
Learning Workflow Scheduling on Multi-Resource
Clusters

Yang Hu∗, Cees de Laat∗, Zhiming Zhao∗
Informatics Institute, University of Amsterdam, The Netherlands

Email: {y.hu, delaat, z.zhao}@uva.nl

Abstract—Workflow scheduling is one of the key issues in
the management of workflow execution. Typically, a workflow
application can be modeled as a Directed-Acyclic Graph (DAG).
In this paper, we present GoDAG, an approach that can learn
to well schedule workflows on multi-resource clusters. GoDAG
directly learns the scheduling policy from experience through
deep reinforcement learning. In order to adapt deep reinforce-
ment learning methods, we propose a novel state representation,
a practical action space and a corresponding reward definition
for workflow scheduling problem. We implement a GoDAG
prototype and a simulator to simulate task running on multi-
resource clusters. In the evaluation, we compare the GoDAG with
three state-of-the-art heuristics. The results show that GoDAG
outperforms the baseline heuristics, leading to less average
makespan to different workflow structures.

keywords—Workflow Scheduling, Multi-resource Clusters,
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I. INTRODUCTION

Workflow scheduling problems are increasingly common in
many scientific communities [1][2]. To workflow applications,
a popular representation is the Directed Acyclic Graph (DAG),
where each vertex represents a task and edges encode prece-
dence constraints. A task in a DAG relies on the outputs of
the precedent tasks and cannot be started until all its required
inputs are in place. Workflow technologies [3] are responsible
for scheduling computational tasks on distributed resources,
and for managing dependencies among tasks.

Many workflow applications consist of a number of coop-
erative tasks which usually require more computing power
beyond single machine capability. Thus, high performance
computing clusters or cloud computing clusters [4] are gen-
erally leveraged to execute these workflows. For scheduling
workflows in a common cluster with networked machines, it
typically has following requirements.
• Task multi-resource demands. The resources demanded

by a task of workflows are often a combination of CPU,
memory, network, etc, which have to be satisfied by the
underlying cluster.

• Workflow time constraints. For some quality critical
workflows [5], the scheduling algorithm has to satisfy
a user-defined deadline [6], or tries to minimize the
makespan of the workflow [7].

• Inter-task dependencies. To a workflow scheduler, it has
to carefully arrange the order of tasks with respect to
inter-task dependencies of the workflow.

During the past years, cluster scheduling and workflow
scheduling have attracted quite a lot research attention. Recent
cluster scheduling methods mainly focus on the application
performance or cluster efficiency for independent tasks. For
instance, Tetris [8], a multi-resource cluster scheduler, packs
tasks to machines based on their requirements of all resource
types; Firmament [9], a centralized cluster scheduler, can make
high-quality placement decisions over large-scale clusters. Un-
fortunately, these solutions would face difficulties for handling
complex dependencies among the tasks. To the workflow
scheduling, many scheduling methods have been proposed to
satisfy a user-defined deadline with minimum costs [10], or try
to minimize the makespan of the workflow [7]. However, the
resource utilization of the underlying cluster is not considered
in these scheduling algorithms. Therefore, workflow schedul-
ing on multi-resource clusters is still a quite challenging. On
one hand, the scheduler has to consider the cluster resource
utilization, workflow time constraints and inter-task dependen-
cies at the same to make a decision. On the other hand, most
of the existing works are designed for some specific workloads
or some specific metrics. As the workloads of request or the
metrics of interest changes, researchers have to come up with
new approaches to adapt the new situation.

With these challenges, we investigate how to apply machine
learning techniques, specifically deep reinforcement learn-
ing [11], to handle the workflow scheduling problem. That
is to say how to make the system learn to schedule workflows
on their own. Reinforcement learning is to produce agents that
interact with their environments to learn optimal behaviors.
The agents will improve over time through trial and error. At
beginning, the agent is not told which actions to take for a
task. Then, the agent tries to interact with the environments
to learn which actions yield the most reward that it receives
based on how well it is doing on the task, which gradually
helps the agent to make better decisions. Due to recent
advances in deep learning, applying deep neural networks
in reinforcement learning can make it possible to deal with
more complex problems which have high-dimensional states
or actions, such as playing Atari game [12], mastering the
game of Go [13], [14], etc. Thus, the breakthrough of deep
reinforcement learning provides a promising technique for
enabling automatic workflow scheduling.

