Large distributed virtual infrastructure partitioning
and provisioning across providers

Huan Zhou, Zeshun Shi, Yang Huf, Pieter DonkersT,Andrey AfanaserT, Spiros KoulouzisT,
Arie Taal®, Alexandre Ulisses’ and Zhiming Zhao'*
TSystem and Networking Lab, University of Amsterdam, Amsterdam, the Netherlands
IMOG technologies, Portugal
Email: {h.zhou, z.shi2, y.hu, a.taal} @uva.nl
pieterdonkers_3 @hotmail.com, alexandre.ulisses @mog-technologies.com,
*z.zhao@uva.nl

Abstract—Cloud environments provide elastic capacity and
flexible pay-as-you-go business model, and can significantly
reduce the operational cost for resource-intensive applications
like big data, deep learning and the Internet of Things (IoT).
The virtual infrastructure, including networked virtual machines,
for large scale applications, is often distributed, and involve
resources not only from data centers, but also distributed Fog
and Edge nodes. It is not always feasible to use resources all
from a single provider. The provisioning of a complex virtual
infrastructure requires dynamic partitioning of the topology
and seamless configuration of the network, to meet the latency
constraints of geolocation devices, to optimize the price and
Service Level Agreements of the application. In many cases,
the partition solution of a virtual infrastructure cannot be done
in the design phase and has to consider the actual resource
availability of providers at the provisioning stage. This paper
presents a virtual infrastructure partitioning and provisioning
solution with consideration of the QoS and resource constraints
from the application.

Keywords—Cloud computing; virtual infrastructure; graph
partitioning; Fog and Edge

I. INTRODUCTION

Cloud computing paradigm has been widely used in many
fields for offering elastic resources, e.g., enhancing the com-
puting capacity of robotics [1], storing and streaming Virtual
Reality content from the Cloud [2] annotating named entities
with crowdsourcing [3], and natural language processing for
distributed machine learning [4]. The virtualisation technology
in Cloud abstracts underlying system resources and operate
them concurrently for multiple independent applications in an
isolated way. Typical virtualisation techniques include hyper-
visors (e.g., KVM, XEN), containers (e.g., Docker, KATA,
LXD) and unikernels (e.g., Unikraft).

The virtualized infrastructures in Cloud, e.g., customized
virtual machines (VM), and application definable network
topology and bandwidth connecting those VMs, are important
services (namely Infrastructure-as-a-Service) for deploying
and operating applications. In many cases, distributed appli-
cations, such as workflows of scientific computing tasks [5],
[6], service chains for big data analytics [7] and early warning
based on remote sensing [8], often require a sizeable virtual
infrastructure. During the development and operation lifecycle
of a Cloud application, the customization and provisioning of

a suitable virtual infrastructure is an important step. Unlike
traditional physical infrastructure, the virtual infrastructures
provide developers with flexibility for planning not only
capacity and type of the VM, but also their locations, i.e., the
chosen clouds and data centers used [9]. Moreover, provided
network resources can also be customized [10], [11].

In many cases, the virtual infrastructure of an application
often has to be provisioned across different data centers or
providers. There are several reasons for it. First, when the
application involves geo-location bounded Edge or Fog nodes,
which require Cloud servers in the virtual infrastructure to
meet required latency, e.g., disaster warning based on large
distributed sensor networks [8]. Second, when a data center
meets its resource limit or performance failure, the application
has to migrate part or the entire virtual resources to different
data centers or providers, e.g., for the real-time online gaming,
extra servers in different data centers are often employed
to assure high quality of experiences [12]. Last but least,
the resource budget energy efficiency and diverse Service
Level Agreement (SLA) may also require careful selection
and combination of the infrastructure resources from different
providers or data centers, e.g., migrating tasks among regions
based on time zones can optimize the costs for energy and
resources [13].

