Linux for scientists

or:
What can | do at the black screen?

Dr. Lennart C. Karssen
PolyOmica, The Netherlands

1.c.karssengpolyomica.com

October 2019*

o—° .
PolyQmica

* Git information:
Hash: c8bailc9
Date: 2019-10-01

mailto:l.c.karssen@polyomica.com

@@ 1011010101
| 011179
0011@1 101011

10

Q000
P011010611061001
0010101

910134

Contents

List of Tables

1 Preface
11 Aboutthisbook.
1.2 Acknowledgements,

What is Linux?

The basics

31

3.2
3.3
3.4

3.5
3.6

3.7
3.8

3.9

3.10

3M

312

Logginginandout
311 X1 forwarding: allowing application windows to
'travel’ from the servertoyourPC
Editors e
The structure of Linuxcommands
331 EXercises
Managingyouraccount
Gettinghelp
Working with files and directories
3.61 Directories
3.6.2 Copying, moving, removing
363 Wildcards
3.6.4 EXErcises
Transferring files from one Linux machine to another
Pagers, or how to look at the contentsofafile
3.81 EXercises

Using compressed archives like .zip and tar.gz files

3.900 ZAP i e e e e e e e e e e
3.9.2 8ZIp .. e e e
393 TAr . . o e

3.9.4 EXErcisest
File ownership and permissions
3101 Ownership e
310.2 Permissions
Process management
3011 EXErCiSeS . v v v it e e e e e e
Miscellaneous commands
3121 wget: downloading files to the server

32

35

Contents

3422 SOTT v v v e e e e e e 45
3423 UNIQ & v o e e e e e e e e e e e e e e e e e e 48
312.4 wc: countingwordsand lines 48
3425 date ... e e e e e e e 49
312.6 du: diskspaceusage 50
312.7 Differences betweenfiles 51

343 Input and output redirection. 53
3131 Redirectingto and fromfiles 53
313.2 Redirecting output of one command to another . .. 55

314 Aliases and creating your own commands 57
4 Working with text files 63
41 Converting between Windows and Linux format 64
430 EXErCISES . v v v i it e e e e e 65

42 grep:findingtext. 66
421 EXErCISES . . v v it it e 69

4.3 sed,theStream EDitor 70
431 EXErciSes i i e 71

4.4 cut:selectingcolumns 72
4.5 GAWK: more funwithcolumns 73
451 EXercises 76

4.6 Puttingitalltogether 78
460 EXErCISES . . v v v it e e 78

5 Writing Bash scripts 83
51 Asimplescript 84
52 Usingvariables, 87
5.3 Usingshell variablesin GAWK 91
5.4 Loops, forandwhile 92
5.5 if-clausesandtests 97
56 ArraysinBash., 99
5.7 Dealing with errorsinyourscript 102
6 Working with the sGE queue system 107
61 Submitting jobs to the SGE queues 108
6144 Quickanddirty., 109

61.2 Using a submissionscript 109

Contents

C

61.3 Refinements to the submission script
6.2 Monitoring progress i
6.3 Deletingjobsfromaqueue.
6.4 Gettinginfoonafinishedjob
6.5 Interactivejobs
6.6 EXErCiSes o v i i e

Good scripting practices, structured programming and data
management
71 Codelayout
711 Indentationo
712 Linelength
723 SPACES . . . e e e e e
72 Comments e
73 Variablenames
7.4 File and directorynames
75 SUMMArY . . e e e e e e e e e

Where to go from here?
81 Moreadvancedtopics
82 Furtherreading

Answers to the exercises
Reference Card of Basic Linux Commands

List of acronyms

Bibliography

Index

121
123
123
124
125
127
128
128
129

133
134
135

139
161
167
172

176

@@ 1011010101
| 011179
0011@1 101011

10

Q000
P011010611061001
0010101

910134

List of Tables

List of Tables

31 Basic Emacs keyboard shortcuts. 15

51 Operators for comparisoninBash. 100

691011@101010111100000‘91

10y

16 16 10 19 1 1 11O@OOOOI10101101:1]01%10016

10@1

Chapter

Preface

Chapter 1 Preface

11 About this book

This book was initially a collection of lecture notes written for the GE14
“Linux for Scientists” course given at the Erasmus University Medical Cen-
tre (Erasmusmc), Rotterdam as part of the NIHES MSc programmes. It fo-
cuses on using the Command Line Interface (cu1), if you are using Linux on
your desktop you will have noticed that tons of other programs that use
a Graphical User Interface (Gul) (i.e. the Firefox web browser) are avail-
able also, so this course does not discuss the complete ecosystem of
applications for Linux.

This book is split up into several chapters, in roughly the same order as
presented in the lectures, ranging from basic file and directory manage-
ment to Bash scripting and working with the sGe batch queue system.
Some exercises are labelled with two or more stars indicating their dif-
ficulty level. Some use files and/or tools that are pre-installed on the
epib-genstat.erasmusmc.nl servers on which this course was initially
taught and are therefore less easy to do on other Linux (or Unix-like)
systems, but in general these exercises should be quite portable.

Several exercises build on results of previous exercises (e.g. a previously
created directory structure, previously copied files, etc.), so it is advisable
to work through them in order. Answers to the questions are given at the
end of each section or chapter. Remember that there usually are more
ways to arrive at the same result® and that the solution presented in
the answers is not necessarily the best one. Also note that several of
the answers contain additional information and tips. Be sure to read
those!

A $ at the beginning of a line in the output indicates the command line
prompt. You don’t have to type it, it should already be visible on the com-
mand line after logging in. The symbol < indicates that the command
(or the output) is continued on the next line but (in the case of input)
should be entered on one line.

a) People familiar with the Perl scripting language may know the abbreviation TIMTOWTDI
(pronounced Tim Toady), which stands for: “There is more than one way to do it".

1.2 Acknowledgements

This document is licenced under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 Unported License. Please contact the
author if you would like to obtain a different license.

o0e0

Please note that this document is under active development. Feel free to
contact the author for the latest edition or to report mistakes and typos
or other suggestions.

1.2 Acknowledgements

First and foremost: Aaron Isaacs, back in 2010 you asked me if | could
teach some Linux/command line tricks to the members of the Genetic
Epidemiology group at the Erasmusmc, where | was working at the time.
This gave me the final push to set up a practical, hands-on Linux course
for scientists.

Cornelia van Duijn, as head of the Genetic Epidemiology Group at the
ErasmusMC you allowed me to spend time working on this book. In the
course of the next three years the foundations of this book were laid.
Thank you for giving me this opportunity.

Other GenEpi group members, Najaf Amin, Maarten Kooyman, Elisa van
Leeuwen, Sara Willems, Ayse Demirkan, Carla Ibrahim-Verbaas, thank you
for being part of my first audience, my test users, and for the examples
of real-world use cases you provided.

Finally, Yurii Aulchenko, colleague and business partner, your suggestion
to make this the first book published under the PolyQmica umbrella was
what made me convert and expand the lecture notes to the book you are
now reading.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Y EL] 1100000011010]1010
00 110101 o,
y 01011110000
101
10

10

1101011010016016101
0

Q00

00

0101
i

Chapter

What is Linux?

Chapter 2 What is Linux?

Linux, or more precisely GNU/Linux, is an Operating System (0S) usu-
ally combined with some additional programs. Other operating systems
you might know are Microsoft Windows, Apple macOS and Google's An-
droid.

GNU/Linux basically consists of two parts, the Linux kernel and the Gnu
tools. A kernel is the piece of software at the heart of each os, it gives
each program the memory it requires whilemaking sure that two pro-
grams don’t use the same piece of memory at the same time. It allots
each of the programs that are running on the computer their time slot
on the processor and also takes care of low-level communication be-
tween the different peripherals of a computer. For example, if you press
a key on the keyboard, it is the kernel that stops the current program,
takes time to find out what key was pressed and sends that information
to the program you were running. Then the kernel allows the program to
continue and process the key your pressed. The Linux kernel was started
in 19912 as a hobby project of Linux Torvalds, a Finnish computer science
student [2, 3]. He published his code under the GNu Public License (GPL),
a copyleft licence developed by the GNU project.

In the 1970’s the PC (Personal Computer) did not exist yet. Computers
were large machines occupying a complete room. Most of them used
Unix as 0s, augmented by many programs written by the scientist using
the computers. Many of these programs were distributed by the authors,
but the core Unix programs were owned by companies like AT&T.

The GNU project?) was started in 1984 by Richard Stallman. The project’s
goal was to create an os that was freelyc) available. The GNU tools were
written to be compatible with (but not exact copies of) the Unix tools
known at the time, hence the meaning of the (recursive) GNU acronym:

a) Ashort video that commemorates the 20th anniversary of Linux can be found in Ref. [1].

b) http://www.gnu.org

) Note that there are two definitions of “free”, free as in freedom and free as in “a free
beer”. The free Stallman referred to was the former one. As user of the software you
are free to do with it what you want. You can modify it, copy it and use it on as many
devices as you like. Basically the only restriction is that if you make a change to the
source code of the program and distribute that, you'll need to make those changes
public as well.

http://www.gnu.org

GNU’'s Not Unix. However, the GNU project never succeeded in writing its
own kernel. The rest should not come as a surprise. People using and
developing the Linux kernel needed tools to make their 0s do something
useful, the GNU project needed a kernel, and, well, the rest is history.
Nowadays Linux powers more than 50% of the web servers [4], more than
90% of the world’'s supercomputers [5] and has a small market share
on desktop computers. However, most people get in contact with Linux
through their mobile phones: Google’'s Android 0s is also based on the
Linux kernel (but without the GNU tools).

Because Linux and the GNU tools both use the GpPL, anybody can download
them, put them together, add their own customisations and redistribute
the new set of packages. This is exactly what happened. These sets of
packages are called distributions and there are many. Many companies
use Red Hat Enterprise Linux®, and Ubuntu Linux® and Linux Mint® are
used on many home computers and laptops.

Incidentally, Mac OS X is also based on a Unix derivative (called Bsp) and
as a result many of the things you will learn in this course can also be
applied to Apple’s 0s. You normally don’t notice the cLI because it is
hidden by the Gul, but it is definitely there. Try looking for the Terminal
application.

d)http://www.redhat.com/rhe'L
e)

f)

http://www.ubuntu.com
http://linuxmint.com

http://www.redhat.com/rhel
http://www.ubuntu.com
http://linuxmint.com

; 00000@1101@11@1001@ .
010111 1103, 2
19 11@10;111100000011@10
01
00 .
10

2,
106191@

010101
01011010010
11

00

00

00

1
1013%
10

Chapter

The basics

ssh

Chapter 3 The basics

To make an 0s usable you do not only need a kernel, but, as mentioned
in § 2, you also need a set of tools. The most important one is a so-
called shell. The shell is a program that allows you to interact with the
computer. Infact, itisthe partyou are looking at most of the time, itis the
black screen in which you enter the commands. Most Linux distributions
use the Bash shell by default. Examples of other shells are the Z-shell
(zsh), the C-shell (csh) and the Korn shell (ksh). Most shells share the
same set of basic commands but differ in more advanced functionality.
This course assumes you use Bash.

3.1 Logging in and out

To log on to the server we make use of the Secure Shell (SSH) protocol?.
On a Linux computer or an Apple Mac you would type

ssh username@servername.domain.nl

to connect to a server. On Windows the MobaXterm program® does the
same thing. Putty is a popular alternative, but it lacks certain convenient
features, like tabs for multiple connections, etc.

Whichever way you choose to connect to a Linux machine, you will end up
with a screen (also referred to as the terminal) with the following text:

username@servername:~$

This is known as the prompt. It tells you who you are (remember that
Linux is a multiuser system), on which computer or server you are (handy
when you have multiple connections to different servers) and in which
directory. The ~ is a shortcut for your home directory. The final $ denotes
the end of the prompt. From here you can start typing commands.

a) SSH encrypts the communication between your PC and the server. This way a malicious
hacker cannot intercept the commands you are typing. This is similar to the https
connection to your online banking account in your web browser.

b) You can download it from http://mobaxterm.mobatek.net/, see § 2.4 on https:
//epib-genstat.erasmusmc.nl/ for instructions on how to install and configure
MobaXterm.

http://mobaxterm.mobatek.net/
https://epib-genstat.erasmusmc.nl/
https://epib-genstat.erasmusmc.nl/

3.1 Logging in and out

And when you are tired of it all, the commands exit and logout will
close the SSH connection to the server.

3.1 X11 forwarding: allowing application windows to "travel’
from the server to your PC

For some applications it may be handy to enable so-called X11 forward-
ing, which allows windows of applications that run on the server to be
shown on your local screen. Think, for example, of the plot window in R.
Most, if not all tools and utilities discussed in this course do not use X11
forwarding, so feel free to skip this section.

Whether or not X11 forwarding is enabled by default when you log in,
depends on how you connect to the Linux server. If you use MobaX-
term from Windows this is done automatically, with Putty this is not the
case and additional software is required. When connecting from another
Linux PC using the ssh command you need to add the -X option in order
to enable X11 forwarding:

ssh -X username@servername.domain.nl

Those who connect from macOS using the ssh command need the -x
option as well, but most often also need to install additional software.

To test whether X11 forwarding works, try the following command:

xclock

This should show a window with a clock on your local computer. De-
pending on the speed of the connection between your computer and the
server it may take some time (from a few seconds to a minute) for the
clock to show up. Note that the window may be hidden below other win-
dows. As long as the xclock application is running, you will not be able to
type new commands, in fact, the prompt with the $ symbol is not shown
until you close the xclock window. If, for some reason, the $ doesn't
show up and neither does the xclock window you can type Ctrl-c to
kill the xclock command and return to the prompt.

exit

logout

ssh -X

xclock

emacs

vim
VI

nano

Chapter 3 The basics

3.2 Editors

When working on a Linux system two programs are the most important:
the shell we just mentioned and your text editor. The better you get to
know them both, the more you will gain in terms of efficiency and power
over your data. This course focuses on working with the Bash shell, but
an editor is needed when writing scripts, README files, etc.

Most Linux systems have a range of editors installed. The most common
ones are

- emacs: A powerful editor, my personal choice. Runs R interactively,
similar to Tinn-R on Windows. An Emacs reference card can be
found at http://www.ic.unicamp.br/~helio/disciplinas/
MC102/Emacs_Reference_Card.pdf, but one is also installed along
with Emacs©.

- vim (or its family members vi and gvim): Another powerful editor.
It has two modes, one in which you type your text, the other for
commands like open file, save, search/replace, etc. A vi reference
card can be found at http://web.mit.edu/merolish/Public/
vi-ref.pdf.

- nano A very simple editor, easy to use. However, | strongly recom-
mend learning how to use one of the above.

You might wonder why | encourage you to learn how to use a text editor.
You could say “I can stick to Windows’ Notepad for editing my scripts,
input files and the like” And indeed you could. However, that means
that you need to transfer every file you want to edit from the server to
your Windows PC, and why go through that extra effort? Also, Notepad is
very simple whereas Emacs and Vim have a lot of additional features like
syntax highlighting for various scripting languages, advanced search and
replace options, etc. Moreover, by creating files on two different systems
you have to keep an eye on your bookkeeping, “Am | running this script
on the latest file, or is that still on my Windows PC?”, as well as make

9 You can find it by typing locate refcard.pdf onthe command line. Look for the one
simply called refcard.pdf in a directory that has emacs in its name. On my computer
it is located in /usr/share/emacs/24.2/etc/refcards/refcard.pdf

http://www.ic.unicamp.br/~helio/disciplinas/MC102/Emacs_Reference_Card.pdf
http://www.ic.unicamp.br/~helio/disciplinas/MC102/Emacs_Reference_Card.pdf
http://web.mit.edu/merolish/Public/vi-ref.pdf
http://web.mit.edu/merolish/Public/vi-ref.pdf

3.2 Editors

sure you won't run into problems with differences in the way Windows
and Linux store files (as will be explained in § 4.1).

Both editors have a Gul with buttons and menus as well. If you use
MobaXterm you will be able to use these as well. This is especially handy
in the beginning when you haven’t mastered all the keyboard shortcuts
yet (although | urge you to learn those as well). Emacs checks to see if
it can open a GuI at start-up (if you want to run the non-Gul version ex-
plicitely, then start Emacs with the -nw option (which stands for 'no win-
dows'): emacs -nw filename). The GUI version of Vim is called gvim.

Incidentally, Vim and Emacs can run on Windows as well (in case the
keyboard shortcuts of your editor have become ingrained in you spinal
cord and you never want to see Notepad again).

Table 3.4 lists some of the basic keyboard shortcuts for Emacs that will
get you through this course.

Action Shortcut
"find” file i.e. open/create a file C-x C-f
save the file C-x C-s
write the file with alternate name (Save as) C-x C-w
exit Emacs C-x C-c¢
cancel a command C-g
undo c-/
go to beginning of line (Home) C-a
go to end of line (End) C-e
search forward C-s
search backward C-r
use the menu'’s at the top (File, Edit, etc.) F10 or M-"

Table 3.: Basic Emacs keyboard shortcuts. Note that C stands for the Ctrl key,
and M is the Meta key (on modern keyboards you can use either the
Alt key or the Esc key). The combination C-x means pressing both
the Ctrl and x key at the same time and M-~ means pressing the Esc
key and the ~ key (that is the backtick character, usually found on the
same key as the ~).

emacs -nw

gvim

1s

Chapter 3 The basics

3.3 The structure of Linux commands

In general Linux commands have the following structure:

command option(s) arguments

Options are keywords that modify the way the command works. Argu-
ments usually indicate what (e.g. which file or directory) the command
has to operate upon.

Options are preceded by two dashes. For example, to list all files (i.e. in-
cluding the hidden ones) on the present directory you can use the fol-
lowing command

$ 1s --all

For those of you that have used the plink tool before, the following com-
mand will be familiar. It shows three options, two of which have an ar-
gument:

$ plink --file inputfile --freq --out newfile

Here --file, --freqand --out are options, they modify the default be-
haviour of plink. inputfile is the argument for the --file option and
newfile is the argument for the --out option. In most cases the order
in which the options as listed does not matter, as long as you keep the
arguments together with their respective options. The command

$ plink --freq --out newfile --file inputfile

is OK and identical to the previous one, whereas

$ plink --out --freq --file newfile inputfile

will result in error messages.

Some programs allow short forms of their options as well (this can save
you a lot of typing!). Short options consist of a single dash followed by
a single letter. For example, the --all option to the 1s command can
be abbreviated as -a. Consequently, the following two commands are
identical:

3.3 The structure of Linux commands

$ 1s --all
$ 1s -a

In most cases the order of the options is not important and multiple
single-letter options can be strung together. Again, the following two
commands result in the exact same output:

$ 1s -a -h -1
$ 1s -ahl

Arguments usually tell the command to operate on certain files or direc-
tories:

$ 1s =.pdf
$ 1s /var/log/

The first line lists only the files ending in .pdf in the current directory
(cf. § 3.6.3 for an explanation of the *) and the second line lists all files
and directories in the directory /var/log.

Since a space is used to separate commands, options and arguments,
it needs to be ‘escaped’ by using the \ character when used in a file
or directory name, or by enclosing the whole name in double quotes.
This means that if you want to make a directory with the name My «
scripts are in here it has to be done in either of the following two
ways:

$ mkdir My\ Scripts\ are\ in\ here
$ mkdir "My Scripts are in here"

Furthermore, it is important to remember that commands and file and
diretory names are case sensitive in Linux (unlike in Windows where
C:\Program Files is equal to C:\program files).

One very important feature of the shell is Tab-completion. The concept
is very simple: you can use the [TAB] key to complete file names and
several commands while working on the commands line. This saves an
enormous amount of typing! For example, if you have a directory called
MyWork and you want to use 1s to list all the files in that directory, simply

type

Chapter 3 The basics

s M

and hitthe [TAB] key. The shell will try to complete the directory name as
far as possible. If MywWork is the only directory that starts with an M it will
complete it fully. If, however, you also have a directory called MyPapers,
then the result of hitting the [TAB] key will be

1s My

Hitting [TAB] again will show all possible completions (in this example
MywWork and MyPapers). Add a W to what you have typed and hit [TAB]
again to complete the directory name.

As we move further through this course you will find that the commands
will grow longer and longer. To keep an overview while typing a long
command you can insert a \ followed by [ENTER] at any point between
a command and its options to continue typing on the next line:

$ some_command --optionl \
> --another-option some_argument \
> --yet-another-option another_argument

Note that the > should not be typed. It will is inserted by the shell to
inform you that you haven't finished the command yet.

3.3.1 Exercises

Exercise E31 Long and short options

In this section we saw that the 1s command accepts options in both
long and short form.

a) What is the difference between running

$ 1s --all

and

$ 1s -all

3.3 The structure of Linux commands

Exercise E3.2 Working with the command history

With so many commands to remember, working on the command line
can seem to be daunting. Luckily there is a sort of memory. A history of
your past commands is saved and ready for you to use.

history

a) Use the history command to list the recent commands you typed.
Use the up and down arrow keys to cycle through some of your
recent commands. Once you have found an interesting command
you can try to edit it and run it again. Note that the history does
not remember in which directory you were when you executed a
command.

b) Using the up and down arrow keys is fine if you are looking for
a recently used command. For commands that are higher up in
the history list this becomes too cumbersome. For those situa-
tions you can search through the history with the Ctrl-r (reverse
search) shortcut. Simply hit Ctrl-r (i.e. press and hold the Ctrl
key and then press the r key and release both) and start typing
some part of the command that you remember. For example, if
you are looking for the command

$ 1s /storage/imputations/ERF3_HM2_Mach_2010.10.01/Results/

that you typed some time ago, you can hit Ctrl-r followed by
typing ERF3. However, if after typing the above command you had
typed mkdir ERF3 than this entry would show up first. Hit Ctrl-r
again to cycle through all entries that contain ERF3 until you reach
the one you are looking for or continue typing your search crite-
rion until it becomes unique. Once you have found the command
you want to reuse you can either press the Enter key to rerun the
command or change the command according to your whishes. To
cancel your search simply press Ctrl-c.

passwd

quota

quota -s

Chapter 3 The basics

3.4 Managing your account

By now you have hopefully logged into a Linux system. Since many Linux
servers can be directly accessed from the Internet it is important to keep
your account information (user name and password) secret. Changing
your password regularly (at least once a year) is a good security measure.
To change your password use the passwd command.

In order to make sure that no single user can use up all disk space (acci-
dentally or not), every user on a server has a certain disk quota allotted
for his/her files. You can check your quota status with the quota com-
mand:

$ quota -s
Disk quotas for user lennart (uid 1305):
Filesystem blocks quota 1limit grace files quota 1limit grace
/dev/mdo 206G 250G 255G 4800 0 0

The interesting columns are columns 2, 3, 4 and 5 (you can forget about
the last four columns). The blocks column shows your current usage
(206 GB in this case), the quota column shows your maximum. You will
be notified by e-mail if you exceed it.

After exceeding this maximum disk space you will have 7 days of ‘grace’
(the number of days left is noted in the grace column), in which you can
still use some more space (up to the value in the 1imit column, 255 GB
in this example). Once the grace period has expired you will not be able
to create any more files. This can even prevent you from logging in!

3.5 Getting help

Most human beings won’t be able to remember all the options for all
the commands they use on a regular basis. And what about the com-
mands you only use once in a while? How do you find out which options
are available, what the actual use of a certain command is, what does it
expect as input, etc.?

3.5 Getting help

To remind you of the most commonly used options as well as expected in-
put and output most commands have a --help option. This is the (trun-
cated) output for 1s, for example:

$ 1s --help

Usage: 1ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options too.

-a, --all do not ignore entries starting with .
-A, --almost-all do not list implied . and ..
--author with -1, print the author of each file
-b, --escape print C-style escapes for nongraphic characters
--block-size=SIZE use SIZE-byte blocks. See SIZE format below
-B, --ignore-backups do not list implied entries ending with ~

The first line explains the usage of the command, i.e. what to type on the
command line, followed by a short two-line description. After that a list
of most of the options, mentioning both the long and the short form (if
available).

For more detailed information most commands also have a manual page
which is shown on screen by the man command. This is the start of the
man page for 1s:

LS(1) User Commands LS(1)

NAME
1s - list directory contents

SYNOPSIS
1s [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by <«
default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options
too.

-a, --all
do not ignore entries starting with .

man

Chapter 3 The basics

-A, --almost-all
do not list implied . and ..

--author
with -1, print the author of each file

-b, --escape
print C-style escapes for nongraphic characters

To browse through the man pages use the arrow keys, PgUp, PgDn, etc.
To quit the man page browser use the q key®.

And, of course, the Internet is a great resource. If you are struggling with
a command Google Is Your Friend (GIYF).

3.6 Working with files and directories

On Windows and GNu/Linux systems files are ordered in directories. In
contrast to Windows with its drive letters (C:, D:, etc.), directories on a
Linux system are ordered in a single tree starting at the root, indicated
by /:

9 In fact, the program used to view these man pages is less, a so-called pager that will
be discussed in more detail in §3.8

3.6 Working with files and directories

As mentioned in § 3.3, the 1s command is used to list the contents of
directories. If entered without arguments it simply lists the contents of
the present working directory (pwd). The following options will get you by
most of the time:

-a list all files, i.e. including hidden files®

-1 long list, this listing shows the time and date a file was modified,
its size, permissions and the user and group of the owner of the file
or directory

-h usually used in combination with -1, it shows the file size in "Thuman
readable’ format, i.e. in MB, GB, etc. instead of in bytes

-d use when the arguments are only directories, not files, list informa-
tion on the directory itself, not its contents (see below)

-t sorts the entries by modification time

e) On a Unix system all files and directories whose name starts with a dot are hidden.

