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Abstract—Operating system (OS) containers are becoming
increasingly popular in cloud computing for improving pro-
ductivity and code portability. However, existing deployment
scheduling solutions mainly treat each container deployment
as an independent request, and focus on the single aspect of
resource utilization or load balancing, or work on homogeneous
clusters. In this paper, we propose a new container deployment
algorithm to satisfy multiple objectives on heterogeneous clusters.
We analyze the deployment requirements of container-based
infrastructure and formulate the deployment problem as a vector
bin packing problem with heterogeneous bins. We focus on
three objectives: multi-resource guarantee, load balancing, and
dependency awareness. The goal of the proposed algorithm is
to improve the tradeoff between load balancing and dependency
awareness with multi-resource guarantees. Based on the algo-
rithm, we implement a prototype scheduler to deploy containers
on heterogeneous clusters. We evaluate our scheduler over a
wide range of workload scenarios by simulation, which shows
that our scheduler significantly outperforms existing schedulers
of the container orchestration platforms.

keywords—Container, Deployment, Multi-objective, Heteroge-
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I. INTRODUCTION

Operating system (OS) containers [1] are becoming increas-
ingly popular in cloud computing for improving productivity
and code portability. Major cloud providers have recently
announced container-based cloud services to cater this pop-
ularity [2], [3]. Meanwhile, container orchestration platforms,
such as Docker Swarm [4], Mesosphere Marathon [5], and
Google Kubernetes [6], are emerging to provide container-
based infrastructure, with automatic deployment, scaling, and
containers operation on underlying clusters.

Typically, Infrastructure as a Service (IaaS) offered by the
cloud providers (e.g., Amazon EC2, Microsoft Azure [2],
[3]) is based on Virtual Machines (VMs). Compared with
VM-based infrastructure, container-based infrastructure 1) can
be deployed on both physical and virtual machines, and the
highly diverse configuration of VMs makes the servers in
container cluster more heterogeneous; 2) can provide fine-
grained resource allocation based on operating-system-level
virtualization techniques, which is much more flexible than
predefined VM types in VM-based infrastructure; and 3) can
support users specifying the dependencies among containers
for a distributed application, which facilitates the coordination
of containers.

With these new features, container-based infrastructure im-
poses emerging and stringent requirements on the deployment
to provide performance guarantee for applications.

1) Multi-resource demands from each container are often
specified as a combination of constrains of CPU, mem-
ory, network, etc., which have to be considered with
the diverse capacity and capability of the underlying
heterogeneous cluster.

2) A balanced load is crucial for the performance of a
distributed container application. Fine-grained allocation
can efficiently utilize resources, but very high utilization
in an individual node often has a high risk for the per-
formance due to the lack of strict performance isolation
of containers [1].

3) Containers of a distributed application often have strong
network dependencies due to data communication. Co-
locating dependent containers on the same node can
reduce communication latency and save network re-
sources, which also has to take into account in the
deployment phase.

During the past years, container orchestration and schedul-
ing have attracted quite a lot research attention [7]. In the
container orchestration platforms, such as Swarm [4] and
Kubernetes [8], three typical strategies can be found for
scheduling container deployment: 1) Spread, places containers
evenly across servers, 2) Least/Most Load, places containers
on the least/most loaded server that still has enough resources
to run the given containers, and 3) Balance Load, aims to
place containers on the server to make the resource utilization
of the server evenly. Those solutions only take CPU and
memory resources into account; none of them considers the
container network dependencies. In addition, the Balance Load
scheduler only considers resource utilization on one specific
server, which cannot be adjusted to the cluster-level load
balancing.

Most of the relevant research solutions to container deploy-
ment are server consolidation or VM placement [9], [10],
[11], which often focus on minimizing the total number of
servers or the waste of resources. Such minimization is usually
formulated as a vector bin packing problem [12]. Variants of
the classic packing algorithms such as Best-Fit Decreasing
(BFD) and First-Fit Decreasing (FFD) are often used to
achieve practical solutions [10]. In those algorithms, servers



are often assumed as homogeneous capacity. Dependencies
among VMs or tasks are rarely considered in those works.