In this paper, we present GoDAG, an approach that can
learn to well schedule workflows on multi-resource clusters.
GoDAG directly learns the scheduling policy from experi-



ence through deep reinforcement learning, and the objective
of GoDAG is to minimize the average makespan of work-
flows (the time difference between the start and finish of
a workflow). In order to apply deep reinforcement learning
to workflow scheduling problem, we present a novel state
representation to feed the neural network, a practical action
space to realize workflow scheduling, and a corresponding
reward definition to distinguish action quality. Moreover, we
adopt a critical path-based approach to encode the significant
information of inter-task dependencies in state representation.
We implement a GoDAG prototype and a simulator to simulate
task running on multi-resource clusters. In the evaluation, we
compare the GoDAG with three state-of-the-art heuristics. The
results show that GoDAG outperforms the baseline heuristics
in different scenarios.

II. PROBLEM FORMULATION

We first present the model of the workflow scheduling
problem on multi-resource clusters, and the objective in this
work.

A. Model Description

We model the cluster as federated resource pools with R

types of resources, and let
−→
C = (c1, c2, ..., cR) be the vector of

resource capacities. We consider a slot-based resource model
in this paper. Hence, the element ci denotes the total slots of
the resource i available in the cluster.

We model a workflow job as a set of tasks J =
{t1, t2, ..., tN} that are to be executed on the cluster, and
N = |J| is the number of tasks. Similar to prior work [8],
[10], the resource demands and the estimated execution time
of each task is known upon arrival. For task ti, let

−→
Di =

(d1i , d
2
i , ..., d

R
i ) be the vector of its resource demands, where

the element dji denotes the slots of resource j that the task
ti demands. And let si be the estimated execution time of
task ti. We assume that the storage of the cluster is based on
Network Attached Storage (NAS) or Storage Area Network
(SAN), and the data transmission time between the tasks is
roughly fixed. Hence, the estimated execution time includes
the data transmission time in our model. To dependency
specification, let 0-1 matrix X = [xij ]N×N denote the inter-
task dependencies. If xij = 1, it means that the task ti is
a precedent task of tj . During execution, a task can only be
started when all its precedent tasks are completed.

B. Objective

For simplicity, preemption is not allowed in the cluster,
which means the resources must be allocated continuously
from the time that the task starts until it is completed. When
the scheduler schedules a task to the cluster, it must make sure
that the cluster has sufficient resources to execute the task.
The main objective in this paper is to minimize the average
workflow makespan (the time difference between the start and
finish of a workflow).

III. DEEP REINFORCEMENT LEARNING

In the section, we first briefly introduce deep reinforcement
learning techniques [11], [15] which we used in this paper.

Agent

state s Neural Network
policy πθ

action a

Environment
Tasks of workflows Status of clusters

reward r

Receive reward
Take actionObserve state

Fig. 1. An example of reinforcement learning

A. Reinforcement Learning

We consider the standard reinforcement learning setting
shown in Fig. 1 where an agent interacts with an environment
over a number of discrete time steps. At each time step
t, the agent receives a state st through observation of the
environment, and then selects an action at from a set of
possible actions according to its policy π. The π is a mapping
from states s to actions a; it denotes the probability of
choosing different actions based on the states. Following the
action, the environment transitions to the next state st+1, and
the agent receives a scalar reward rt. The state transitions and
rewards are stochastic, which are assumed to have the Markov
property. It means that the state transition probabilities and
rewards depend only on the current state st of the environment
and the action at taken by the agent. The process continues
until the agent reaches a terminal state after which the process
restarts. Every rollout of a policy accumulates rewards from
the environment, resulting in the return R =