1s

1s

1s

1s
1s

1s

Chapter 3 The basics

If the argument of 1s consists of only (one or more) directories, 1s shows
only the information of the files in that directory, not of the directory
itself. The -d option changes this behaviour:

$ 1s dirl dir2
dirl:
dirl_2 filel file2 file3

dir2:
filell filel2 filel3
$ 1s -1 dirl dir2

dirl:

total 16

drwxr-x--- 2 lennart genepi 4096 2011-10-12 11:09 dirl_2
—W-F=—=~- 1 lennart genepi 4 2011-10-12 11:12 filel
-rw-r----- 1 lennart genepi 7 2011-10-12 11:12 file2
—BW-F===== 1 lennart genepi 614 2011-10-12 11:13 file3
dir2:

total 12

-rw-r----- 1 lennart genepi 201 2011-160-12 11:13 filell
-rW-Tr----- 1 lennart genepi 603 2011-10-12 11:14 filel2
-rw-r----- 1 lennart genepi 340 2011-10-12 11:14 filel3
$ 1s -d dirl dir2

dirl dir2

$ 1s -1d dirl dir2
drwxr-x--- 3 lennart genepi 4096 2011-10-12 11:09 diril
drwxr-x--- 2 lennart genepi 4096 2011-10-12 10:59 dir2

The output of the -1 option also warrants some more explanation. Con-
sider the following:

1 | lennart@server:~/ErasmusMC$ 1s -1

2 |total 712

3 |drwxr-xr-x 6 lennart genepi 4096 2011-09-29 18:57 Articles

4 | drwxr-x--- 6 lennart genepi 4096 2011-07-06 09:07 Conferences
5 |drwxr-x--- 5 lennart genepi 4096 2011-08-29 18:18 Courses

6 |drwxr-x--- 2 lennart genepi 4096 2010-11-29 19:26 Graphics

7 | drwxr-x--- 7 lennart genepi 4096 2011-09-27 18:26 MeetingNotes
8

== =s=== 1 lennart genepi 50231 2011-09-02 14:57 notes.org

10
1
12
13
14

DU P~ W N A

3.6 Working with files and directories

drwxr-xr-x 3 lennart genepi 4096 2011-05-23 16:21 PaperReviews
drwxr-x--- 18 lennart genepi 4096 2011-09-27 18:14 Projecten

drwxr-x--- 4 lennart genepi 4096 2011-06-21 01:21 R-dev
drwxr-x--x 14 lennart genepi 4096 2011-09-02 14:58 ServerBeheer
drwxr-x--- 2 lennart genepi 4096 2010-07-28 13:44 snipextract

-rw-r--r-- 1 lennart genepi 753 2011-05-12 18:07 todo.txt

The output consists of eight columns, the last one being the file or direc-

tory name. Column one shows the permissions (which will be discussed
in § 3.10.2), columns three and four show the owner and group of the file
(§ 3.101). Column five shows the size of the file in bytes (unless the -h op-
tion is also used). Finally, columns six and seven show the modification
time and date, respectively.

3.61 Directories

Each user has a home directory for his/her own files. All home directories
are subdirectories of /home and are named after the user’s user name,
i.e. /home/your_username. After logging in you will find yourself in your
home directory. You can check this by running the pwd command, which
shows your present working directory (pwd). The tilde (~) is used as a
shortcut for the path to your home directory.

To move into another directory use the cd command, which stands for
change directory. The cd command can be followed by either a relative
path or an absolute path. An absolute path starts from the root (/) di-
rectory, e.g. /home/lennart/Programming or /tmp. A relative path uses
the pwd as starting point to go up or down the directory tree and conse-
quently doesn’t start with a /. Take a look at the following examples and
notice that here the whole shell prompt is shown (instead of just $) to
indicate how the shell prompt changes to show your pwd:

lennart@server:~$ cd ErasmusMC/
lennartgserver:~/ErasmusMC$ cd Courses
lennart@server:~/ErasmusMC/Courses$ cd /tmp
lennart@server:/tmp$ cd /home
lennartaserver:/home$ cd /
lennartgserver:/$ cd ~

pwd

cd

mkdir

rmdir

cp

[o.BEN

Chapter 3 The basics

lennartaserver:~$ cd ErasmusMC/Conferences/2011
lennartgserver:~/ErasmusMC/Conferences/2011$ cd ..
lennartaserver:~/ErasmusMC/Conferences/$

The paths used in lines 3, 4, 5 and 6 are absolute paths, the others are
relative paths. Line 8 shows a special kind of relative path, the .., which
means the parent directory (i.e. one level up in the tree). It can be used
just like any other relative path, so cd ../.. means go up two levels
in the directory hierarchy. The pwd also has a shortcut: . (i.e. a single
period), so the command cd . does nothing, since it just means “go to
the directory you are already in”. More interesting use of the . shortcut
is to explicitly indicate the pwd, for example when copying:

$ cp data_chrx.dat ./Projectl/data/

which means “copy the files starting with data_chr and ending in .dat
to the directory Project1/data, which is a subdirectory of the pwd”. Note
that the following statement is equivalent:

$ cp data_chrx.dat Projectl/data/

Another use case, running scripts from the pwd will be explained in Chap-
ter 5, page 8s.

Directories can be created by the mkdir command and removed with the
rmdir command. Both accept the name of one or more directories as
an argument. Note that the rmdir command only removes empty di-
rectories, and will give a warning if the directory is not empty. Use the
-r option of the rm command to recursively remove a directory and its
contents (the rm command is explained in more detail in § 3.6.2).

3.6.2 Copying, moving, removing

Managing files and directories revolves around the concepts of copying,
moving and removing. Files and directories can be copied using the cp
command, which needs (at least) two arguments. The last one is always
the destination, the ones before that are the source files (or directo-
ries).

3.6 Working with files and directories

For example, to copy filel to a new file with name file2 type:

$ cp filel file2

This copies files filel and file2 to the directory dir1 (which must al-
ready exist):

$ cp filel file2 diri

To copy filel and file2 to the directory dir1, which is located at the
same level in the directory tree as our pwd type:

$ cp filel file2 ../dirl #

Be careful, by default the cp command doesn’t warn you when a file with
the same name exists in the destination, it simply overwrites it! If you
add the -1 option when using the copy command you will be asked for
confirmation if the destination already exists.

The most used option for the cp command is the -r option, which allows
one to copy directories and files recursively. If you have tried to use a
directory as the first argument you have already noticed the following
error message:

$ cp dirl dir2
cp: omitting directory “diri/'

The -r option fixes this, as we can see with the 1s command.

$ cp -r dirl dir2
$ 1s -1d dirl dir2
drwxr-x--- 2 lennart genepi 4096 2011-10-12 10:57 diril
drwxr-x--- 2 lennart genepi 4096 2011-10-12 10:59 dir2

Moving a file (or directory) is very similar to copying it, the command mv
is followed by at least two arguments: the source and the destination.

$ mv filel dirl # Move filel into directory diril
$ mv filel file2 dir2 # Move filel and file2 into dir2

Unlike cp, mv works recursively by default:

$ mv dirl dir2

cp

cp

-1

-r

mv

mv

rm
rm

rm

Chapter 3 The basics

moves dirl (and it contents) into dir2, assuming dir2 exists. If dir2
does not exist, dir1 will effectively be renamed into dir2. The same
holds for files. If you move one file and the destination file does not exist,
the effect of the move is that the file is renamed. Like the cp command,
mv also overwrites an already existing destination file without warning.
As in the case of cp use mv -1i to get a prompt before overwriting.

And now we come to the more dangerous part: removing files and direc-
tories. It is very important to realise that Linux expects people to know
what they are doing. Consequently, there is no such thing like the Trash
folder on Windows, once a file is deleted, it is gone!! The command for
removing files is which accepts one or more file names as arguments.
Like cp rm does not work recursively by default, and like with cp, the -r
option enables it. Be careful as -r will also remove directories. Similarly,
the -1 option asks for confirmation.

$ rm filel file2 # filel and file2 are deleted

$ rm dir1 # Won't work, whether dirl is empty or not
rm: cannot remove ‘dirl': Is a directory

$ rm -r dirl

The last line removes diril and all the files and subdirectories within it!

3.6.3 Wildcards

Wildcards make it easier to manage multiple files at a time. These are
the two wildcards and their use:

=: replaces one or more characters
?: replaces one single character

The following examples show how to use wildcards.

+ Show all files in the pwd:

$ 1s =

- Show all files ending in pdf in the pwd:

$ ls ».pdf

3.6 Working with files and directories

« Show all files that start with chr and end with .dat:

$ 1s chrx.dat

+ Show all files that start with chr, have two characters in between
and end with .dat:

$ 1s chr??.dat

- Copy all files ending in .dat to a Backups directory (which is located
in the pwd):

$ cp *.dat Backups/

Note that when using cp or mv wildcards can only be used in the first
argument (the source), not in the second (the destination). This makes
sense, of course, since most of the times you'd like to copy (or move) a
set of files to one directory and not one file to a set of directories.

Using wildcards, especially in combination with the rm command can be
dangerous. Before you know it you type

$ rm » old.pdf # DANGEROUS, DON'T DO THIS!

instead of

$ rm *old.pdf

In the last case you delete all the files ending in old. pdf, whereas in the
first case all files in the pwd are deleted first and then rm tries to delete
the file old.pdf (which it probably can’t find).

3.6.4 Exercises

Exercise E3.3 Some file and directory basics

In this exercise you will learn to work with directories, how to create
them, how to remove them and how to move from one to the other. Don't
forget to use Tab-completion as much as possible.

a) Go to your home directory.

Chapter 3 The basics

b) Create a directory called LinuxCourse.

c) Go into that directory and create two other directories called tmp2
and tmp3.

d) Go to the tmp2 directory.

e) Go to the tmp3 directory in one step.

f) Go to back your home directory (again in one step).

g) What is the shortcut to go to the previous directory? Use it.

h) What is the absolute path of your present directory? Which com-
mand will print it on the screen for you?

i) Go to the root of the file system (/) and list the files and directories
there.

j) Go into the /tmp directory and list its contents (although the con-
tents will not be very interesting).

k) Use a relative path to go back to the LinuxCourse directory (in
one step of course).

[) Check if the two directories tmp2 and tmp3 are still there and then
remove them.

Exercise E3.4 Copying files

What is wrong with the following command (try to think before typing it
in and trying the command)?

$ cp filel file2 file3

Exercise E3.5** Creating a directory tree

3.6 Working with files and directories

a) Find out how to create a “branch” of directories in one command.
For example, make the following directory structure (starting in
the LinuxCourse directory):

b) Standing in the parent directory of dira how would you remove
these three directories?

Exercise E3.6 Getting information on files and directories

The 1s command lists files and directories (and their properties).

a) what is the size of a file with the name vmlinuz followed by some
numbers in the directory /boot?

b) Go to the directory /var and list the names of the user and group
that own the directories

mail
crash
local

Exercise E3.7** The dangers of wildcards
Wildcards in combination with rm can have devastating results!
a) Without entering the following commands (watch out, doing so is

EXTREMELY DANGEROUS!), can you tell the difference in effect that
they have?

1|rm -r *~
2 |rm -r * ~

f) A vmlinuz file is the Linux kernel (see § 2).

scp

scp -r

rsync

rsync -azP

Chapter 3 The basics

3.7 Transferring files from one Linux machine to
another

Files can be copied to and from the server with the scp command®. A
copy action looks just like a regular cp command:

$ scp source destination

butwith scp either source ordestination consist of a username@server
part followed by a colon and the file(s) to copy from or to, respectively.
For example, the command

$ scp local_file «
your_usernamegserver.domain.nl:dir/on/the/server/

copies a local file to the server and puts it in the specified directory.
Copying a file from the server to your own computer works similarly:

$ scp your_usernamedserver.domain.nl:~/path/to/the/file «
~/a/local/dir/

When copying directories including the files they contain the -r option
must be used:

$ scp -r some_dir/ «
your_usernamegserver.domain.nl:the_target_directory/

For transfers of many and/or large files the rsync command is better
suited because if something goes wrong and the transfer is aborted",
rerunning the scp command will start from scratch again. rsync is much
smarter about these cases and will transfer only (parts of) files that have
not been sentyet. An rsync command looks just like an scp command:

$ rsync -azP source destination

8 This works also when copying to and from an Apple computer with Mac OS X.

h) as mentioned in Chapter 6 tasks taking more than 10 minutes of processor time will
be killed unless the batch queue system is used.

3.8 Pagers, or how to look at the contents of a file

The -a option preserves file properties like dates, owner (if possible)
etc. and sets the recursive option for directories. The -z option turns
on compression of the data (which can decrease transfer times for some
files) and the -P option adds progress information and keeps partially
transferred files. As with scp either source or destination can be a
remote location specified as username@servername:path/to/files.

3.8 Pagers, or how to look at the contents of a file

In section 3.2 we discussed how to use an editor on the server to edit your
files. Sometimes, however, you are only interested in seeing the contents
of a file, without the need to edit it. In such a case loading the file into
an editor is of course an option, but there are faster options.

The simplest way to display the contents of a file is using the cat com-
mand:

$ cat timings.dat

nids t 1 t 2 t 3

50 0.5 1.4 4.63

100 0.62 0.21 18.19

200 0.9 0.4 10

500 2.4 5.19 171.09

1000 9.08 54.93 1653.25
1500 19.9 320.12 7201.39
2000 36.25 1086 18500.61
2715 74.95 2181.3 31432.52

Although cat is simple and straightforward it has some serious limita-
tions. If the contents is larger than the size of the screen you'll need to
scroll back and for files that are larger than the terminal’s buffer size you
wouldn't be able to scroll back all the way to the top.

To remedy this programs come to the rescue: more and less are the
pagers that can be found on any Linux system. These programs are called
pagers, because they allow the user to view the contents of the file screen

cat

more

less

zless

head
tail

Chapter 3 The basics

by screen i.e. page by page. To view a file called longfile using either of
these pagers simply give it as an argument:

$ more longfile

Use the space bar to scroll screen by screen and the q key to exit.

Usually less is to be preferred because it allows one to easily browse up
and down, as well as to search in the contents?. Again use the q key to
exit less. In § 3.9 you will learn how to deal with compressed (zipped)
files. To read the contents of a gzipped file it is not necessary to unzip it
first, simply use the zless program.

Two other commands also greatly help with getting a quick glimpse of
the contents of a file: head and tail!. Without additional options these
commands show the first or the last ten lines of a file, respectively. A
different number of lines can be given as argument to the -n option:

$ head -n 1 timings.dat
nids t_1 t_ 2 t_ 3

$ tail -n2 timings.dat
2000 36.25 1086 18500.61
2715 74.95 2181.3 31432.52

3.841 Exercises

Exercise E3.8 Working with less

a) Open the man page of less.

You can browse through the man page with the up and down arrows,
[PgUp], [PgDn], etc. but if you have an idea of what you are looking for
it is easier to search for it. Searching in the forward direction is done by

) The man command uses less to display the man page on screen.
) The R language has similar functions: head() and tail()

3.9 Using compressed archives like .zip and tar.gz files

pressing the / key, then type your search term and hit [ENTER]. Hitting
the keys / [ENTER] key repeatedly will go to the next hit, etc.

b) Which key is used to search backward?

Exercise E3.9 "Seeing a file grow”

Imagine that you have an analysis that takes a long time to finish but
writes some output to a file at every step (e.g. a ProbABEL [6] run, which
writes the outcome for each SNP on a new line). To follow progress you
could open the file every once in a while to see where it is, but once
the file is loaded (in less, more or even your editor), the output would
continue to grow and you would need to reload the file constantly for the
updates to arrive. Another way would be to run tail every few minutes
to only show the last few lines¥).

To save you time, tail has an option that follows the contents of a file
and shows you each line that is appended. Which option is that?

3.9 Using compressed archives like .zip and tar.gz
files

On a Linux system the following file formats are commonly used for com-
pressed archives:

.zip Aregular zip file, also recognised on Windows without the need for
extra software.
.gz A compression format that only contains a single file.
.tar.gz A gzipped tar archive, which can contain multiple files. This
format is the most common.

k) Incidentally, the way to do this automatically is via the watch program.

zip

unzip

gzip

gunzip

zless

Chapter 3 The basics

3.91 zip

Zip files are created and extracted using the zip and unzip commands re-
spectively. In the following example the directory MyProjectDir (includ-
ing every file and subdirectory because of the -r option) is first zipped
into a file called my_archive.zip. Subsequently, the original directory
is removed, followed by the unzipping of the archive to restore the di-
rectory and its contents.

$ zip -r my_archive.zip MyProjectDir
updating: MyProjectDir/ (stored 0%)
updating: MyProjectDir/testfilel (stored 0%)
updating: MyProjectDir/testfile3 (deflated 54%)
updating: MyProjectDir/testdirl/ (stored 0%)
updating: MyProjectDir/testdirl/testdir2/ (stored 0%)
updating: MyProjectDir/testfile2 (stored 0%)
updating: MyProjectDir/testdir3/ (stored 0%)
$ rm -r MyProjectDir
$ unzip my_archive.zip
Archive: ../my_archive.zip

creating: MyProjectDir/
extracting: MyProjectDir/testfilel

inflating: MyProjectDir/testfile3

creating: MyProjectDir/testdirl/

creating: MyProjectDir/testdiril/testdir2/
extracting: MyProjectDir/testfile2

creating: MyProjectDir/testdir3/

3.9.2 gzip

To create a Gzipped .gz file use the gzip command and to unzip a .gz
file use gunzip. The gzip compresses each file you specify as an argu-
ment separately, unlike zip, which stores all files in one .zip file. Fur-
thermore, it removes the original uncompressed file. Similarly, gunzip
decompresses the file(s) you give as arguments, but removes the com-
pressed ones. To read gzipped text files use zless (see also § 3.8).

3.9 Using compressed archives like .zip and tar.gz files

3.9.3 tar

To circumvent Gzip’s limitation of compressing each file individually,

most people use the tar command. With tar multiple files and directo- tar
ries can be stored in a single file, and it accepts additional options for

compression. The following command creates a compressed archive of

files, similar to the zip example above.

$ tar -czf my_archive.tar.gz MyProjectDir/

Here, the -c option stands for "create”, the -z option gzips the file and
-f specifies the filename of the archive. Extracting a tar.gz archive is
very similar:

$ tar -xzf my_archive.tar.gz

The -x options stands for 'extract’.

3.9.4 Exercises

Exercise E3.10 Untar-ing an archive

For some of the exercises some pre-made files will be needed. A com-
pressed archive of the files can be found in /tmp/exercises_linux_course.tar.gz.

a) Copy the file to your LinuxCourse directory and extract it.

It is considered good practice that a tar.gz file always contains a di-
rectory with the same name as the tar.gz file itself. This way, when
someone extracts it, (s)he doesn’t end up with files lying around in the
directory where the extraction was done.

b) Check that the extraction has completed successfully by listing the
contents of the present directory.

whoami

Chapter 3 The basics

3.10 File ownership and permissions

Linux is a multi-user 0s, which means that several people can access the
system at the same time. As result it is important for the 0s to be able
to tell who is the owner of a certain file or directory as well as who else
might have access to that file or directory.

3.10.1 Ownership

Every user has his or her own user account with a user name given by the
system administrator. To find out your user name type the whoami com-
mand. Furthermore, each user is also assigned to one or more groups.
The first group to which a user is assigned is his/her default group. The
command id shows your user ID (uid), group ID (gid) and all other groups
you are a member of:

$ id lennart
uid=1305(1lennart) gid=10001(genepi) «
groups=10001(genepi),100(users),10009(wikiusers),10010(gvnl),10011(svn)

Here you see that my user name is “lennart” and my default group is
“genepi”. The names that follow are other groups that | am a member of.
The numbers are not too important at this moment, suffice it to say that
each user or group ID has a unique number associated to it.

To see the user and group ownership of a file use 1s -1:

$ 1s -1

total 3529936

drwxr-xr-x 4 lennart genepi 4096 Nov 19 2010 BigGrid
drwxr-xr-x 4 lennart genepi 4096 Aug 22 18:01 bin
SIGWEEL L 1 lennart genepi 1612 Oct 10 01:48 course_desc.txt
drwxr-x--- 6 lennart genepi 4096 Jul 12 17:38 Courses
drwxr-x--- 3 lennart genepi 4096 Nov 23 2010 CUDA
-rw-rw---- 1 lennart gvnl 2047780 May 4 15:59 M34d.zip
drwxr-x--- 34 lennart genepi 4096 Aug 24 17:41 Packages
drwxr-x--- 11 lennart genepi 4096 Oct 6 10:56 Projecten
drwxr-xr-x 4 lennart genepi 4096 Aug 30 15:56 public_html
drwxr-x--- 7 lennart genepi 4096 Mar 17 2011 R

drwxr-x--- 16 lennart genepi 4096 Oct 8 01:40 Rlibs

3.10 File ownership and permissions

drwxr-xr-x 5 lennart genepi 4096 Mar 2 2011 Scripts
drwxr-x--- 5 lennart genepi 4096 Mar 28 2011 ServerMaintenance
drwxr-x--- 2 lennart genepi 4096 Aug 29 13:26 SGE-test
drwxr-xr-x 8 lennart genepi 4096 Dec 13 2010 TeX
drwxr-xr-x 17 lennart genepi 4096 Sep 30 16:24 tmp

3 lennart lennart 4096 Jun 24 20160 X-chromosome

drwxr-x---

Here you see that each file or directory is owned by me (column three)
and that the associated group for each of them is “genepi” (column four).
Only the file z34d. zip has a different group: “gvnl”. Why this isimportant
will be explained in the next chapter.

3.10.2 Permissions

Closely related to the concept of ownership is the concept of permis-
sions. Each file or directory has a set of permissions associated with it,
that indicate who can read, write and/or execute the file. These are in-
dicated by the letters r, w and x, respectively. In its simplest form these
three permissions can be set for the “user”, the “group” and “others”V.
The meaning of the read permission is obvious. Write permission means
that the file or directory can be changed, moved and deleted. The exe-
cute permission has different meanings for files and directories. For files
it means that Linux will try to run the file like a program or script. This
will be discussed in more detail in Chapter 5 on writing Bash scripts. For
directories the execute permission means that the user, group or others
can access that directory (via cd for example).

Let’s take a look again at some 1s -1 output which shows the permis-
sions on the first column:

$ 1s -1

1
total 3529936 2
drwxr-x--- 5 lennart genepi 4096 Mar 28 2011 ServerMaintenance 3
drwxr-x--- 2 lennart genepi 4096 Aug 29 13:26 SGE-test 4
drwxr-xr-x 8 lennart genepi 4096 Dec 13 2010 TeX 5
drwxr-xr-x 17 lennart genepi 4096 Sep 30 16:24 tmp 6

D For more fine-grained control of permissions the setfacl and getfacl can be used
to read and set ACLs (Access Control Lists) on files or directories. The usage of these
tools falls beyond the scope of this course.

chmod

Chapter 3 The basics

drwxr-x--- 3 lennart genepi 4096 Aug 24 17:41 Packages
-rw-rw---- 1 lennart gvnl 2047780 May 4 15:59 M34d.zip
‘drwxr-x,--— 11 lennart lennart 4096 Jun 24 2010 X-chromosome

The first columun consists of four blocks. The first block is one character
wide and has-a d if the entry is a directory. Then follow three blocks of
three\permissions r, w and x, one for the owner, one for the group and

one for atl.other users. If one of the permissions is not set it isindicated
by a -.

So in this listing you see mostly directories, except for the entry M34d. zip
for on line 8. This file has the permissions read and write for the owner
as well as the group (gvnl), but other users have no access to the file. In
contrast, the TeX directory can be accessed and read by everybody, but
only the owner can write to it.

By default the permissions on a file are rw (read and write) for the owner,
r (read-only) for the group and others. This means that everyone can
read the file.

Permissions can be changed with the chmod command. Use of this com-
mand falls beyond the scope of this course (although it will briefly show
up in Chapter 5).

When copying files from a Windows machine it is possible that the per-
missions are set to rwx for all three groups. This is because the Linux/U-
nix permission scheme is different from the way Windows handles file
permissions. You can safely change the parameters to the default val-
ues (i.e. rw for the user, r for the group and none for others) using the
following command:

$ chmod 640 my_file_from_windows

3.11 Process management

Every program or command that you run on a Linux machine starts one
or more processes. In this section you will learn some basic commands

[o BN

3.11 Process management

to manage them. Processes can be killed, sent to the background and be
brought back to the foreground.

3111 Exercises

Exercise E3.11 Listing and killing processes

To find out whether the server is busy, you can use the programs top and
htop that show dynamically updated lists of processes (usually sorted by
processor (also known as Central Processing Unit (cpu)) usage).

a) Start the htop program (top basically does the same, although
less colourful). On the screen you can see that the server has 12
CPUs. The amount of memory used is listed as well. In the lines
below a list of processes is shown, sorted by cpu usage. By press-
ing the u key you can select a user and only see his/her processes.
Other options are available as well, use the h for help. To return
to the command line, press g.

While htop is fun to watch, sometimes you simply want to see which
processes you have running. For example, you have just started a large
analysis, but discovered you forgot to add a certain piece of information.
Instead of letting the current analysis program run, using a lot of pro-
cessing power while you know you will throw away the results anyway,
you can use the ps command to find the process and the kill command
to kill it.

b) Run ps -fu username (with your own user name) to find out
which processes you have running. Here is some example output:

$ ps -fu lennart

UID PID PPID C STIME TTY TIME CMD

lennart 4633 4631 0 17:49 ? 00:00:00 sshd: lennartapts/8

lennart 4634 4633 0 17:49 pts/8 00:00:00 -bash

lennart 5841 31983 0 18:50 pts/6 00:00:00 sh jobscript.sh 1 100000
lennart 5842 5841 63 18:50 pts/6 00:00:00 /usr/1ib64/R/bin/exec/R --slave
lennart 5844 4634 0 18:50 pts/8 00:00:00 ps -fu lennart

lennart 29273 29271 0 10:51 ? 00:00:00 sshd: lennartapts/2

lennart 29274 29273 0 10:51 pts/2 00:00:00 -bash

lennart 31982 31980 0 13:25 ? 00:00:01 sshd: lennartapts/6

OV oO~NOU»~WN -

=

htop

kill

ps

kill

Chapter 3 The basics

11 |1ennart 31983 31982 0 13:25 pts/6 00:00:00 -bash
L

In this example | have nine processes running. The ones in lines 3,
8 and 10 are my connections to the server (i.e. three in total). For
each connection one SSH process is started (lines 4, 9, 11), which
in turn starts the Bash shell so | can type my commands. In line
5you see a Bash script that is running, and in line 6 you can see |
am running R. Line 7 shows the process of the ps command itself.

In this output, the column PID is an important one. Each process
gets a unique process ID, or PID. It is this PID that can be used to
kill a process. If, for example, | want to kill the R process, | simply

type

$ kill 5842

and R stops. You probably will not do this very often, but every
once in a while it can be handy™.

Exercise E3.12%* Sending processes to the background (and getting
them back)

By default, a program that you start on the command line is run in
the foreground. This means that the prompt will not reappear until the
program has finished. So you will have to wait before you can type a new
command. If you don’t want to wait, you can type Ctrl-z to suspend the
program. A suspended program does nothing. It simply waits for you to
bring it back to life (i.e. to the foreground or the background) again.

a) Start R and type one or two simple commands like

> a <- "hello"
> 1s()

Now suspend R by hitting Ctrl-z. You will see a message that
R has been stopped. Now you can type any other command, for
example look for a certain data file, edit an R script, etc. When

m) | you want to kill a job that is running in the batch queue (cf. Chapter 6), you can use
the gdel command.