In this paper, we investigate the container deployment
problem in heterogeneous clusters. By analyzing the
differences between VM-based infrastructure and container-
based infrastructure, we point out the emerging and stringent
requirements to container deployment: multi-resource
guarantee, load balancing, and dependency awareness. In
this work, we model the deployment problem as a vector
bin packing problem with heterogeneous bins. We focus
on three objectives derived from the requirements and
analyze the tradeoffs among these objectives. To address
this multi-objective problem, we propose a new deployment
algorithm which exploits container consolidation, heuristic
packing, and tradeoff balancing mechanisms to achieve
a better tradeoff between load balancing and dependency
awareness with multi-resource guarantees. We implement
a prototype scheduler based on our algorithm and conduct
a comprehensive evaluation in different scenarios. In
the evaluation, we show that our scheduler significantly
outperforms existing schedulers of the container orchestration
platforms. We summarize our contributions as follows:

• We expose the new features of container-based infrastruc-
ture comparing with VM-based infrastructure, and point
out the emerging and stringent deployment requirements
on heterogeneous cluster.

• We propose a new deployment algorithm to improve
the tradeoff between load balancing and dependency
awareness with multi-resource guarantees. Based on the
algorithm, we implement a prototype scheduler.

• We evaluate our scheduler using a wide range of
scenarios and compare it with existing schedulers of the
container orchestration platforms.

II. RELATED WORK

The problem investigated in this paper - deploying con-
tainers on heterogeneous clusters - is related to a variety of
research topics as follows.

Bin packing The problem of VM placement or consol-
idation which is similar to our problem is often formulated
as vector bin packing problem, and various heuristics have
been proposed for this problem [13], [14]. Mark Stillwell et
al. [9] studied variants of FFD concluding that the algorithm
that reasons on the sum of the resource needs of the tasks
are the most effective. Rina Panigrahy et al. [12] presented
a generalization of the classical first fit decreasing (FFD)
heuristic. In their experiments, it showed that the Dot-Product
heuristic often outperforms FFD-based heuristics. While these
contributions focus on VM packing, none of them takes into
account the load balancing and dependency awareness when
making packing decisions.

Approximation Algorithms The d-dimensional vector bin
packing problem in known to be APX-hard (d ≥ 2) [15],
[16], which means that there is no asymptotic polynomial-time

approximation scheme (PTAS) for the problem, unless P =
NP . To d-dimensional vector bin packing problem, Fernandez
de la Vega et al. [17] showed a linear time algorithm to get
a (d + ϵ)-approximation, for any ϵ > 0. Chandra Chekuri et
al. [18] showed an (1 + dϵ+O(ln ϵ−1))-approximation when
d is fixed and an O(ln2 d)-approximation when d is arbitrary.
However, all these algorithms run in time that is exponential
in d, and they can only be applied to homogeneous scenarios.

Metaheuristics In recent years, many metaheuristic tech-
nique have become prevalent for the approximate solution of
multi-objective optimization problems [19], [20], [21], [22].
Haibo Mi et al. [23] proposed a genetic algorithm based
approach, namely GABA, to adaptively self-reconfigure the
VMs in virtualized large-scale data centers consistsing of
heterogeneous nodes. Jing Xu et al. [24] presented a modified
genetic algorithm with fuzzy multi-objective evaluation for
efficiently searching the large solution space and conveniently
combining possibly conflicting objectives. However, these
approaches often take minutes or hours to generate a solution,
which are not acceptable for container clusters.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we first formulate the containers deployment
problem with networked heterogeneous servers in the cluster.
Then, we analyze tradeoffs between different deployment
requirements, and discuss the computational complexity of the
problem and algorithmic approaches to solving the problem in
practical problem sizes.

A. Model Description

To container-based infrastructure, the cluster is com-
posed of a set of networked heterogeneous servers {S =
{s1, s2, ..., s|S|} where M = |S| is the number of servers.
We consider |R| types of resources R = {r1, r2, ..., r|R|}
(e.g., CPU, memory, or network bandwidth) in each server.
For server si, let

−→
Vi = (V 1

i , V
2
i , ..., V

|R|
i ) be the vector of

its resource capacities where the element V j
i denotes the total

amount of resource rj available on server si. Since defining
capacity vector for each server respectively can represent the
heterogeneous server explicitly, the model here can naturally
capture heterogeneous characteristics.

