(I)Introduction.                                                                                             

 As is well known paper,
[1] 

Dirac equation successfully merges 

quantum mechanics with special relativity. It provides a natural description 

of the electron spin, predicts the existence of antimatter and is able to 

reproduce accurately the spectrum of the hydrogen atom. The appearance 

of positive and negative energy states of free electrons (which is the 

essence of the vacuum fluctuations) predicted by the relativistic Dirac´s 

equation
[2-4]

 can be considered as the natural transition to the Quantum 

Field Theory (QFT). It also predicts unexpected effects of relativistic 

quantum particles, such as "Zitterbewegung"
[5,6]

 and "Klein´s Paradox."
[7]

  

These and other vacuum fluctuation phenomena are key fundamental 

examples for understanding relativistic quantum effects. Of course, a 

precise description of the relativistic quantum phenomena can only be 

obtained with the QFT. Relativistic quantum equations are only able to 

give general features of the vacuum fluctuations effects. Since the 

publication of Dirac´s relativistic quantum equation, almost one century 

ago, a large number of papers on vacuum fluctuation effects can be found 

in the literature. So, here only few references are cited. In Section 1is 

presented an analysis of the Zitterwbewegung done by Gerritsma et al.
[1] 

using a quantum simulation of the 1-dimensional Dirac equation. In 

Section 2 is  shown how the spectrum of measured masses of  neutral 

vector mesons can be reasonably described taking into account Klein 

Paradox effects. Lifetimes estimations of the mesons are also done. 

__________________________________________________________________                   
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(1)
 
Zitterbewegung.                                                                                                  

 To investigate Zitterbewegung, Gerritsma et al.
[1] 

 have recently 

presented a proof-of-principle quantum simulation of the one-dimensional 

Dirac equation. In this simulation analysis they have considered a single 
40

Ca
+  

ion trapped in a linear Paul trap.
[8]

 They assumed
[1]

 that the ion obeys 

a Dirac equation in 1 + 1 dimensions, that is,
[1-4]

 

                                   iħ∂ψ/∂t  = Hψ = (cpσx + mc
2
σz)ψ                     (1.1), 

with only one motional degree of freedom, related to positive- and 

negative-energies E = ± (p
2
c

2
 +m

2
c

4
)

1/2
. According to Eq.(1.1) the evolution 

of the electron is described by the operator  

                                 x(t) = x(0) + pc
2
H

-1 
t + iξ(e 

2iHt/ħ
 - 1)                     (1.2), 

where the operator ξ = (ħc/2)(σx -ipcH
-1

)/H. The first two terms represent 

the evolution that is linear in time, as expected for free particle, whereas the 

third, oscillating, term may induce the Zitterbewegung with an amplitude 

that depends on the expected values of  ξ.                                                         

 They have demonstrated
[1]

 that this one-dimensional Dirac dynamics 

for a free particle shows Zitterbewegung and several of its counterintuitive 

quantum relativistic features. They also concluded that their experiment 

serves as a first step to explain more complex ("real") quantum situations. 

 

(2) Klein Paradox and the Masses of Neutral Vector Mesons.                                                                     

  In few words, the Klein Paradox
 [2] 

appears in the framework of a 

relativistic quantum equation when a relativistic particle with inertial mass 

m interacts with a potential barrier Vo and Vo ≥ mc
2
. When this occurs, 

there is an unexpected interference effect between the positive and negative 

energies states of the particle and it "surpass" the barrier.                                                     

 Differently to what happens with the Zitterbewegung, we have 

shown in preceding papers,
[9-11] 

using Dirac´s relativistic equation, that the 

measured meson masses can be reasonably estimated taking into account 

the Klein paradox. As these calculations are seen in details elsewhere,
[9-11]

 

only a brief review of our results is presented here.
                                                                                       

 
We have assumed that mesons are quark-antiquark systems that 

interact via a static neutral vector gluon field Vν(x), where V = 0 and                
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V4 = V(r) = Kr
2
/2 - ∆,  where K is the harmonic constant and ∆ another 

constant which subsumes, in a simple way, the remaining interaction 

between quarks. Thus, the radial Dirac´s equation, in the reduced mass 

system, becomes written as
[9] 

                 df(r)/dr =   (χ/r) f(r) + [ (μc
2 
- E

(μ)
)/ħc + V(r)/ ħc] g(r)                                    

and                                                                                                        (2.1),                          

        dg(r)/dr = - (χ/r) f(r) + [ (μc
2 
+ E

(μ)
)/ħc - V(r)/ ħc] f(r) 

where g(r) and f(r) are the large and small components, respectively,                     

μ = m/2 is the reduced mass of the two quarks, each one with mass m,          

χ = -(ℓ+1) if  j = ℓ +1/2 and χ = +ℓ if  j = ℓ-1/2 and E
(μ)

 is the energy 

eigenvalue.  Note that the total angular momentum J of the meson states is 

obtained in our scheme by coupling the 1/2 unit of spin to the angular 

momentum j = ℓ ± 1/2. Now, putting  K = μω
2
,  ξ = (μω/ħ)

1/2
r  and                      

E
(μ)

  = ηħω + μc
2
- ∆, equations (2.1) become: 

                              df(ξ)/dξ =   (χ/ξ) f(ξ) + [ ε- + Aξ
2
] g(ξ)                                    

and                                                                                                        (2.2),                                  

                     dg(ξ)/dξ = - (χ/ξ)g(ξ) + [ ε+ - Aξ
2
] f(ξ)                                           

where   ε- = -ηε ,  ε+ =  ηε + 2/ε , A = ε/2  and  ε = (ħω/μc
2
)

1/2
. So,  the 

inertial mass M
(μ) 

becomes given by 

                        M
(μ)

c
2
 = E

(μ)
-  μc

2
 + 2mc

2
 = ηħω + 2mc

2
 - ∆.                (2.3). 

