
Operating Permissioned Blockchain in Clouds:
A Performance Study of Hyperledger Sawtooth

Zeshun Shi∗, Huan Zhou∗, Yang Hu∗, Jayachander Surbiryala∗†, Cees de Laat∗, and Zhiming Zhao∗
∗ Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands

{z.shi2, h.zhou, y.hu, delaat, z.zhao}@uva.nl
† Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway

{jayachander.surbiryala}@uis.no

Abstract—With ever more IoT (Internet of Things) and big
data applications, the emerging blockchain techniques provide
fundamental supports to credibly track the transactions of
digital assets. Public blockchains, e.g., bitcoin, are often energy-
consuming and low efficient. Therefore, an empirical study of
operating permissioned blockchains in clouds is urgently needed.
In this paper, we study the performance of Sawtooth, a well-
known permissioned blockchain platforms from Hyperledger, in
cloud environments. Our results provide insights for blockchain
operators to optimize the performance of Sawtooth through
adjusting the two configuration parameters, i.e., Scheduler and
Maximum Batches Per Block. Our approach can be used to test
other blockchain platforms.

Index Terms—Permissioned Blockchain, Hyperledger Saw-
tooth, Cloud, Performance Study

I. INTRODUCTION

The blockchain technologies recently gained popularity in
several applications fields such as supply chains [1], gov-
ernments and public sectors [2], healthcare and pharmaceuti-
cal [3], education [4] and insurance [5]. A blockchain records
transactions among distributed participants as identical copies
via decentralized ledgers, which are represented as a chain
of blocks. A new block is generated and appended in the
chain based on the consensus among distributed participants.
A blockchain establishes trust among its distributed users via
its immutability and security of the ledgers.

In general, blockchains can be permissionless and per-
missioned. In a permissionless blockchain, e.g., Bitcoin [6]
or Ethereum [7], anyone can join the chain by validating
transactions and/or making transactions. Since no basic trusts
assumed among arbitrary anonymous participants, a consensus
algorithm is usually leveraged to determine the lucky one who
is allowed to package transactions and create a new block in a
certain round. A typical example is the Proof of Work (PoW)
algorithm. This mechanism is inefficient and consumes much
energy in order to achieve a consensus. The wasted energy
is inevitable to build trust among strangers without any prior
experience. However, it is not usually the case that how the
real world organizations collaborate with each other. In the
scenario of most industrial applications, the participant has
basic trust with most of the other partners, so the permissioned
blockchain is proposed. In a permissioned blockchain, the
identity of each participant is known and authenticated. It
is believed that most of them would validate transactions

honestly. Especially, the malicious one can be found out
through Byzantine-like consensus algorithms. This mechanism
empowers permissioned blockchains with great potential in
various industrial applications, e.g., IoT [8], banking [9], and
voting [10].

Cloud environments provide elastic and cost-effective re-
sources for data storage, processing, and computing [11].
Nowadays, more and more enterprises are migrating their
applications onto cloud for saving cost of their operations,
continuously deploying and operating services, and increasing
efficiency of IT infrastructure management [12] [13]. Adoption
of cloud services for operating the rapid growth blockchain-
based systems has encouraged researchers to study the appli-
cability of blockchain techniques in various business environ-
ments [14]. However, the barriers of deploying a blockchain
in clouds still exist, and the performance of the blockchain
platform is often unstable due to too many influencing factors,
especially if operating them in a dynamic cloud environment.
In fact, performance is a critical factor for the enterprise to
utilize a blockchain-based solution, and it directly determines
whether the platform is applicable. Therefore, the evaluation of
the permissioned blockchain platform in cloud environments is
highly important to provide insights of operating Blockchain-
as-a-Service.

This paper aims to investigate the performance of the
permissioned blockchain in a cloud environment. The results
can be considered as a baseline to study the operation of the
permissioned blockchain based on Hyperledger Sawtooth in
cloud. The rest of the paper is organized as follows: Section
II introduces the basic knowledge of the blockchain, the ar-
chitecture of Hyperledger Sawtooth, and the Proof of Elapsed
Time (PoET) consensus algorithm. Section III delves into
the problem statement and experiment methodology. Section
IV presents the result on performance of our experimental
study. Section V describes the related work of the blockchain
performance analysis. Finally, in Section VI we conclude this
paper with discussion of our discovery.