3.11 Process management

you are ready to work in R again, type fg, which stands for “fore- fg
ground”. Nothing seems to happen, but you are back in R. Hit the

Enter key for example, or use the up arrow to redo one of your

previous commands.

b) It is possible to have multiple programs suspended at the same
time. Suspend R again and start htop. Suspend htop as well.
Again a message appears telling you that htop has stopped. No-
tice that the number in between square brackets is now 2. This is
the job ID (which is not related to the job ID of a job that runs in
the sGE queue system that will be discussed in Chapter 6). You can

list the jobs in your current screen with the jobs commands: Jobs
$ jobs

[1]- Stopped /usr/bin/R --no-save

[2]+ Stopped htop

You can check that both processes still exists by typing ps -fu «
username, like we did before.

Typing fg now would bring the last job to the foreground: htop.
To bring R to the foreground instead type

$ fg 1

and exit R (type q()). Type fg to bring htop to the foreground and
exit it (or, instead of bringing htop to the foreground kill it).

Nowadays the possibility of suspending jobs and bringing them back is
not widely used anymore. You can simply open another connection to
the server. In the old days, however, this was a completely different mat-
ter. Before the availability of Personal Computers (PCs) on each desktop,
people connected to a server using a so-called terminal. Such a termi-
nal consisted of a screen and a keyboard. Both were connected to a big
mainframe computer somewhere down the hall. There were no mouses
or windows (in the computer sense of those words), only one command
line. In those days being able to suspend and run jobs in the background
was vital.

Chapter 3 The basics

Exercise E3.13** Starting processes directly in the background

If you use MobaXterm it is possible to run certain GUI applications on
the server. You could start Emacs for example. However, starting Emacs
in the normal way:

$ emacs some_kind_of_file

will keep the shell occupied until you have finished editing your file. In
this case you most likely want to start the process in the background so
that you can do both: use the editor and use the command line. Starting
a process in the background immediately can be achieved by ending the
command with an ampersand symbol (which generally looks like & or &,
depending in the font used):

$ emacs some_kind_of_file &

$

Notice how the shell prompt (the $) immediately returns to the screen,
allowing you to run another command (while Emacs is still running in the
background)™.

3.12 Miscellaneous commands

In this section several small but useful commands will be discussed
briefly. Use the man pages or the --help option to obtain more
information on how to use these commands.

3.12.1 wget: downloading files to the server

Downloading files is an often occurring task. Of course you could down-
load the file to your PC first and then use MobaXterm or WinSCP to trans-
fer the file to the server. As you can easily imagine this is inefficient,

") This example assumes that you have X11 forwarding enabled when connecting to the
server, see §3.1.1 for more information.

3.12 Miscellaneous commands

especially for large files. It's a waste of time and bandwidth. The solu-

tion is easy: look up the link of the file you want to download on your PC

(right-click on the link in the web page and click and click 'Copy link loca-

tion’). Next, use wget to download the file on the server. For example, to wget
download the current version of ProbABEL® into your current directory

run:

|$ wget http://www.genabel.org/sites/default/files/software/probabel-0.4.1.tar.gz I
L

312.2 sort

The sort command is used to sort the lines in a file: sort

$ more sortl.txt
1200

34

465

2340

Hello

Hello

1200

982

archive

1

Once upon a time
0001

$ sort sortl.txt
0001

1

1200

1200

2340

34

465

°) Shameless plug: ProbABEL[6] is a tool for doing genome-wide association studies, and
I am the current maintainer. See http://www.genabel.org/packages/probabel.

http://www.genabel.org/packages/probabel

sort -n
sort -g
sort -k

Chapter 3 The basics

982

archive

Hello

Hello

Once upon a time

Notice how sort treats numbers as if they are words (2340 comes before
34 because a 2 is less than a 3). The -n option does a numerical sort:

$ sort -n sortl.txt
archive

Hello

Hello

Once upon a time
0001

1

34

465

982

1200

1200

2340

The numerical sort is not perfect, however, because it doesn’t recognise
numbers in scientific notation, like 1.4e-5. The -g option solves that
(see below for an example).

In case you don’t want to sort on the first column, use the -k option
followed by the column number:

$ more sort3.txt

rs5 23 c

rs150 10 a

rs23 le2 d

rsio 0.2 b

rs3 4e-3 e

$ sort -k3 sort3.txt
rs150 10 a

rsio 0.2 b

3.12 Miscellaneous commands

rs5 23 c

rs23 le2 d

rs3 4e-3 e

$ sort -gk2 sort3.txt
rs3 4e-3 e

rsl0 0.2 b

rs150 10 a

rs5 23 c

rs23 le2 d

Note that we used the -g option in the last command in order to sort
the second column using scientific notation. Here, the two options were
combined, but the above is equivalent to sort -g -k2 sort3.txt.

To specify a different column separator than a space, use the -t op-
tionP:

$ sort -g -k2 -t"," sort4.txt
rs3,4e-3,e

rs10,0.2,b

rs150,10,a

rs5,23,c

rs23,1e2,d

Recently, a new option was added to the sort command. The -u option
sorts first and then keeps all unique lines (i.e. it removes entries that
occur twice)®. For example, when sorting the sort1.txt file, only one
of the Hello and 1200 lines remains when using the -u option:

$ sort -u sortl.txt
0001
1

P) When thinking about grouping multiple short options, remember that if you have more
than one option that needs a argument, these cannot be combined. So, sort «
-gk2t"," sort4.txtisincorrect, butsort -gk2 -t"," sort4.txtorsort -k2 «
-gt"," sort4.txt are correct. However, in a case like this specifying all options
separately is the most readable solution.

q’LooHngaheadat§3nz3thatdeab\mhhtheuniqconnnandand § 313.2 about using
the pipe to send output from one command to another, the command sort -u «
some_file is identical to running sort some_file | uniq

sort -t

sort -u

Chapter 3 The basics

1200

2340

34

465

982

archive

Hello

Once upon a time

312.3 unigq

uniq The unig command removes repeated lines from a file.

$ uniq sortl.txt
1200

34

465

2340

Hello

1200

982

archive

1

Once upon a time
0001

Notice how only the repeated entry of “Hello” has been removed, but the
duplicate “1200” still in because the entries are not on subsequent lines.
In § 3.13.2 you will see how the sort and uniq commands can be chained
together to also get rid of one of the “1200” entries.

3.12.4 wc: counting words and lines

Counting words and lines are common tasks. For example, counting the
number of lines in a phenotype file will tell you if the number of individ-
uals in the file corresponds to what you know to be the total number of

3.12 Miscellaneous commands

people in your study cohort. The wc (WordCount) command counts the
number of lines, words and characters for each file that you give it as
input. Here you see that the file sort1. txt has 12 lines, 15 words and 70
characters.

$ wc sortl.txt
12 15 70 sortl.txt

In our field we are mostly interested in the total number of lines, in which
case you can use the -1 option.

312.5 date

To get today’s date and time use the date command. To change the way
the date and/or time are printed use + followed by a so-called format
specifier. To use a different date than today, use the -d option. These
are a few typical examples:

$ date
Thu Jun 4 12:36:45 CEST 2015
$ date +%F

2015-06-04
$ date +%H:%M
12:37

$ date +%H:%M-%Y-%m-%d

12:37-2015-06-04

$ date -d "15 November 2015 - 30 days"

Fri Oct 16 00:00:00 CEST 2015

$ date -d "15 November 2015 - 30 days" "+%d %B"
16 October

Notice the quotes around the + format specifier. They are necessary be-
cause of the space between %d and %B, without the quotes, only %d would
be seen as part of the format specifier and %B would be considered a sep-
arate option (which doesn'’t exist, so an error will be returned). The out-
put of the date command may be localised to your country. For example,
on a Dutch system the results of the first and last examples are:

wc

wc -1

date

date -d

du
du -sh

Chapter 3 The basics

$ date

do jun 4 12:41:33 CEST 2015

$ date -d "15 November 2015 - 30 days" "+%d %B"
16 oktober

To override the language environment for a specific date command add
LANG=CC in front of it, for example on the Dutch system the result will be
English as expected:

$ LANG=CC date

Thu Jun 4 12:43:02 CEST 2015

$ LANG=CC date -d "15 November 2015 - 30 days" "+%d %B"
16 October

3.12.6 du: disk space usage

If you are getting close to your disk quota limit, the du command (which
stands for “disk usage” will help you find files and directories that take
up a lot of space:

$ du -sh Projecten/

4.4G Projecten/

$ du -sh Projecten/x

1006M Projecten/GWAS

18M Projecten/GvNL

2.7G Projecten/ARA

104K Projecten/ergo

16K Projecten/RS3_2082_ids

300K Projecten/Comparison_polygenic_hglm
716M Projecten/Lipid_GxE_Prediction

2.0M Projecten/Suman_Prediction_Comparison
8.9M Projecten/Epiblaster

The -s option summarises the disk usage for each of the directories,
without it you will get a report for each subdirectory. The -h option works
like the -h option of 1s, it prints the size in human readable format (MB,
GB, etc.) instead of in bytes.

3.12 Miscellaneous commands

3.12.7 Differences between files

Finding the differences between two text files is easy with the diff com- diff
mand. diff shows each line where a difference occurs”. Consider the
following two files, filel and file2:

$ more filel file2

Hello world,
I am a text file
living in a Linux world.

Hello world,
I am a simple file
living in a Linux world.

Bye bye

This is the output of diff:

diff filel file2
2c2
< I am a text file

> I am a simple file

which tells us that there is a difference on line 2 in the first as well as

in the second file and then prints the differing lines. The -u command diff -u
shows the differences within the context by adding a few lines before

and after the differing lines:

") Note that sometimes this may only be a difference in white space.

md5sum

md5sum -c

Chapter 3 The basics

$ diff -u filel file2

--- filel 2011-01-27 18:08:19.000000000 +0100
+++ file2 2011-01-27 18:08:19.000000000 +0100
A -1,5 +1,5 aa

Hello world,

-I am a text file

+I am a simple file

living in a Linux world.

Bye bye

For binary files it is more difficult to display the differences (do you un-
derstand why?) and diff will only tell you that the files differ. To check
whether two files are equal bit by bit use the md5sum command which cal-
culates a unique checksum based on the contents of the file. If the check-
sums are equal you can be assured that the files are exactly equal.

$ md5sum filel file2
24adfOb0daed9b2b310c4e2117fcbdda filel
4b25f33b80a2514d524c3f5b60e13bd6 file2
$ cp filel files

$ md5sum files
24adfOb0daed9b2b310c4e2117fcbdda files

The checksums are different in the first run where filel and file2 are
compared. Making a copy of filel and checking that file's mdssum
shows that they are exactly equal.

The mdssum command is very useful to check files before and after
transfer to or from another server (cf. § 3.7) to make sure that all files
are exactly equal. Checking a lot of files by hand in this manner is not
efficient. The -c option helps here. It compares the mdssums of a set
of files to those listed in a file. If the mdssums of a set of files is given
(e.g. by saving the output of the mdssum command on the first machine)
then after transfer the files can be checked using this file:

$ more checksums
24adfOb0daed9b2b310c4e2117fcbdda filel

3.13 Input and output redirection

4b25f33b80a2514d524c3f5b60e13bd6 file2
$ md5sum -c checksums

filel: OK

file2: OK

Exercise E3.14 Disk space usage

Find out which subdirectory of your home directory takes up most
space.

Exercise E3.15 Downloading files to the server

When downloading large files, the transfer gets interrupted sometimes.
If the happens, you could start downloading from scratch again, of
course. But it's more efficient to continue downloading where you left
of.

a) Start downloading the CD image of the most recent Ubuntu Linux
Long Term Support version from this URL: http://releases.
ubuntu.com/16.04.3/ubuntu-16.04.3-desktop-amd64.iso.
Once the download starts, hit Ctrl-c to abort the transfer. Check
the size of the .iso file with 1s.

b) Which wget option allows you to continue downloading a partially-
downloaded file? Try it.

3413 Input and output redirection

3.13.1 Redirecting to and from files

When working on analyses that involve some repetitiveness (i.e. perform-
ing the same action for 22 chromosomes) it is easy to end up with several
files that you would like to have in one big output file. Or maybe you want

http://releases.ubuntu.com/16.04.3/ubuntu-16.04.3-desktop-amd64.iso
http://releases.ubuntu.com/16.04.3/ubuntu-16.04.3-desktop-amd64.iso

>>

Chapter 3 The basics

to store the screen output of a certain command because it might be use-
ful later. The > and >> are used to send the screen output of a command
to a file, this is called output redirection.

For example, the output of the sort command that sorted some input file
infile normally goes to the screen. Sending it to an output file called
outfile goes like this:

$ sort infile > outfile

The > and >> behave differently in one important way: > always over-
writes the output file, whereas >> appends the new output to the output
file if it exists. For example, you can send the listings of several directo-
riesto an output file dirlist (the cat commands simlpy print the output
on the screen so you can follow what happens):

$ ls -1 dirl > dirlist
$ cat dirlist

total 8
-rw-r----- 1 lennart genepi 492 2011-10-16 15:42 filel
-rw-r----- 1 lennart genepi 150 2011-10-16 15:42 file2

$ 1s -1 dir2 >> dirlist
$ cat dirlist

total 8

-rw-r----- 1 lennart genepi 492 2011-10-16 15:42 filel

-rw-r----- 1 lennart genepi 150 2011-10-16 15:42 file2

total 8

-rw-r----- 1 lennart genepi 129 2011-10-16 15:42 file21
-rW-Ir----- 1 lennart genepi 14 2011-10-16 15:42 file22

Input redirection is complementary to output redirection, it is however,
not used as much as its brother. With input redirection the contents of
a file is sent to a program, which then processes it. The symbol used for
input redirection is <. As an example, consider the following (useless) R
script, saved in the file rinput.R:

print("Hello, you are now in R")
getwd()

1+1

10:1

3.13 Input and output redirection

One way to execute these lines in R is to use input redirection:

$ R --quiet < rinput.R

> print("Hello, you are now in R")
[1] "Hello, you are now in R"

> getwd()

[1] "/tmp"

> 1+1

[1] 2

> 10:1

[1] 16 9 8 76 5 4 3 2 1

>

$

Notice that we have ended at the bash prompt again, even though we
didn’t end the script with q().

3.13.2 Redirecting output of one command to another

So far we have sent the output of a command to a file, or taken the input
from a file. Things start to get interesting when the output of one com-
mand is used as input to the next. For this the pipe symbol | is used.
It usually on the same key as \ and indicated by a vertical bar or two
vertical bars stacked like a colon).

You can use this for example when looking at the directory listing of a di-
rectory with many files and subdirectories. Instead of having the output
scroll off the screen you can pipe it to e.g. more:

$ 1s -1 | more

Or if you want to want to look at all processes that are running on the
system, screen by screen:

$ ps -ef | less

Technically using a pipe like

Chapter 3 The basics

$ commandl | command2

is equal to

$ commandl > tmpfile
$ command2 < tmpfile
$ rm tmpfile

In later chapters, after more commands have been introduced, more ex-
amples of the usage of pipes will be shown.

Exercise E3.16 Combining files

In this exercise you will use output redirection to concatenate (i.e. stitch
together) several files.

a) Create a new directory and cd into it. Use your editor to create
three files with a few lines of text. Save them as filel, file2 and
file3.

b) Use the cat command and the > sign to send the contents of filel
to a new file called output.total

c) How would you add the contents of the other two files to the
output.total file?

d) How can you quickly check whether the files were merged cor-
rectly?

If the input files are large, don’t forget to delete them after you have are
satisfied with the result of the concatenated file. There is no reason to
let this duplicate information eat up disk space from your quota.

Exercise E3.17** Combining input and output redirection

How would you send the output of the R commands from the input
redirection example (R --no-save --quiet < rinput.R)toafile called
Routput?

3.14 Aliases and creating your own commands

Exercise E3.18*** Using the output of one command as input for an-
other

The pipe symbol (|) is used to send output from one command as in-
put to another. In this way many short commands can be chained into a
powerful "supercommand”.

a) Chain two commands together to show how many processes you
are running at the moment.

b) Go to your home directory and find out how much disk space (in
human readable format) each of the files and subdirectories use.
Sort the result in order of increasing size.

c) Use wto list all users that are currently logged in. How many users
are currently logged in? Some people may be logged in more than
once. How many unique users are logged in?

3.14 Aliases and creating your own commands

We are almost at the end of this chapter and already you have gone
through many commands. How many times have you typed 1s -1 or
1s -1hp? Probably quite a few times. And more will follow! Wouldn't it
be nice if you could save a command under a shorter name? Well, you
can! The alias commands lets you assign a command to a new name.
For example:

$ alias 1sl='ls -lhp'

Once you have run this command you can simply type 1s1, three char-
acters instead of seven. That saves time! Chapter 6 the gstat command
will be discussed. This command accepts several options and typing
gstat -f -u * many times is a pain, so why not write an alias and ab-
breviate it to gqs?

$ alias gs='gstat -f -u \x'

alias

Chapter 3 The basics

You may have noticed if you have more than one terminal window open
that aliases defined in one terminal session are not known in another.
Moreover, if you close a terminal all aliases will be forgotten the next
time you log in. Not a very nice thing, but, as in most cases, some-
one already ran into that problem and has solved it for you. The so-
lution is to save your aliases in one of the two hidden files ~/.bashrc
or ~/.bash_aliases. Notice the tilde (~) in the path, these two files re-
side in your home directory. The .bashrc file in your home directory
is the default configuration file for Bash, it is read every time you start
Bash (i.e. when you open a terminal). This file is already present on most
Linux machines and you can simply add your aliases at the end of the
files). Many default ~/.bashrc files also have a section that looks like

Alias definitions.

You may want to put all your additions into a separate «
file like

~/.bash_aliases, instead of adding them here directly.

See /usr/share/doc/bash-doc/examples in the bash-doc «
package.

if [-f ~/.bash_aliases]; then
. ~/.bash_aliases
fi

which basically means that every time you log in ~/.bashrc checks
whether the file ~/.bash_aliases exists and if that is the case it reads
its contents?. So, as the comment says “You may want to put all your
additions into a separate file”.

After you have added your aliases to either of these files the present
Bash session doesn’t know about them yet. You could log out and back
in of course, but a more elegant way is to read the contents of the file
directly:

s) The .bashrc file is actually a Bash script, so everything you will learn in Chapter 5 can
be applied to this file as well.

V) Feel free to add these lines to your .bashrc file if they don't exist and you want to
store your aliases in a separate file.

3.14 Aliases and creating your own commands

l$ source ~/.bashrc

Do you remember from §3.6.2 that the -i option cp, mv and rm makes
these commands safer by asking for confirmation before overwriting or
deleting? If you'd like to be on the safe side this is the time to create
aliases for these commands:

alias cp='cp -i'
alias mv="mv -1'
alias rm="rm -1'

By giving the alias the name of the original command you “overwrite” the
original command with your aliasY.

In exercise E3.18 of this chapter we saw how we could use du and sort to
show the file and directories in the pwd sorted by file size, with the largest
files and directories at the bottom. The full command was

$ du -sh * | sort -h

If you are wondering which files and directories eat most of your precious
disk space quota you are probably interested in the top 5 largest ones in
a given directory. Let’s reverse the sort so the largest files and directories
are at the top and then select only the top five of them:

$ du -sh * | sort -rh | head -5

It makes sense to save this nice string of commands in an alias so we
don’t have to remember it exactly:

alias bigfiles='du -sh * | sort -rh | head -5'

You can run the alias command all by itself to see which aliases have
been defined. Here is a selection of my aliases:

$ alias
alias R='/usr/bin/R --no-save'
alias grep='grep --color=auto'

”)OfcoumetherealannmandsarenotovenNﬁuen,butwhenyougweaconnnandBash
first looks in its list of aliases before looking in its set of default directories for exe-
cutable files.

cp -i
mv -1
rm -1

Chapter 3 The basics

alias lo='exit'

alias 1ls='ls --color=auto'
alias lsa='ls -1hA"

alias lsl='ls -1h'

alias gs='qgstat -f -u \+*'

Exercise E3.19 Creating aliases

After reading/hearing all the warnings about cp, mv and rm overwriting
an existing destination file, you may want to decide to stop living on the
edge and use more safe alternatives for these commands.

a) If you haven't already read about them in the course reader, find
out which option to add to the cp, mv and rm commands that will
force those commands to ask you a question before performing a
(potentially) dangerous operation

b) Use the alias command to “overwrite” each of these three exist-
ing command with its safer alternative and test the alias.

c) Openthe file ~/.bashrc in an editor and add the three aliases you
created earlier.

@1@101011110000001
11

10

00

10y

011015%0.
11110@00@011010110100

10

10

10

10

2,
10@101

Chapter

Working with text files

Chapter 4 Working with text files

Data files fall into two categories, files that store information in plain
text and those that store information in a binary format. Binary formats
are in general more space-efficient than text files, but have the draw-
back that they can’t be opened with a regular text editor (cf. § 3.2) and
can usually only be read and written by the programs that created them.
Examples of binary files are .Rdata files, zip files and GenomeStudio’s
project files, but also the .doc and .x1s files from MS Office. Plain text
files, sometimes also called ASClI files, are much easier to handle. As long
as they are small they can be edited easily, without the need of special
programs. However, as they grow in size, up to several GB for a file with
imputed data for chromosome 1 in ERF, things become problematic. For
example, to transfer a file of 10 GB from the server to your office PC via
the 100 Mb/s office network would take at least

10 x 1024 MB

- x 8 bits/byte = 819.2s ~ 14 min
100 Mbit/s /by

and then you would still need to do the editing, and you could run into
trouble there to, because the file is larger than the roughly 4 GB of mem-
ory (RAM) installed in your PC. And finally, you would need to upload the
file again after finishing the edit.

Even if you would try to edit the same file directly on the server using one
of the editors mentioned in § 3.2 (which would, of course be the smarter
thing to do), the loading time would be considerable. That is why in this
chapter you will learn to use several utilities for processing (large) text
files. Most of these utilities parse the files line by line, which solves the
memory problem described earlier.

41 Converting between Windows and Linux format

Some Linux programs may have difficulty reading plain text files created
with a text editor on Windows (e.g. Notepad). This is caused by the fact
that historically both operating systems use a different way to encode
the end-of-line. For example, opening a text file that was created in Linux
on a Windows PC (with Notepad, for example) will show all text on one

4.1 Converting between Windows and Linux format

long line. Conversely, a Windows file opened with e.g. less will show the
Windows end-of-lines as “M. Two programs exist to solve this problem:
dos2unix and, for the reverse conversion, unix2dos?.

412 Exercises

Exercise E4.1 Converting files from Windows format to Linux format

a) By default dos2unix does the conversion in place, i.e. the original
file is overwritten. Which command line option should be given to
write the converted output to a new file?

It is not possible to see the difference between a file created in the Win-
dows format and one in the Linux format when using paging tools like
more or less. Most Linux systems will display and use the Windows files
without problems.

The Linux command file tries to classify each file you give as an argu-
ment. For a . jpg image, for example it will give the following results:

$ file linux-penguin.jpg
linux-penguin.jpg: JPEG image data, JFIF standard 1.0

This is useful, because if | would make a simple text file and name it
text.jpg, having the . jpg extension alone does not automatically make
it an image. And the file command tells me so:

$ cat text.jpg

Hello there, this is a text file
$ file text.jpg

text.jpg: ASCII text

3) For those of you who are young: MS-DOS was the first 0s created by Microsoft, back in
1981, way before they created the MS Windows family.

dos2unix

unix2dos

file

Chapter 4 Working with text files

b) Create a text file with your favourite editor. Use the file com-
mand to check its type. Convert it to Windows/DOS format without
overwriting the old one and check the type of the new file.

4.2 grep: finding text

grep The grep command is used to quickly find lines containing a given text
pattern in one or more files. The basic syntax is

$ grep searchpattern files

If searchpattern consists of more than one word it has to be enclosed
in quotes.

The most-used options for grep are:

grep -F -F treat the search text as fixed, litteral text, not as a pattern. By de-
fault the search text is a so-called basic regular expression, not just
litteral text (cf. § 8.1). This speeds up the grep process enormously,
something very useful given the enormous size of many of the files
used in the life sciences. So, unless you know what regular expres-
sions are and how to use them | strongly encourage you to always
add this option!
-w assume that the search text is a word (and thus should be sur-
grep -w rounded by white space (spaces, tabs)). Can be very important!
For example, if you are looking for a person with ID id10, using
grep id10 myfile.txt will also print lines containing id100,
id10a, fid10212, etc. The -w option will only return the lines you
are actually looking for.

grep -i -i makes the search case-insensitive

grep -n -n adds the line number on which the match occured to the output

grep -c -c (count) don’t print the lines matching the search text, but only print
the number of lines with a match

grep -v -v print all lines not matching the search text

grep -A -An Print n lines after the match

grep -B -Bn Print n lines before the match

4.2 grep: finding text

-Cn Print n lines before and after (the C stands for “context”) the match

Let's have a look at some examples with a slightly modified version of
the file used for sorting in § 3.12. First, print the contents of the file on
the screen:

$ cat grepexample.txt
1200 1234 4567

34 some text here
here is a number: 465
2340

Hello

Hello there

1200

982 1d120 exm12312
the archive is lost

1

Once upon a time

0001

Now, print only the lines containing the text 34.

$ grep 34 grepexample.txt
1200 1234 4567

34 some text here

2340

Print the lines containing a 34 “on its own”, i.e. surrounded by white
space:

$ grep -w 34 grepexample.txt
34 some text here

Notice the difference between the last two outputs.

The -n option adds the line number on which the match was found:

$ grep -n 0 grepexample.txt
1:1200 1234 4567

4:2340

7:1200

Chapter 4 Working with text files

8:982 1d120 exm12312
12:0001

If you just want to count how many times a certain text occurs, use the
-c option:

$ srep -c 0 grepexample.txt
5

The following examples show how to use the after, before and context
options:

$ grep -A2 archive grepexample.txt
the archive is lost

1

Once upon a time

$ grep -B2 archive grepexample.txt
1200

982 id120 exm12312

the archive is lost

$ grep -C1 archive grepexample.txt
1200

982 id120 exm12312

the archive is lost

1

$ grep -A2 1 grepexample.txt

1200 1234 4567

34 some text here

here is a number: 465

1200

982 id120 exm12312

the archive is lost

1

Once upon a time

0001

In the last example the -- are inserted to separate the output for the
first match (the line with 1200 1234 4567) and the second match (the

4.2 grep: finding text

line with only 1200). There is no -- between the second and the third,
fourth and fifth matches (the lines with id120, 1 and 0001, respectively),
because these overlap or are directly connected. , and

If you have more than one search term it is easiest to save them in a
file, one term per line, and feed that file to grep with the -f option. For
example, if you have a list of SNPs (e.g. their rs IDs) in a file called snplist
you can look up the information about these SNPs from the genotype
imputation files with

$ grep -Fwf snplist /path/to/your/imputation/x.info

I've added the options -F and -w as well to speed up the search and only
look for matches of the full word.