We model a deployment request of a containerized appli-
cation as a set of containers C = {c1, c2, ..., c|C|} that are to
be deployed on M servers, and N = |C| is the number of
containers. For container ci, let

−→
Di = (D1

i , D
2
i , ..., D

|R|
i ) be

the vector of its resource demands, where the element Dj
i de-

notes the amount of resource rj that the container ci demands.
For a distributed application, let matrix L = [Lj

i ]N×N denote
the dependencies among containers within the application. If
Lj
i = 1, it means that the container ci depends on container

cj .
Next we model a deployment scheme for a containerized

application. Note that a deployment scheme means a mapping
of containers to servers on the cluster in this paper. Let matrix
X = [Xj

i ]N×N denote a deployment scheme, where Xj
i is 1



if container ci is to be deployed on server sj , otherwise Xj
i

is 0.

B. Deployment Requirements

By analyzing the features of container-based infrastructure,
we desire a deployment scheme that satisfies the following
three objectives.
• Multi-resource Guarantee. Providing multi-resource

guarantee for each container on the heterogeneous cluster
is the primary requirement to a deployment scheme. Given
the constraints of Service Level Agreements (SLAs) with
users, different types of resource demands should be at least
guaranteed to a deployment scheme so that SLAs are not
violated. Thus, the resource demands of the containers in the
same server should not exceed its capacity.

∑
ci∈C

Xj
i D

k
i ≤ V k

j

∀sj ∈ S, ∀rk ∈ R, Xj
i ∈ {0, 1}

(1)

• Load Balancing. Balancing the load on the container
cluster is another key requirement to a deployment scheme
for alleviating resource contention and ensuring performance.
As the container technique is based on operating-system-level
virtualization, containers lack strict performance isolations [1]
among each other. Thus, high utilization of resources may
degrade the application performance over the containers due
to the potential contention of resources. Hence, we highlight
the objective of load balancing to a deployment scheme in the
cluster. We employ the ratio of maximum resource utilization
to indicate the load balancing status of the whole container
cluster. First, we define the utilization ratio of resource rk on
server sj as Uk

j .

Uk
j =

∑
ci∈C Xj

i D
k
i

V k
j

(2)

Then, we define the ratio of maximum resource utilization
as Umax.

Umax = max(U j
i )

∀si ∈ S, ∀rj ∈ R
(3)

To balance the load, we try to find a deployment scheme
with the minimum Umax. Since the ratio of maximum resource
utilization is less, the distribution of workloads is more bal-
anced on the cluster.

Minimize (Umax)

∀X ∈ {0, 1}N×N
(4)

• Dependency Awareness. In container-based infrastruc-
ture, users can specify the dependencies among containers
within a deployment request, which represents the demands of
data communication among these containers. As applications,
especially data-intensive applications, often need to commu-
nicate with data frequently, the network performance would

directly affect the overall performance. An effective solution
is to co-locate the containers which have dependencies on the
same server, because containers can leverage the loop-back
interface to get the high network performance without con-
suming actual network resources on the same server. Due to
limited resource capacities on each server, we usually cannot
co-locate all the dependent containers on one server. Thus,
to be dependency-aware, we try to find a deployment scheme
with the maximum number of co-located dependencies. First,
we define the number of co-located dependencies as Ldep.

Ldep =
∑
ci∈C

∑
cj∈C

∑
sk∈S

Lj
iX

k
i X

k
j (5)

Then, the objective of dependency awareness is to maximize
the number of co-located dependencies.

Maximize (Ldep)

∀X ∈ {0, 1}N×N
(6)

C. Tradeoff

In this section, we discuss tradeoffs among these objectives.
For these three objectives, the multi-resource guarantee is
always the basic demand to ensure the application performance
associated with SLAs. Thus, we would set the multi-resource
guarantee as the primary goal for a deployment scheme.
Besides this, we discuss the tradeoff between load balancing
and dependency awareness.
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Fig. 1. Load balancing vs. Dependency awareness. (a) A deployment scheme
balances the loads on each server. (b) A deployment scheme is aware of
dependencies among containers.