∑∞
t=0 γ

trt with
discount factor γ ∈ [0, 1]. The goal of the agent is to find
an optimal policy π∗, which achieves the maximum expected
return from all states:

π∗ = argmax
π

E[R|π] (1)

B. Value Functions

The value function V π(s) is the expected return when
starting in state s and following policy π henceforth:

V π(s) = E[R|s, π] (2)

The optimal policy π∗ has a corresponding value function
V ∗(s), and vice-versa. The optimal value function can be
defined as:

V ∗(s) = max
π

V π(s) (3)

If we had V ∗(s) available, the optimal policy π∗ could
be easily retrieved by choosing among all actions avail-



able at state st and picking the action at that maximizes
rt + V ∗(st+1).

In small cases, tabular methods or non-parametric meth-
ods [11] can be used to compute the V ∗(s). However, there are
too many possible states in most practical problems [12], [13],
including the workflow scheduling problem. It is impossible
to store the policy in a tabular form. Hence, the value function
is commonly represented using a function approximator [16],
such as neural networks. In neural networks, there are a certain
number of adjustable parameters θ. Let πθ(s, a) be the proba-
bility of taking action a in the state s given the parameters θ.
Thus, different kinds of policies can be derived from adjusting
the parameters θ of the neural network. Consequently, we
obtain deep reinforcement learning methods when we use deep
neural networks to approximate the value function and the
policy with different parameters.

C. Actor-Critic Methods

In this paper, we focus on one of the policy gradient
methods [11], actor-critic method, to train the neural network.
The actor-critic method trains two neural networks at the same
time: Actor neural network and Critic neural network. Actor
neural network is trained to be an estimate of the optimal
policy. Critic neural network is trained to be an estimate
of the optimal value function. As actor-critic method is one
of the policy gradient methods, it is to learn the policy
by performing gradient descent on the parameters. The key
idea in policy gradient methods is to estimate the gradient
of the expected total rewards by observing the trajectories
of executions obtained by following a policy. As mentioned
earlier, the objective of reinforcement learning is to maximize
the expected cumulative discounted rewards. The gradient of
this objective can be computed as [17]:

∇θEπθ [R] = Eπθ [∇θ log πθ(s, a)Aπθ (s, a)] (4)

Aπθ (s, a) is the advantage function, which represents the
difference in the expected total reward when we determinis-
tically pick action a in state s, compared with the expected
reward for actions drawn from policy πθ. In our work, the
agent samples a trajectory of scheduling decisions and uses
the empirically computed advantage A(st, at), as an unbiased
estimate of Aπθ (st, at). Each update of the policy neural
network (actor neural network) parameters θ as follows, where
α is the learning rate.

θ ← θ + α
∑
t

∇θ log πθ(st, at)A(st, at) (5)

The idea behind this equation can be intuitively explained as
follows. The direction log πθ(st, at) specifies how to change
the policy parameters in order to increase the probability
πθ(st, at). Equation 5 takes a step in this direction. The size
of the step depends on the value of the advantage for action
at in state st. Thus, the net effect is to reinforce actions that
empirically lead to better returns.

To compute the advantage A(st, at) for a given experience,
we need an estimate of the value function V πθ (s) which is
the expected total return when starting in state s and following
policy πθ. The role of the critic neural network is to learn an
estimate of V πθ (s) from empirically observed rewards. Let
V θv (s), an estimate of V πθ (s), be the output of critic neural
network. Hence, the advantage A(st, at) can be estimated as
rt+γV

θv (st+1)−V θv (st). It is important to note that the critic
neural network merely helps to train actor neural network.
Post-training, only the actor neural network is required to make
scheduling decisions.

IV. GODAG

In this section, we first present the basic design of our
approach GoDAG. Second, we introduce how to represent the
state and action of the workflow scheduling problem, and how
to define the reward in deep reinforcement learning. Finally,
we describe the training algorithm we used to train the neural
network.