4.2 Exercises

Exercise E4.2 Searching for a given text in a file

a) Given a phenotype file, how would you check whether a certain
individual ID is present?

b) Go to the directory with the extracted exercise files (cf. Exer-
cise E3.10 on page 37).

c) Which grep option allows you to recursively search in directories?
Use it to find all occurrences of the term “trait” in the subdirecto-
ries.

d) In the output of the previous command there is also a line that
has the word “traits” (plural) in it. If you are only looking for the
single word “trait”, which grep option would you use?

e) By default, grep is case sensitive. Find out how to do a case insen-
sitive search and see whether there are occurrences of the word
“trait” with capital letters in them.

grep -f

sed

Chapter 4 Working with text files

f) Spotting the exact location of the keyword in the output of
grep is sometimes difficult. Try the --color=auto option (or
--colour=auto if you are British) for a few of the previous grep
commands and see the difference.

4.3 sed, the Stream EDitor

An operation that occurs frequently is replacing a certain text in a file
with other text. The command sed, for Stream EDitor, can do this (and
a lot of other things) very well. By default sed sends its output to the
screen so you have to used output redirection (cf. § 313) to send it to a
file. The structure of a sed search-replace operation looks like this:

$ sed 's/old text/new text/g' some_file

Here the s stands for “substitute” and the g for “global”, without g only
the first occurence of old text in each line is replaced. Sometimes you
need to substitute the / character itself (if you are changing a directory
path for example). This can be awkward with the normal sed substitution
command. Luckily the / symbol in the sed command can be replaced
with other symbols, for example a colon or semi-colon. The following
command is equal to the one above.

sed 's;old text;new text;g' some_file

By default sed sends its output to the screen. For this small file that is
not a problem, but for a large file your screen will soon be too small. It
would be much nicer to have this output in a separate file. There are two
ways to do this. The first one is obvious after the exercises in § 3.13: use
> to send the output to a new file. The second method will be discussed
in the exercises.

Another common use of sed is to remove a given line, say line 3, from a

file:

$ more some_file
This is a header
Line 2

4.3 sed, the Stream EDitor

Line
Line
Line
Line 6

This is the footer

$ sed '3d' some_file
This is a header
Line 2

Line 4

Line 5

Line 6

This is the footer

g &~ W

In the next two examples we first delete lines 2 to 4 and then show how
to delete all lines containing the text “This is”.

$ sed '2,4d' some_file

This is a header

Line 5

Line 6

This is the footer

$ sed '/This is/d' some_file
Line
Line
Line
Line
Line

o U~ W

To print only line 5 of a file use

$ sed -n '5p' some_file
Line 5

Without the -n option sed prints all lines in the file.

4.3 Exercises

Chapter 4 Working with text files

Exercise E4.3** Using sed for search-replace operations

a) Go to the directory that contains the exercise files you extracted
from the tar.gz file in Exercise E3.10. Go to the directory called
Exercise_sed. List the contents of the directory.

b) There should be one file called file.csv, a file with comma-
separated values. Show the contents of the file.

c) Some programs only accept tab-delimited files as input, so we
have to replace all comma’s with tabs. Tabs are indicated by \t
in many programs. Write a sed command to replace the commas
with tabs.

d) As mentioned earlier, sed sends its output to the screen by default.
Send the output to a file called file.tsv using output redirection.

The second method is to edit the file “in place” instead of creating a new
sed -i file. This is especially handy for large files. The sed option -1 is used to
specify in-place editing. Be careful, there is no way back!

e) Write a sed one-liner that replaces all tabs in the .tsv file with
semi-colons. Use the -1 option.

4.4 cut: selecting columns

Atask you will come across often is selecting columns from a data file for
further processing. For example, one of the output files of genotype im-
putation programs is the so-called info file. This file contains information
on the imputed SNPs (one SNP per row), with the first column being the rs
ID or chromosome:position combination, the second and third columns
being the major and the minor allele, the fourth column being the MAF,
etc. The 7th column usually contains the R? values, which are a measure
for the imputation quality.

S W N A

4.5 GAWK: more fun with columns

To select for example only the SNP ID and the R? value you can use the
cut command. A typical cut command looks like this:

$ cut options file

The most important command line option for cut is -f. The f stands for
“field” (a.k.a. column). This option is followed by one or more numbers
that tell cut which columns to print, for example

$ cut -f 1 file

$ cut -f 1,2,6 file
$ cut -f 6-10 file
$ cut -f 4- file

The first line prints the first field from file, the second example prints
columns one, two and six. The thrid example prints columns 6 to ten,
and the last example prints columns 4 and higher.

By default cut assumes that the columns are separated by a TAB, if that is
not the case in your file you have to specify the delimiter on the command
line using the -d option followed by the delimiter in double quotes. For
example, to tell cut that columns are separated by a space use cut «
-d " ", ifthe values are separeted by comma’s (a .csv file), use cut «
-d ",", etc.

4.5 GAWK: more fun with columns

GAWK is like a big brother of cut. It is a scripting language that is mostly
used with data that can be divided into records and fields. This may
sound a bit abstract but if you replace “records” with “lines” and “fields”
with “columns” (just like we did with cut) you’ll get the idea. In fact, you
can tell GAWK what to consider as a record and what as a field by telling
it which characters to use as record separators and which to use as field
separators. By default fields are separated by white space (spaces, tabs)
and records are separated by a newline characters.

The name GAWK stands for sgNu AWK. AWK is the original program from
before the 1980s and is named after its original authors: Al Aho, Peter

cut
cut -f
cut -d

gawk

gawk -F

Chapter 4 Working with text files

J. Weinberger and Brian Kernighan. GAWK extends the AWK language, but
for most common tasks the languages are the same. On modern Linux
systems the awk program is usually a link to the gawk program.

The basic structure of GAWK commands is as follows:

$ gawk 'condition {action}' file

For each line (record) in the file GAWK will test the condition and if it is
true it will perform the action, usually modifying or printing a column
(field). Like so many other tools, gawk sends its output to the screen, so
use output redirection (§ 3.13) to send the output to a file.

Fields in GAWK are noted by $1, $2, etc. (for the first and second field).
The last field is denoted by $NF and $6 denotes the whole record (line).
Let’s illustrate this with a couple of examples. In the sed exercises you
created a file called file.tsv with tab-separated columns, let’s print
columns 2 and 4:

$ gawk '{print $2, $4}' file.tsv
fieldl field3

12 14

22 24

There are a few things to note about this example. First, the “condition”
is missing in the gawk command. This is no problem, it simply means
that it should perform the “action” for every line. Second, the “action”
is print $2, $4 which means print columns two and four, notice the
comma, it is necessary (check what happens if you forget it)! The third
point to note is that the first line of the output seems to be wrong, you
would expect field2 fields4, wouldn'tyou? However, checkthe firstline
of the input file:

$ head -n 1 file.tsv
fieldl field2 field3 field4

By default gawk uses all forms of whitespace as field separator (and not
just tabs as you might have wanted), so $1 is the # and $2 is field1
and therefore line 1 has a total of five fields. If you want gawk to use a
different field separator you can specify it with the -F option:

4.5 GAWK: more fun with columns

$ gawk -F "\t" '{print $2, $4}' file.tsv
field2 field4

12 14

22 24

In the following example the “condition” will be used to only print lines
where the second column contains a 2:

$ gawk -F "\t" '$2 ~ "2" {print $0}' file.tsv
11 12 13 14
21 22 23 24

If you want to be more strict and only print lines that have exactly a2 in
the second column use == instead of ~:

$ gawk -F "\t" '$2 == "2" {print $0}' file.tsv

You see: no result. If it doesn’t matter in which column the 2 appears
use

$ gawk -F "\t" '/2/ {print $0}' file.tsv
fieldl field2 field3 field4

11 12 13 14

21 22 23 24

Of course this shows all lines in this case. Note that since we print the
whole line it would have been easier to use grep here.

If more than one condition needs to be satisfied before we want a line
to be printed, this can be done as well, for example by using the logical
operators “and” (§&) or “or” (| 1). For example, the following prints only
the lines where the value in the second column is larger than 10 and the
last column is less than 20:

$ gawk -F "\t" '$2 > 10 &5 $4 < 20 {print $0}' file.tsv
11 12 13 14

GAWK can not only be used to extract text, but also to change it. The first
example below prints all columns except the second and third. It does
so by changing the value of these fields to an empty string ("") before

Chapter 4 Working with text files

printing the whole line. The example after that uses the same technique
to change the third column to NA:

$ cawk '{$2=$3=""; print $0}' file.tsv
field3 field4

11 14

21 24

$ gawk '{$3="NA"; print $0}' file.tsv
fieldl NA field3 fields

11 12 NA 14

21 22 NA 24

Notice that in both cases the header is also changed, which is probably
OK in the first example, but not in the second. To make GAWK ignore the
header we have to make use of the fact that GAWK partitions its input into
records and fields (by default lines and columns as discussed before). To
make GAWK leave the header untouched we check the value of NR, which
always contains the current record number (NR is somewhat similar to NF
which always contains the total number of fields in the current record):

$ gawk '{if (NR!=1) {$3="NA"}; print $0}' file.tsv
fieldl field2 field3 fields

11 12 NA 14

21 22 NA 24

The explanation of this command is: “For each line in file.tsv do the
following: If the record number (the line number in this case) is not equal
to one, set the third column to NA. Then (for all records) print the whole
line”. In a similar way a combination of record number and field number
can be used to print one element of the file, say the second column of
the third line:

$ gawk '{if (NR==3) print $2}' file.tsv
22

4.5 Exercises

4.5 GAWK: more fun with columns

Exercise E4.4*** Creating a phenotype file from . ped data

In this exercise you will learn how to extract data from a file and re-
format it for use by another program. Tasks like this are very common
because most programs restrict themselves to one particular task (the
UNIX philosophy for programs is “Write programs that do one thing and
do it well” [7, Chapter 1.6], which is why you have to learn about so many
small programs in this course).

a) Go to the directory that contains the exercise files you extracted
from the tar.gz file in Exercise E310 in § 3.9.4. Go to the directory
called Exercise_ped2phe.

b) Look for the file chr. ped.

The first six columns of this file in Merlin®) .ped format are FAMILY_ID,
PERSON_ID, FATHER_ID,MOTHER_ID,SEX and AFFECTED, the other columns
contain genotypes.

c) Show the first six columns of the first ten lines of the .ped file.

d) In your answer to the previous question you have probably made
use of the head command and the | symbol. Did you put head in
front of the pipe symbol or after (as in some command | head vs.
head chr.ped | some command)? What's the difference?

A simple .phe file as used by e.g. ProbABEL [6] consists of the following
header and the corresponding column data: id (the PERSON_ID from the
.ped file), sex, bt1; the last column is for a binary trait, in our case the
AFFECTED status.

e) Create a .phe file (without the header®) from the complete .ped
file (not only the first lines). Hint: use output redirection to create
the new file.

b) See http://www.sph.umich.edu/csg/abecasis/merlin/tour/input_files.html
for more info on the file format.

it is possible to add the header in the same one liner as well, cf. the examples
in the GAWK manual at http://www.gnu.org/software/gawk/manual/gawk.html#
Print-Examples.

http://www.sph.umich.edu/csg/abecasis/merlin/tour/input_files.html
http://www.gnu.org/software/gawk/manual/gawk.html#Print-Examples
http://www.gnu.org/software/gawk/manual/gawk.html#Print-Examples

Chapter 4 Working with text files

One problem remains, however. In .ped files women are coded as 2,
men as 1. ProbABEL expects 0 for women. GAWK can be used for more
than just printing columns, it is a script language of its own. In GAWK
several commands can be written on a single line by separating them
with a semicolon. Variables exist as well, as do if-clauses and for-loops.
The one-liner that fixes both the header and the sex is shown in the an-
swers.

4.6 Putting it all together

4.61 Exercises

Exercise E4.5**** Filtering output using gawk (thanks to Najaf Amin)

In this exercise GAWK will be used to filter output of another program
in such a way that we end up with only the parts we are interested in.

So far GAWK has been used in so-called one-liners, relatively simple com-
mands that only do one or two things. For the task at hand we will take
a look at a GAWK script to get a glimpse of the full power of the GAWK
language.

a) If you haven't downloaded and extracted the tar.gz file with ex-
ercise data yet (Exercise E3.10, page 37), do so now. The files for
this exercise can be found in the directory Exercise_gawk_snps.
Go to that directory and see which files are there. What is the file
size of the files?

The . awk file is the GAWK script. The file screen.1.out contains the out-
put of some quantitative trait analysis.

b) Use a pager to browse through the contents of the output file. Af-
ter a header of several lines the data is quite regular and consists
of tables for different SNPs for a number of traits.

4.6 Putting it all together

GAWK is great when working with fields as has been shown in several
of the previous exercises. Fields are denoted by $1, $2, $3, etc.d The
last field is indicated by $NF, where NF stands for “Number of Fields”.
Normally, fields are separated by white space but this can be changed.
In order to check whether a certain field contains a certain word use the
~ operator. For example:

$2 ~ /word/ {print $0}

c) Compare the differences between the following GAWK one-liners
and explain.

$ gawk '/trait/ {print $0}' screen.1l.out
$ gawk '$2 ~ /trait/ {print $0}' screen.l.out

Back to the task at hand: writing a filter script for the output. Najaf
wanted to extract from this output only those SNPs that had a p-value
listed for allele 1. For each of those SNPs she wanted the both the F and
the p columns printed. The names of the traits should be listed as well.
A typical part of the screen.1.out file is reproduced here:

Testing trait: NRUWE
Testing marker: rs884080
Allele df(0) Rsq(0) df(I) Rsq(I) F p
1 366 0.05 365 0.06 3.13 0.0776 (241/372 probands)
2 366 0.05 365 0.06 3.13 0.0776 (241/372 probands)
Testing marker: rs2017143
Allele df(0) Rsq(0) df(I) Rsq(I) F p
1 408 0.04 407 0.04 0.62 (278/414 probands)
2 408 0.04 407 0.04 0.62 (278/414 probands)

The desired filtered output for this part should be

d) Note the difference with Bash (Chapter 5) where these would refer to the command
line arguments.

N OO W N A

Chapter 4 Working with text files

trait: NRUWE
rs884080 3.13 0.0776

d) Before starting to write a script it is always good to describe the
stepsthat need to be taken in a schematic way. Without thinkingin
any programming or scripting language code, can you write down
which steps should be taken to generate such output?

This is the contents of the get_sign_snps.awk script (lines starting with
are comments):

This is a GAWK script that summarises
the output of QT analysis
$2 ~ /trait/ {print $2, $NF};
$2 ~ /marker/ {snp = $NF};
$1 ~ "1" { if ($7 1= "(") {
print snp, $6, $7;
}

Let's walk through it line by line. Lines one and two contain comments.
Like in R® any line that starts with a # is treated as a comment and is
ignored by GAWK. On line three the first serious GAWK command is listed:
“If field 2 contains the word trait, print both the second and the last field”.
In the next line we look for the word marker in the second field. If that is
the case, we store the contents of the last field (the name of the marker)
in the variable snp so that it can be used later on. Lines 5 - 8 are a bit
more complicated because the command that is executed if the pattern
is matched is not a simple print statement, but an if-clause. What these
lines say in plain English is this: “If field one contains the value 1, take a
look at field 7. If field 7 is not equal to the opening bracket ((that means
the p-value column is not empty), print the variable snp we have saved in
line 4, followed by fields 6 and 7 (containing the Fand p-value).” Compare
this with the schema you have made previously.

e) Which command line option is needed to run a GAWK script in-
stead of the “normal” way where the GAWK commands are read

e) As well as several other scripting languages like Bash (Chapter 5) and Perl.

4.6 Putting it all together

from the command line? Run the GAWK script and send the out-
put to a file.

f) How many lines does your output file have?

g) How many traits were used for this analysis? And what where their
names?

661611910101011110000‘901

1oy

16 1@ 1@ 1@ 1 1 110O0000110101101:1]01@010015

10@1

Chapter

Writing Bash scripts

echo

Chapter 5 Writing Bash scripts

On most GNU/Linux systems the default shell is Bash. Besides its 'normal’
tasks as a shell (e.g. presenting the command line prompt to you, keeping
track of your foreground and background jobs as well as your command
history) it also allows you to write scripts. Scripts are an easy way to
automate repetitive or complex tasks. Any command you type on the
command line can appear in a script and vice versa, any command you
see in a script should work on the command line (although you have
to take care when using variables, making sure they have been defined,
etc.).

5.1 A simple script

The standard ingredient of every Bash script is that it starts with the
following line:

#! /bin/bash

The line helps the shell to understand in what kind of language the script
iswritten?. A second ingredient in any script is the use of comments that
explain what the script does. In Bash comments are lines starting with
a hash (#). Writing output to the screen is a basic requirement of every
script in any language. Bash uses the echo command for that:

echo "This is my super script"

Lets make a small script with the information we have so far and call
it first_script.sh. Itis custom to give shell scripts the .sh extension,
but unlike in Windows that does not mean that every file that has a name
ending in .sh will be run by Bash.

Here is the contents of a simple script:

$ cat first_script.sh
#! /bin/bash

This is my first script that prints text on the screen

a) Other languages like Perl have a similar first line.

N OGP WN

5.1 Asimple script

|echo "This is my super script"

You can run a Bash script in several ways. The first one is perhaps the
most straight forward:

$ bash first_script.sh
This is my super script

The second way is used more often, it involves making the script exe-
cutable and then running it:

$ 1s -1 first_script.sh

—rW-T-==== 1 lennart lennart 101 2011-10-25 09:24 first_script.sh
$ chmod a+x first_script.sh

$ 1s -1 first_script.sh

-rwxr-x--x 1 lennart lennart 101 2011-10-25 09:24 first_script.sh
$./first_script.sh

This is my super script

In line 2 the permissions of the script are shown. The execute permission
(cf. § 310) is not set, so in line 3 we set it. As a result we can run the script
as shown in line 6. Note the ./ in front of the file name of the script. As
you remember from § 3.6.1, the . shortcut (when talking about directo-
ries) means the pwd, so here we explicitely state that we want to run the
script first_script.sh located in the present directory. Whithout an
explicit statement of the location of the script it won’t run. You can try
to run

$ first_script.sh
first_script.sh: command not found

but as you can see, that doesn’t workP). The reason for this is that (un-
less you specify the path to an executable script of program explicitly)
the shell only looks for executables in a few pre-configured directories
and...the pwd (i.e. .) is not one of those directories. As a result you get
the command not found message®.

b) As a matter of fact, you might have noticed that Tab-completion also didn’t work and

you had to type the full name of the script by hand.
¢ The reason for not looking for executable programs in the pwd is a safety measure.
Imagine that you have an empty file called 1s in the pwd. Had the pwd been in the

bash -x

O O OOUT B~ W N A

=
@)

Chapter 5 Writing Bash scripts

As your script grows the probability that you make typo or some other
error also increases. To check where in the script the error occurs use
the -x option to bash. Take a look at the following (useless) script and
try to spot the mistake.

#! /bin/bash
A script to show how 'bash -x' can help finding errors.

echo "Welcome to the test script"

time=5

echo "This script will wait two times for ${time} seconds"
sleep ${time}

sleep ${tine}

echo "Done"

Running this script in the normal way gives an error:

$./errortest.sh

Welcome to the test script

This script will wait two times for 5 seconds
sleep: missing operand

Try “sleep --help' for more information.

Done

From this it is already easy to see that the problem lies with one of the
sleep commands. Running it with bash -x will point out which one:

$ bash -x ./errortest.sh

+ echo 'Welcome to the test script'’

Welcome to the test script

+ time=5

+ echo 'This script will wait for 5 seconds'
This script will wait for 5 seconds

+ sleep 5

+ sleep

search path for executable files this empty 1s would be found and running 1s would
not give any results at all in that directory, while 1s would have worked as expected
in all other directories. To find out the default search paths type: echo $PATH.

5.2 Using variables

sleep: missing operand

Try “sleep --help' for more information.
+ echo Done

Done

The lines starting with + are the lines as they appear in the script, but
with all variables filled in. This output shows that the problem lies with
the second sleep command. Like the first one there should have been a
5 following it. Closer inspection shows that there is a typo in the variable
name. This process of finding a bug in a script is called “debugging”.

Exercise E5.1 A simple script

In this exercise you are going to write a script similar to the one in the
text to get used to the Bash language.

a) Goto ~/LinuxCourse/ and open a new file in your favourite editor.

b) Now use the echo command to print the text Hello World on the
screen. Save the file (in order to point out that the file is a shell
script, it is customary to use the extension .sh for a script file
name.)

c) In order to be able to run the script it should be made executable
by setting the executable bit. Find out what the permissions (read,
write and or execute) are set on your script file.

d) Set the executable bit with the chmod command and run the script
by typing its name preceded by ./, e.g.

$./myscript.sh

5.2 Using variables

With the knowledge of the previous section simple scripts can be written.
For example, you can write a Bash script that sets up a directory for a new
project by copying files and subdirectories from a template set and then

DD W N A

Chapter 5 Writing Bash scripts

run a series of pre-tested commands, filter the output and finally remove
any intermediate results. One of the major things missing, however, is
how to use variables. That will be the topic of this section.

The use of variables in a script is very important. Variables allow you
to make general, versatile scripts as well as saving you a lot of typing.
Moreover, the use of clear variable names can greatly help someone else
(or yourself, six months from now) to understand what the script does (or
is supposed to do).

In bash variables are defined in the following way:

var="Some text"

It is important to note that spaces are not allowed around the = sign. To
use a variable add a $ and (as a safety precaution) enclose the variable
name in curly braces ({}), like this:

echo "The contents of variable var is: ${var}."

Putting these steps in a complete script would look like this:

#! /bin/bash
var="I am a variable"

echo "The contents of variable var is: ${var}."

To put the output of a command into a variable use the $() construction.
This is how to put the number of lines of a certain file into a variable, for
example:

linecount=$(wc -1 myfile.txt | gawk '{print $1}")

The pipe to GAWK is necessary because the output of wc -1 not only
prints the number of lines, but also the file name, in which we are not
interested. Here is a complete script:

$ cat countMylLines.sh
#! /bin/bash
This script counts the number of lines it contains

O O~ OOUTHWN

5.2 Using variables

linecount=$(wc -1 countMyLines.sh | gawk '{print $1}')

echo "This script contained ${linecount} lines."
$./countMyLines.sh
This script contained 6 lines.

This script can be enhanced a bit, because as it is now the file name of the
script is hard coded, i.e. if the script is renamed, we need to change the
code in the script as well to make it work as expected. In Bash scripts the
variables ${1}, ${2}, etc. contain the arguments given on the command
line when calling the script and ${0} contains the name of the script
itself. Note that these variables have nothing to do with the variables
for fields/columns in GAWK, even though they follow a similar naming
scheme. Using this information in the script we get:

#! /bin/bash
This script counts the number of lines it contains

echo "The name of this script is ${0}."
echo "The first two command line arguments are ${1} and ${2}."

linecount=$(wc -1 ${0} | gawk '{print $1}")

echo "This script contained ${linecount} lines."

Running the script we get

$./countMylLines2.sh

The name of this script is ./countMyLines2.sh.

The first two command line arguments are is and .

This script contained 9 lines.

$./countMylLines2.sh argl arg2

The name of this script is ./countMyLines2.sh.

The first two command line arguments are is argl and arg2.
This script contained 9 lines.

The first time the script is called without arguments. As a result noth-
ing is filled in in the printed line. The second time the script is run two
arguments are given and the are printed as expected.

Chapter 5 Writing Bash scripts

As shown above, when printing text with echo, characters like $ and {},
but also !, get interpreted by the shell and as a result are not printed
on the screen. To print text literally use single quotes instead of double
quotes:

$ echo "Hello, ${}, #, '"

bash: Hello, ${}, #, !: bad substitution
$ echo 'Hello, ${}, #, !’

Hello, ${}, #, !

Exercise E5.2** Using variables

Add a variable to the script of the previous exercise. The variable name
should be greeting, because we would like the script to print Good «
morning World if the variable has the value Good morning.

Exercise E5.3** Using command line arguments in your script

Scripts become much more useful when they accept command line ar-
gument. You could, for example, make a scriptthat runs a certain analysis
for one chromosome. But then you would have to modify the script each
time you want to run it for another chromosome. By using command
line arguments the script can be run for any chromosome you want, for
example, for chromosome 16 you would run:

$./myscript.sh 16

a) In a shell script the command line arguments are automatically
saved in the variables ${1}, ${2}, etc. Write a script that print the
first three argument in reverse order.

b) Modify the script from exercise E5.2 in such a way that instead of
the "Good morning” greeting it uses the first argument as greeting.

c) Arguments are normally separated by spaces, you might have
come across this in the previous question. Can you think of a way
to work around this problem?

O~ OV~ WN

5.3 Using shell variables in GAWK

5.3 Using shell variables in GAWK

Since a Bash script is nothing more than a set of commands that can also
be run on the cul, it is quite common to use other scripting languages
within a Bash script.

This section shows how to send the contents of a Bash variable to GAWK.
One reason to do this would be to make use of GAWK’s column filtering
capabilities, another would be the fact that doing arithmetic in Bash is
difficult, whereas it is easy to do in GAWK. Consider for example a script
that parses a set of files for a given SNP rs name and in one of the steps
we would like to print only a set of given columns from a ProbABEL GWAS
output. A schematic script might look like this:

#! /bin/bash
This script does all kinds of stuff while looking for SNPs

The first argument for this script is a SNP rs name
rsname=${1}

The second argument for this script is a ProbABEL file name
filename=${2}

Do other things here...

Print only columns MAF, Rsq and loglik for the given SNP
gawk '$1==snpname {print $5, $7, $NF}' ${filename}

The question here is how to get the contents of the Bash variable rsname
into the GAWK variable named snpname in the last line. Because the dol-
lar signs mean different things in Bash and in GAWK some form of “trans-
lation” is necessary. This can be done using the -v option of GAWK. A
simple example is to simply print the value of the variable on each of
the lines of the output:

$ gawk -v var="some text" '{print var, $1, $3}' file.tsv
some text # field2

some text 11 13

some text 21 23

gawk -v

for

Chapter 5 Writing Bash scripts

Here we used the tsv file created in one of the exercises on sed in § 4.3.
Alternatively, to print the third column of a file we could use the follow-

ing:

$ gawk -v col=3 '{print $col}' file.tsv
field2

13

23

Going back to the problem in line 12 of the example script above we can
now see that this line should read:

gawk -v snpname=${rsname} '$1==snpname {print $5, $7, $NF}' ${filename}

What is done here is that the contents of the shell variable S{rsname} is
copied to the GAWK variable snpname®. In the “regular” part of the GAWK
command we check whether column 1 is equal to snpname and if so, we
print column 5, 7 and the last column.