The Cloud providers use the IaaS model for provisioning
virtual infrastructures. For example, AWS CloudFormation!,
provided by the Amazon Web Service Cloud, is a useful tool
to create and manage AWS resources, supporting automated
provisioning and update. Nevertheless, it mainly supports for
orchestrating web applications. It is a vendor lock-in solution,
which can only be used on Amazon EC2 infrastructure. There
are also tools to manage the infrastructures from different
Clouds, avoiding vendor lock-in, such as Libcloud?, jclouds?
and fog*. However, these tools focus on the provisioning
and manipulation on each individual VM instead of the
entire infrastructure topology. In comparison, there are some
environment-centric [14] tools to help developers orchestrate

Uhttps://aws.amazon.com/es/
Zhttp://libcloud.apache.org/
3https://jclouds.apache.org/
“http://fog.io/

their applications, which include Puppet’, Chef®, Ansible’,
JuJu® and Nimbus [15]. Those tools assume the existence
of underlying virtual infrastructure which has already been
provisioned. Some of them leverage the concept of managing
“Infrastructure as Code” [16] during application lifecycle.
However, the effective solution to handle the dynamic par-
titioning of large infrastructure has not been included in those
tools. To tack this challenge, we developed a provisioning
agent in the context of EU H2020 SWITCH® and ARTICONF
project'®, to handle this problem.

The paper is structured as follows. First we will analyse
the requirements for sizable virtual infrastructure provisioning
from some use cases, and then introduce the software solution
called Co-located and Orchestrated Network Fabric (CONF)
we are developing in the EU project ARTICONF. After that,
the implementation details and a case demonstration will be
discussed.

II. BACKGROUND

We shall first take a look at the requirements for including
virtual infrastructure in the application development lifecycle,
and then review the key technologies for partitioning virtual
infrastructure when multiple data centers or providers are
involved.

A. Problem context

During the Cloud application lifecycle, the virtual infras-
tructure is programmed, optimized and provisioned together
with the application logic. The infrastructure provisioning
is a crucial step for continuous application integration and
deployment. We can see this from a number of application
scenarios collected from the recent EU project SWITCH!! and
ARTICONF'? authors are involved.

Example 1: Collaborative real-time business collaboration
platform. Real-time communication plays an increasingly im-
portant role for many business applications, video conferences,
cooperative working environment, and remote diagnosis. How-
ever, renting very high bandwidth or special connection links
is not affordable for many business users in particular when
the number of peers increases so the resources needed also
increase considerably on the server side, where all the video
and audio data mixing is done. An ideal real-time business
collaboration platform should be provisioned and controlled
based on the location of the users, the number of users,
quality requirements for the expected interactions needed by
the application.

Shttps:/puppet.com/

Shttps://www.chef.io/

https://www.ansible.com/

8https://jujucharms.com/

9Furopean Horizon 2020 project, Software ~ Workbench for
Interactive, Time Critical and Highly self-adaptive cloud applications,
http://www.switchproject.eu/.

10European Horizon 2020 project, smART soclal media eCOsytstem in a
blockchaiN Federated environment, https://articonf.eu/.

http://www.switchproject.eu

2http://www.articonf.eu

Example 2: The elastic disaster early warning system for
natural disasters is an important challenge for many countries.
An early warning system often collects data from real time
sensors, processes the information using tools such as predic-
tive simulation, and provides warning services or interactive
facilities for the public to obtain more information. The
implementation of this kind of system faces several challenges,
as the system must: 1) collect and process the sensor data
in nearly real time, 2) detect and respond to urgent events
very rapidly (i.e. this is a time-critical scenario), 3) predict
the potential increase of load on the warning system when
public users (customers) increase, 4) operate reliably and
robustly throughout its life time, and 5) be scalable when the
deployment of sensors increases.

Example 3: Crowdsourcing based live event acquisition and
broadcasting. In a live event, like a football match or a music
concert, the broadcaster or production company has to deploy
a large number of personnel and many items of equipment
fully to cover it. Multiple cameras are placed around the event
venue (stadium, forum) to cover all the different angles that the
director considers relevant. Besides the cameras connected to
an OB (outdoor broadcast), the media created by the event
participants, or public are also an important input for the
broadcasting company. Moreover, those users are in general
distributed at different locations and produce different types of
media, e.g., photos, video or audio. It is important to virtualize
the basic components that an OB van may have (typically the
video switchers) to the Cloud, and allow directors to interact
with different video sources in the station via the Cloud
environment instead of physically staying in the OB van. To
realise this scenario, not only does the network for delivering
different video streams need to be of high quality, but also
the connectivity needs to be fully reconfigurable, based on
the broadcast program scenarios. In the meantime, the video
material should also be archived and streamed to users who
want to watch it after the event.