II. BACKGROUND

A. Blockchain & Cloud

Permissionless blockchains allow anyone to participate and
maintain transparent decentralized ledgers. The blockchain
used in Bitcoin is often called the first generation, which

leverages the ledger to record all the token transferring history.
Then the balance of the certain account can be calculated
through all its related transferring history records. The record-
ing contents, however, are too simple to meet the requirements
of real-world transactions. Therefore, there comes the second-
generation permissionless blockchain, Ethereum. The most
important contribution of Ethereum is to provide the ability
of executing smart contract and recording the state changes in
blockchain transactions. Hence, for instances, one Ethereum
user, Alice, has the ability to define that only when certain
condition is met, the token is then transferred to user Bob.
This condition is public and no one has the ability to affect the
transferring process as long as the condition is met. However,
permissionless blockchains suffer the problem of low trans-
action throughput. Because most of them have to adopt the
PoW consensus algorithm, in order to achieve trustworthiness
among unauthorized participants.

On the other hand, a permissioned blockchain improves
platform throughput performance by adopting more efficient
consensus algorithms, e.g., PBFT (Practical Byzantine Fault
Tolerance). This type of blockchain requires authentication
first before the participant can join because Byzantine-like
consensus algorithms cannot usually tolerant malicious ones
more than one-third of the total participants. Anyhow, per-
missioned blockchains are more suitable for industrial ap-
plications, like IoT and big data, where there already exists
basic authentications among processing units and collaborated
organizations. Hyperledger1 is an open source community to
provide a set of solutions for permissioned-blockchain-based
distributed ledgers, including Fabric2, Iroha3 and Sawtooth4.
Furthermore, operating the permissioned blockchain platform
in clouds and offering the ledger service is a promising
solution, in order to make the blockchain platform operational
and to be exploited by specific applications. Currently, several
major public cloud providers, such as AWS (Amazon Web
Services) [15] and Azure [16], have already attempted to
provide this type of Blockchain-as-a-Service through their
cloud platforms.

B. Hyperledger Sawtooth & PoET Consensus

Hyperledger Sawtooth is a permissioned blockchain plat-
form for creating networks and distributed applications. The
main design philosophy of Hyperledger Sawtooth is to sim-
plify the development process of the blockchain application
by separating the central system from the application layer.
Enterprise users and application developers can use their own
language to specify the business rules that are appropriate for
their application without having to understand the underlying
design of the core system [17]. The overall architecture of
Hyperledger Sawtooth is shown in Fig. 1. A Sawtooth node
participating in the system mainly consists of the following

1https://www.hyperledger.org/
2https://github.com/hyperledger/fabric
3https://github.com/hyperledger/iroha
4https://github.com/hyperledger/sawtooth-core

components: a validator, a REST API, some transaction pro-
cessors, and clients. The validator is the core component of
Hyperledger Sawtooth. Its main functions include receiving
the transaction requests and forwarding them to the corre-
sponding transaction processor. In addition, the validator needs
to decide how to generate a new block based on the processing
result of the transaction processor and how to echo the result
to clients. Meanwhile, the validator also works with other
validators to keep the global state of the Sawtooth network
consistent. Transaction processors are used to encapsulate the
application logic and business models. They work similarly
to chaincodes in Hyperledger Fabric and smart contracts in
Ethereum. Finally, A REST API is a bridge between the
validator and clients.

.

.
P2P Network

Transaction
Handling

Block
Management

Consensus
State

Validator

Other Validators

.

.

REST Service
Transaction
Processors

.

.

Clients
Sawtooth node

Fig. 1. Overall architecture and key components of one Sawtooth node.

PoET consensus algorithm is first developed by Intel in
2015 based on the Intel Software Guard Extensions (SGX)
hardware, utilized as a Trusted Execution Environment (TEE).
However, it is possible to use PoET in non-Intel-based systems
using the PoET simulator with Hyperledger Sawtooth. PoET
is a lottery based consensus algorithm. The use of TEE makes
sure the selection process is carried out fairly. Intel merged this
project with Hyperledger in 2016. After that, PoET becomes
a trade mark of Hyperledger Sawtooth.

Associated with the context of Sawtooth, PoET works as
follows: 1) each validator requests for a waiting time from
the trusted module (enclave); 2) the enclave randomly assigns
a waiting time for each validator; 3) the validator with the
shortest time becomes the leader; and 4) once the waiting
time has elapsed, the validator can claim the leadership with
the verification of the allocated waiting time.

Apart from PoET, Hyperledger Sawtooth also supports
pluggable consensus algorithms like PBFT and Raft [18].
However, it should be noted that in the current version of
Sawtooth, PBFT and Raft have not been fully developed for
stable use.