To illustrate the tradeoff between load balancing and de-
pendency awareness, consider the example in Fig. 1 showing a
application consists of 4 containers. To simply the problem, the
resource demands only consider CPU and memory resources.
The dependencies among these containers are also showing in
the figure. We assume that the cluster is composed of 2 servers,
and each server has a 10-core CPU and 10 GB memory.
According to the objective of load balancing (4), both servers
should deploy proper number of containers on it to balance
the resource utilization ratio. For the example in Fig. 1(a),
each server has 2 containers running on it and the resource
utilization ratio is the same. If we consider the objective of



dependency awareness (6) in the deployment, we should max-
imize the number of co-located dependencies to a deployment
scheme. As shown in Fig. 1(b) to maximize the co-located
dependencies, 3 containers are co-located on one server, and
the last container is located on another server. Therefore, as
illustrated by our example, we cannot achieve load balancing
and dependency awareness at the same time. As we consider
that the network resource guarantee can be achieved through
the objective of multi-resource guarantee (1), two dependent
containers can perform well while they are located on the
different servers with network resource guarantee. Therefore,
given this tradeoff, our goal is to maximize the number of
co-located dependencies while keeping the ratio of maximum
resource utilization minimized.

IV. ALGORITHM

In this section, we describe our algorithms we proposed
in this paper. The main goal of our algorithms is to find
a deployment scheme to achieve a better tradeoff between
load balancing and dependency awareness with multi-resource
guarantees on heterogeneous clusters. The goal of the tradeoff
is to maximize the number of co-located dependencies while
keeping the ratio of maximum resource utilization minimized.

A. Container Consolidation

In order to make the values of different resources compara-
ble to each other and easy to handle, we normalize the resource
capacities of servers and resource demands of containers to
be the fraction of the maximum capacity. We define the term
Vmax−i to be the maximum capacity of resource ri.

Vmax−i = max(V i
j )

∀sj ∈ S
(7)

Let V ′j
i denote the normalized resource capacity of V j

i ,
and V ′

i denotes the normalized vector of resource capacities
to server si.

V ′j
i =

V j
i

Vmax−j
−→
V ′

i = (V ′1
i , V

′2
i , ... , V ′|R|

i )

(8)

Let D′j
i denote the normalized resource demand of Dj

i , and
D′

i denotes the normalized vector of resource demands to
container ci.

D′j
i =

Dj
i

Vmax−j
−→
D′

i = (D′1
i , D

′2
i , ... , D′|R|

i )

(9)

After normalization, we first consider the dependency
awareness in our deployment algorithm. As the objective is
to maximize the co-located dependencies, we try to consoli-
date dependent containers into one consolidated container so
that the dependencies within the consolidated container can

certainly co-locate on the same server. Thus, we design the
consolidation algorithm, which is shown in Algorithm 1. In the
algorithm, there are two key ideas behind the design. First, we
give the threshold α of resource demand to the consolidating,
where α denotes the upper bound of the resource demand of
the consolidated containers. The nature of the consolidation
is to merge the resource demand vectors, and hence α is
an important parameter to adjust the consolidation. The α is
produced by the Tradeoff Balancing Algorithm 3 which we
will describe in the following section.

In the consolidating process, we employ the first-fit heuristic
to consolidate dependent containers into one container. As we
care about the algorithm complexity and have the threshold
α to adjust the consolidation, this simple heuristic is effective
and efficient to achieve consolidation.