From those use cases, we can clearly see the need for
i) customizing a distributed virtual infrastructure, e.g., for
connecting and processing data from distributed sensors in
disaster early warning, or mobiles which contributing media

Define QoS
Define constraints

profile
Application
Development

Defining contral API,
monitaring attributes

System

Runtime

Adaptation via
Wi contro
agents

Fig. 1. Virtual infrastructure in the application lifecycle.

for crowdsourcing, ii) multiple data centers or provides, e.g.,
setting up a dynamic business platform for collaborative
video processing among distributed teams, and iii) the flexible
virtual infrastructure adaptation at runtime, e.g., scaling virtual
infrastructure resources when the number of users increases,
or migrating loads when network service quality drops.

B. Application development and operation lifecycle

During the application lifecycle, we can highlight infras-
tructure customization, provisioning and runtime adaptation
as three key overlapped cycles of application development,
provisioning and runtime during the application development
and operation (DevOps) lifecycle. (see Fig. 1).

In the application development phase, the virtual infrastruc-
ture will be customized and planned based on the application
requirements (components, dependencies among components,
quality constraints for services or user experiences, locations,
and resource budget).

A common description for the logic of a cloud application
and its underlying virtual infrastructure enables the application
developers, infrastructure capacity planner and application
developers share a consistent view on the application sys-
tem. It breaks the communication boundaries among different
development teams, and promotes continuous development,
integration and deployment in the entire development lifecycle.
A formal description language is required to allow application
developers to model not only functional requirements, e.g.,
application logic and functionality, but also non-functional
aspects, e.g., quality of services and user experiences. Virtual
infrastructures should include not only services from Cloud
data centers, but also micro data centers, e.g., Fog nodes.
Typical modelling languages include TOSCA, CloudDSL,
ClouddNaas and GENTL [17].

In the virtual infrastructure provision phase, the customized
virtual infrastructure will be provisioned in the Cloud en-
vironments, based on the resource budget, selection of the
providers. In this phase, the application components being
deployed on the virtual infrastructure. When an application
requires infrastructure across Cloud, Edge and Fog, different
provisioning strategies and interfaces will be considered.

Finally, the application will start its execution, and the
virtual infrastructure will be monitored and diagnosed, and
can be controlled at runtime.

III. CO-LOCATED AND ORCHESTRATED NETWORK FABRIC
(CONF)

Co-located and Orchestrated Network Fabric (CONF) is a
system being developed in the EU ARTICONF project to pro-
vides adaptive infrastructure provisioning for distributed Cloud
applications over an orchestrated infrastructure. It seamlessly
integrates with the Cloud edge infrastructure, able to intelli-
gently provision services based on abstract application service
requirements, operational conditions at the infrastructure level,
and time-critical event triggering.

Manager

Monitor private Cloud

Fig. 2. The basic architecture of the CONF.

A. The basic architecture

As Fig. 2 depicts, the CONF software system provides
a suite of micro-services that collectively perform the pro-
visioning, monitoring and adaptation of customized virtual
infrastructures for distributed applications. It seamlessly inte-
grates with the cloud edge infrastructure, able to intelligently
provision services based on abstract application service re-
quirements, operational conditions at the infrastructure level,
and time-critical event triggering. Henceforth, we describe
the research work related to the concepts and methods of
CONF components in the ARTICONF project, as well as the
corresponding major opportunities and challenges.

The system architecture of CONF is shown in Fig 2. In
general, CONF will adopt a microservice architecture and will
be composed of the following components:

The Application-infrastructure Modelling language en-
ables different roles of developers to communicate across
the phases of application development, infrastructure plan-
ning, provisioning, deployment, and runtime monitoring. In
the design phase, the developer can specify the initial QoS
requirements for virtual infrastructure, and constraints between
application components and the infrastructure, via a graph-
ical editor [18]. The output can then be used for planning
the infrastructure topology and the capacity, for provisioning
the infrastructure in different providers, and for deploying
application components over the infrastructure. At each phase,
specific information will then be updated. For instance, during
the provisioning phase, the public IP addresses will be updated
in the description.