5.4 Loops, for and while

A very powerful part of any scripting language is the use of loops. Loops
allow one to easily program repetitive tasks. One of the loops commonly
used in Bash scripts is the for-loop. A basic for-loop looks like this:

for var in range; do
commands
done

Here, range lists the items that var steps through. For each item in range
the commands are executed. The easiest way to generate a sequence of
numbers is to use the notation {start..stop}. For example

for i in {1..22}; do
echo "This is chromosome ${i}"
done

9 You could have used the same names for both variables, but that's not necessary. |
chose two different ones for clarity.

5.4 Loops, for and while

prints 22 messages on the screen. In this case the variable i is increased
by one each time the loop is run. In order to use a different step size
use {start..stop..step}. As an example, let’s print the odd numbers
between one and ten on a single line:

$ echo {1..10..2}
13579

As you may have already noted, by default files are listed in alphabeti-
cal order when using 1s. As a result files with numbers in them are not
always sorted in the order you expect them:

$ 1s -lh filex

—rW-r===—— 1 lennart lennart 64 2011-01-27 18:08 filel
-rw-r----- 1 lennart lennart 12 2011-08-18 09:30 filel0
—rW-r===—— 1 lennart lennart 66 2011-01-27 18:08 file2
-rw-r----- 1 lennart lennart 7 2011-08-18 09:29 file20
== Te=== 1 lennart lennart 64 2011-01-27 18:08 file3

This is easily fixed by using one or more leading zeroes in your file
names:

$ 1s -1h file=

-rw-r----- 1 lennart lennart 64 2011-08-18 09:35 file0O1
== Te=== 1 lennart lennart 66 2011-08-18 09:35 file02
-rw-r----- 1 lennart lennart 64 2011-08-18 09:34 file03
-rw-r----- 1 lennart lennart 12 2011-08-18 09:30 filel0
-rw-r----- 1 lennart lennart 7 2011-08-18 09:29 file20

In order to use numbers formatted with leading zeroes in for-loops sim-
ply add them to the curly braces:

for number in {01..22}; do
echo "This is number ${number}"
done

While the {start..stop..step} notation is very handy, you unfortu-
nately cannot use variables in it. For example, the following doesn’t
work:

seq

Chapter 5 Writing Bash scripts

#! /bin/bash
linecount=$(wc -1 ${0} | gawk '{print $1}")
for 1n in {1..%$linecount}; do

echo "${1ln}"
done

For situations like this, the command seq can be used. Its syntax is simi-
lar to but not exactly the sames asthe {start..stop..step} notation:

$ seq 1 10
1

seq 1 2 10

O N Ul W ERPrARERE O 00N OB WN

So in contrast to the curly braces notation the step increment has to be
put in the middle.

Actually, there is a simpler way to loop over files in a given directory.
The following example shows how to loop over all csv files in the current
directory:

for fl in *.csv; do
echo "File: ${fl}"

5.4 Loops, for and while

| done

Although using for-loops for this simple kind of problems where the same
analysis has to be repeated a given number of times is very handy, it is
not always the best way to do it on modern computers. The essence
of the for-loops above is that it runs the analyses one after the other.
Modern computers (both servers and desktops) have multiple cpus, al-
lowing them to run multiple programs at the same time. Consequently,
with the serial for-loops above the computer would be seriously under-
used. There are several ways to make thins more efficient. The preferred
method on a compute cluster will be discussed in Chapter 6, which dis-
cusses the sGe batch queue system.

Most programming languages not only have for-loops, but also so-called
while-loops. Where a Bash for-loop usually runs over a set of variables,
a while-loop runs as long as a given condition is true:

while condition; do
commands
done

The most useful form of the while command is its use in reading input
data in a script. Consider the following example: you have a file called
genelist that lists the chromosome, start and stop position (in base-
pairs) of a set of genes, one line per gene. The three values on each line
are separated by spaces. The problem at hand is that you would like
to extract these regions from a VCF file® for further analysis. VCF files
can be queried, modified, etc. using the VCFtools programs®). The com-
mand to extract the region starting at base position 123400 and ending
at position 223400 on chromosome 1 is:

$ vcftools --vcf myVCFfile.vcf --chr 1 --from-bp 123400 \
--to-bp 223400

To automate this extraction for each of the lines in our genelist file we
could write a for-loop that extracts each line, uses e.g. cut to put the var-
ious columns in variables and proceeds to run the vcftools command.

e) VCF files are often used to store next-generation sequencing data.

f) http://vcftools.sourceforge.net

while

http://vcftools.sourceforge.net

while

read

g > W N

Chapter 5 Writing Bash scripts

However, using while in combination with the read command this be-
comes much easier. Let’s create the following Bash script and save it as
extract_genes_vcf.sh:

#! /bin/bash
while read chr start stop; do
vcftools --vcf myVCFfile.vcf --chr ${chr} \
--from-bp ${start} --to-bp ${stop}
done

Line 2 is where the “magic” happens. The read command waits for the
user to type text and then it fills the variables following read with what-
ever the user typed (spaces separate the values). For example

$ read varl var2
$ echo "${var2} ${vari}t"

waits until the user has typed two words, puts the first word in var1 and
the second one in var2 and then uses echo to print them in reverse or-
der.

So in our extract_genes_vcf.sh script we use while to keep reading
three values from the command line and then run vcftools to extract
these regions. Of course it would be stupid to type each line from the
genelist file by hand on the command line. This is where input redirec-
tion comes to the rescue. Remember from §3.13 that we can use < to send
the contents of a file to the input of a command. That is exactly what we
want here. Instead of running

$./extract_genes_vcf.sh

and having to type all the chromosomes and start and stop positions by
hand, we run

$./extract_genes_vcf.sh < genelist

and everything goes as smooth as butter.

Exercise E5.4** For-loops

5.5 if-clauses and tests

a) Write a script that uses a for-loop to run the fictitious command
analyse for a set of files called chri.dat through chr22.dat.
However, we want to start at 22 and end with 1, because chro-
mosome 22 is the smallest, so we’'ll quickly have some results to
work with.

b) If you haven't done so already, modify the script in such a way
that the numbers in the sequence have a leading zero where nec-
essary. Having files like chro1.dat, chr02.dat etc. make sure that
files are ordered correctly when listing them (chre2.dat follows
chroil.dat, whereas chr2.dat follows chr22.dat). If you want to
see the difference, use the touch command instead of our ficti-
tious analyse command. touch simply creates an empty file.

Exercise E5.5*** parallel for-loops

As mentioned in the text, the for-loops created so far are serial in nature,
i.e. the tasks within the loop are started one after another and each task
waits until the next one has finished.

a) Using the information on background processes, as described in
§3.11, can you think of a way to parallelise the tasks of a for-loop?
Write a small piece of example code.

b) Assuming you haven’t taken the number of cpUs into account in
your previous answer, How take into account that you probably
have more tasks than cpPus? You don’t need to write code here.
Just think how you might achieve this.

5.5 if-clauses and tests

In order to make decisions in a Bash script the if-clause can be used.
If-structures are important when writing programs and scripts because
they allow your program to do different things depending on e.g. input
or the output of a certain command.

touch

DU P~ W N A

O OOUT P~ WN

Chapter 5 Writing Bash scripts

Here is a basic if-clause in which the value of a variable is tested:

#! /bin/bash
A simple if-test

var="no"
1.[: [“${Var}" - ||yes||]; then

echo "The value of variable var was yes"
fi

In line 4 the test is written between square brackets. The value of the
string "${var}" was compared to the string "yes" to test whether they
are equal. Note the spaces after the opening bracket and before the
closing bracket, they are mandatory. Also note the semicolon before the
then keyword. As in the case of the semicolon in front of the do keyword
in a for-loop it is mandatory.

When writing scripts that accept arguments on the command line, it is
good practice to check the arguments before starting the real work. The
variable ${} is the list of all arguments and the variable ${#} contains
the number of arguments given on the command line. The following
script checks whether the number of arguments is correct, if not it exits
with an error message. If the number of arguments is correct it lists all
the arguments.

#! /bin/bash
This script demonstrates the use of if tests for
command line arguments of the script.

n_args=3

Check if enough arguments are given, else exit the script.

if [${#} -ne ${n_args} 1; then
echo "${n_args} arguments need to be specified, you gave ${#}."
echo "Exiting..."
exit

fi

Print all arguments:
for arg in ${+}; do

echo "Argument: ${arg}"
done

5.6 Arrays in Bash

This is what happens if you execute the script with different numbers of
arguments:

$./check_args.sh a b c d e

3 arguments need to be specified, you gave 5.
Exiting...

$./check_args.sh a b

3 arguments need to be specified, you gave 2.
Exiting...

$./check_args.sh a b ¢

Argument: a

Argument: b

Argument: c

You may have noticed that for the comparison in line 8 -ne was used as
the “not equal to” operator instead of the != from the first example. In
Bash comparison of strings (of text) is handled differently than compar-
ison of numbers. Instead of comparing two strings or two numbers it is
also possible to test whether a certain file or directory exists, is writable,
is executable, etc. Table 51 on page 100 lists all comparison operators
for strings, numbers and files/directories.

Exercise E5.6%** if-clauses and tests

a) Write a script that tests if the script was run with a command line
argument. If that was the case, print the argument. Otherwise
print a goodbye message.

b) Write a script that checks if a directory with the name of today’s
date exists. If not, it should create it.

5.6 Arrays in Bash

Like most, if not all, scripting and programming languages, Bash has the
concept of arrays. Arrays are ordered lists, and for those versed in R,

Chapter 5 Writing Bash scripts

Strings:

equal =
not equal =
string s1 is not empty -n si1
string s1 is empty -z sl
Numbers:

equal -eq
not equal -ne
less than (<) -1t
greater than (>) -gt
less than or equal to (<) -le
greater than or equal to (>) -ge
Files and directories:

Check for directory existence -d directory
Check for file existence -e file
Check for regular file existence not a directory -f file
Check if file is a readable -r file
Check if file is writable -w file
Check if file is executable -x file

Table 5.1: Operators for comparison in Bash. To check for the opposite of the file
and directory tests, add a ! before the test, e.g. to check if a file does

not exist use: if [! -e some_file 1.

5.6 Arrays in Bash

arrays are similar to R’s vectors. Arrays may contain either numeric or
text (string) data.

Initialisation of an array, i.e. the creation of an array is done in a way that
is very similar to regular assignment of variables:

arr[index]="value"

For example, the following example creates an array with student
names:

students[0]="Alicia"
students[1]="Tim"
students[2]="Pauline"
students[3]="Xue"

Note that Bash arrays are zero-based: the index starts at zero®

Alternatively, arrays can be initialised in one command like this:

students=(Alicia Tim Pauline Xue)

Using elements from an array is similar to using regular variables, you
simply surround the element with ${. ..}, like this ${arr[index]}. The
following example prints the name of the third student:

$ echo "Name: ${students[2]}"
Pauline

To use the full array use either @ or » as index: ${arr[@]} or ${arr[*1},
for example:

$ echo "All students: ${students[*]}"
Alicia Tim Pauline Xue

The # symbol is used to get the length or size of an array: ${#arr[@]},
for example:

8 This is something to keep in mind whenever you are programming. Some languages
are zero-based (e.g. C, C++, numpy), others (e.g. R, FORTRAN) are one-based. This
difference can lead to so-called off-by-one errors.

Chapter 5 Writing Bash scripts

$ echo "the nr of students is: ${#students[a]}"
the nr of students is: 4

The size of a single array element can be found like this ${#arr[index]}.
So if we want to know how many characters are in the third element of
the students array, we can do something along the following lines:

$ i=2
$ echo "the length of ${students[${i}]} is ${#students[${i}]}"
the length of Pauline is 7

The simplest way to extend an array is very similar to the way we
initialised an array in one command (see above): arr=(${arr[@l} <
newl new2), so the following adds two new names to the student
array:

$ students=(${students[@]} Ivet Lauren)
$ echo "The students now are: ${students[al}"
The students now are: Alicia Tim Pauline Xue Ivet Lauren

The most useful place to use arrays is in for-loops (see also §5.4 on
page 99):

$ for st in ${students[*]}; do
> echo "Student ${st}"

> done

Student Alicia

Student Tim

Student Pauline

Student Xue

Student Ivet

Student Lauren

5.7 Dealing with errors in your script

Writing bug-free scripts is everybody’s goal, but in real life this usually
doesn’t happen automatically. The following can help to detect bugs.

5.7 Dealing with errors in your script

One of the ways to improve Bash scripts in order to be warned about
errors early on is by adding the following line as the top of your script
(below the #!/bin/bash line and the introductory comments) as the first
command to be executed:

set -e

By adding this command the script will stop with an error as soon as
a command in the script finishes with an error. Without this command
the script will continue until the end, even when one (or more) of the
commands in the scripts gives an error.

There is one case where set -e is not enough to stop a script if a com-
mand fails with an error, and that is when the erroring command is part
of a series of commands joined by pipes (the | symbol; see § 313.2). In
such a case the script will only exit with an error if the last command of
the pipeline fails. To abort the script also if one of the steps in a series
of commands fails, add the following to your Bash script:

set -o pipefail

Another helpful option to set early in your script is:

set -u

This options aborts the script when an uninitialised variable is used.
Without setting this option a script will continue and simply fill in an
empty value when an uninitialised variable is found. For example, take
the following script:

#!/bin/bash
A test script for set -u
set -u

echo "The value of the variable var is: ${var}."

Inthe script the variable ${var} is not initialised and without the set -u
option the script would simply print

The value of the variable var is:

With the set -u option set, the following error will be shown:

set -e

set -0 pipefail

set -u

Chapter 5 Writing Bash scripts

bash: var: unbound variable

Of course, this example isn’t a huge bug, but imagine a line where the
command would be a copy command:

cp files.x ~/${destdir}

If the ${destdir} variable is not set before, it will copy all files to your
home directory instead of in a subdirectory. This will leave a lot of mess.
Or, even worse, consider a similar line where you would remove files from
~/${destdir}. If the variable isn’t set, you would remove all files in your
home directory!

If you try to debug your script, running it in the following way will be
helpful:

$ bash -x my_script.sh

This will print every command that is executed, including the contents
of variables, etc. Testing your script like this and setting the two options
above will be a big help in achieving the goal of writing bug-free scripts.

1@10101011110000001
1

10

00

1 01@11010%

61911110@000011010110100
1

10

10

0l

10p

Chapter

Working with the SGE queue

Chapter 6 Working with the sGE queue system

Many, if not all, scientific compute clusters use some system to distribute
compute jobs across their nodes. Even if your research group only has a
single server it is very worthwhile to have such a system installed. This
kind of functionality is not used by default on Linux servers, and conse-
quently this chapter is not generally applicable to other Linux servers.
However, most servers or clusters in use in bioinformatics (and other
fields with computationally intensive tasks) have such a system.

One of the most commonly used job queuing systems is the Sun Grid En-
gine (sGe) system, which will be discussed in this chapter. The commands
for the PBS system, also very commonly used, are very similar.

On the epib-genstat cluster at the ErasmusMc, regular tasks (i.e. programs
not using the sGe queues) are killed after 10 minutes. So it is usually
of little use to start an R session or run ProbABEL [6] directly from the
command line.

After submitting a job to SGE it will be processed in a so-called queue.
Each queue has a certain number of slots. If there are more jobs than
slots in a queue the excess jobs will have to wait for a slot to become
available (cf. § 6.2 to find out the number of slots per queue or to see
whether your job is already running).

Each queue has specific properties and SGE uses these properties to de-
cide which queue to send your job to. In this cluster the queue named
all.q will be used most of the time.

6.1 Submitting jobs to the SGE queues

Suppose you want to run a certain R script myscript.R. Normally you
would either start R and then

> source("myscript.R")

or from the Linux command line you would run:

$ R --vanilla -q -f myscript.R

6.1 Submitting jobs to the SGE queues

6.11 Quick and dirty

The quickest way to submit such a task to an sGe queue is the following:

$ qsub -cwd -b y R --vanilla -q -f myscript.R

Here gsub is the command to submit a job to the queue system. It is
followed by zero or more options (two in this case, -cwd and -b y) and
finally the actual command you want to run. The first option, -cwd, stands
for “use the current working directory” (this is the same as the present
working directory (pwd) mentioned in § 3.6). It tells sGE to look into the pwd
for the files you specify (myscript.Rin this case) and to write its output
files there as well. The option -b vy tells SGe that the command you want
to execute is not a script but a binary program (R in this case).

Each job that is sent to the queues receives a unique ID, the job ID. This
is useful for distinguishing between several jobs you might have waiting
in the queue, but is also necessary when you want to delete a job from
the queue (cf. § 6.3).

By default sGe will create two files for each job in the queue, one that
contains the output that would normally appear on the screen and one
that contains the errors that would normally be sent to the screen. These
files will have a name that starts with the name of the command you sent
to the queue followed by a period, the letter o or e for output and error,
respectively, and finally the job ID. For the R command that we submitted
earlier the files would be called

R.02823
R.e2823

(where of course the number at the end is the job ID, which will be dif-
ferent in your case).

6.1.2 Using a submission script

The preferred way to send a job to the queue system is by using a sub-
mission script. Using a script has several advantages:

gsub

Chapter 6 Working with the sGE queue system

- you don’t have to remember all the command line options for the
gsub command, you simply copy your submission script from the
previous time you used it (or this website) and only change the
program that you want to run.

- All the standard Linux shell scripting tricks are at your disposal.

A simple example of a submission script for the example of the R
script myscript.R used earlier would be:

#! /bin/bash
This is a sample submission script. Lines starting with # are
comments. The first line (with #!) should be in every script.

Let's set some variables for SGE. Lines starting with #$ are

interpreted by SGE as if they were options to the gsub command
(don't remove the # from the lines starting with #$).

#$ -S /bin/bash

#$ -cwd

This is the command we would like to run in the queue
R --vanilla -q -f myscript.R

Save this submission script to the same directory as where
myscript.R is located and call it for example job.sh. Make sure
the script is executable by running

$ chmod a+rx job.sh

Now it can be submitted to the queues like this:

$ qsub job.sh

6.1.3 Refinements to the submission script

The script presented in the previous section is simple but sufficient for
basic tasks. Here we present some additions to the script that can make
life with sGe easier. A script file with all the suggested options can be
downloaded from http://epib-genstat.erasmusmc.nl/qgscript.sh.
The only things that need to be changed are the e-mail address and the
last line where you fill in the command(s) you want to run.

http://epib-genstat.erasmusmc.nl/qscript.sh

6.2 Monitoring progress

+ Start/stop e-mails

Since most jobs will take more than 10 minutes to complete (oth-
erwise you could have run them without using the queue system,
right?!) it would be nice to get an e-mail when the job is finished
so that you don’t have to run gstat all the time (cf. § 6.2). To get an
e-mail when a job begins and when it ends simply add the follow-
ing two lines after the #$ -cwd line in the aforementioned simple
script:

#$ -M your_addressayour_domain.com
#$ -m be

If you only want an e-mail after the job has finished change the
#$ -m be optionto #$ -m e.

+ Output to a single file
As discussed at the end of section 6.1.1 the output and error mes-
sages of a job are recorded in separate files. When running a large
amount of jobs this can lead to a proliferation of these files. By
adding

#$ -jy

to your submission script the output and error files will be joined
into one file of the form script.o02345.

6.2 Monitoring progress

The gstat command allows you to see whether your job is accepted by gstat
one of the queues, which jobs you have submitted so far, how many jobs
are waiting in the queues, etc. Simply running

$ gstat

will show your own running and waiting jobs. Running the command gstat -f

$ gstat -f

gdel

Chapter 6 Working with the sGE queue system

will give an overview of all queues, even the ones in which you don’t have
any jobs running. To show all jobs of all users in all queues use

$ gstat -f -u \=

This gives you an idea how busy the cluster is. Asample outputon a quiet
day looks like this:

queuename qtype resv/used/tot. load_avg arch states
all.ganode®1.polyomica.com BP 0/2/7 2.03 1x24-amd64

2843 0.56000 R userl r 08/06/2010 10:16:42 1

2844 0.56000 R userl r 08/06/2010 10:16:42 1
high_prio_ganode0l.polyomica.c BP 0/0/4 2.03 1x24-amd64
int.qganode0®1.polyomica.com IpP 0/0/2 2.03 1x24-amd64

It shows the user user1 has two jobs in the queue called all.q with job
IDs 2843 and 2844. Both jobs are running some R script. The queue called
high_prio_q is empty as is the queue called int.q, which is used for
interactive jobs only (because the g-type has the letter I, queues that
accept batch jobs (i.e. regular commandline programs or shell scripts)
have type B). The resv/used/tot. column show the number of reserved
and available slots in each queue as well as the total number of available
slots. So in this example all.q has no reserved slots and two slots are
in use out of a total of seven. If there are more jobs than slots in a queue
the excess number of jobs will have to wait until slots become available
again.

6.3 Deleting jobs from a queue

At some point you will find that you want to delete a job from the queue.
This may happen because you submitted five R jobs, for example, and
the first one finished early because you made a typing mistake in the R
code. Since the other jobs use the same R code they will finish with an
error as well so you decide to remove them from the queue. For this you
use the qdel command followed by the job ID. Use qstat (cf. § 6.2) to find
the job ID of your jobs. Running

gstat -f

6.4 Getting info on a finished job

$ qdel 2844

would kill the second job in the list shown in § 6.2. Of course a user can
only delete her/his own jobs.

6.4 Getting info on a finished job

To get information on a job that has finished, use the gacct command in
combination with the job ID:

$ gacct -j 8765

gname all.q

hostname node@l.polyomica.com
group genepi

owner some_user

project NONE
department genepi
jobname probabel.pl
jobnumber 8765

taskid undefined
account sge
priority 8

gsub_time Mon Mar 7 22:56:01 2011
start_time Mon Mar 7 22:56:15 2011
end_time Tue Mar 8 03:59:44 2011
granted_pe NONE

slots 1

failed 0

exit_status 0

ru_wallclock 18209

ru_utime 17362.282

ru_stime 816.388

ru_maxrss 0

ru_ixrss 0

gacct

gacct -j

Chapter 6 Working with the sGE queue system

ru_ismrss 0
ru_idrss 0
ru_isrss 0
ru_minflt 328576642
ru_majflt 2
ru_nswap 0
ru_inblock 0
ru_oublock 0
ru_msgsnd 0
ru_msgrcv 0
ru_nsignals 0
ru_nvcsw 12597
ru_nivcsw 443538

cpu 18178.669
mem 21867.259
io 170.594
iow 0.000
maxvmem 2.037G
arid undefined

The most interesting elements of the output are start_time, end_time,
for the time at which the job started and when it finished, respectively.
Note that the submit time has a separate entry. The value of cpu
shows you the number of seconds of cpu time the job used. The value
of ru_wallclock shows the total time (in seconds) that the job took
(i.e. cpu time, but also time used for reading/writing files etc.). The
values gname and hostname tell you in which queue and o which server
the job was run.

In order to find out how much time your jobs have spent in the queue
over the last 15 days run (with your own username, of course):

$ gacct -o lennart -d 15

OWNER WALLCLOCK UTIME STIME CPU MEMORY I0 «
Iow

lennart 96279 10798.155 1903.326 12701.481 3529.165 4165.959 «
0.000

The WALLCLOCK time is the total time in seconds that your jobs have spent

6.5 Interactive jobs

running in the queue (in the last 15 days). The CPU column shows the time
(in seconds) the job was actively using a cpu, i.e. not waiting for other
things like reading or writing a file (which is listed in the 10 column).

6.5 Interactive jobs

Although it is not the preferred way to run programs, sometimes it may
not be possible or efficient to write a complete script to submit to the
queue. For example, you'd like to start an R session and enter the com-
mands on the R command line because you are not sure whether a cer-
tain construction works on the cluster.

In such a case the interactive queue (int.q) can be used. Starting a
session in the interactive queue is done like this:

$ qrsh -pty y command

where command is the program you'd like to run (R or solar are likely
examples). You will then be asked for your password and an interactive
session is started on either one of the servers in the cluster (if there are
slots available in the interactive queue of course).

Note thatjobs runningin an interactive queue will be killed after 48 hours
of cpu usage and they will run with a very low priority.

If, for some reason you can’t access your interactive queue session any-
more, you can kill the old one using the qdel command.

6.6 Exercises

Exercise E6.1** Working with Sun Grid Engine

In this exercise you will create a small script and submit it to the SGe
batch system. You will monitor its progress and then use a Bash script
to automate submission to SGE.

grsh

Chapter 6 Working with the sGE queue system

a) Create a new directory in the directory ~/LinuxCourse/ you cre-
ated in Exercise E3.3.

sleep

b) The sleep command accepts one argument: the time to wait in
seconds. The whoami command prints your user name. Write a
Bash script that prints your user name and the current time (in-
cluding seconds), then goes to sleep for 10 seconds and repeats
this cycle 5 times. End the script with a final print of the current
date and time, followed by a line of dashes. Run the script to test
whether it works.

¢) Now submit this script to the queue. Don’t forget to add the -cwd
option, otherwise the files generated by SGe will end up in your
home directory. Check to see that the script is either running or
waiting to be run. If your script is waiting, what command would
you use to find out how busy the batch system is?

d) After the script has run, inspect the two resulting output files.

e) Write a Bash for-loop? to submit five instances of this script to
the queue. Monitor them and see how jobs of different users are
scheduled.

Exercise E6.2** SGE, R and command line arguments

Exercise E5.3 on page 90 explained how to use command line arguments
in Bash scripts. Wouldn'tit be fun if the could be done in R scripts as well?
This exercise will show you how.

To run an R script from the command line (so not in interactive mode),
use the -f option to specify which script to run. Usually the options -q
(for'quiet’, to suppress the startup message), --slave (to be really quiet)
and --vanilla (see R --help for more info on this option) are specified
as well. For example:

$ R --vanilla --slave -q -f myscript.R

3) You don't necessarily need to do that in a script. Simply writing a for-loop on the
command line is also OK.