III. PROBLEM STATEMENT AND EXPERIMENT DESIGN

A. Problem Statement

To perform an in-depth study of the Hyperledger Sawtooth
blockchain and benchmark the performance of Sawtooth with

different cloud service providers and Virtual Machine (VM)
instance configurations, we conducted several experiments
with AWS 5 and ExoGENI 6 testbeds. AWS is a public cloud
service platform that provides computing power, database stor-
age, content delivery and other professional features to help
businesses. On the other hand, ExoGENI is a community cloud
service platform, which provides Networked Infrastructure-as-
a-Service (NIaaS) for scientific experimentation. Through var-
ious experiments, we want to investigate following questions:

1) Performance Consistency Issue: with the same Sawtooth
transaction workload, will the platform performance
behave consistently each time with the same cloud and
VM configuration?

2) Performance Stability Issue: with the same Sawtooth
transaction workload, will the platform performance
maintain stability varied with different clouds or VM
configurations?

3) Performance Scalability Issue: with different Sawtooth
transaction workloads, will the platform performance
achieve scalability according to different configuration
parameters?

B. Experimental Design (Setup and Workloads)

All the experiments of this paper are conducted in two
clouds. In AWS, we select data centers of Virginia, California,
Frankfurt, Sydney, Sao Paulo, and Singapore. In ExoGENI
testbeds, we use following data centers: Pittsburgh Supercom-
puting Center (PIS), Oakland Scientific Facility (OSF), RCI
in Chapel Hill (RCI), West Virginia Net (WVN), University
of Alaska (UAF), and UMass Amherst (UMASS). We use
three different instance types from both cloud providers,
i.e., “XOSmal”, “XOMedium”, “XOLarge” from ExoGENI
and “t2.Small”, “t2.Medium”, “t2.Large” from AWS. Table
I shows the detailed configurations of instance type from
both clouds, all the VMs are installed with “Ubuntu 16.04”
operation system.

TABLE I
RESOURCE TYPE OFFERED BY EXOGENI AND AWS.

Cloud Provider Resource Name CPU Cores Memory DISK Size

ExoGENI XOSmall 1 1G 10G
ExoGENI XOMedium 1 3G 25G
ExoGENI XOLarge 2 6G 50G

Amazon t2.Small 1 2G 8G
Amazon t2.Medium 2 4G 8G
Amazon t2.Large 2 8G 8G

For the blockchain setup, we adopt Hyperledger Sawtooth
v1.1 as the permissioned blockchain platform, and PoET is
used as the consensus algorithm. During our experiments,
Intkey 7 was used as the benchmark application. Intkey allows
to set, increase, and decrease the value of entries stored
in a state dictionary. Hence, it can be used to generate

5https://aws.amazon.com/
6http://www.ExoGENI.net/
7https://sawtooth.hyperledger.org/docs/core/releases/latest/cli/intkey.html

comprehensive and stable transaction workloads. Finally, when
deploying the Sawtooth blockchain in the cloud, we chose to
deploy only one Sawtooth node to one cloud VM. Because
if we deploy multiple Sawtooth nodes on a single VM, there
will be congestion among these nodes. In such scenario, we
cannot clarify that the variation of performance is caused by
conflict within the nodes or by some other parameters. It is
also the reason that we choose VMs instead of containers.
Because VMs can provide much better performance isolation
than containers. In addition to VMs that have deployed the
Sawtooth blockchain (by default in this paper, the Sawtooth
platform consists of 5 nodes), we also deployed a monitor node
to collect the real-time performance log data using InfluxDB8.
Moreover, the entire process of provisioning, deploying, and
executing is automated by CloudsStorm9 [19], from which
we can prototype an experiment by assembling available
infrastructures and services, and execute them via a united
engine [20]. Finally, the performance of the blockchain is
measured by the commonly adopted metric “throughput”,
defined in equation 1, which is the rate at which transactions
are committed to the blockchain platform [21].

Throughput =
total committed transactions

total time taken in seconds
(1)

IV. EVALUATION AND EXPERIMENTAL RESULTS

A. Performance Consistency

In this section, we investigated the performance consis-
tency of the Sawtooth blockchain with a single cloud service
provider. All of the experiments were executed on AWS. By
repeatedly executing the same Sawtooth benchmark workload
multiple times, we can see the variation of the performance.
Fig. 2 shows the results of benchmarking different input
transaction rate with the same workload for 20 times. The
x-axis is the number of times for testing, and the y-axis
represents workload execution duration. Our results show that
when the input transaction rate is low, the Sawtooth platform
performs more consistently. But at the same time, it should
be noted that the workload completion time is longer at lower
rate, e.g., 3 tps (transactions per second), which means the
input rate of the workload has not reached the performance
bottleneck of the platform. When we increased the input
transaction rate from 3 tps to 15 tps, the average throughput
and variance of duration time increased a lot, as shown in
Table. II.