A. Design

The basic design of GoDAG is the reinforcement learning
agent continuously observes the state of the system in discrete
time steps, which includes the status of the cluster and the
profiles of pending tasks whose precedent tasks have been
completed. Based on the current state of the system, the
agent makes a scheduling decisions through the policy neural
network. A decision can be either an assignment of one
specific task or a movement. If it is a valid assignment where
the cluster has sufficient resources for the task, the agent
schedules the task to the cluster. If the decision is an invalid
assignment or a movement, the agent just lets the system
run for one time step. This process continues until all tasks
of the workflow are completed. Fig. 2 shows an example of
GoDAG process. In the workflow, task1 is completed; task2
is running in the cluster; task3 and task4 are ready to execute.
The agent feeds the policy neural network with the information
of pending tasks and the cluster. According to the output of
the policy neural network, the agent schedules the task3 to the
cluster at this time step. After all tasks finish, the agent would
train the neural network based on the rewards it received. Thus,
the challenges of applying deep reinforcement learning are
how to represent the state to feed the neural network, how
to define the action to realize workflow scheduling, and how
to define the reward to distinguish the quality of the actions
taken by the agent.

B. State Space

To the feed the neural network, we represent the state of the
system as different images. Fig. 3 shows an example of a state
representation of GoDAG. In the image, all the information
about the cluster and the pending tasks are represented as 0-
1 matrices. The left of the representation shows the resource
utilization of the cluster with 2 types of resources (CPU and
memory). Each matrix represents a type of resource. In the
matrix, each column denotes one resource slot in the cluster.
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Fig. 2. An example of GoDAG process

If the column is not empty, it means the resource slot has
been assigned to a task, and the number of occupations means
how many time steps are left for the task to complete. For
example, the first CPU slot of the cluster 1 has been assigned
to a task, and the task will take 3 time steps to complete. If
the column is empty, it means the resource slot is available to
be allocated to pending tasks. The right of the representation
shows the profiles of the pending tasks, whose precedent tasks
are completed. For fixing the state representation, we only
show up to N ′ pending tasks in the image. It also benefits the
definition of the action space (discuss in next section). To each
task, we use a single-column matrix to directly represent the
resource demands and execution time. For example, the task3
demands 2 CPU slots and 3 Memory slots for 3 time steps.

In order to make better decisions for the scheduling, the
inter-task dependencies of the workflow are very important to
the agent. However, if we directly treat the dependency matrix
X = [xij ]N×N as a part of state representation and feed it to
the neural network, the neural network is still not able to learn
the knowledge of the inter-task dependencies due to lacking
association information between the tasks and the matrix in
the representation. In order to learn better, we adopt a critical
path-based approach to encode the significant information of
the inter-task dependencies. A critical path of a task is the
path of the longest duration between the task and the finish
of the workflow. Classic critical path-based schedulers [18],
[19] schedule tasks in the order of their critical path length
to minimize the makespan. In GoDAG, we present a more
sophisticated way to depict the critical path of each task in the
state representation. As shown in Fig. 3, each task has a stage
number matrix and critical path matrix. Next, we describe how
to construct the matrices.

As the task execution time and the inter-task dependencies
are known upon arrival, we can preprocess the workflow in
advance. Fig. 4 shows the preprocessing procedure. We first
divide the tasks of a workflow into different stages. The
division depends on the longest distance (number of tasks)
from the start of the workflow. In our implementation, we
perform depth first search to process the division, and the time
complexity is O(n2). Meanwhile, the critical path of each task
is computed during the dividing process, since each task only
needs to record the next task in its critical path. Then, we can

construct the stage number matrix and critical path matrix for
each task. For instance, in Fig. 4, the critical path of task1 is:
task1 → task2 → task6 with total duration 10 time steps,
and the stages of these task are: 1→ 2→ 4. In order to give
the neural network an overview of the scheduling process,
we also feed the number of scheduled tasks including the
completed tasks and the running tasks to the neural network.
In Fig. 3, two tasks of the workflow have been scheduled to
the cluster.