Manager. This component is implemented as a REST web
service that allows CONF functions to be invoked by external
clients. Each request is directed to the appropriate compo-
nent by the manager, which is responsible for coordinating
the individual components. Although the service of a single
component can be called directly, it is common to perform
all operations through the manager to simplify the interaction
between subsystems.

Message broker. This component facilitates communication
between the manager and the different components. The
message brokering is an architectural pattern for message

validation, transformation, and routing, helping compose asyn-
chronous, loosely coupled applications by providing transpar-
ent communication to independent components.

Metrics Database. This database is used by application and
infrastructure agents to store predefined metrics whether they
are system level metrics or application level metrics. Here we
plan to use a time series database because it is capable of
collecting and storing large amounts of data sorted by time.
(such as Cassandra or InfluxDB which are both distributed
storage systems for managing very large amounts of structured
data).

Application Specifications. Each application will store
and if necessary, modify its specifications (e.g., QoS, QoE,
etc.). Here we need to define QoS/QoE attributes for social
media application to check if they are satisfied for the given
application and if there have some potential bottlenecks.

Controller. This is a dynamic controller that will swiftly
take decisions for several aspects of social media applications
or their infrastructure. These decisions shall be executed via
either the provisioner or the deployer depending on the action
that is needed.

Planner. This component encapsulates the infrastructure
planning functionality. The planner will use several state-of-
the-art scheduling and planning algorithms to produce efficient
infrastructure topologies based on application requirements
and constraints and will select optimal cost-effective virtual
machines. Given the application description, it will try to
generate the best infrastructure plan to host the application.

Provisioner. The infrastructure provisioner will automate
the provisioning of infrastructure plans provided by the plan-
ner onto underlying infrastructure services. The provisioner
can decompose the infrastructure description and provision
it across multiple clouds, Edge or Fog infrastructure with
transparent network configuration. Given the application and
infrastructure description, the infrastructure provisioner will
enable the SLA Negotiator to obtain the SLA contract required
to ensure the QoS of the social media applications.

Deployer. The deployer installs application components
onto provisioned infrastructure. The deployer is able to sched-
ule based on network bottlenecks and maximize the satisfac-
tion of deployment deadlines. It is also responsible for de-
ploying supporting services, notably the execution and control
agents needed to coordinate and run the application, and an
instance system required to monitor and control the application
and its underlying infrastructure autonomously.

B. Application-infrastructure description

The CONF uses TOSCA as the basic description language
for application and virtual infrastructure. TOSCA describes
the infrastructure/topology, the components, the relationships
between them and the processes of composite cloud applica-
tions.

A description is divided into two parts, the topology descrip-
tion and the management plans. Topology Description defines
the infrastructure of the application. It represent the infrastruc-
ture by using nodes and relations, which types are unspecified.

For example, nodes can be hardware like machines but also
software like applications and more. And connections can be
connections, like database connections, or dependencies, like
libraries, etc. Management Plans resemble a series of actions
that should be taken for nodes. They can be triggered on
certain moments in a node’s lifetime, like configuring depen-
dencies on creation of a virtual machine. The management
plans are mostly comparable with configuration management
tools like Ansible. It should be noted that these plans are
imperative in contrary to the topology being declarative.

C. Privosioner: virtual infrastructure partitioning and provi-
sion

The infrastructure provisioner uses a graph partitioning
component to dynamically map the virtual infrastructure
onto the selected data centers (can be possibly from differ-
ent providers), and then transparently configure the network
among the subgraph of the infrastructure after each of them
has been provisioned.

The CONF engine interprets the description, and

1) Check the resource availability of the providers, and
issue the Service Level Agreement with individual
provider;

2) Partition the virtual infrastructure, and create the sub-
graph of virtual infrastructure (called sub-virtual infras-
tructure);

3) Invoke the provisioning API of individual provider to
provision corresponding sub-virtual infrastructure;

4) Configure the network of among different sub-virtual
infrastructures, so that they still remain the connectivity
as developer designed.

D. Infrastructure partitioning

Application’s virtual infrastructure can be represented as
a graph, where vertices are nodes and edges are link lines
exchanging data. Represented graph need to be partitioned
according to the developer requirements. This leads to well-
known graph partitioning problem. Recent systematic reviews
show that the Graph Partitioning Problem (GPP) is in focus of
many researchers [26]. Due to the high demand in science and
IT industry this field of mathematics is in active development
where different graph partitioning algorithms exist.