Another observation is that as the transaction input rate
increases, the overall duration time of the Sawtooth workload
decreases. When the transaction input rate is around 12 tps, the
current Sawtooth platform processing bottleneck is reached.
As the rate continues to increase from 12 tps to 15 tps, the

8https://www.influxdata.com/
9https://cloudsstorm.github.io/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of times tested

0

50

100

150

200

250

300

350
D

ur
at

io
n

(s
ec

)

Input Transaction Rate = 3 tps
Input Transaction Rate = 6 tps
Input Transaction Rate = 9 tps
Input Transaction Rate = 12 tps
Input Transaction Rate = 15 tps

Fig. 2. Variation in performance of different input transaction rates.

TABLE II
PERFORMANCE VARIATION OF DIFFERENT INPUT TRANSACTION RATES.

Input Tx Rate Average Throughput Average Duration Variance

3 tps 2.93 tps 305.90 sec 57.39
6 tps 5.67 tps 157.65 sec 60.13
9 tps 8.36 tps 107.50 sec 132.25

12 tps 10.24 tps 87.95 sec 172.25
15 tps 12.03 tps 76.40 sec 316.44

results of the two transaction rates show a random pattern with
a few overlaps.

We also noticed that when the input transaction rate or
workload is set to a high value, the transactions from different
nodes can be easily forked, which leads to the Sawtooth
blockchain fail to reach a consensus. This threshold value is
determined by the consensus algorithms, blockchain config-
uration settings, and network conditions of cloud providers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Number of times tested

60

80

100

120

140

160

180

200

220

D
ur

at
io

n
(s

ec
)

Number of nodes = 3
Number of nodes = 6
Number of nodes = 9
Number of nodes = 12
Number of nodes = 15

Fig. 3. Variation in performance of different number of VMs.

TABLE III
PERFORMANCE VARIATION OF DIFFERENT NUMBER OF VMS.

Number of VMs Average Throughput Average Duration Variance

3 7.75 tps 116.60 sec 16.34
6 7.43 tps 122.20 sec 20.10
9 7.47 tps 119.80 sec 10.58

12 7.46 tps 122.05 sec 22.23
15 7.40 tps 124.00 sec 26.13

Fig. 3 and Table III shows no obvious impact on perfor-
mance consistency of the Sawtooth blockchain with different
number of VM nodes. We used the same workload and
input transaction rate (9 tps) to benchmark the Sawtooth
blockchain platform performance. When the number of VM
instances changed from 3 to 15, the variance of the platform
performance did not change significantly. Actually, the PoET
consensus mechanism is especially designed for large net-
works [22] and it may not be relatively efficient for small net-
works, comparing to other algorithms, such as Raft or PBFT.
Those algorithms may achieve better performance in small
networks, but cannot maintain the performance consistency
when scaling out the participant nodes. On the contrary, Table
III indicates a trend that PoET is able to keep the performance
consistency to fit a large-scale network.

B. Performance Stability

In this experiment, we studied the stability of the Sawtooth
blockchain with the same transaction workload in different
cloud providers, data centers, and network bandwidth between
the VMs. In order to show the performance variation in
different clouds, we deployed Sawtooth blockchains in both
AWS and ExoGENI testbeds. For each cloud provider, three
types of VM specifications and six data centers that are
located geographically differently were used. Besides, the
Linux Traffic Control (TC) tool was used to configure the
bandwidth between the VMs.

Fig. 4 shows the throughput variation of Sawtooth with
different bandwidths, here we use the same workload and
input transaction rate (15 tps). In general, when the network
bandwidth is greater than 100 MB, the median of platform
throughput is around 12 tps. This indicates that platform
performance is stable irrespective of bandwidth, and there are
only a few cases where 1 or 2 outliers across different band-
widths. When the bandwidth is 100 MB, platform performance
begins to show a dropping trend. As the bandwidth drops
extremely to 1 MB, the platform performance drops to around
one-third (4 tps). From the above results, we can conclude
that the bandwidth has a certain impact on the performance
of the Sawtooth blockchain, but the Sawtooth blockchain
is not sensitive to bandwidth if the bandwidth is beyond a
certain threshold. In this case, the platform performance will
be influenced, if the bandwidth is below 100 MB.