C. Action Space

At each scheduling process of GoDAG, the agent may
schedule any subset of the N ′ pending tasks (in state rep-
resentation) to the cluster. It would make the size of action
space as large as 2N

′
, where the deep reinforcement learning

is almost impossible to learn a good scheduling policy [13]. To
overcome this problem, we allow the agent take more the one
schedule actions in one time step. Hence, we can define the
action space as a set: {∅, 1, 2, ...., N ′}, and the size of action
space is reduced to (N ′ + 1). action = ∅ means a movement
action; the agent would let the system run for one time step
by taking this action. action = i means an assignment action
of the ith pending task in the state representation. If it is a
valid assignment where the cluster has sufficient resources,
the agent schedules the task to the cluster. Otherwise, let the
system run for one time step. If a pending task is assigned to
the cluster, the agent would observe the system immediately
and perform the scheduling process again. That allows the
agent to schedule many tasks in one time step until it chooses
a movement action or an invalid assignment action.

D. Reward

In reinforcement learning, the reward is a signal that the
environment tells the agent how well it is doing on the task.
Typically, the reward is a scalar value. Since the objective of
reinforcement learning is to maximize the expected cumulative
rewards, the definition of the reward must reflect the goal of
the problem to be solved. In GoDAG, we set the reward to
0 for all the actions that are taken during execution except
the last action. The reward from the last action is defined as

N
Makespan , as we can obtain the makespan of the workflow
after the last action. Therefore, our goal is consistent with the
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Fig. 4. A critical path-based approach to encode the information of inter-task
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goal of the reinforcement learning. The smaller the makespan
is, the greater the cumulative rewards are, and vice versa.

E. Training Algorithm

After defining the state space, the action space and the
reward, we could build a deep reinforcement learning agent
to learn the scheduling policy. According to the actor-critic
method, we train two neural networks at the same time: actor
neural network and critic neural network. As the critic neural
network is an estimate of the optimal value function, the
output of the network is an estimate of the maximum expected
return from a state. While the actor neural network is an
estimate of the optimal policy, the output of the network is
a (N ′ + 1)-dimensional vector whose element represents the
probability of a corresponding action. Algorithm 1 is used to
train the two neural networks in GoDAG. The basic process

can be describes as follows. When a workflow job arrives, the
agent schedules tasks of the workflow according to its current
policy (output of the actor neural network). After the workflow
completes, the agent first uses the entire trajectory includes
all the states, the actions and the rewards to calculate the
accumulated gradients. Then, the agent updates the parameters
of the two neural networks with the accumulated gradients.
This process would be iteratively repeated many times to
empirically learn a better scheduling policy.

V. EVALUATION

We implement a GoDAG prototype and an simulator to sim-
ulate task running on multi-resource clusters. In the evaluation,
we experimentally compare GoDAG with three state-of-the-
art heuristics in different scenarios, and try to understand the
convergence and improvement about GoDAG approach.

A. Setup

Cluster and workloads To the configuration of cluster,
we consider 2 types of resources in the experimental cluster,
which has 48 resource slots for each type. To the configuration
of workloads, we use three classic workflows according to
the work [20] as shown in Fig. 5. Each workflow we used
in the evaluation has 100 tasks. Considering diversity of
workflow jobs, we randomly generate the resource demands
and execution time for each task in the workflow. We define the
length of one time step as 1t, and the capacity of one resource
slot as 1r. Then, the execution time of each task is uniformly
picked at random from [1t, 10t]. Each task demands 2 types of
resources, and each resource demand is also uniformly picked
at random from [1r, 12r].