Over the past two decades, a multiple graph partitioning
tools were developed as open and closed source. Buluc et
al., [26] summarises and discusses different graph partitioning
software tools.

Table I shows a brief summary of the graph partitioning
tools, in which the METIS is available as a package in Debian
Stretch repository'®>. METIS supports multilevel recursive-
bisection and multilevel k-way partitioning schemes. It can
be used for both edge cutting and node clustering. METIS
uses a classical Fiduccia-Mattheyses (fm) algorithm with op-
tional One-sided node-based (seplsided), and Two-sided node-
based (sep2sided) refinement components. Those components

Bhttps://packages.debian.org/stretch/metis

TABLE I
COMPARISON OF PROPOSED GRAPH PARTITIONING TOOLS AND DEFINED REQUIREMENTS

Tool License Latest stable release Programming language Cross-Platform Python wrapper
Chaco [19] GPL v2.0, 1998 ANSI C No (Unix-like) No
KaHIP [20] GPLv2 v2.00, 2017 C++ No (Unix-like) Yes

KaHyPar-CA [21] GPLv3, 2017 C++ Yes(Unix-like, Windows) No
METIS [22] Apache 2.0 v5.1.0, 2013 ANSI C Yes(Unix-like, Windows) Yes (multiple)
Mondriaan [23] LGPL v4.2, 2017 C No (Unix-like) No
PaToH [24] BSD v3.2, 2011 C No (Unix-like) No
Zoltan [25] LGPL v3.8, 2016 C No (Unix-like) No

developed by a team behind METIS. Additionally, a Greedy
algorithm can be used too.

E. Network configuration

At different phases, the network information in the virtual
infrastructure gets updated. In the design phase, the developer
can only specify the private IP address and the logical topol-
ogy among virtual machines. The partitioning of the virtual
infrastructure will only manipulate the representation of the
infrastructure graph, but not changing the network logical
topology designed by the developer. After the provisioning
of each sub-virtual infrastructure, the specific (public) IP
addresses of each nodes will be assigned by the provider.
Finally, the provisioner will re-connected those different sub-
virtual infrastructures, and make them connected as originally
designed by the developer.

Currently, two approaches are supported by the provisioner:
1) via the network address translation (NAT), and 2) tunnels. In
Fig. 3, VM1 and VM2 are two VMs designed by the developer
and located in two different data centers. Without CONF,
they can only communicate with each other using public IP
addresses, such as ul P, and ul P,. However, theses addresses
are determined by the Cloud provider and therefore cannot
be designed by the developer. CONF provides following two
ways to enable VM1 and VM2 to communicate with following
two private IP addresses, rIP;, and rIP,, which can be
designed and customised by the application developer.

Public

Data Center A Data Center B
Network
[Dst: rip, | [Dst: utp, | [Dstup, | | [Dstrp, | [Dst: 1P,]
ntermal | VM1 [srecrtp | [y | Csrecntp, | [“srecutp, | [srerute | [ymp | CsrecrP | vz el
AP—>/1p,| P> |ulP, —> up,| —>/p| APT>/1P,| nterna

linkA

N linkB
ethx ethl cthl eth0 ‘

linkX ‘ eth0 ethl ethl ethx

a. Network configuration via NAT proxy.

Public
Network

Data Center B

Dst: rIP,

Sre: #1P,

e

VM2

internal
/1P,

ethl ethx

b. Network configuration via tunnels.

Fig. 3. The network configuration among sub-virtual infrastructures.

IV. CASE STUDIES AND PERFORMANCE
CHARACTERISTICS

The software solution is developed in the context of EU
SWITCH and ARTICONF project. It is used in a number of
use cases. In this section, we will pick one case of crowd
journalism to explain how CONF will work for the case.

The software solution is developed in the context of EU
SWITCH and ARTICONF project. It is used in a number of
use cases. In this section, we will pick one case of crowd
journalism to explain how CONF will work for the case.