Algorithm 1: Container Consolidation
Input: C,D′, L, α
Output: C̃, D̃′

1 C̃ ← ∅;
2 D̃′ ← ∅;
3 fC ← ∅;
4 for i← 1; i ≤ N ; i← i+ 1 do
5 if ci ̸∈ fC then
6

−→
tD ←

−→
D′

i;
7 fC ← fC ∪ {ci};
8 for j ← i+ 1; j ≤ N ; j ← j + 1 do
9 if cj ̸∈ fC then

10 if (Lj
i ) or (Li

j) then
11 if (

−→
tD +

−−→
D′

j) ⪯ α then
12

−→
tD ←

−→
tD +

−−→
D′

j ;
13 fC ← fC ∪ {cj};
14 end
15 end
16 end
17 end
18 C̃ ← C̃ ∪ {ci};
19 D̃′ ← D̃′ ∪ {

−→
tD};

20 end
21 end
22 return (C̃, D̃′);

B. Heuristic Packing

Given the consolidated containers, the algorithm here is to
pack these containers on the heterogeneous servers. There are
also two key ideas behind the packing algorithm: Resource
Utilization Threshold and Dot-Product Heuristic. The algo-
rithm is shown in Algorithm 2.

As load balancing is a significant requirement for a de-
ployment scheme to ensure application performance, we give
a threshold β of resource utilization before packing. The
threshold β denotes the maximum fraction of each resource
can be used on the servers. By giving the threshold, we can



easily adjust the distribution of workloads on the cluster. More
importantly, it transforms our problem into the classical vector
bin packing problem, in which we can only consider the
resource utilization after giving the threshold. The β is also
produced by the Tradeoff Balancing Algorithm 3.

Under the constraint of the utilization threshold, we now
focus on the objective of multi-resource guarantee in the
packing process. In order to pack containers with multi-
resource demands, we need to define a single scalar from
the vector of resource capacities and the vector of resource
demands to order these containers. Inspired by general vector
bin packing problems [12], we employ Dot-Product heuristic
in the packing algorithm which use dot product as the scalar to
order containers. We define the dot product between container
ci and server sj as DP j

i .

DP j
i =

∑
rk∈R

D′k
i V

′k
j (10)

In this heuristic, we assign in priority the container ci to
server sj such that the dot product between their demand
vector and capacity vector is maximal. The idea of the heuristic
is that it takes into account not only the resource demands
of containers but also how well its demands align with the
resource capacities of servers. This heuristic maximizes the
similarity of containers and servers.

Algorithm 2: Heuristic Packing

Input: C̃, D̃′, V ′, β
Output: X

1 X ← [0]N×N ;
2 fC ← ∅;
3 for j ← 1; j ≤M ; j ← j + 1 do
4

−→
tV ← −→0 ;

5 i←MaximumUnpackedDP(D̃′,
−→
V ′

j);

6 while
−→
tV +

−→̃
D′

i ⪯ β
−→
V ′
j do

7
−→
tV ←

−→
tV +

−→̃
D′

i;
8 fC ← fC ∪ {ci};
9 Xj

i ← 1;
10 i←MaximumUnpackedDP(D̃′,

−→
V ′

j);
11 end
12 if fC ̸= C̃ then
13 return null;
14 end
15 else
16 return X;
17 end
18 end

C. Tradeoff Balancing

As we discussed before, there is a tradeoff between load bal-
ancing and dependency awareness, and the goal we proposed
is to maximize the number of co-located dependencies while

keeping the ratio of maximum resource utilization minimized.
To achieve this goal, we design a tradeoff balancing algorithm
which is shown in Algorithm 3.

The main idea of the algorithm is to coordinate two thresh-
olds: threshold α of resource demand and threshold β of
resource utilization. These two thresholds can directly influ-
ence container consolidation and packing process as described
above. In the beginning, the default value of α is 1.0, and β is
0.1 in the algorithm, because the greater the α is, the more the
number of co-located dependencies is, and the less the β is,
the more balanced the distribution of workloads is. To adjust
the thresholds, we set a step value δ, and the default value is
0.1. Then, the algorithm decreases the threshold α of resource
demand and increases the threshold β of resource utilization
according to the step value δ. To each modification, it invokes
the consolidation and packing algorithm to check whether it
can generate a feasible deployment scheme. Consequently, the
algorithm can find a better tradeoff between load balancing and
dependency awareness after iterative modification. Moreover,
managers can customize their own thresholds and set a smaller
step value to find a more suitable tradeoff.