 Eqs.(2.2) are solved by expanding the large g(ξ) and small 

components f(ξ) into power series of ξ.
[10] 

In Figure 1 are shown, for 

example, g(ξ)/ξ as a function of ξ for n = ℓ = 0 and ε = 0, 1.0, 2.0.  

 

 Figure 1. Large component g(ξ)/ξ as a function of ξ for n = 0, ε = 0,1,2 and ℓ = 1. 
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   In the non-relativistic limit, that is, when ε → 0, we verify that                 

f(ξ) → 0 and that g(ξ) obeys the radial equation for the non-relativistic 

harmonic oscillator:
[2] 

                                                                                            

    [d
2
/dξ

2
 - ℓ(ℓ+1)/ξ

2
 - ξ

2
 + 2η] g(ξ) = 0  .              (2.4).                                                                                 

Solving Eq.(2.4),
[2] 

we verify that total energy of the system is given  

       Enℓ = M
(n,ℓ) 

c
2
 = ħω (2n+ℓ+3/2) + 2mc

2
 - ∆. 

In this non-relativistic limit, each state is characterized by two numbers      

n and ℓ. Each state really depends solely on the combination of the two 

quantum numbers 2n + ℓ = Λ. We can,
[2]

 therefore, call Λ = 0,1,2,... the 

principal quantum number. Each Λ larger than 1 can be realized by several 

combinations of the values n and ℓ, and the energy levels (n,ℓ) with Λ ≥ 2 

are, therefore degenerate.                                                                                                

 In all cases ε ≠ 0, for large ξ values, that is, larger than a critical 

value ξc ,we verify that g(ξ) = i f(ξ) = φ exp[i(εξ
2
/6 +θ)] meaning that there 

is no bound state for the quark- antiquark system (see Figure 1). This is 

exactly the  Klein Paradox phenomenon. Note that we are interpreting the 

amplitude |φ|
2
 to be proportional to probability to find the system in the 

unbounded state. When  ε ≠ 0, analyzing the functions g(ξ) and f(ξ), we 

verify that the decay process occurs only for a few particular (discrete) 

values of η. These values, indicated by ηcritical = η*(n,ℓ) are determined 

numerically as a function of ε = (ħω/μc
2
)

1/2
, n and ℓ. In Figure 2 is shown

[9]
 

η*(n,ℓ)  as function of ε for  ℓ = 0 and n = 0,1,2,...,6.  

                                                      

Figure 2. 
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Figure 2. The parameter η*(n,ℓ)
 
of the nth resonance as a function of  ε  for ℓ = 0.   The labels 

n = 0,1,2,..,6 indicate the fundamental, first, second state and so on, respectively. The vertical 

dashed lines correspond to the mesons ρ
o
(ω), Φ, K

o* 
and ψ. 

 So, the resonant meson masses,
 
according to Eq.(2.3), would be 

given by                                                                                                                                   

   M
(n,ℓ) 

c
2
= η*(n,ℓ)ħω + 2mc

2
 - ∆.                      (2.5). 

The masses M
(n,ℓ)

 of the n
th

 resonances (n = 0,1,2..)  with  ℓ = 0,1,2,... 

corresponds, respectively, to the fundamental, first, second excited states 

and so on of the mesons.                                                                                                                           

 The spectrum of the predicted meson masses (ω, ρ
o
, Φ, K

o*
,ψ) 

compared with the experimental results are shown in Figures 3,4, 5 and 6. 

The values of quark masses, frequencies ω and ∆, for the different mesons, 

used to estimate the masses M(n,ℓ) are seen in reference 9.  

 

                     Figure 3                                                  Figure 4 

Figure 3.The mass spectrum for the ρ
o
 and ω mesons. Figure 4.  The mass spectrum for Φ 

mesons.  Theoretical predictions are indicated by ( 
____

) and the experimental results by (-----). 
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                   Figure 5.                                     Figure 6.                                      

Figure 5.  The mass spectrum of the K
o*

 mesons.  Figure 6. The mass spectrum of the ψ 

mesons.    Theoretical predictions are indicated by ( 
____

) and the experimental results by (-----). 

 Finally, making an analogy with the theory of alpha-decay
[11]

  of 

nuclei the lifetimes τ of the resonances have been estimated assuming that 

the probability to find the system in an unbound state is proportional to |φ|
2
. 

Taking into account the relativistic currents we have shown that τ  is given 

by τ ~ ħ√η/(μcε\|φ|
2
). We have found τ in range from 10

-23
 up to 10

-20
 s, 

which seem reasonable values, given the crudeness of our approach.   
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