A. Use case

The concept of crowd journalism (also known as citizen
journalism and crowdsourced journalism) has gained momen-
tum in 2004 following the Indian Ocean tsunami, in which
users in the location used their mobile phones to create the
news story. Since then, this concept has become increasingly
relevant in the discussion about the current state and future
of journalism as a collaborative model. With the proliferation
of news-oriented channels (traditional and online) and the
increase in standard smartphone video quality, it is common
for these channels to use citizen’s content as they are usually
the first to arrive to breaking news locations (e.g. car crashes,
fires, earthquakes) and the first to capture relevant videos
about the incident. The first broadcasting companies to have
access to a given news are the ones that usually have the
highest audience and, therefore, generate the highest revenues
for the media publisher. At the same time, for example, in
the case of an explosion in a chemical factory, it is much
more important to inform the citizens and the community
as whole as soon as possible, even by using lower quality
videos than to wait for professionals to produce high-quality
videos later on. As timing is crucial, it is necessary to provide
tools that promote the crowd journalist, meaning the possibility
to watch the different perspectives of a breaking news event
through the eyes of the ones closest to it. At the same time,
advances in post-processing tools and the spread of social
media platforms have created an environment susceptible to
the spread of rumours and fake news. The ease in which fake
information spreads in electronic networks requires reputable
news outlets that carefully verify third-party content before
publishing it.

CONF will make the necessary provisions to transform the
end-user smartphones into smart objects that capture content
upon request in a wireless network facility and a scalable

Live Video Capture Live Multi Visvallzation and Classification VOD Purchase

ofolo

professional
Repates

e T Y——

Fig. 4. Crowd journalism with news verification.

Cloud edge environment, dynamically enabling community
crowd journalism and non-linear storytelling in breaking and
developing news through collaborative co-creation of content.
ARTICONF will make the necessary provisions to guarantee
the QoS (e.g. bandwidth, latency) in the deployment and
execution of the application, so that citizens at a breaking
news location will have the necessary resources to transmit
video streams through a nearby Cloud edge hosting resource
to the media producer (e.g. journalist, director, producer). The
producer selects a particular user, previews the associated
active feeds, and live edits the received stream. To verify
and guarantee the veracity of the content for a given piece
of breaking news, the related social media feeds including
crowd-generated content and images are matched.

B. Graph partitioning

The partitioning algorithms provided by METIS is wrapped
and integrated in the provisioning agent. With different graph
complexity, the partitioning performance is shown in Fig. 6.
A graph partitioning elapsed time which takes less then 10
millisecond considered as a real-time partitioning.

e There are three different size (10, 100, 1000 nodes)
regular graphs in degree of 3 were generated. Those
graphs represent different scenarios.

« Partitioning done using a balanced mode with edge-cuts
minimizing. It is suitable for the scenario that we want
to balance the VM distribution in different data centers
and minimise the communication cost at the same time.

All experiments were conducted on the physical machine
with Ubuntu Server 16.04.3. Fig. 5 shows experiment of three
random undirected graphs of different sizes. Table II represents
characteristics of those graphs. Each of this graph represent a
different situation.

TABLE I
GRAPHS CHARACTERISTICS USED DURING EXPERIMENTS

Id Nodes Edges Maximum Degree
1 10 15 3

2 100 150 3

3 1000 1500 3

Random regular weighted graph.
10 nodes and 15 edges

3

nsisting of nodes (n)

partition (p) cor

p=0n=3

Random regular weighted graph.
100 nodes and 150 edges.

consisting of nodes (n)

partition (p)

p=0n=34

Random regular weighted graph.
1000 nodes and 1500 edges

p=2n=323

sisting of nodes (n)

p=1n=342

partition (p) cons

Fig. 5. Graph partitioning performance with three graph sizes: 10, 100 and
1000 nodes.

Further analysis on characterizing algorithms for specific
virtual infrastructure topology and QoS constraints is still on-

going.
V. SUMMARY

A. Discussion and related work

Virtual infrastructure optimization is an important step in
the lifecycle of Cloud application development and operation.
For the application with critical constraints on time or system
performance, virtual infrastructure and network aspects is
crucial to be included in the optimization loop. In the current
Cloud DevOps frameworks, Cloud resource optimization is
often treated as part of the capacity planning, and mainly for
the single provider. However, in this paper we argued that
there are situations we will have to consider the distribution
of provisioning across different data centers.