Algorithm 3: Tradeoff Balancing
Input: C,D′, S, V ′, L
Output: X

1 α← 1.0;
2 β ← 0.1;
3 δ ← 0.1;
4 while β ≤ 1.0 do
5 while α ≥ 0.0 do
6 (C̃, D̃′)← Consolidate(C,D′, L, α);
7 X ← Packing(C̃, D̃′, V ′, β);
8 if X ̸= null then
9 return X;

10 end
11 α← α− δ;
12 end
13 α← 1.0;
14 β ← β + δ;
15 end
16 return null;

V. EVALUATION

We evaluate our deployment algorithm by using our
prototype scheduler, Multi-Objective Deployment Scheduler
(MOD), implemented for deploying containers on heteroge-
neous clusters. To understand comprehensive performance of
different schedulers, we generate synthetic problem instances
which are derived from many different distributions.

A. Setup

Workloads Realistic workloads vary widely across dif-
ferent clusters in their heterogeneous capacities and in their
deployment requirements, so it would be hard to generalize



from any given set of real workloads. According to the work
in [12], we evaluate our algorithm on synthetic instances which
are generated randomly from many different distributions.
First, we consider M = 64 servers in the container cluster. The
capacity of each server of each resource type drawn randomly
and independently from the range [500, 1000]. Then, we con-
sider N = 128/192/256 containers within a application in our
evaluation. For N = 128, the resource demand in each type is
sampled from [1, 660], [1, 540], and [1, 450]. For N = 192, it
is sampled from [1, 440], [1, 360], and [1, 300]. For N = 256, it
is sampled from [1, 330], [1, 270], and [1, 225]. To the different
number of containers, each kind of workload has nearly the
same resource demands in total from these distributions. We
use |R| = 2/4/6 as the number of resource types in the
cluster. Considering the dependencies among the containers,
we specify P as the average number of dependencies, which
means each container depends on P containers averagely. We
choose P in the array {0.1, 0.5, 1.0, 1.5, 2.0}. Thus, we
have 3× 3× 3× 5 = 135 scenarios as described above . For
each scenario, we generate 100 random samples, for a total of
13,500 deployment requests in our evaluation.

Baselines We compare MOD to state-of-the-art scheduling
algorithms implemented in Google Kubernetes [8]. Besides
some affinity specific schedulers, there are three kinds of
typical schedulers in the platform: Least Load Scheduler,
Most Load Scheduler, and Balance Load Scheduler. Least
Load Scheduler is based on the maximum scalar value∑

rk∈R

V ′k
j−D′k

i

V ′k
j

to deploy containers on the least loaded
server. Most Load Scheduler is based on the maximum scalar
value

∑
rk∈R

D′k
i

V ′k
j

to deploy containers on the most loaded
server. Balance Load Scheduler is based on the minimum
scalar value

∑
rp∈R

∑
rq∈R

∣∣∣D′p
i

V ′p
j
− D′q

i

V ′q
j

∣∣∣ to deploy containers
on the most balanced-loaded server.

Metrics We consider three metrics: Fraction of successful
deployment requests, Average ratio of maximum resource uti-
lization, and Fraction of co-located dependencies to compare
the performance of different schedulers.

The Fraction of successful deployment requests is computed
as:

Fraction =
Number of successful deployment requests

Number of total deployment requests

The higher the fraction is, the more deployment requests can
be accepted by the scheduler. It indicates the performance of
multi-resource guarantee requirement.

Within the successful deployment requests, the Average
ratio of maximum resource utilization is computed as:

Ratio =
Sum of ratio of maximum resource utilization

Number of successful deployment requests

The lower the average is, the more balanced the distribution of
workloads is. It indicates the performance of load balancing
requirement.

Within the successful deployment requests, the Fraction of

co-located dependencies is computed as:

Fraction =
Number of total dependencies

Number of co− located dependencies

The higher the fraction is, the more dependencies the sched-
uler co-locates. It indicates the performance of dependency
awareness requirement.

B. Comparison with The Baselines

We now perform a comparative analysis between our
scheduler (MOD) and the baselines across a wide range of
workloads and multiple metrics.