Fig. 5 shows the performance analysis result of Sawtooth
with different VM instance configurations. Actually, when
the Sawtooth workload is small, the performance variance

 1 100 200 300 400 500 600 700 800 900 1000
Network Bandwidth (MB)

2

4

6

8

10

12

14

16
T

h
ro

u
g
h
p
u
t
(t

p
s
)

Fig. 4. Variation in performance of different network bandwidth.

XOSmall XOMedium XOLarge t2.Small t2.Medium t2.Large
VM Instance types

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (t

ps
)

Fig. 5. Variation in performance of different VM instance types.

between different VM instance is not obvious because the
number of workload does not reach the limit of the platform.
So here we tested a large workload to see the difference
between instance types. Overall, AWS outperforms ExoGENI
because it has a better VM specification (CPU, Memory, and
DISK) in a similar instance type. One observation is that as
the VM instance type changes from small to medium and
from medium to large, the average performance (throughput
median) of Sawtooth has a significant improvement, which
can be observed on both ExoGENI and EC2. Further, as the
specifications of the VM increase, the performance of the
platform is less concentrated. However, it should be noted that
this does not mean that the platform is more unstable. In fact,
when we input a huge workload, the blockchain deployed in
the cluster with small or medium VM configurations often
have forks, causing the platform fails to reach a consensus.
In this case, we can only restart the blockchain platform
and re-run the workload. But in a cluster with large VM
configurations, although the throughput is sometimes low
(small and medium configurations may have failed in this
situation), it still can finally achieve consensuses and work

normally, which proves that the configuration with larger VMs
improves the platform’s resilience.

Finally, Fig. 6 shows the performance of Sawtooth in
different data centers. Here, we used the same instance type
(“XOSmall” for ExoGENI and “t2.Small” for AWS). The
six ExoGENI data centers are located in the United States.
Among them, the performance of UAF and PIS is more stable
than others, and WVN has the highest average throughput.
We checked the resource utilization of different data centers
and found this could be an important reason for the above
phenomenon. When many customers use the same cloud
resource at the same time, the data center becomes busy
and the network condition gets worse (e.g., UMASS). On
the contrary, when the data center is relatively idle, the
performance of Sawtooth platform is better (e.g., WVN). In
the AWS section, the California rack has the highest and most
stable performance with an average throughput of around 12
tps, followed by the data centers of Frankfurt and Virginia. In
contrast, the throughput of Australia and Singapore are lower.
An interesting observation is that although Singapore has the
lowest point of all test performance, its throughput is quite
stable and maintained between 8 and 10. We also noticed that
when Sawtooth platform was first built, the performance was
extremely high and it went steady with several runs. This is
the reason why some high-performance outliers occur.

C. Performance Scalability

In this section, we investigated the impact of different
workloads on platform performance with the same cloud
virtual infrastructure configuration. We also tested the plat-
form performance variation when some parameter settings of
Sawtooth changed. Here, we changed two parameters provided
by Sawtooth: Maximum Batches Per Block (MBPB) and
the scheduler type. Batch is the atomic unit of the state
change of Sawtooth. In Sawtooth, transactions are carried out
in batches. A batch contains a number of transactions, and
when a particular transaction fails in the batch, all subsequent
transactions fail. We can customize the MBPB parameter
in Sawtooth blockchains to meet application requirements.
In addition, transactions can be scheduled in the model of
serial or parallel, which both produce deterministic results and
are completely interchangeable. The running scheduler can
schedule the next transaction based on the dependency graph
of current transactions. If there is no dependency among the
transactions, the parallel scheduler can deliver transactions to
multiple transaction processors. On the contrary, the scheduler
in serial model always delivers the transactions one by one to
the transaction processors. In this experiment, 2 transaction
processors are leveraged to perform the comparison.

Fig. 7 shows the impact on the platform performance
with different workload input transaction rates and scheduler
models. In this experiment, we used the same instance type
and fixed execution time to observe changes in platform
performance for different input transaction rates. As shown
from the figure, parallel scheduling model has overall better
throughput and platform performance than serial scheduling

PIS OSF RCI UAF UMASS WVN
ExoGENI Datacenters

(a)

6

8

10

12

14

16
Th

ro
ug

hp
ut

 (t
ps

)

Virginia California Frankfurt Sydney Singapore SãoPaulo
Amazon Datacenters

(b)

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (t
ps

)

Fig. 6. Variation in performance of different cloud providers across various data centers.