There are many cloud orchestration tools currently in the
industry. Orchestration tools like Terraform'* also allow multi

https://www.terraform.io

cloud orchestration, in comparison to orchestration tools devel-
oped by cloud providers. All of these tools have no integrated
planner and partitioner. It requires the user to specify exactly
what they want with what provider. In contrast our tool only
requires the user to specify what resources are required and
our tool will choose where to place them. Their language also
is not fully cloud agnostic, declaring an instance for AWS or
Azure will require different code.

A graph partition problem (GPP) is a well-known non-
deterministic polynomial-time (NP-hard) complexity problem.
There are many graph partition existing algorithms and some
of them are implemented in software tools [26]. This research
is focusing on investigating literature proposed constraints
provided from developer, application and data center per-
spective in relation to virtual infrastructure. During research
a partitioning METIS as a software tool was selected. A
prototype based on Python wrapper of tool was invented in
order to measure graph partitioning elapsed time of each
implemented algorithm. During experiment was used a 10, 100
and 1000 nodes graphs of 3 degree each with 15, 150 and 1500
edge retrospectively. A Fiduccia-Mattheyse algorithm with
One-sided node-based refinement perform better than other
algorithms for all types of defined graphs, but not significantly
compare to two-sided node-based refinement. However, it was
observed that this combination is more computational intensive
compare to Greedy algorithm or even classical Fiduccia-
Mattheyse.

B. Conclusions

From the discussion, we can conclude that large distributed
virtual infrastructure require flexible provision solution for
handling effective mapping between application requirements
and the diverse providers. The provisioning agent discussed in
the paper, enable the CONF handle the transparent network
configuration for sub-virtual infrastructures when they are
partitioned and provisioned across data centers.

C. Future work

As the next step, careful profiling of the graph partitioning
algorithm, with characteristics of non-functional infrastructure
constrains like fault tolerance, response time and energy effi-
ciency, will be studied.

ACKNOWLEDGMENT

This work was supported by the European Unions Horizon
2020 research and innovation program under grant agreements
No. 643963 (SWITCH project), No. 654182 (ENVRIZLUS
project), No. 824068 (ENVRI-FAIR project) and No. 825134
(ARTICONEF project).

REFERENCES

[1] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos, “Cloud
robotics: Current status and open issues,” IEEE Access, vol. 4, pp. 2797—
2807, 2016.

[2] P. Vecchio, F. Mele, L. T. De Paolis, I. Epicoco, M. Mancini, and
G. Aloisio, “Cloud computing and augmented reality for cultural her-
itage,” in International Conference on Augmented and Virtual Reality.
Springer, 2015, pp. 51-60.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

T. Finin, W. Murnane, A. Karandikar, N. Keller, J. Martineau, and
M. Dredze, “Annotating named entities in twitter data with crowd-
sourcing,” in Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s Mechanical Turk.
Association for Computational Linguistics, 2010, pp. 80-88.

L. Niu, X. Dai, J. Zhang, and J. Chen, “Topic2vec: learning distributed
representations of topics,” in 2015 International conference on asian
language processing (IALP). 1EEE, 2015, pp. 193-196.

Z. Zhao, A. Belloum, C. De Laat, P. Adriaans, and B. Hertzberger,
“Using jade agent framework to prototype an e-science workflow bus,”
in Seventh IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’07). 1EEE, 2007, pp. 655-660.

Z. Zhao, A. Belloum, C. de Laat, P. Adriaans, and B. Hertzberger,
“Distributed execution of aggregated multi domain workflows using an
agent framework,” in 2007 IEEE Congress on Services (Services 2007),
July 2007, pp. 183-190.

R. Mork, P. Martin, and Z. Zhao, “Contemporary challenges for data-
intensive scientific workflow management systems,” in Proceedings of
the 10th Workshop on Workflows in Support of Large-Scale Science.
ACM, 2015, p. 4.

H. Zhou, A. Taal, S. Koulouzis, J. Wang, Y. Hu, G. Suciu, V. Poenaru,
C. de Laat, and Z. Zhao, “Dynamic real-time infrastructure planning
and deployment for disaster early warning systems,” in International
Conference on Computational Science. Springer, 2018, pp. 644-654.