6.6 Exercises

To pass arguments to the R script use the --args option as the last op-
tion, followed by any arguments you want to send to the script. The num-
ber 1234 and the string "Hello there" can be passed like this:

$ R --vanilla --slave -q -f myscript.R --args 1234 "Hello there"

In order to use these arguments in an R script, use the commandArgs()
function like this:

args <- commandArgs(TRUE)

This stores all the arguments following the --args option in the array
args. The following R script gives you an idea how to use all this.

cat("Welcome to this simple R script.\n")
cat("These were the command line arguments:\n")
args <- commandArgs(TRUE)

args

cat("Now we will print the arguments one by one:\n")
for (i in 1:length(args)) {
cat(i, ": ", args[il, "\n", sep="")

O O OUT S~ W N A

-
-_—
2 O

All arguments are treated as strings (text), so in
12 |# order to use them in calculations they have for be
13 |# converted to numbers:

14 [number = as.integer(args[1]) + 2

15 | cat("number = ", number, "\n")

16
17 |cat("The end\n")

a) Write an R script that accepts command line arguments. The first
argument is a start value, the second one is a stop value (both are
integer numbers). The R script should use these values as start
and stop values in a for-loop. Since this example is purely didac-
tic, you can do something simple inside the loop, like printing the
square of the loop value. Verify that it works as expected.

The quick and dirty way to submit this script to SGE would be

OV ONOOUT P~ WN A

N S
S~ W N A

Chapter 6 Working with the sGE queue system

$ gsub -cwd -b y R --slave --vanilla -q -f R_loop_script.R --args 1 5

And if you want to join the output of SGt (the .e and .o files) into one as
well as receive an e-mail when the job starts and when it ends, you will
have an even longer command:

$ qsub -cwd -b y -j y -m be \
-M your_email@your_domain.com \
R --slave --vanilla -q -f R_loop_script.R --args 1 5

This is too much to remember or type without making errors. The solu-
tion is to write job scripts for tasks like this. In a job script you specify all
the sGE options you need as well as the command that is to be run in the
batch queue. Then, the next time you run a similar task you only need
to change the line that runs R (or whatever else you would like to run in
the queue).

To specify one of the SGE options in a job script (which is a normal Bash
script) you have to start the line with #$. The following script is an ex-
ample job script for the R script of this exercise. The -S option in line 5
makes sure that sGe understands this is a Bash script.

#! /bin/bash
This is an example of a job submission script

The following are options for gsub. Don't
remove the # in front of them.
#$ -S /bin/bash

#$ -Jy

#$ -cwd

#$ -M your_email@your_domain.com
#$ -m be

Here comes the rest of your script that
actually does something. In this case it runs R.
R --slave --vanilla -q -f R_loop_script.R --args 1 5

With this script submitting a job to SGE is simple:

6.6 Exercises

$ gqsub jobscript.sh

b) Rewrite this example job script in such a way that it accepts two
command line arguments and uses those in the R command, in-
stead of the 1and 5. Add some checks to see if the user really did
specify two command line arguments. If that is not the case, the
script should exit (use the exit command for that). Test the script
by submitting it to the queue.

O 101 111000000110101101@
0 110101 o,
0 01011110000
101
10

10

1101011010016016101
0

Q00

00

0101
i

Chapter

Good scripting practices,

structured programming a
data management

Chapter 7 Good scripting practices, structured programming and data
management

By now you should know your way around basic Bash scripts. Some of
you will also have done some scripting in R as well. Here | would like
to discuss some general principles that relate to good programming and
scripting® practices and how those relate to reproducible research.

In most sciences it has become impossible to work without writing some
form of computer code. Scripts help you analyse your data, run simula-
tions, etc. and form an integral part of your research. A person in a wet
lab has his/her lab journal in which each step of the protocol is metic-
ulously written down, and so do you have your directory structure, your
data sets and your scripts. As a scientist it is your responsibility to make
sure that you can always reproduce your results. This is one of the fun-
damentals of the scientific method.

Some of the following tips may seem obvious, most will take a bit of ex-
tra time to implement. But rest assured, they are all worth it and have
proven themselves in practice. Most of them boil down to using descrip-
tive names and comments in your code and directory structure. Remem-
ber that some projects take years to complete, and some get handed
over to colleagues.

Resist the temptation to skip the tips in this chapter because “this script
will only be used once”. Many scripts survive longer than that! And good
scripts will continue to be useful to you and maybe other people. They
will be used again and again, sometimes with some slight modifications.
What is the point of writing similar scripts from scratch all the time? If
you run into a situation similar to one you have encountered before it

a) A quick note about the words scripting and programming. Although they may often be
used interchangeably, at least in our field, there is a difference. Examples of script-
ing languages are Bash (cf. § 5), R, sed (§ 4.3), gawk (§ 4.5) and Perl. Java, C, C++ and
FORTRAN are examples of programming languages. The difference between the two
groups is that scripting languages are interpreted on the fly. This means that the are
converted from human-readable language (your code) to machine language the mo-
ment you run them. Code written in a programming language is converted to machine
language once (this step is called compilation) and can then be run many times. As a
result, programs written in a scripting language are usually slower to run, but easier
to write and debug. Apart from that, there is not much difference between the two in
terms of writing code.

N O P W N A

N o

7.1 Code layout

is better to extend and generalise an existing script than to try and in-
vent the wheel again. Furthermore, well written scripts with a good code
layout help you find mistakes (so-called debugging) much easier, saving
you a lot of time in the process.

71 Code layout

As Bradnam and Korf write in their chapter on code beautification: “Ap-
pearance matters” [8]. This is definitely true! Scripts in which the code is
laid out well are easier to understand and consequently easier to debug.
Consider the following examples of a piece of code shown earlier:

#! /bin/bash

if [-n "${1}" 1; then

echo "The command line argument was ${1}"
else

echo "Goodbye!"
fi

and

#! /bin/bash
if [-n "${1}" 1; then echo "The command line argument was ${1}"; else echo «
"Goodbye!"; fi

Both are valid Bash code that produce the same output, but in terms of
understanding and maintaining the code, the first version definitely has
the upper hand.

744 Indentation

Indenting the lines of code in the if and else part of the previous ex-
ample clearly shows what the code is supposed to do. A good editor,
like Emacs or (g)vim helps you with the indentation. In Emacs, for exam-
ple, pressing the TAB key in a Bash or R script will automatically indent
that line correctly. Whether you choose to indent with a TAB, four spaces

Chapter 7 Good scripting practices, structured programming and data
management

(most common) or only two is not very important, as long as you are con-
sistent. Agood editor also helps you by colouring the various parts of the
code, as shown here®):

#! /bin/bash
This is a comment.

if [-n "${1}" 1; then

echo "The command line argument was ${1}"
else

echo "Goodbye!"
fi

Note that in this syntax highlighting scheme comments are shown in
green, Bash keywords in blue and strings in purple. If, for example you
forget a quote, syntax highlighting will immediately show you something
is wrong:

#! /bin/bash
This is a comment.

if [-n "${1}" 1; then

echo "The command line argument was ${1}
else

echo "Goodbye!"
fi

71.2 Line length

In the early days of computing the maximum length of a line was 80
characters®. Many programmers still stick to this limit, and with good
reason. Consider the following VCFtools command:

vcftools --vcf myVCFfile.vcf --chr ${chr} --from-bp ${start} --to-bp «
${stop} --plink-tped --recode --out geneselection

b)Forthoseofym,lreadingthePDFversionofthisdocumentonscreenoracolourprint.
©) That was the width of the punch cards used to program a computer in those days.

7.1 Code layout

| hope you are convinced the following is easier to read (remember that
Bash needs a backslash (\) at the end of a line that hasn't finished yet):

vcftools --vcf myVCFfile.vcf --chr ${chr} \
--from-bp ${start} --to-bp ${stop} \
--plink-tped --recode --out geneselection

and some of you would like the following even better:

vcftools --vcf myVCFfile.vcf \
--chr ${chr} \
--from-bp ${start} \
--to-bp ${stop} \
--plink-tped \
--recode \
--out geneselection

The same holds for R code, of course. Compare

data <- read.table("/path/to/file", header=TRUE, <
sep=";", na.strings="0", stringsAsFactors=TRUE)

to

data <- read.table("/path/to/file",
header=TRUE,
seF)=Il;ll'
na.strings="0",
stringsAsFactors=TRUE)

741.3 Spaces

Clean code makes good use of white space. Although Bash doesn’t allow
for a space between the variable name, the = sign and the value, other
languages do and it is good practice to surround your equal signs with a
space. The same holds for commas, semi-colons and pipes (|). Compare
the following lines of Bash code:

Chapter 7 Good scripting practices, structured programming and data
management

linecount=$(wc -1 ${0} | gawk '{print $1}")
linecount=$(wc -1 ${0}lgawk '{print $1}')

or the following GAWK one-liners:

$ gawk 'BEGIN{print "id sex bt1"}{if($5==2)sex=0;if($5==1)sex=1;print <«
$2,sex,$6}' chr.ped > chr.phe

$ gawk 'BEGIN {print "id sex bt1"} {if($5==2) sex=0; if($5==1) sex=1; print $2, <
sex, $6}' chr.ped > chr.phe

or this piece of R code from which I intentionally removed the colours
used for syntax highlighting:

f2dna<-read.csv(paste(dir,"dna_f.csv",sep=""))
Read data from Excel sheet
library(gdata)
dbFile<-paste(dir,"db.x1ls",sep="")
db<-read.xls(dbFile,sheet=1)
Create a new data frame that combines the old data with
selected columns from the DB
cols<-cbind("Library","Sample.ID","Cov.X")
selectedData<-olddatal,cols]
cols<-cbind("nummer","trait","finaldiag")
selectedDataDB<-db[which(db$nummer %in% <«
selectedData$Sample.ID),cols]

versus

f2dna <- read.csv(paste(dir, "dna_f.csv", sep=""))

Read data from Excel sheet

library(gdata)
dbFile <- paste(dir, "db.x1ls", sep="")
db <- read.xls(dbFile, sheet=1)

Create a new data frame that combines the old data with
selected columns from the DB

cols <- cbhind("Library", "Sample.ID", "Cov.X")
selectedData <- olddatal[, cols]

7.2 Comments

cols <- cbind("nummer", "trait", "finaldiag")
selectedDataDB <- db[which(db$nummer %in%
selectedData$Sample.ID),
cols]

and decide for yourself.

Space in the form of empty lines can also be very helpful in understand-
ing a script. Use empty lines to separate parts of your script that do
different things, as shown in the R example above.

7.2 Comments

All scripts should have a header that explains the intended use. Right
now it is obvious what the script does (or is supposed to do), but in six
months time you will look at it again and guessing what a script does
simply from its file name or the directory it was in takes much more time
than writing a brief description.

It is good practice to also add your name and a date to the header. Good
scripts provide added value, also to other people. They tend to get dis-
tributed. It's good to be able to tell who wrote the original script and, if
you run into two versions of a script, which one is newest?.

If your script accepts command line arguments describe them in the
header. This helps you if you need to run the script at a later time.

Write comments that describe the more intricate parts of your script.
They will help you (or you successor) to understand what (is supposed
to) happen(s). Especially if it took you quite some time to come up with
an elegant solution to a problem having a comment that describes it
works miracles when troubleshooting later on.

You can also use comments to separate parts of your code. Especially
with syntax highlighting they will stick out from the rest of the code.

d) i you are interested in a more professional and efficient way of storing different ver-
sions than simply adding a version number to the header or the file name, see the
item on revision control in Chapter 8.

Chapter 7 Good scripting practices, structured programming and data
management

#it
Read data from files
#it

HEHGHHHHBHAEHAHGHHRHBHGEHSH
This is the main part
HEHGHGHHBHAEHBHGHHRHBHAHSHH

7.3 Variable names

Some people are tempted to use variable names like a, b, aa, thingy,
df, etc. These will make your life miserable! Looking back at a script in
a year’s time names like ERFgenotypes, IDs_no_meds or HM2_snpnames
are much more descriptive.

Try to find the balance between short non-descriptive variable names
and ones that are too long and only lead to typo’s. Try using underscores
(L), CamelCase, or periods to make variable names descriptive and easy
to read.

7.4 File and directory names

A well-organised directory tree is like a well-kept house. You immedi-
ately know where to find things. Try to think of a logical structure for your
directories, e.g. along projects, data sets, etc. Give the directories infor-
mative names. Don't be worried about having to type long names. You
haven't forgotten TAB completion, have you? Also allow yourself some
time to clean your directories, just like most people do with their desks
before going on holiday.

7.5 Summary

It is also good practice to add a file called README to each directory in
which you briefly describe what you do, did, or plan to do there.

Give your output files sensible names. Having a directory with the fol-
lowing files is not very helpful (even one week from now).

output.1
output.2
output.datal.2
output.try2.txt

If you argue that the file with the latest date/time is the one you should
use, how can you be sure? What if you actually didn’t completely finish
the analysis? What if the output with the latest date was actually a run
that was discarded because you were trying an option that turned out
not to be correct?

7.5 Summary

+ Begin your scripts with a header that documents its behaviour.

- Start your script with a comment that summarises the use of
the script.

- Add your name and the date you last edited the script to the
header.

- If your script needs (or accepts) command line arguments, give
a brief description of each of them in the header.

+ Comments are good!

+ Give variables a descriptive name.

- Split long lines into shorter ones.

+ Use white space wisely.

+ Create a new directory for each project.

+ Give your output files a descriptive name.

Chapter 7 Good scripting practices, structured programming and data
management

- Be wary of massive scripts. As soon as scripts grow beyond, say,
the size of your screen, consider splitting parts off into separate
scripts. Or learn about the use of functions®. Again, this will help
you structure your code.

- Don’tignore errors and warnings. Most of them are there for a rea-
son. You might consider them a nuisance, but make sure you under-
stand what they mean and where they come from or your research
results may be invalid.

- Don’t start tomorrow. Start following these guidelines today. To-
morrow there will be other high priority things.

e) In other languages like Perl functions are known as subroutines.

1@10101011110000001
1

10

00

1 01@11010%

61911110@000011010110100
1

10

10

0l

10p

Chapter

Where to go from here?

Chapter 8 Where to go from here?

The course for which this document was written was a two-day course. If
you have come this far within these two days then either you had quite
some Linux experience already or you picked it up really quickly, on which
| have to congratulate you!

8.1 More advanced topics

If you are interested to learn more, you can consider looking into the
following subjects (GIvF, but I'll be happy to give you some hints):

byobu - Using byobu or screen to access the same connection from multiple
screen locations; With byobu or screen it is possible to continue working
with the same shell session from multiple locations.

- Shell expansions; In § 3.6.3 the use of wildcards was explained,
where characters like = were used to select multiple files. Using
so-called shell expansion allows you to work even more efficiently

on the cLi.
find - Finding files and directories with the find utility. The syntax of the
find utility is not the easiest to understand, but using the basic
Xargs ones together with the xargs command makes for a powerful com-

bination if you want to apply the same action to many files.

- Regular expressions; The search patterns of sed, gawk, grep and
other utilities are not just literal searches. In fact they are so-called
regular expressions. With regular expressions it is possible to do a
search like “Find every occurrence of word, but only if it is located
at the end of a line”, or “Find every occurrence of p, but only if it is
followed by several numbers, followed by an e, thena + or - and a
maximum three digits”.

- More advanced Bash scripting; The use of case structures, how to
let a script accept options in short and long form, making functions,
etc.

8.2 Further reading

+ More advanced GAWK scripting; Making functions, associative ar-
rays, using other values than the newline character as a record sep-
arator, etc.

* Revision control; If you write scripts on a regular basis and re-use
them regularly, you will find that at some point you have quite a
library and maybe you want to reduce their number by reorgan-
ising them or making them more generalisable. A great idea, but
wouldn’t you want to be able go back a couple of versions every
once in a while to find out why something used to work, but doesn’t
anymore? Of course you could save every version with a different
file name, but that would make a big stack of files. With revision
control files (or complete directories) can be saved, easily shared
with others and you will always be able to find out what changed
between revisions. Several programs provide version control. Sub-
version (svn) is very commonly used, but slowly getting old and
superseded by Git (git) [9]. Bazaar (bzr) is easier to start with.
All of these provide good integration with MS Windows through a
GUI as well. GitHub (https://github.com) and BitBucket (https:
//bitbucket.org) are popular web services where you can collab-
orate with other people on the same project using Git. More and
more open source tools developed by scientists can be found there.

« For those of you that like to learn another scripting language | can
suggest both Python and Perl. Python is the most “general purpose”
of the two, meaning that you can not only use it for automating
tasks, but also to do scientific analyses, or even write Gul programs.
Perl is traditionally more focused on text processing and used a lot
in bioinformatics.

8.2 Further reading

One of the most appropriate books on this subject is UNIX and Perl to
the Rescue by Bradnam and Korf [8], two bioinformaticians at UC Davis.
This book also teaches the basics of the Perl scripting language which
is often used in bioinformatics. If you would like to learn more on Bash

https://github.com
https://bitbucket.org
https://bitbucket.org

Chapter 8 Where to go from here?

scripting, take a look at Refs. [10, 11]. To learn more about general pro-
gramming concepts, try Ref. [12] (it does require some knowledge of the
C programming language to really understand the text). Ref. [13] is both
a good reference and a good course book on Linux system administra-
tion (in case you want to set up your own Linux server), since it trains
you for the LPIC-1 exam of the Linux Professional Institute. Those of you
who want to learn how to use their Emacs in a more efficient manner
can read Ref. [14], which, although a bit outdated (it discusses Emacs 22,
whereas Emacs 25 is the latest version), is still a good introduction to the
core concepts. More recently, Mickey Petersen wrote a good e-book on
Emacs [15].

@10101011110000001
11

10

00

1oy

@1101,,@%.
11110@00@011010110100

10

10

10

10

2,
10@101

Appendix

Answers to the exercises

Appendix A Answers to the exercises

Answer to Exercise E3.1. Long and short options

The --all (long form) option lists all files and directories (both normal
ones and hidden ones). The second command will also show a list of
files and directories. The reason for that is, that -all is interpreted as
the contraction of the short options -a -1 -1.

Therefore, the second form, with only one dash is probably a typing mis-
take where the user either forgot the second dash or the last 1 should
have been an h (which means show file sizes in human readable for-
mat).

Answer to Exercise E3.3. Some file and directory basics

In the following answers | did not include all the output of each command
in order to save some space.

Running cd without arguments brings you to your home directory. Of
course cd ~and cd /home/your_username are also correct.

cd

mkdir LinuxCourse
cd LinuxCourse
mkdir tmp2

mkdir tmp3

A A A A A

Note that the last two lines can be written as one: mkdir tmp2 tmp3.

$ cd tmp2
$ cd ../tmp3 # or: cd ~/LinuxCourse/tmp3
$ cd

The shortcut to go to the previous directory you visited is cd -. The pwd
command will print your present working directory on the screen.

$ cd /

$ 1s

$ cd /tmp
$ 1s

|$ cd ../home/lennart/LinuxCourse

Of course, you have to replace my user name with yours in the last line.

In the following I did include all the output of the commands.

$ 1s

tmp2 tmp3

$ rmdir tmp2 tmp3
$ 1s

$

Answer to Exercise E3.4. Copying files

The last argument of the cp command is always the destination, which
means in this case that you are tryingto copy filel and file2 to another
file file3, which does not make sense. So, either you forgot to add a
destination directory to the cp command, or you made a typo and the last
argument should not have been file3, but the name of the destination
directory.

Answer to Exercise E3.5. Creating a directory tree

Both mkdir --help and man mkdir will tell you that the -p option allows
to create missing parent directories:

$ mkdir -p dira/dirb/dirc

Removing directories can be done in two ways. If the directories are
empty, the rmdir command will do the job. Since dira is not empty (it
contains dirb and dirc), rmdir dira will not work. One solution is then
to first go to directory dirb and start from there:

cd dira/dirb
rmdir dirc
cd ..

rmdir dirb
cd ..

rmdir dira

A A A A A A

Appendix A Answers to the exercises

This takes way too much typing. In this case, the rm command will help,
the option -r will remove files and directories recursively, reducing the
above to a single (but more dangerours) command (run from the parent
directory of dira)

$ rm -r dira

Answer to Exercise E3.6. Getting information on files and directories

On my Linux system | found the following files in /boot:

$ 1s -1h /boot/

-rw-r--r-- 1 root root 983K Oct 9 18:49 abi-3.11.0-12-generic
-rw-r--r-- 1 root root 899K Sep 10 22:29 abi-3.8.0-31-generic
-rw-r--r-- 1 root root 160K Oct 9 18:49 config-3.11.0-12-generic
-rw-r--r-- 1 root root 152K Sep 10 22:29 config-3.8.0-31-generic
drwxr-xr-x 5 root root 4.0K Oct 20 14:51 grub

-rw-r--r-- 1 root root 18M Oct 20 14:50 initrd.img-3.11.0-12-generic
-rw-r--r-- 1 root root 17M Oct 20 14:31 initrd.img-3.8.0-31-generic
drwx------ 2 root root 16K Sep 15 10:47 lost+found

-rw-r--r-- 1 root root 173K Jun 17 11:52 memtest86+.bin

-rw-r--r-- 1 root root 175K Jun 17 11:52 memtest86+ multiboot.bin

=i======= 1 root root 3.2M Oct 9 18:49 System.map-3.11.0-12-generic
SRIEEEE LT 1 root root 3.0M Sep 10 22:29 System.map-3.8.0-31-generic
-rw------- 1 root root 5.4M Oct 9 18:49 vmlinuz-3.11.0-12-generic
SIRWEEEEEEE 1 root root 5.2M Sep 10 22:29 vmlinuz-3.8.0-31-generic

So there are two files with vmlinuz in their name, one is 5.4 MB, the other
is 5.2 MB. Note that on your system files with different version numbers
may be used.

The users and groups of the three directories are can be found also using
the 1s -1 command. The following lines show user, group and directory
name:

root root «crash
root staff local
root mail mail

Again, this may be slightly different on your machine. These are the steps
| took to get that information (check the 3™ and 4t columns):

$ cd /var

$ 1s -1h

total 60K

lrwxrwxrwx 1 root root 9 Aug 5 2011 adm -> /var/log/
drwxr-xr-x 2 root root 4.0K Aug 18 06:35 agentx
drwxr-xr-x 2 root root 4.0K Oct 17 06:35 backups
drwxr-xr-x 20 root root 4.0K Feb 21 2013 cache

drwxrwxrwt 2 root root 4.0K Oct 15 06:25 crash

drwxr-xr-x 75 root root 4.0K Jul 31 16:17 1lib

drwxrwsr-x 2 root staff 4.0K Apr 21 2011 local

lrwxrwxrwx 1 root root 9 Jun 27 2012 lock -> /run/lock
drwxr-xr-x 19 root root 4.0K Oct 18 06:32 log

o
=
=
x

1

1

1

1

1

1
N

root root 16K Aug 3 2011 lost+found
root mail 4.0K Oct 18 01:34 mail
drwxr-xr-x root root 4.0K Aug 3 2011 opt
lrwxrwxrwx root root 4 Jun 27 2012 run -> /run
drwxr-xr-x 10 root root 4.0K Feb 12 2013 spool
drwxrwxrwt 4 root root 4.0K Sep 21 14:43 tmp

N

drwxrwsr-x

RN

A more 'focused’ approach would have been to ask 1s to only show the in-
formation for the directories we are interested in (note the -d option):

$ 1s -1hd mail crash local

drwxrwxrwt 2 root root 4.0K Oct 15 06:25 crash
drwxrwsr-x 2 root staff 4.0K Apr 21 2011 local
drwxrwsr-x 2 root mail 4.0K Oct 18 01:34 mail

Answer to Exercise E3.7. The dangers of wildcards

The first rm command removes all files and directories ending in ~ (usu-
ally files ending with a tilde (~) are backup files), the second rm removes
all files and directories in the present directory and all (!) files and di-
rectories in your home directory. You most likely don’t want that.

Answer to Exercise E3.8. Working with less

Searching for “search” or “backward” will show that the ? key followed
by a search pattern will search backwards. Note that on most keyboards
this is conveniently located on the same key as /.

Appendix A Answers to the exercises

Answer to Exercise E3.9. "Seeing a file grow”

Either use the man page or the --help option of tail to find that the
option is -f (or --follow in the long form).

Answer to Exercise E3.10. Untar-ing an archive

Copying and extracting the file goes like this (assuming you are in the
LinuxCourse directory):

$ cp /tmp/exercises_linux_course.tar.gz .
$ tar -xzf exercises_linux_course.tar.gz
$ 1s -p

exercises_linux_course/

In the last step the -p option was added to explicitely show that
exercise_data is a directory. Likewise, 1s -1 will show the same
because of the d in the first permission column:

$ 1s -1
drwxr-x--- 3 lennart genepi 4096 2010-11-07 23:09 exercises_linux_course
Answer to Exercise E3.14. Disk space usage

Follow the example:

$ du -sh ~/=

Answer to Exercise E3.15. Downloading files to the server

When checking the size of the file, don’t forget to add the -1 option (or
both -1 and -h: 1s -1h to your 1s command, otherwise the size infor-
mation won't be printed.

Adding the -c option to wget continues a download, as you can see from
reading the output of either of the following commands:

$ wget --help
$ man wget

Answer to Exercise E3.16. Combining files

The cat command simply prints the contents of a file on the screen.
Therefore,

$ cat filel > output.total

will send that output to the output.total file. To add the contents of
the other files you need to use >>, because > will automatically overwrite
the output file if it exists, whereas >> appends to the end of the output
file.

$ cat file2 >> output.total
$ cat file3 >> output.total

The check whether the three files we merged you could try several things.
You could quickly browse through output.total with less or more (al-
though that isn't efficient for large files). Or you can count the number
of lines for each file and see if they add up (wc -1).

Answer to Exercise E3.17. Combining input and output redirection

Input redirection can simply be combined with output redirection:

$ R --no-save --quiet < rinput.R > Routput
$ cat Routput

> print("Hello, you are now in R")
[1] "Hello, you are now in R"

> getwd()

[1] "/tmp"

> 1+1

[1] 2

> 10:1

[1] 16 9 8 76 5 4 3 2 1

>

The cat command is only used to check the contents of the Routput
command.

Appendix A Answers to the exercises

Answer to Exercise E3.18. Using the output of one command as input
for another

The command ps -u your_username lists all your processes, one on
each line. To count the number of lines in the output use wc -1. Com-
bining these we get: ps -u your_username | wc -1. Don't forget that
the output of ps has a header, so you have to subtract 1 from the number
you got to get the number of processes!

dse du to find the disk usage of each of the files and directories in your
home directory. The -h option of the sort commands allows you to sort
the output of the du -h command. Without the -s (summarize) option
du returns the disk usage of each individual file in each of the subdirec-
tories.

$ cd
$ du -sh = | sort -h

Notice that the output of w has a two-line header. So

$w | we -1

gives you the number of logged-in users plus two. In order to get the
number of unique users the uniq command can be used. However, uniq
only removes duplicate entries if they are on adjacent lines. Therefore
it is wise to use the sort command first. However, since every line is
slightly different (for example each connection gets a unique entry in
the TTY column) uniq will not find any unique lines. So, we must select
only the first colum (the one with the user names) and sort that before

applying uniq:

$w | cut -f1 -d" " | sort | uniq | wc -1

Note that we still have to subtract 2 from the output of the line count.