10 20 30 40 50 60 70 80 90 100
Input Transaction Rate (tps)

0

2

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (t

ps
)

Serial Scheduler
Parallel Scheduler

Fig. 7. Impact of different workloads and scheduler types on performance.

model. In fact, when changing from serial scheduler to parallel
scheduler, the maximum value of throughput has increased
from 11.68 tps to 16.37 tps, and overall throughput increased
by almost 30%. It can be observed that when the input rate
is increased from 10 tps to 100 tps, the platform throughput
first reaches the highest point and then falls. Afterward, as
the rate continues to increase, platform performance begins
to stabilize gradually. We also notice that the performance of
the serial scheduler shows a significant downward trend when
dealing with the larger transaction input rate. The reason here
is that the increased input rate has reached the upper limit
of the platform performance, and extra transactions have to
be pended or directly rejected. However, the parallel model
can achieve better performance at the same input rate, so it
is more stable to handle the workload with the large input
rate. Therefore, when some transactions are in a non-uniform
duration (e.g., realistic complex workloads), the performance
advantage in parallel model is greater than that in serial model.

Fig. 8 shows the impact of the MBPB on platform perfor-
mance. Here, the latency means the average execution duration
for each transaction. As the MBPB value increases from 10
to 200, the latency first decreases rapidly and then reaches
its threshold and tends to be stable. The result also shows
that when the MBPB value is less than a certain threshold,
the parallel model is significantly better than the serial model.
After that, the two models show a random interlaced state
because the performance bottleneck has been reached.

20 40 60 80 100 120 140 160 180 200
Maximum Batches Per Block

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

La
te

nc
y

(s
ec

)

Serial Scheduler
Parallel Scheduler

Fig. 8. Impact of different MBPB values and scheduler types on performance.

V. RELATED WORK

When operating a permissioned blockchain for a distributed
application, performance (i.e., transactions per second) is an
important factor to consider according to the application
requirements. There already some studies that focused on the
performance analysis of permissioned blockchains, either from
on the comparison between different platforms or just from
the consensus algorithms viewpoint. Among these studies, the

most used platforms are Hyperledger Fabric and Ethereum.
Nasir et al., [23] compared the performance of Hyperledger
Fabric, v0.6 and v1.0, and their result demonstrated that Hy-
perledger Fabric v1.0 is more stable than Hyperledger Fabric
v0.6 with many metrics. Rouhani et al., [24] did a performance
analysis of Ethereum and compared two popular clients, i.e.,
Geth and Parity. It turned out that in the same configuration,
Parity will perform almost 90% faster than Geth. In contrast,
Pongnumkul et al., [25] compared the performance of Hyper-
ledger Fabric and Ethereum private deployments. Their result
shows that the Hyperledger Fabric consistently outperformed
Ethereum in all evaluation metrics such as execution time,
latency and throughput. Hao et al., [26] also used Hyperledger
Fabric and Ethereum as the underlying blockchain platform,
but they were more concerned with the consensus algorithm
and the result showed that PBFT is generally better than
PoW. Furthermore, Sukhwani et al., [27] designed a model
to analysis the performance of PBFT consensus in the case of
large peers, but their work still needs more experiments.

With respect to the research that uses Hyperledger Sawtooth
as a blockchain platform, Hulea et al., [28] presented a reliable
pharmaceutical cold chain management platform based on
Hyperledger Sawtooth. Similarly, Caro et al., [29] proposed a
blockchain-based agricultural food IoT framework AgriBlock-
IoT, and deployed the framework on two blockchain platforms,
i.e., Hyperledger Sawtooth and Ethereum. They evaluated the
performance of the AgriBlockIoT framework with latency,
CPU, and network usage. But it should be noticed that
their performance analysis only stayed at a preliminary stage.
And, there is currently no papers on operating Hyperledger
Sawtooth in a dynamic cloud environment.

VI. DISCUSSION & CONCLUSION

In this paper, we presented a comprehensive performance
analysis of Hyperledger Sawtooth with PoET consensus algo-
rithm to demonstrate its performance variation in a dynamic
cloud environment. Since operating permissioned Blockchain-
as-a-Service in clouds is more complex and dynamic than local
clusters, there are more factors that affect the platform perfor-
mance. Therefore, we generally conducted our experiments
from the perspective of performance consistency, performance
stability, and performance scalability. Based on our analysis,
we have obtained the following observations according to the
above proposed questions.