H. Ziafat and S. M. Babamir, “Optimal selection of vms for resource
task scheduling in geographically distributed clouds using fuzzy c-mean
and molp,” Software: Practice and Experience, 2018.

H. Zhou, J. Wang, Y. Hu, J. Su, P. Martin, C. De Laat, and Z. Zhao,
“Fast resource co-provisioning for time critical applications based on
networked infrastructures,” in Cloud Computing (CLOUD), IEEE Inter-
national Conference on, 2016, pp. 802-805.

S. Koulouzis, A. S. Belloum, M. T. Bubak, Z. Zhao, M. Zivkovié,
and C. T. de Laat, “SDN-aware federation of distributed data,”
Future Generation Computer Systems, vol. 56, pp. 64-76, Mar.
2016. [Online]. Available: https:/linkinghub.elsevier.com/retrieve/pii/
S0167739X1500312X

W. Cai, F Chi, X. Wang, and V. C. Leung, “Toward multiplayer
cooperative cloud gaming,” IEEE Cloud Computing, vol. 5, no. 5, pp.
70-80, 2018.

S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, “Mon-
itoring self-adaptive applications within edge computing frameworks: A
state-of-the-art review,” Journal of Systems and Software, vol. 136, pp.
19-38, 2018.

J. Wettinger, U. Breitenbiicher, O. Kopp, and F. Leymann, “Streamlining
devops automation for cloud applications using tosca as standardized
metamodel,” FGCS, vol. 56, pp. 317-332, 2016.

K. Keahey and T. Freeman, “Contextualization: Providing one-click
virtual clusters,” in eScience’08. IEEE Fourth International Conference
on, 2008, pp. 301-308.

M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,
“Devops: introducing infrastructure-as-code,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C). IEEE, 2017, pp. 497-498.

A. Bergmayr, U. Breitenbiicher, N. Ferry, A. Rossini, A. Solberg,
M. Wimmer, G. Kappel, and F. Leymann, “A systematic review of
cloud modeling languages,” ACM Comput. Surv., vol. 51, no. 1, pp.
22:1-22:38, Feb. 2018. [Online]. Available: http://doi.acm.org/10.1145/
3150227

P. gtefanié, M. Cigale, A. C. Jones, L. Knight, I. Taylor, C. Istrate,
G. Suciu, A. Ulisses, V. Stankovski, S. Taherizadeh, G. F. Salado,
S. Koulouzis, P. Martin, and Z. Zhao, “SWITCH workbench: A
novel approach for the development and deployment of time-critical
microservice-based cloud-native applications,” Future Generation Com-
puter Systems, p. S0167739X1831094X, Apr. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X1831094X

B. H. R. Leland and B. Hendrickson, “The chaco users guide: version
2.0,” Technical report, Tech. Rep. SAND94-2692, Sandia National Labs,
Albuquerque, NM, Tech. Rep., 1995.

P. Sanders and C. Schulz, “Think locally, act globally: Highly balanced
graph partitioning,” in International Symposium on Experimental Algo-
rithms. ~ Springer, 2013, pp. 164-175.

T. Heuer and S. Schlag, “Improving coarsening schemes for hypergraph
partitioning by exploiting community structure,” in /6th International

[22]

(23]

[24]

[25]

[26]

Symposium on Experimental Algorithms (SEA 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” in
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. 1EEE, 2013, pp. 225-236.

D. M. Pelt and R. H. Bisseling, “A medium-grain method for fast
2d bipartitioning of sparse matrices,” in 2014 IEEE 28th International
Parallel and Distributed Processing Symposium. 1EEE, 2014, pp. 529—
539.

U. V. Catalyiirek, K. Kaya, and B. Ucar, “Integrated data placement and
task assignment for scientific workflows in clouds,” in Proceedings of the
fourth international workshop on Data-intensive distributed computing.
ACM, 2011, pp. 45-54.

K. D. Devine, E. G. Boman, L. A. Riesen, U. V. Catalyurek, and
C. Chevalier, “Getting started with zoltan: A short tutorial,” in Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, 2009.

A. Bulug, H. Meyerhenke, 1. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Algorithm Engineering. Springer,
2016, pp. 117-158.