GoDAG configuration The configuration of the actor
neural network is: 1 input layer, 2 fully connected hidden
layers with ReLU6 nonlinearity, and 1 softmax output layer.
The configuration of the critical neural network is the same
with the actor neural network except the output layer with only



(a) CyberShake (b) Epigenomics (c) LIGO

Fig. 5. Structure of the three different workflows used in the experiments

Algorithm 1: Actor-critical method in GoDAG

/* Assume the actor neural network with
parameters θ, and the critical
neural network with parameters θv */

1 for each iteration do
2 dθ ← 0;
3 dθv ← 0;
4 t← 0;
5 Get state st;
6 repeat
7 Perform action at according to policy πθ;
8 Receive reward rt and new state st+1;
9 t← t+ 1;

10 until workflow completes;
11 R← N/Makespan;

/* N is the total number of tasks,
Makespan = t */

12 for i← t− 1; i ≥ 0; i← i− 1 do
13 R← ri + γR;
14 dθ ← dθ +∇θ log πθ(si, ai)(R− V θv (si));
15 dθv ← dθv + ∂(R− V θv (si))2/∂θv;
16 end
17 Perform update of θ using dθ;
18 Perform update of θv using dθv;
19 end

1 neuron. We update the parameters of two neural networks
using the rmsprop [21] algorithm. The learning rate of the
actor and critical neural network are configured to be 0.0001
and 0.001 respectively. We set the discount factor γ as 0.99
to calculate the cumulative discounted rewards. We adopt the
asynchronous method, A3C [17], to speed up training. In the
experiments, all the neural networks are trained for 10,000
iterations.

Baselines We compare GoDAG with three heuristics:

• Multi-resource Packer (PACK): The idea of this heuris-
tic [8] is that it schedules pending tasks in increasing or-
der of alignment between resource demands and resource
availability.

• Shortest Task First (STF): The idea of this heuristic is

that it schedules pending tasks in increasing order of the
task execution time.

• Critical Path First (CPF): The idea of this heuristic [19]
is that it schedules pending tasks in increasing order of
the length of critical path.

Metrics In the experiments, we mainly measure average
makespan of the workflows in different scenarios.

B. Scenario with Same Structure

First, we evaluate the scheduling performance when running
workflows with same structure in the system. For one structure,
we generate 300 workflow jobs, 30,000 tasks in total, to train
the neural networks. We generate other 300 workflow jobs
of the same structure to test the trained neural network. At
each training iteration, each workflow job is executed once.
Fig. 6 shows the results after 10,000 iterations. We observe
that GoDAG outperforms other baseline heuristics for all
structures. Shortest task first heuristic does not perform well
in this experiment. Multi-resource pack and critical path first
performs comparably, which indicates that the resource effi-
ciency of the cluster and the critical path of the workflow have
important influence on the makespan of workflows. Comparing
the testing workflows to the training workflows, we find that
the improvement of the testing workflows slightly lower than
the training workflows. It is may caused by the overfitting of
learning some particular workflow patterns during the training
process. The basic reason for the improvement is GoDAG can
learn to schedule workflows by taking cluster resource utiliza-
tion, task execution time, task resource demands and inter-task
dependencies into consideration in the same time, where those
information are well presented in the state representation.

C. Scenario with Different Structures

Next, we evaluate the scheduling performance when running
workflows with different structures in the system. In this
experiment, we generate 100 workflow jobs for each structure,
300 workflow jobs in total, to train the neural network. We also
generate other 300 workflow jobs (100 for each structure) to
test the trained neural network. Fig. 7(a) shows the results after
10,000 iterations. Similar to the scenario with same structure,
GoDAG outperforms other baseline heuristics in the evalua-
tion, and the improvement of testing workflows also slightly



CyberShake Epigenomics LIGO90

100

110

120

130

140

Av
er

ag
e 

M
ak

eS
pa

n

96
.0

5

10
6.

85

10
0.

15

97
.5

5

11
0.

95

10
6.

55

10
2.

45

11
3.

65

10
5.

75

10
6.

40

12
0.

35

11
5.

10

GoDAG
PACK

CPF
STF

(a) Training workflows

CyberShake Epigenomics LIGO90

100

110

120

130

140

Av
er

ag
e 

M
ak

eS
pa

n

95
.3

5

10
8.