Firstly, with respect to question 1, the platform performance
of Hyperledger Sawtooth in the same data center is relatively
consistent. When running the same workload for several times,
the platform throughput has some changes and fluctuates
within a small range. However, it should be noted that the input
transaction rate has a significant impact on platform perfor-
mance consistency with the same workload. We found that the
larger the input transaction rate, the smaller the consistency of
the platform performance, which means that performance will
vary significantly when running a huge workload in a short
period of time. In addition, when adjusting the number of VM
instances from 3 to 15, the blockchain performance does not

have any obvious trend. This means the Sawtooth blockchain
platform is scalable because the performance is able to keep
relatively consistent even after increasing the number of VM
instances.

Secondly, for question 2, performance stability is influenced
by the network condition of cloud providers, resource utiliza-
tion of data centers, and other factors. In our experiments, the
AWS California data center has the highest throughput. By
contrast, although Singapore has the lowest average perfor-
mance, it has the most stable performance among all tested
data centers from AWS and ExoGENI. When we adjusted the
different cluster configurations, we found that the performance
stability of Hyperledger Sawtooth is not sensitive to network
bandwidth beyond a certain threshold. By improving the VM
specifications (e.g., CPU & Memory) for a large workload,
platform performance improved significantly. However, an
interesting finding is that with an increase in specifications
of cloud VM instances, the stability of the performance de-
creases. Here, we believe that this happens because of survivor
bias. In fact, small and medium nodes often have forks and
crash with a large workload. In this case, we can only restart
and evaluate the Sawtooth blockchain again. Whereas in the
case of large VM instances, they are more stable, has higher
system resistance, and self-recovery ability.

Finally, for question 3, we found that users can optimize
the performance of Hyperledger Sawtooth by adjusting the
configuration parameters (Scheduler and MBPB). The parallel
scheduler can increase performance by around 30% when
running a series of incremental workloads in our experiments.

To the best of our knowledge, this is the first study
which focuses on the comprehensive performance analysis
of Hyperledger Sawtooth in a dynamic cloud environment.
However, it should be noted that since Hyperledger Sawtooth
is a relatively new permissioned blockchain platform, many of
its functionalities and modules are still under development and
debugging. In future work, we will analyze the performance
of different permissioned blockchain platforms in the cloud.
It is also important to compare more consensus algorithms,
more cloud platforms, and cross-cloud operations.

ACKNOWLEDGMENT

This research is funded by the EU Horizon 2020 research
and innovation program under grant agreements 825134 (AR-
TICONF project), 654182 (ENVRIPLUS project) and 824068
(ENVRIfair project).

REFERENCES

[1] F. Tian, “An agri-food supply chain traceability system
for china based on rfid & blockchain technology,” in
2016 13th international conference on service systems
and service management (ICSSSM), pp. 1–6, IEEE, 2016.

[2] S. Ølnes, “Beyond bitcoin enabling smart government us-
ing blockchain technology,” in International Conference
on Electronic Government, pp. 253–264, Springer, 2016.

[3] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and
M. Guizani, “Medshare: Trust-less medical data sharing

among cloud service providers via blockchain,” IEEE
Access, vol. 5, pp. 14757–14767, 2017.

[4] G. Chen, B. Xu, M. Lu, and N.-S. Chen, “Exploring
blockchain technology and its potential applications for
education,” Smart Learning Environments, vol. 5, no. 1,
p. 1, 2018.

[5] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda,
and V. Santamarı́a, “Blockchain and smart contracts for
insurance: Is the technology mature enough?,” Future
Internet, vol. 10, no. 2, p. 20, 2018.

[6] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic
cash system,” 2008.

[7] G. Wood, “Ethereum: A secure decentralised gener-
alised transaction ledger,” Ethereum project yellow paper,
vol. 151, pp. 1–32, 2014.

[8] M. Samaniego and R. Deters, “Blockchain as a service
for iot,” in 2016 IEEE International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 433–436, IEEE, 2016.

[9] Y. Guo and C. Liang, “Blockchain application and
outlook in the banking industry,” Financial Innovation,
vol. 2, no. 1, p. 24, 2016.

[10] A. B. Ayed, “A conceptual secure blockchain-based elec-
tronic voting system,” International Journal of Network
Security & Its Applications, vol. 9, no. 3, pp. 01–09,
2017.

[11] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and
Z. Zhao, “A blockchain based witness model for trust-
worthy cloud service level agreement enforcement,” in
IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, IEEE, 2019.