In Fig.2, we compare the fraction of successful deployment
requests among different schedulers. We show the comparison
in different scenarios, where the workloads are categorized by
the number of resource types in Fig.2(a) and categorized by
the number of containers in Fig.2(b). For different number of
resource types, we observe that MOD scheduler can satisfy
most deployment requests than the other schedulers, while the
Balance Load scheduler performs worst. As the number of
resource types increases, the fraction of successful deployment
requests decreases because the increase of resource types
can easily cause resource contentions in different dimensions.
For the number of containers, it also shows that our MOD
scheduler performs best, and the Balance Load scheduler
performs worst. On the contrary, the faction of successful
deployment requests increases while the number of containers
increases. As the total resource demands of the workloads in
different scenarios (different number of containers) are nearly
the same, the less number of containers can easily cause
resource fragmentation problem in the deployment process.
Relative to the baselines in all different scenarios, the number
of successful deployment requests improves 17% to 63% by
our MOD scheduler.

In Fig.3, we compare the average ratio of maximum re-
source utilization, which is an indicator to show load balancing
status for container clusters, among different schedulers. We
also categorize the workloads by the number of resource types
in Fig.3(a) and categorized by the number of containers in
Fig.3(b). Consequently, we observe that MOD scheduler has
the least average of maximum resource utilization ratio in all
scenarios. The Balance Load scheduler is the second best,
and the other two schedulers always make some servers fully
utilized in the cluster. Thus, with multi-resource guarantees,
the distribution of workloads is much more balanced by
our MOD scheduler. It reduces from 10% to 12% of the
average ratio of maximum resource utilization relative to other
schedulers. From the observation, we confirm that setting the
threshold of resource utilization in the packing process is able
to balance the distribution of workloads for a deployment
scheme.

In Fig.4 and Fig.5, we compare fraction of co-located
dependencies among different scheduler. We consider four
scenarios in this comparison. Fig.4 shows two scenarios
with different number of resources types, and Fig.5 shows
two scenarios with different number of containers. From the
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Fig. 2. Comparing fraction of successful deployment requests among different schedulers
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(a) Comparison in different number of
resource types (M = 64; |R| = 2/4/6)
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(b) Comparison in different number
of containers (M = 64; N =
128/192/256)

Fig. 3. Comparing average of maximum resource utilization ratio among different schedulers

figures, we observe that MOD scheduler can significantly
increase the number of co-located dependencies, especially
in the case which has less number of dependent containers
within the deployment request. Since there are constraints and
tradeoffs due to the other two objectives, the fraction of co-
located dependencies decreases as the number of dependent
containers increases. Overall, MOD scheduler increases from
10% to 76% of the number of co-located dependencies in
our experimental scenarios. In contrast, other schedulers of
the baselines are not aware of dependencies so that only a
few dependencies are co-located by these schedulers. Hence,
we confirm that container consolidation is an effective way to
handle dependencies of containers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the container deployment
problem on heterogeneous cluster, and exposed three emerging
and stringent objectives: multi-resource guarantee, load bal-
ancing, and dependency awareness. For the three objectives,
we presented a new deployment algorithm, and implemented
MOD scheduler based on the algorithm. Our evaluation shows
that the number of successful deployment requests gains a
great improvement by heuristic packing of MOD scheduler.
By consolidating containers and setting thresholds for resource
demand and resource utilization, MOD scheduler significantly
increases the number of co-located dependencies while keep-
ing the ratio of maximum resource utilization lower in the
evaluation. The container deployment problem, formulated

as vector bin packing problem with multiple objectives, is
strongly NP-hard. Our algorithm here is towards finding a
practical solution, which requires the scheduler to yield a
deployment scheme in an acceptable time (polynomial time).
Through the evaluation, we believe that MOD scheduler is
effective and usable in practice.

In the future, we plan to: implement a pluggable scheduler
on Google Kubernetes based on our algorithm, and conduct
experiments over production-grade workloads; consider the
containerized applications with time constraints due to a grow-
ing number of time-critical applications in cloud computing,
and investigate how to incorporate the time constraints with
the deployment requirements in our algorithm.
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