Answer to Exercise E4a. Converting files from Windows format to
Linux format

The command line option to write to a new file is -n. You could have
found this out by either of the following commands:

$ dos2unix --help
$ man dos2unix

Note the remark about the order of the option and the two file names!
First you specify -n, then the input file and then the output file.

The following commands run the file command on a text file, convert it
from Linux to DOS format and test the new file:

$ file file_in_linux_format

file_in_linux_format: ASCII text

$ unix2dos -n file_in_linux_format file_in_dos_format

unix2dos: converting file file_in_linux_format to file «
file_in_dos_format in DOS format ...

$ file file_in_dos_format

file_in_dos_format: ASCII text, with CRLF line terminators

Answer to Exercise E4.2. Searching for a given text in a file

If the phenotype file is called file.phe and the individual ID we are look-
ing for is 1234, the command

$ grep 1234 file.phe

will show us the line if it is present. Be careful! This command will also
show lines containing 12341, 12345, a1234, etc. To make sure you only get
the person with ID 1234 add the -w option.

$ cd ~/LinuxCourse/exercises_linux_course

The option for recursive searching is -r (use man grep or grep --help
to find this). Therefore, the command

$ grep -r trait =

will look in all files and directories (starting in your present working di-
rectory) for the text “trait”.

To look for single words only, use the -w option:

Appendix A Answers to the exercises

$ grep -rw trait =

The options could also have been written as separately: -r -w, but -rw
is shorter.

A case-insensitive search is done with -i. The man-page will tell you this,
aswill grep --help. A nice way to quickly find this is using grep on grep
itself:

$ grep --help | grep case
-i, --ignore-case ignore case distinctions

Here, we looked for the word “case” in the output of grep --help.

This is how to add colour to your life with grep:

$ grep -ri --color=auto trait =

Answer to Exercise E4.3. Using sed for search-replace operations

If you followed Exercise E3.10 to the letter, the files should be here:

$ cd ~/LinuxCourse/exercises_linux_course/Exercise_sed/
$ 1s

file.csv

$ more file.csv

fieldl,field2,field3,field4
11,12,13,14

21,22,23,24

31,32,33,34

41,42, 43, 44

51,52,53,54

61,62,63,64

This replaces all comma’s with tabs:

$ sed 's/,/\t/g' file.csv

fieldl field2 field3 field4
11 12 13 14

21 22 23 24

W N A

31 32 33 34
41 42 43 44
51 52 53 54
61 62 63 64

To send the output to a file use output redirection:

$ sed 's/,/\t/g' file.csv > file.tsv
$ more file.tsv

fieldl field2 field3 field4

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

51 52 53 54

61 62 63 64

Editing the original file directly is easy with sed’s -i option:

$ sed -i 's/\t/;/g' file.tsv
$ more file.tsv

fieldl;field2;field3;field4
11;12;13;14

21;22;23;24

31;32;33;34

41;42;43;44

51;52;53;54

61;62;63;64

Answer to Exercise E4.4. Creating a phenotype file from . ped data
The files are located in the directory Exercise_ped2phe:

$ cd ~/LinuxCourse/exercises_linux_course/Exercise_ped2phe

Different ways to show the first six columns of the first ten lines:

$ cut -f 1-6 -d " " chr.ped |head
$ head chr.ped | cut -f 1-6 -d " "
$ gawk '{print $1, $2, $3, $4, $5, $6}' chr.ped |head
$ head chr.ped | gawk '{print $1, $2, $3, $4, $5, $6}'

O OB~ W N A

Appendix A Answers to the exercises

The commands that start with head are more efficient when working with
files that have many lines. In that case first ten lines are selected from
the file and subsequently piped to the other command. In the commands
on the odd lines of the previous output, first the requested columns are
selected for all lines and then only the first ten of those are printed on
the screen.

For the phenotype file we only need columns two, five and six. The first
two lines in the output below show different ways of creating the .phe
file. The last line shows how to add the header as well.

$ cut -f 2,5,6 -d " " chr.ped > chr.phe
$ gawk '{print $2, $5, $6}' chr.ped > chr.phe
$ gawk 'BEGIN {print "id sex bt1"} {print $2, $5, $6}' chr.ped > chr.phe

And, finally, the one-liner for the complete .phe file:

$ gawk 'BEGIN {print "id sex bt1"} {if($5==2) sex=0; <
if($5==1) sex=1; print $2, sex, $6}' chr.ped > chr.phe

For better legibility the command can be split into several lines. The >
signs at the beginning of the lines are added by the shell and should
not be typed by you. Here they don't indicate output redirection to a
file (except, of course, the second > on line 8, which we do have to type
ourselves).

$ gawk '

> BEGIN {print "id sex bti1"}
> {

> 1f($5==2) sex=0;

> 1f($5==1) sex=1;

> print $2, sex, $6

>}

> ' chr.ped > chr.phe

The BEGIN{} section is executed once before any other GAWK commands.
It prints the header. Then the main body of the GAWK command starts
(lines 3-7), it is repeated for each line in the .ped file. The body consists
of two if-clauses that set the variable sex depending on the value of
column five. Subsequently, in line 6 a print statement prints the data we
want.

If this is a regularly recurring task it is of course better to save these lines
in @ GAWK script, say ped2phe.awk and run it repeatedly like thisk -f

$ gawk -f ped2phe.awk chr.ped > chr.phe

Answer to Exercise E4.5. Filtering output using gawk

The directory contains two files, one of 163 bytes and one of 710 KB:

$ 1s -1h

total 716K

—CW-T-——-- 1 lennart lennart 163 2010-10-13 18:35 get_sign_snps.awk
-rw-r----- 1 lennart lennart 710K 2010-10-13 18:35 screen.l.out

Comparing the two GAWK one liners, we see that in the first case the word
"trait” can occur anywhere on the line, in the second we specify that the
line should only be printed if the second field contains "trait”.

These are the steps that schematically describe the filter. Because of the
format of the data | made the assumption to use some tool that allows
working with fields:

+ The traits are listed on lines that begin with Testing trait:.

« SNP markers appear on lines that begin with Testing marker:.

- If white space (i.e. one or more spaces or tabs) is used to separate
the fields then the lines that contain the information on p and F
values that we are interested in have a 1 in the first field (i.e. the
field named “Allele”).

+ The Fvalues are in field 6 and the p-values are found in field 7 (still
assuming white space as field separator).

- However, if there is no p-value (as in line 15 of the output given in
the exercise), then field 7 is not the p-value but a (.

The command man gawk or gawk --help shows that the -f option in
combination with the script name is used to run a GAWK script.

$ gawk -f get_sign_snps.awk screen.l.out > qt_output

To find the number of lines in the output file use the word count program
again:

Appendix A Answers to the exercises

$ wc -1 gt_output
243 qt_output

Extracting the names of the traits becomes easy once you realise that
they appear on a line with the word “trait” in it. So grep comes to the
rescue:

$ grep trait qt_output
trait: NRUWE
trait: ERUWE
trait: ORUWE
trait: ARUWE
trait: CRUWE

Of course you don't need to count the number of traits by hand! We've
got (at least) two ways to do that:

$ grep trait qt_output | wc -1
5

$ grep -c trait qt_output

5

Answer to Exercise E5.1. A simple script
The script should look like this:

#! /bin/bash

echo "Hello World"

The executable bitis set like this: chmod +x myscript.sh. Tocheckifthe
command did its job, run 1s -1 and look for the x in the permissions.
It should be there for (at least) the user. In the example below the x
permission is set for both the user and the group.

-rwxr-xr-- 1 lennart genepi 106 2010-11-02 10:28 myscript.sh

Answer to Exercise E5.2. Using variables
Variables are created like this:

g > W N A

variable_name="Some text"

Note that there are no spaces around the equal sign. To use a variable
use the construction:

${variable_name}

So our script will look like this:

#! /bin/bash

Create a variable
greeting="Good Morning"

echo "${greeting} World!"

Answer to Exercise E5.3. Using command line arguments in your
script

The following script prints the first three arguments in reverse order.

#! /bin/bash
This script prints the first three arguments
in reverse order.

echo "${3} ${2} ${1}"

The modified script that takes the first argument as greeting looks like
this:

#! /bin/bash
greeting=${1}

echo "${greeting} World!"

Of course the step in line 3 can be omitted, in which case ${1} goes
directly into line 5.

O > W N

Appendix A Answers to the exercises

The simplest way to use text that contains a space as one variable is to
enclose it in quotes. If the above script would have been called args.sh
then the this is the expected output:

$./args.sh Good evening
Good World!

$./args.sh "Good evening"
Good evening World!

Answer to Exercise E5.4. For-loops

There are two points to note here. First, the semi-colon before do, it's
easily forgotten. Second, it’s easiest to construct the file name in a vari-
able and use that together with the fictitious analyse command.

#! /bin/bash

for number in {22..1..-1}; do
filename="chr${number}.dat"
analyse ${filename}

done

Of course lines 3 and 4 can be written as one as well:

analyse "chr${number}.dat"

Adding leading zeroes is easy:

for number in {22..01..-1}; do

Answer to Exercise E5.5. parallel for-loops

In order to start a process in the background you need to add an & after
the command. So an example script that would start each job in parallel
would look like this:

#! /bin/bash
This script runs all tasks at the same time

for i in {01..22}; do
my_analysis_script.sh ${i} &

DU P~ W N A

O VW ONOOUT P~ WN A

a2
=y

| done

As the question already hinted, this is not an ideal way to run things in
parallel of you have more tasks than cpus. In the ideal case you want each
CPU to be busy with only one task. so if you have 10 cpus you need to split
the tasks up in surch a way that first the first 10 are run, then the second
10 and finally the remaining two. If you know that you always have 22
tasks you could simply write three for-loops with a waiittcommand after
each loop. The wait command was not discussed previously. It waits for
alljobsthat were started previously in the script to end before continuing
with the next command.

Answer to Exercise E5.6. if-clauses and tests

First we have to check if a command line argument was given. Command
line arguments are stored in ${1} etc (cf. Exercise E5.3). From Table 51
we see that we can use -n to test if this variable is an empty string.

#! /bin/bash
if [-n "${1}" 1; then
echo "The command line argument was ${1}"
else
echo "Goodbye!"
fi

Checking whether a directory exists can be done with the -d test. To
negate that test (because if it is not there we must take action) use !.

#! /bin/bash

First create a variable that contains today's date in
an acceptable form for a directory name.
today=$(date +%F)

if [! -d ${today} 1; then
echo "A directory with today's date does not exist."
echo "Creating it..."
mkdir ${today}

fi

O OUT P~ W N A

Appendix A Answers to the exercises

Answer to Exercise E6.1. Working with Sun Grid Engine

The test script that will be submitted to the queue will look like this:

#! /bin/bash

for i in $(seq 1 5); do
whoami
date +%T
sleep 10

done

date

echo "-- -\ - -\ - - -\ - —— - - - - ——-

If you want the user name and the time to appear on a single line, lines
3 and 4 can be replaced with

echo "$(whoami): $(data +%T)"

Note that $() needs to be used, otherwise it would print the literal com-
mands instead of their output.

If the script is called simplejob.sh, then it can be submitted with this
command:

$ gsub -cwd simplejob.sh

To check the status of your jobs use the gstat command. The usual
reason for a job not being run immediately is the fact that the maximum
number of active slots has filled up (at present a maximum of 7 jobs is
allowed to run at the same time). Use

$ gstat -f -u \=

to show all jobs in all queues for all users. This will also give you an indi-
cation of the priority of your job compared to others. The job at the top
of the waiting list will be run at the next time a slot becomes available.
SGE is configured for fair scheduling, this means that it tries to allot each
user the same amount of computation time. If, for example, you have
several jobs running and several more waiting to be run, than someone
else’s job will be scheduled with a higher priority (assuming this person
didn’t over use his fair share of computation time). This makes sure that

OV ONOOUT N~ WN

N N S
SOUT W N A

one person with 100 jobs will not block others from running their own
analyses.

When the script has finished, check the files that end in .e5678 and
.05678, where 5678 is to be replaced with the job ID of your own job.

Answer to Exercise E6.2. SGE, R and command line arguments

The R script looks a lot like the example. Be sure to convert the argu-
ments to integers before using them. The if-clause in lines 4 - 7 gives
an error message if the user forgets one or more arguments. It is good
practice to build these kind of sanity checks in your code. They help you
if you run the same script next year and have forgotten how it exactly
works.

cat("Start of the program\n")

arguments <- commandArgs(TRUE)
if (length(arguments) < 2) {
cat("Error: please give two command line arguments\n")

q()
start <- as.integer(arguments[1])
end <- as.integer(arguments[2])
for (i in start:end) {

Cat(l, ||A2 - ||' iAZ, ll\nII' Sep=||||)

}

cat("End of program\n")

Running this program gives the following results:

$ R --slave --vanilla -q -f R_loop_script.R --args 1 5
Start of the program

12 =1

272 = 4
3"2 9

O 0O~y OUT B~ WN

-
-—
2 O

12
13
14
15
16
17
18
19
20
21
22

23

Appendix A Answers to the exercises

42 = 16
572 = 25
End of program

This is the modified job script:

#! /bin/bash
This is an example of a job submission script

The following are options for gsub. Don't
remove the # in front of them.

#$ -S /bin/bash

#$ -j oy

#$ -cwd

Here comes the rest of your script that
actually does something. In this case it runs R.
message="This script needs two arguments"

if [-z ${1} 1; then
echo $message
exit

fi

if [-z ${2} 1; then
echo $message
exit

fi

R --slave --vanilla -q -f R_loop_script.R --args ${1} ${2}

In line 12 a variable is created with the error message. Lines 14 — 21 test
the presence of the arguments, which are subsequently sent to the R
script in line 23.

Submission to the queue goes like this:

$ gsub jobscript.sh 1 10

11991(91191010101111@0000
o 10
61@11616161911110000001101:1 iy,

699110101101001091010

Appendix

Reference Card of Basic Lin
Commands

Appendix B Reference Card of Basic Linux Commands

The next two pages form a reference card of basic Linux commands that
can be printed for easy reference.

91T4Aw 8- 1a0S
(€-9Z " T "S'9) UOIIRIOU JYNUSIDS Ul 3Je SISQUINU SWNSSe 1Nq ‘Wap!

91T4Aw y- 1a0s (218 ‘Wz “JL) P1RP B)gEpEa) URWNY BWNSSE INq ‘Wap!
91T4Aw u- 110S J930BJRYD JOU D1IBWNU S| B}RP SWNSSE INg ‘Wapl
91T4Aw 3108
(22eds Ag pajesedas ‘L uwn|od $8sN NeBP AQ) 81U B Ul SBUI] 1I0S
a1T4Aw ,{e$ Iutad(z==3N) 3T}, >mes
AW WoJ) € UWN)0d ‘T MOJ UO p1aly Byl 10919S
a1T4Aw {o$ utad {,UN,=€$}(T=idN) 3T}, mes
au|) Jopeay ay} asueyd ,uop ng ‘wapl
a1T4Aw ,{0$ utad !, uN,=£$}, dmesS a1fAw Ul YN 03 € uwn)od asueyd
a11t4Aw ,{0$ 1uTad} 1x81 ~ T$, dmesS
%27 SUIBIU0D UWN|0 1S4y 41 a)Aw wody sul Juld
a114Auw ,{0¢$ utad ¢, ,=6$=c$}, dmeS
aYAw woly S pue p€3U1 1dedxa suwnjod e uLd
o1t3Aw , {4N$ ‘z$ ‘T$ wuTad}, ,‘.4- med
ewwod e Aq pajesedas aie suWN|0d INg ‘Wapl
a1T4Aw ,{4N$ ‘z$ ‘T$ utad}, mes

(@2eds a1ym Aq paresedss suwnjod) a)YAw Wol) UWNI0d I1Se) pue puC st wnd

1THAW £-€'T 4- IMd

J2}WIdP uWwnjod se qel Suisn a)yAw woJj £ 03 € pue L suwnjod uld
a1THAw ,*, p- € 4- 1ND

J}WI3p UWN)0d Se Sewwod Sulsn ajAw wol} € uwnjod und

a1T4hw ,psiz, T- pas a]Aw wouy S 01 T Saul] 919]9p
91T4Aw ,psz, T- pas 21YAw woly Sz aun 81919p
a1t4hw ,dy, u- pas a)UAw wouy ¥ sun) wiud
9114Aw ,8/mau/p1o/s, T- pes

a)YAw U1 Mau yum pjo 4O S3dUINI0 e ddejdal

uonendiuew 1xa1

7zq-aey aTiAw JOx- Jel * 0} 9)Y gzq°aey* e Wolj Saly |]e 10eiIxa
ITpAw zzq-aeil a9 TiAw 4(o- aey JIpAW 40 9AIYdJe Passaldwod e a1eald
z§+ae1- 91 T4AW JAZX- JB] PBIDRIIXS 9B Jey] SaWRU 3]y Y} MOYS Ing ‘Wapl
z§raey-91T4Aw Jzx- Jey * 0} 9]y S ae1* e WO S3)Y |1 10elxa
ITpAw z8+ae1-91T4Aw jzdo- aey JIpAW 40 9AIYdJe Passaldwod e a1eald
z§+9114Aw drzuns (panowsau si a1y z3*) a1y 9)Suls e ssaidwodap
91T4Aw dtz8 (paAoWaJ SI 31y 1euISII0) a)yAw 31y 918uls e ssaidwod

Suiniydae pue uoissaidwo)

ITPp Ys- np 1eWlOo) 91gepeal uewny ul ng ‘wapl
ITp S- np Jip A10328J1p Ulead B Ul 83eSNn YSIp Moys
s- ejonb (43 SI 8deds yonw moy pue) a3esn 3sip 1e101 JN0A Moys
awtidn Suluuni pue dn usaq sey JaAI3S 3y} SUO] MOY MOYS

I9sn I98uTy Jasn 1N0Qe UoIew.ojul 1838
m Ul passo] aJe 1eyy siasn Aeydsip

ojul walsAs

91TJAw J- 1TeI SMOJS 1 Se 1 SuImo)04 doay pue a)Aw 4o Saul) OL 1Se] MOYS
91T4Aw GT u- 1T} a1Aw 4o saul} L I1Se] MOYS
91T4Aw 1TRY a]YAw J0 SaUI OL 1SB] MOYS
91T4Aw 4 u- peay aIAw Jo saul 7 1siy MoYs
91T4Aw peay a)Y/Aw 4o Saul} OL IS4y MOYS

'SS97 pue aJow }xa 0} b asn
91T4Aw ssaq SUu111042S pue Ydieas yim ing ‘wapl
91T4Aw agouw U9942s AQ U88IIS SIUBIUOI MOYS
91T4Aw 3ed AW J0 SIUBIUOI 11N MOYS

91y e jo squajuod Aeydsiq

70U IM [ZZ-T] ING SJOM 1M [6-0] OS ‘81dy painiisqns si Jaideieyd auo Aluo ‘910N,

‘31U Ydea J0J parise 3q 01 JueM NoA 1 uoNdo T- 8Y1 8SM) "UOIPWILUOD 10} }SB 10U SB0P Wl ¢

"PaUYNOU 183 01 UONAO T- 3Y1 SN "8I110U INOYIM (SISIXd U 41) 8]U UOIeUNSSp 8yl Sd1LIMIBA0 dD 910N,

'9dA1 NoA 1eY) SpURWIWOD BY3 JO SHYNS3I BY3 10U ‘(A8Y 431u3 8yl 1Y NOA 21048q) J|aSH BUI PUBLIWIOD Y} UO SaBurYd seopun Aluo SiyL,

3 puewwod puUNOJSYOBQ BY} Ul puDWWOI JeIS Ajaelpawiwl
u 54 punoJ8a.0} ay3 03 U qof Sulq
84 punoJ8aJ0) 03 qof 1uadal 1sow ay3 Suliq
sqof sqgofish
8q punoisyoeq ayj ul gol papuadsns e awnsal
z-1131D gof1uaiind puadsns
Jo0ad 11111y 204d paweu sassadold e)1y
ptd 111 pid pi ssadoud 111y
doy AnedtweuAp sessadoid Suluuni e Aejdsip
doay AnestweuAp sessadoid Sutuuni e Aejdsip
Iasn nj- sd Jasn Jasn Ag sassadoud 1e Aejdsip
Jo- sd sJasn |1e Ag sassad04d |1e Aejdsip

sd 1eulw.al 3uaJInd UnoA ul sassadoud Aejdsip

Judwageuew ssad0.d

{qoad‘asop} -«

— y1- s1 SUOISUDIX® qoad* IO 9SOP* YlIM S31Y |]e JO 0jul MOYS
JTpAw 1x1°[G-T] @114 Aw

[QE]
1X1°9791T4 ‘IX1°e7 87 T410UING) JIPAW 01 IX1*G 91T4 - 1X1 T 91 T4 an0w
ITpAW 1X1°¢91T4 Aw

(719
‘1X1°9721T4 AX1° @791 T4 051eINq)JIPAW 01 1X1 6 91T4 - 1X1 T 91T 4 aA0W

L*¥TIYdx, BWeUT- ~ puTy ~ Ul aWeU J13Y} Ul ZIyd Yiim Sajy Jje puy
ITpAw ¥-x dd A1012911p Jayjoue 0191y ¥ * |1e Adod
Jpd-x s A1030841p SIy1 Ul 4pd - Ul Suipua saly |1e 1S

:91dwexa Jo4
{} SI930BJIBYD JO 3SI] WOUS 329195
[1 ,98URJ B WOJJ JS10RIRYD BUO 123]9S
* SI930BJRYD 9I0W 1O BUO 3I319S

Ja10RJIRYD BUO 18]9S
jwayl yim Jnyaied ag (uon
-a]ap 4o 8uiAdod 10} a1dwexa 104) 8]y SUO UBY} BIOW D8]9S 03 PasN a.Je SpJedP|IM

uoisuedxa 1)ays pue spieapyim

o

91T4Aw m-§ powyd
ItpAw 1-0 ¥- powyd
91T4Aw I+e powyd
ys-aidtaosAw x+ powyd
- - =X -JIXMJI

a1fAw wouy ,dnoig, 104 uoisSiwIad a1um SA0Wal
51830, 404 JIpAw wol) "wiad pead arowal AjaaIsinoal
SJ9SN 1] 03 d1qepeas a1y ayew

(dnoJs pue Jaumo) ys1dLdISAW U0 11g 3)GeINIBXD 19S
A1010841p B J0J Suolssiwiad ajes

9]y e Joj suolssiwiad ajes

‘suolssiwiad asayl moys 0} 1- S1 dSn 9]q1sSad

-Je Sl 11 sueaw X AI01dalip B J04 'SIBYl0 pue dnouS UsUmo SUIMO]04 8yl U0 (X)
91GR1NJ3X3 puUe (M) 31 TJIM ‘(X) PRI 0113S 8¢ URD SuoIssiwiad A1010841p pue a)i4

suoissiwiad A1013341p pue a)14
BAINSUBSUI 9SBD INq ‘Wap!