[12] K. Jeferry, G. Kousiouris, D. Kyriazis, J. Altmann,
A. Ciuffoletti, I. Maglogiannis, P. Nesi, B. Suzic, and
Z. Zhao, “Challenges emerging from future cloud appli-
cation scenarios,” Procedia Computer Science, vol. 68,
pp. 227–237, 2015.

[13] S. Koulouzis, P. Martin, H. Zhou, Y. Hu, J. Wang, T. Car-
val, B. Grenier, J. Heikkinen, C. de Laat, and Z. Zhao,
“Time-critical data management in clouds: Challenges
and a dynamic real-time infrastructure planner (drip)
solution,” Concurrency and Computation: Practice and
Experience, p. e5269, 2019.

[14] H. Zhou, C. de Laat, and Z. Zhao, “Trustworthy cloud
service level agreement enforcement with blockchain
based smart contract,” in 2018 IEEE International Con-
ference on Cloud Computing Technology and Science
(CloudCom), pp. 255–260, IEEE, 2018.

[15] Amazon Web Services (AWS), “Blockchain on aws.”
https://aws.amazon.com/blockchain/. [Online; accessed
26-Apr-2019].

[16] Microsoft Azure, “Blockchain workbench.” https://azure.
microsoft.com/en-us/features/blockchain-workbench/.
[Online; accessed 25-Apr-2019].

[17] Hyperledger Sawtooth, “Introduction.” https:
//sawtooth.hyperledger.org/docs/core/releases/latest/
introduction.html. [Online; accessed 17-Mar-2019].

[18] Hyperledger Sawtooth, “Raft documentation.” https://
sawtooth.hyperledger.org/docs/raft/nightly/master/. [On-
line; accessed 22-Mar-2019].

[19] H. Zhou, Y. Hu, J. Su, C. de Laat, and Z. Zhao,
“Cloudsstorm: An application-driven framework to en-
hance the programmability and controllability of cloud
virtual infrastructures,” in International Conference on
Cloud Computing, pp. 265–280, Springer, 2018.

[20] Z. Zhao, A. Belloum, C. de Laat, P. Adriaans, and
B. Hertzberger, “Distributed execution of aggregated
multi domain workflows using an agent framework,”
in 2007 IEEE Congress on Services (Services 2007),
pp. 183–190, IEEE, 2007.

[21] Hyperledger Performance and Scale Working Group,
“Hyperledger blockchain performance metrics white pa-
per.” https://www.hyperledger.org/resources/publications/
blockchain-performance-metrics. [Online; accessed 28-
Mar-2019].

[22] Hyperledger Sawtooth, “Frequently-asked questions.”
https://sawtooth.hyperledger.org/faq/. [Online; accessed
22-Mar-2019].

[23] Q. Nasir, I. A. Qasse, M. Abu Talib, and A. B. Nassif,
“Performance analysis of hyperledger fabric platforms,”
Security and Communication Networks, vol. 2018, 2018.

[24] S. Rouhani and R. Deters, “Performance analysis of
ethereum transactions in private blockchain,” in 2017 8th
IEEE International Conference on Software Engineering
and Service Science (ICSESS), pp. 70–74, IEEE, 2017.

[25] S. Pongnumkul, C. Siripanpornchana, and S. Tha-
jchayapong, “Performance analysis of private blockchain
platforms in varying workloads,” in 2017 26th Inter-
national Conference on Computer Communication and
Networks (ICCCN), pp. 1–6, IEEE, 2017.

[26] Y. Hao, Y. Li, X. Dong, L. Fang, and P. Chen, “Per-
formance analysis of consensus algorithm in private
blockchain,” in 2018 IEEE Intelligent Vehicles Sympo-
sium (IV), pp. 280–285, IEEE, 2018.

[27] H. Sukhwani, J. M. Martı́nez, X. Chang, K. S. Trivedi,
and A. Rindos, “Performance modeling of pbft consensus
process for permissioned blockchain network (hyper-
ledger fabric),” in 2017 IEEE 36th Symposium on Re-
liable Distributed Systems (SRDS), pp. 253–255, IEEE,
2017.

[28] M. Hulea, O. Rosu, R. Miron, and A. Aştilean, “Pharma-
ceutical cold chain management: Platform based on a dis-
tributed ledger,” in 2018 IEEE International Conference
on Automation, Quality and Testing, Robotics (AQTR),
pp. 1–6, IEEE, 2018.

[29] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda,
“Blockchain-based traceability in agri-food supply chain
management: A practical implementation,” in 2018 IoT
Vertical and Topical Summit on Agriculture-Tuscany
(IOT Tuscany), pp. 1–4, IEEE, 2018.