15

99
.1

5

96
.9

0

11
0.

50

10
4.

95

10
2.

30

11
5.

25

10
4.

60

10
6.

70

12
1.

50

11
4.

05

GoDAG
PACK

CPF
STF

(b) Testing workflows

Fig. 6. The results of evaluating workflows with same structure

Training Workflows Testing Workflows90

100

110

120

130

140

Av
er

ag
e 

M
ak

eS
pa

n

10
1.

16

10
2.

53

10
5.

23

10
5.

20

10
7.

60

10
8.

8611
4.

06

11
5.

46

GoDAG
PACK

CPF
STF

(a) Scheduling performance

0 2000 4000 6000 8000 10000
Iterations

100

105

110

115

120

125

Av
er

ag
e 

M
ak

eS
pa

n

PACK
CPF

STF
GoDAG

(b) Makespan curve along the training

Fig. 7. The results of evaluating workflows with different structures

lower than the training workflows. Additionally, we show
the average makespan curve along the training in Fig. 7(b).
From the figure, we observe that GoDAG outperforms other
heuristics after 300 iterations, and tends to be stable after
1,000 iterations. The agent slowly improve the performance
after 1,000 iterations, where the agent may try to learn the
specific scheduling policy only for the training workflows.
Nevertheless, it demonstrates that GoDAG is able to learn one
scheduling policy to handle workflow scheduling with different
structures. It also implies GoDAG can capture common fea-
tures among different structures to form a scheduling policy.

VI. RELATED WORK

The problem investigated in this paper - Learning Workflow
Scheduling on Multi-Resource Clusters - is related to a variety
of research topics as follows.

Cluster schedulers Many cluster schedulers have been
proposed for different purposes [22], [9], [23]. Tetris [8] multi-
resource cluster scheduler packs tasks to machines based on
their requirements of all resource types. It adapts heuristics
for the multi-dimensional bin packing problem to the con-
text of cluster schedulers wherein task arrivals and machine
availability change in an online manner. Graphene [24] DAG

scheduler schedules jobs that have a complex dependency
structure and heterogeneous resource demands. It first sched-
ules troublesome tasks and then schedules the remaining tasks
without violating dependencies to improves job completion
time. Differently, we apply reinforcement learning to learn
scheduling policy directly from the experience.

Deep Reinforcement Learning Recently, deep reinforce-
ment learning has made great success in many areas [25], [26],
[27], [28]. Volodymyr Mnih et al. [16] presented the first deep
learning model to successfully learn control policies directly
from high-dimensional sensory input using reinforcement
learning. And they have successfully applied their approach to
the computer video games. David Silver et al. [13] proposed
AlphaGo to master the game of Go with deep neural networks
and tree search. They introduced a new search algorithm
that combines Monte Carlo simulation with value and policy
networks, and successfully applied in the game of Go. In this
paper, we try to apply the deep reinforcement learning to the
workflow scheduling problem.

Scheduling with Reinforcement Learning DeepRM [29]
is the first example solution that applies deep reinforce-
ment learning to cluster scheduling problem. It translates the
problem of packing tasks with multiple resource demands



into a learning problem. DeepRM is designed to handle
job scheduling in an online setting, and represents the state
of the system as distinct images which contain the current
allocation of cluster resources and the resource profiles of jobs
waiting to be scheduled. However, they did not model inter-
task dependencies in their job models, and hence it can only
schedule independent tasks.

VII. CONCLUSION

In this paper, we present GoDAG, an approach that can
learn workflow scheduling on multi-resource clusters. GoDAG
directly learns the scheduling policy from experience through
deep reinforcement learning. In the evaluation, we compare the
GoDAG with three state-of-the-art heuristics. The results show
that GoDAG outperforms the baseline heuristics in different
scenarios. In the future, we intend to investigate more compact
state representation to enhance the scalability of GoDAG
and apply convolution neural network to extract high-level
features. Moreover, we plan to apply GoDAG to the production
cluster and evaluate the performance in practical scenario.
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