JIpuIDIS A101D3JIP UMD B Ul 3]y puy
BAI}SUBSUI 9SBD SWeu 3]y Ing ‘Wapl
(21ep 01 dn sAemje j0u) a)fAw e Suipuy Jo Aem ¥2Inb
sajy Sulpuiy

3]y e sWeudl

£1032341p JayIoue 0} 3]y B BAoW

(sa14 s 1@ Sulpnidul) AjaAlsindal A1012aJ1p e aA0Wal
3y e dAOWa

L91T4Aw, sweut- ITpIae1S pPUTY
L91T4Aw, dweu- JITplIeIS PUTY
91T4 T- 93ed0]
91T4Aw aled0)

79113 T91T4 AW
ITpAW 91 T4Aw Aw
ITpAw J- wa

91 T4Aw wax

/TATp/~:1s0@aasn TITP dze- DduAsa
150y 910WalJ e 0} A10323JIp B SulAd0d JO Aem Jslews e
© JI1pAw/~:31soypaasn I- dos
A10312841p JUBJ4ND BY1 01 1SOY d10Wal B Wod) A1dAIsIndas A101dau1p e Adod
/aTp/~:1soyeaasn a1T4Aw dds 1soy sjowal e uo Aiojdalip e 03 a1y e Adod
ZITp TatTp JI- dd zi1p 03 Ajanisindas A103dauip e Adod
zo114 19114 dd cajy oy Layy Adod
ITpAw JTpw JipAw A1032811p Axdwis ue snowal
ITpAW JTpYW JIpAw A1032811p B 918810

aweual ‘anow (-a.) ‘Ado)

1I- S (15] 158M3U "8'1) BWI} U0 JO J3PJO 3SI8AR) Ul S3JU 1SI)
e- s) 119M Se SaLI032al1p pue S8y uapply 1si)
yl- s1 1RWIOJ 3)gepeal URWNY Ul S3ZIS 31y UM 1s1] (SU0]) pajiersp
d- s1 £1012811p Y2ed JB)ye / B Y1IM S31I01D34IP PUe S31Y IS
s1 S914030941p pue Sy 1S

sa)y Sunsi
po A1032941p BWoOY IN0A 03 aSueyd
1tpAw pd JipAw 03 A10303J1p B8URYD
pmd A1030841p Supjiom uesald junid

A1012811p uased ayy
. AJ1030841p 3UBIIND BY}
~ (/a3sn/swoy/) A1012311p 3WOY S,43SN J0) INILI0YS

juswaSeuew A10323.1p pue 314

*-11Y puBWWO SNOIABId WO} pIOM ISP Jasul
Z-1d31D gofuaJind puadsns
A-1131D 1a1ng wouy (yuek o) s1sed
n-111> (1n2) Jayng 01 Adod pue aul) Jo SuluuiSaq 01 813]9p
N-113D (1n2) Jayng 01 Adod pue aul) Jo pud 01 31319p
/-141D ,8UI] PUBWIWOD 3Y] U0 83UBY) 1SB] INOA opun
I-143D puBWWOD JUdIBI B 104 AI0ISIY YdJeas
9-1J1D aul] 4O pus 03 08
e-111D aul] Jo Suluuisaq 03 03
2-14131D PUBWWOD JUBIIND |8dUED

'SU0I2)dWod a1ge]eAe 1B 1S1) 1]IM 31 921m3 passald |
'S9WeU 3]y pue spurw WO 3181dwod 03 pasn si1| "gyL S! Asy yuenodwi 1sow ay |

SINDMO0YS paeoqAd))|

pubwwod 1oy suondo pue djay d1seq smoys
pubwwod uo aded jenuew

dyay Sumean

d1ay-- puewwod
puewwod uew

p-113D
1noSoy
1TXd

10 SuISS01

Jaupuig ' pleuoq Aq pleD aduaiasey IA 8y} uo paseg
Wod *eITWOAL0dRUISSIRY "D "] ‘UBSSIEY ") MRUUDT 6L0T-0L0Ze

GE00)
Spuewwo)
Xnuiq Jiseg Jo pie) 93uaid4dy

"u1 801 NOA dWI XU papeo] aq 1)im Aayl 0s a1y 1 T40xd yseq: /~ InoA ul seselje aAeSg

*8utylawos saop Ay11enioe #
eyl 1dTJadS InoA JO 1SaI 9yl SdWO0D BJISH #

pmo- $#

A - ¢4

yseq/utq/ s- $#

*qnsb o) suorido aJge Sutmo)1)104 Byl #

1dTad2s uoTssTwgns qol e jo 9)dwexs ue ST STYl #
yseq/utq/i#

auop
.{81e}¢$:sem juswnSay, oyds
op {{x}$ ut Sie 104

:d12S e Ul SUBWINGIR BUl) pUBWIWOD |1 ySnodyl Suldkdy

T4

1TXd

,€ 1Sed] 31k aq plhoys sijuswnSae 4o xaqunu ayl, 0OYydad
usyl ‘[€ 21- {#}¢$ 1 It

‘21dwexs 104 "$# Yum
S1EIS 1By aul] e uo 1dLds syl ul waylind Aldwis wayl adA1as 01 ey 3,U0p NOA 0S
1d12S 8y3 Ul 318s 9q ued suonndo pauoiuawaioe ay31dids 119ys e SuIWgNS Usym
Z 231- 00E-T 2- awI} awes ay3 1e sqol ¢ xew 1eys Inq ‘qol Aedie
G:00Z-00T 3I- G '8'9 ‘9zIs da3s JuaJayIp yum qol Aedie
22-T 1- (adudsunoA ur aITMSYL 39S$ 21genen asn) sqolgns zz Joj qof Aedse

wods - a1dwexa@rasn - uondo w- ay3 1o} SSaIppe J1ewW-a 39S
9 q w- qol e Jo pus pue 3uluUI3aq e Jlew-a puas
A q- 1d1J2S e J0U ‘AUeUIq SI PUBWIWOD PalIWGNS 8y}
A C- 9]y SUO Ul SJ0JJd 3y3 pue Indino jewJlou ayi uiof
pmd - sa)y 3ndino pue indul Joj A10323JIp SUINJOM JUSIIND BSN

:puewwod gnsb ayy 1oy suondo jueniodwi 3sow ay3 ale asayl
‘2J9y3 1ndino sy ind osje pue A101dalip awoy JnoA ul 1d1IdS InoA 10} J00] 11Im 1
suondo Jayung INoyup ananb ayl 01 sqof puas 03 pasn SI puewwod gnsb ay|
€71 19pb sananb ayl woly ¥€zL giqol yum qol a1e1ep
ys-idtaosAw qolAw ptl~proy- gnsb
paysiuy sey qolAw aweu yum gof e jiaun pjnoys eys ol e ywqgns
ys-idtaodsAw sweuqol N- gnsb aweu e}l 9AIS pue 3d1ds qol e ywagns
wexSoxdAw A g- pmd- gnsb wa1sAs ananb ayl 03 gol Aleuiq e ywgns
ys-idtadsAw gnsb sananb ay3 011d1I2s gol e ywqgns
yeeT [- 100eb ¥€el glqol yum ol paysiuy e uo ojul 1938
7€zl (- 1e1sb #€zL g1q0[yum gol Sutuunt 4o Suljiem e uo ojul 183
x*\ n- j- 1eisb sananb 11e ui siasn 1. Aq sqol)1e 1s))
1elsb (s)ananb sy u1 sqof unoA sy

wdlsAs ananb ydyeq 39S ayL

1d1I2S B Ul SJUBWNSJe aul) PUBLIWOD JO JAGUINU 3yl Suydayd

LE

{sweus|T4}$ X+ powyd

.0 °SUTXT4 *91¢geindaxa 1ou ST {aweuslT4}$, Oydsd
usayl ‘[{oweud\T}}$ x- i] IT

Ys*1dTIdS QWOS=3WeUd T4

{(319eIN28%3 J0U SI ys * 1dTIdSBWOS
Jaylaym si 131 ay} 0s ‘LON 1ed180] B SI dul) puodss syl ul j ayl) ajdwexs o4

9114 X- 9]qrINaXa SI ANY JI 29Y)
o1T4 m- 91qeIIM SI a1y 41 99YD
9114 I- alqepeal e si aly 41 §23yd
91T} 4- A10128J1p B 10U 92UB1SIXD)Y JeIN3al J0) 323D
9114 o- 9UB1SIXd 3]y J0J HI3Y)

A103128a1p Pp- 92U91SIXe A10123JIp 40} }I3YD)

:9SNe)I-JI Ue Ul S31101D84Ip pue sajy Sunsal

auop
SuTylawos~op
op {ASD*x UT 1} J0J

:Ases s1 sa1y Jan0 Suldoo) paresedas aoeds ale sAelie 9duIS

auop
Wi[{T}$]axe}rg = {T}§ uswe13, oyds
op {{[E]aIe}§ uT T o4

:doo) e ul Aese ue Suisn

(zmau Tmau {[@]aae}$)=aae Aelie ue 01 syuawiald Sulpuaddy

{[c]aae#}$ z 1uswa)e Aelie Jo Yy15us) 199
{[C]1xe#}$ (S1uBwad Jo Ju) Y18ua)/azis Aedle 189
{[*]axe}s wap
{[@]xae}$ S1UBWI3 1] BUISS8IdY
{[xeput]aae}$ (jo xopulSeyuswala ISIY) XapuT 18 JUBWa]s Aelie SUISSIIDY

Kelie asieniu|
aWI} B Je JUBWa]e auo Aelie dsljeriu|

(qw1d Tw1d QW1d)=Jae
anjeA=[Xxaput]aae

18- ueyl Jayeals siaquinu
11- uey} ssa) siaquinu
au- 1enba jou :siaquinu
ba- 1enba :siaquinu
s z- Adwsa s TS 8ulis
TS u- Adwas jou SI TS SuLlS
=i 1enba jou :sSulis
= 1enba :s8ulis
:2Je suosiedwod Sulils J1aylo
LE

,S9A 1, usem e, oydd
EE]

.S9A 01 1enba ST JeA @)1geTaeA ayl, 0Yydad
uayl ‘[,s9k, = ,{xears$,] it
:s8ul3s omy saledwod Jey) asne)d-4 yseq e jo ajdwex3
auop

{1ys}¢$ ys-adradshw
op ‘{gz°°T} ut Iys> 1oy
aWOSOWOoJYd Ydea J0) ys1duasAw uni :doo)-Joy e jo ajdwexy
{aenfu}¢ JDAMW 31qeLIBA B33 9sNn

pubWWOoI Jo INdIN0 3y} YHIM JDAMW B)geLIBA 1Y
1X93} BWOS Y}M JDAAW d1qelIeA 1Y

(puewwod)$=aerhu
.1X91 awos,=Jerhu

1Tejadtd o- 18S sJodJa auladid e jo ped 1 1duds 1x3
n- 1as pauyapun S a)qelieA e uaym 3dids 1ix3
9- 39S 10419 S9AIS puBWWOd B uaym 3duds 31x3

yum uiaq s1duds yseq 11y
9]geINJI9X3 dpeW 3q pINoys s1dids yseg

Sunduos yseg

yseq/utq/i#
ys-idtadosAw x+ powyd

:a1dwexa 40}
GPURWIWOD B J0J SeIle Ue 31ea.d
pJomssed JnoA sgueyd

,1Iey1- s1,=1S1 serle

,puewwod Suol,=3I0Yys Sere

pmssed

1%+ .1ad wd @O:TT, P- diep
9UO0Z 3w} S,J9AJS Ul dWI} 0} BUOZ WY JBYI0 Ul dWI} JBAUOD

4%+ .96 YdJ1ew 10, P- °1ep 1ewW.o} JBY10 0} 1ep LBAUOD
1%+ ®1ep aw 3} 3uaJind Ajuo moys
4%+ 91ep 91ep s,Aepol Aluo moys
a1ep aW I} pue a3ep 1UaiINd moys
T T- ¢g bes L- 0 d81s B yum UMop Suiaunod Inqg ‘wapl
{t-""1°""2¢} L- 0 d81s B yim UMop Sulunod Inqg ‘wapl
¢ v T bas #J0 sda1s y3m Ing ‘wap!
{#ze 1} # 40 sda1s yim Ing ‘wapl
zt 1 bes Tz 01 L WoJj sisquinu Jo aduanbas e a1eiauss
{ce 1} ZT 01 L WOJ4 SI3quINU Jo 92uanbas e a1esauas

91T4Aw 9114 3]y © JO SIUSIUOD 3] INOGR UOITRWIOUI dI0W 188

snoaue))adsiy

91T4Aw uislied d>- doauas
$IN220 uaa3l31ed ydiym uo Saul] JO Jaquinu syl Junod
JIpAw Ul uJa330d 40} A19AISINDBI Ydiess
a1YAw ui usaand INoyM saul] uLd
a1T4Aw
IX81U0D Saul) § pue uJa130d Sulureluod saul) uLd
91THAw
91049q Saul] 7 pue uJa330d Sululeluod saul) Juld

atpAw uislired - daas
91T4Aw ugalied A- daas

— ugdlyed g O- doas

— uJd3led 4 g- douas

91T4Aw ugalred ¢ y- deaS Jsye Saull € pue uJa3ind Sulureiuod sauly und
91T4Aw TO1T4 J- daas SUJ2710d JO 1S1] B SUIRu0d Lajy Ing ‘wapl
91T4Aw 3x3°ydaeas 4- deus

1X1°YDdJaeas a1y wouy suiened yosieas 1938 1ng ‘wapl
91T4Aw uislied u- daas Jaquinu aul) yum xyaid pue ‘wapl
91T4Aw ugalied t- daas 9AI}ISUBSU| BSPD palealy si uJazind Ing ‘wapl
91T4Aw ugalied m- daas

(32eds 811ym SUIPUNOIINS YIIM §'3) PIOM B Se paleas] sl uxalied 1ng ‘wap!
91T4Aw 3x931 4- dauas (PaXY SI 131 YDJeas Sawnsse) 191se) 1ng ‘Wap!
91TJAw uislied daas uJ42330d SulUIRIU0D JYAW WoJ) saul) wund

1X91 10j Sulydieas
swnsSpw aJedwod sajy Aleuiq 1o}

1X91U0D oW YIM Ing ‘Wapl
S9)U 1X8) OM] UdaMIaQ SIIUBIBYIP MOYS

S9)U UBIMIA(SAIUIAYIA

¢91T3 T91T4 wnsqpu
¢91T3 T91T4 N- TP
¢O1T3 T91T4 J4TP

ZPpURWWOD | TPUBWWOD Zpubwwod 1oy Indul se Lpubwwod Jo Indino asn
91T4Aw << puewwod 21YAw 931uMIBA0 JO pealsul 03 puadde ing ‘wapl
91T4Aw < puewwod
(UBNIIMIBAOC 3Q 1IM YdIYym) 3)LAW 01 pubWW0I JO INdINO USBIIS puss
uoialipal indinQ
91T4Aw btun a)YAw wouy saul) 81ed1dnp (j) usdelpe sAoWal
91T4Aw 2d- ,‘,3- II0OS SUWNIO0D By} d1eledas 03 BLWOD B 8SN pue ‘Wapl
91T4Aw z3- 3108 T uwn)od uo paseq ayAw oS

1@1@101011110000001
01

01

10

10y

001001

01@11110@0000110101101
01

01

s

10

Appendix

List of acronyms

Appendix C List of acronyms

BSD

CLI
CPU

ErasmusMC

GIYF

GNU

GPL

GUI

NIHES

0s

pwd

SGE

TIMTOWTDI

Berkeley Software Distribution, originally a Unix-like 0s,
currently used to denote the whole family including its
descendants.

Command Line Interface
Central Processing Unit, a.k.a. the processor of your computer.

Erasmus University Medical Centre, the place where the
foundations for this book were laid.

Google Is Your Friend

GNU’'s Not Unix, a recursive acronym used by the GNU free
software project (http://www.gnu.org).

GNU Public License, a so-called copyleft licence that gives the
user liberal rights with respect to the use and distribution of
software.

Graphical User Interface

Netherlands Institute for Health Sciences,
http://www.nihes.nl.

Operating System, the main pieces of software that make a
computer run.

present working directory

Sun Grid Engine, a batch queue system used the schedule
compute-intensive jobs on one or more servers.

There Is More Than One Way To Do It

http://www.gnu.org
http://www.nihes.nl

@@ 1011010101
| 011179
0011@1 101011

10

Q000
P011010611061001
0010101

910134

Bibliography

Bibliography

[1]

[2]

(3]

(4]

(5]

[6]

(7]

(8]

[9]

The Linux Foundation. The Story of Linux: Commemorating 20 Years
of the Linux Operating System. Aug. 2011. URL: http://youtu.be/
50cq6_3-nEw.

Linus Torvalds. Gewoon Voor De Fun: Het genie achter Linux. ISBN:
90-6112-831-5. Karakter Uitgevers BV, 2001.

L. Torvalds and D. Diamond. Just for Fun: The Story of an Acciden-
tal Revolutionary. HarperBusiness, 2002. ISBN: 978-0-066-62073-2.
URL: http://books.google.com/books?id=6zSWd80u8BAC.

W3Techs. Usage statistics and market share of Unix for websites.
2012. URL: http://w3techs.com/technologies/details/os-
unix/all/all.

Top 500 Supercomputer Sites. Top 500 supercomputing operating
system share. June 2012. URL: http://i.top500.0rg/stats/list/
38/0s.

Yurii S. Aulchenko, Maksim V. Struchalin, and Cornelia M. van Duijn.
“ProbABEL package for genome-wide association analysis of im-
puted data.” eng. In: BMC Bioinformatics 11 (2010), p. 134. DOI: 10.
1186/1471-2105-11-134. URL: http://dx.doi.org/10.1186/1471-
2105-11-134.

Eric Steven Raymond. The Art of Unix Programming. 2003. URL:
http://www.faqgs.org/docs/artu/index.html.

Keith Bradnam and lan Korf. UNIX and Perl to the rescue!: A Field
Guide for the Life Sciences (and Other Data-rich Pursuits). ISBN:
9781107000681. Cambridge University Press, 2012.

John Loeliger and Matthew McCullough. Version Control with Git.
Ed. by Andy Oram. 2"9. ISBN: 978-1-449-31638-9. O'Reilly, 2012. URL:
http://shop.oreilly.com/product/0636920022862.do.

Arnold Robbins and Nelson H.F. Beebe. Classic Shell Scripting. ISBN:
978-0-596-00595-5. O'Reilly, 2005. URL: http://shop.oreilly.
com/product/9780596005955. do.

http://youtu.be/5ocq6_3-nEw
http://youtu.be/5ocq6_3-nEw
http://books.google.com/books?id=6zSWd8Ou8BAC
http://w3techs.com/technologies/details/os-unix/all/all
http://w3techs.com/technologies/details/os-unix/all/all
http://i.top500.org/stats/list/38/os
http://i.top500.org/stats/list/38/os
https://doi.org/10.1186/1471-2105-11-134
https://doi.org/10.1186/1471-2105-11-134
http://dx.doi.org/10.1186/1471-2105-11-134
http://dx.doi.org/10.1186/1471-2105-11-134
http://www.faqs.org/docs/artu/index.html
http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/9780596005955.do
http://shop.oreilly.com/product/9780596005955.do

Bibliography

[11]

[12]

[13]

[14]

[15]

Carl Albing, JP Vossen, and Cameron Newham. Bash Cookbook: So-
lutions and Examples for Bash Users. 1st ed. O'Reilly, 2007. I1SBN:
0596526784.

V. Anton Spraul. Think Like a Programmer: An Introduction to Cre-
ative Problem Solving. ISBN: 9781593274245. No Starch Press, 2012.
ISBN: 1593274246.

Roderick W. Smith. LPIC-1: Linux Professional Institute Certification
Study Guide: (Exams 101 and 102). ISBN: 978-0-470-40483. Sybex,
20009.

Debra Cameron et al. Learning GNU Emacs. third. ISBN: 978-0-596-
0064-88. O'Reilly, 2004.

Mickey Petersen. Mastering Emacs. Sept. 26, 2016. URL: https://
masteringemacs.org/about.

https://masteringemacs.org/about
https://masteringemacs.org/about

@@ 1011010101
| 011179
0011@1 101011

10

Q000
P011010611061001
0010101

910134

Index

.bash_aliases............ 58
bashrc.................... 58
DS 54
D e 54
> 54
[, see pipe symbol
N 72
account..........oeean. 38
alias.......cooeviin. 57-60
alias .oooviiiiiiiiinnnnnnn. 57
arguments........ see command
arguments
array ..o.vvennennnn.. see Bash
awk......ooiiii see gawk
Bash............... 12, 84—104
arrayoeevennn.. 99-102

extending, 102
initialisation, 101
length, 101-102
size, 101-102

command line arguments

89
configuration 58
debugging.......... 85-87
if-clause............ 97-99

[o]0] o I, 92-97, 102
variables........... 87-90
bash
bash -x............... 86
bash................. see Bash
byobu............. ..., 134
[of= | 33
Cderr 25
oo 140
chmod.............. 40, 85, 110
command arguments
Bash................... 89
command arguments.... 16-19
command options....... 16-19
long...ovvevinii.... 16
short.............o.t. 16
completion (of commands and
file names)......... 17
compressed file......... 35-37
copy
filecooveniiia, 26
count
lines.....ocoovivninn... 49
words................. 49
o o PP 26
(o] o 27,59
(o] T P 27
cshooii 12

current working directory ... see
present working
directory

cut -d.....oiiiin... 73 Emacs.................. 14

cut -f.ooiiiiiiia.., 73 GVIM ..o 14

CUL vt 72-73 Vim .o 14

Emacs.................. 14, 123

EMACS ... ittt ittt ii e 14

emacs -NMwW............. 15

EXIt. e 13
date.........in... 49, 155
date -d............... 49
debugging........... see Bash
diff.. ..o 51

diff -u.........oooaae. 51 et 43

directory 22, 25-31 fleld.......ooooiiiil L 73

home.................. 25 file...oooviiiiiil 22, 25-31

ownership.......... 38-39 hidden................. 23

parent................. 26 ownership.......... 38-39

permissions........ 39-40 permissions........ 39-40

present working directory removeooeuen.. 28

25 rename 28

present working directory fileoeeiiii e, 65

see present working find .ooooiiiii 134

directory for ..ot see loop

rename................ 28 L0} 92

root.................... 22 for.....oooiiiiiiiii.. 92-95
distributions........ see Linux
dos2unixXoeiiiiiinnnn 65
dos2unix............... 64-66
o [F 50, 146
du -sh................ 50

GaWK . o y/A

gawk -F................ 74

gawk -f............... 151

gawk -V...........oe.., 91

gawk ..oiiiiiiii. 73-78

echo...vvvviiininin... 84, 90 gid. o 38

o3 =] o R 66
grep AL, 66
grep -B............... 66
grep -C................ 67
Srep -C..vvvvnnnnnn 66, 68
grep -F............... 66
grep -f............... 69
grep -Ll....vveeiinnn.. 66
grep -N..vvuenennn. 66, 67
Grep ~Tuvvvvnnnennnn.. 147
ErEP ~V iierrrinnenennn 66
grep -W........ 66, 67, 147

=3 =] ¢ J N 66-70
grep -A............ 68-69
grep -B............ 68-69
grep -C......vvnt. 68-69

o4 0101 o IS 38

SUNZIiP.eeeeeieeiiinnnnnn. 36

SVIM. e e 15

CZiP it 36

head..............o..t. 34, 150
hiddenfiles................ 23
history ...l 19
history........oovviiinn.. 19
home directory............. 25
htopoveevvviiiiia e, 1, 43

input redirection............ see
redirection

Job 43
job (sGE)
delete................. 112
job (SGE).......... 108, 109, 111
submit................ 109
jobs .. 43

kernel.........coovvviiint. 8
Kill..vvvviinnnnnns. 41, 42
KShu oo 12

1eSS iiiiii it 33
Linux 8-9
distributions............ 9
logout....oovvvvvennnnnnnt, 13
(oo} o 1 92, 102
1S 16, 23
1s -—a.ieeiiiennnnnn.. 23
1s -deeeviiniiian... 23
s -heveviniii.. 23

11 4 1S PP 21
manual..................... 21
mdSsum.........ooiiiiiann.. 52

md5sum -c............. 52
mkdir..........oooooiiiian, 26
(1110} T 33
file..oooii 27
MV ettt iieeeenennnnns 27

mv -1.....0000un... 28, 59

operating system......... 8-9
options see command options
output redirection see
redirection
ownership.............. 38-39

parent directory 26
passwd..........ooiiiinnn.. 20
PBS...oii 108
permissions............ 39-40
pipe symbol................ 55

present working directory..25
present working directory 23, 25,

109
PrOCESS «vvveeeeiaeaananns 40
prompt..........covvunn.. 12
PS it 41
pwd........ see present working
directory
PWA. .ot 25

(o - Yo ol AR 113
gacct -J..eeiinian... 113
gacCt.....ovviunennn.. 113-115
gdel ...coiiiiiinnn... 112, 115
qrsh....oeeiiiiiii .. 115
gstatoovvvinnnnn 111, 112
gstat -f.............. 111
gstat -f -u.......... 112
gstatooevvvinnnnn 111-112
gsub ...l 109
gsub......... ..ol 108-111
qUEUL .. 108
interactive 115
QUOTA .ottt iiiiiie e 20
quota -S.............. 20

Index

Kornshell.............. 12
ksh.ooooiiiii ., 12
read.......coiiiiiiiiinnnn. 96 Z-shell................. 12
record.......cooiviiinn.n.. 73 ZSh e 12
redirection................. 53 STeep.vvveeriiiaannnnn.. 116
of output to another e} A 45
command...... see pipe SOrt =g .ovvvvvnnnn.. 46
symbol sort -K............... 46
41 PR 28 SOTt =N oo, 46
rm -1 28,59 SOrt ~t.eevueeinnnenn.. 47
M —T e, 28 SOTt “Ueoone oo 47
rmdir.....cooevnn... REEEE 26 SOTE oo o e e, 45-147
root............. see directory SSH see secure shell
PSYNC.vevniiiiiniienen, 32 SSN et 12
rsync -azP............ 32 ssh =X.vviiiiviini.. 13
ssh
X11 forwarding 13
Yol U 32
SCP ~Fureeiiieennnns. 32
Yok 4=Y=] 1 [N 134 Tab-completion 17
secureshell 12 tail oo 34
sed .. 70, 71 tail =F.... o VA
sed -1.......oceiiinns 72 1} 37
sed.....oiiiii 70-72 L]« 41
SEO . cvve e 94, 156 TOUCh et 97
set
set -e..iiiiiiiiiinn.. 103
set -o pipefail..... 103
set ~U.vvvivriinninn.. 103
SGE v vvei i 108-119
shell .oovvivini i, 12 Uid .o 38
Bash........... 12, 84—104 (0] 4 ¥ [48
C-shell................. 12 unix2dosoovviiiinnnn... 65

cShe v 12 unix2dos.........oo.... 64—-66

Vi 14
Vim .o 14, 123
VIM. oo 14

Wttt i it 57
wait ..., 155
watch........ooiiiiiina... 35
1 o N 49

WC =L.oieiiiiinnnannn.. 49

wget -C....ovvvviinnn, 144
while see loop
while........coovvunn... 95, 96
whilecovinnn.. 95-96
whoami................. 38, 116
wildcards 28

X11 forwarding.............. 13
XATES ¢ eeiienieennnn. 134
Xxclock..ovviinnninn... 13

ZIP i 36
Z1eSS.iii ittt 34, 36
Zsh.o oo 12

Colophon

This book was typeset with Xg¥TgX using the Fira Sans Book font v4.1 by
Mozilla (http://www.carrois.com/fira-4-1/). The Fira Mono font v3.2
was used for monospaced text. BibBIEX was used to generate the bibli-

ography.

http://www.carrois.com/fira-4-1/

	Contents
	List of Tables
	1 Preface
	1.1 About this book
	1.2 Acknowledgements

	2 What is Linux?
	3 The basics
	3.1 Logging in and out
	3.1.1 X11 forwarding: allowing application windows to 'travel' from the server to your PC

	3.2 Editors
	3.3 The structure of Linux commands
	3.3.1 Exercises

	3.4 Managing your account
	3.5 Getting help
	3.6 Working with files and directories
	3.6.1 Directories
	3.6.2 Copying, moving, removing
	3.6.3 Wildcards
	3.6.4 Exercises

	3.7 Transferring files from one Linux machine to another
	3.8 Pagers, or how to look at the contents of a file
	3.8.1 Exercises

	3.9 Using compressed archives like .zip and tar.gz files
	3.9.1 zip
	3.9.2 gzip
	3.9.3 tar
	3.9.4 Exercises

	3.10 File ownership and permissions
	3.10.1 Ownership
	3.10.2 Permissions

	3.11 Process management
	3.11.1 Exercises

	3.12 Miscellaneous commands
	3.12.1 wget: downloading files to the server
	3.12.2 sort
	3.12.3 uniq
	3.12.4 wc: counting words and lines
	3.12.5 date
	3.12.6 du: disk space usage
	3.12.7 Differences between files

	3.13 Input and output redirection
	3.13.1 Redirecting to and from files
	3.13.2 Redirecting output of one command to another

	3.14 Aliases and creating your own commands

	4 Working with text files
	4.1 Converting between Windows and Linux format
	4.1.1 Exercises

	4.2 grep: finding text
	4.2.1 Exercises

	4.3 sed, the Stream EDitor
	4.3.1 Exercises

	4.4 cut: selecting columns
	4.5 GAWK: more fun with columns
	4.5.1 Exercises

	4.6 Putting it all together
	4.6.1 Exercises

	5 Writing Bash scripts
	5.1 A simple script
	5.2 Using variables
	5.3 Using shell variables in GAWK
	5.4 Loops, for and while
	5.5 if-clauses and tests
	5.6 Arrays in Bash
	5.7 Dealing with errors in your script

	6 Working with the SGE queue system
	6.1 Submitting jobs to the SGE queues
	6.1.1 Quick and dirty
	6.1.2 Using a submission script
	6.1.3 Refinements to the submission script

	6.2 Monitoring progress
	6.3 Deleting jobs from a queue
	6.4 Getting info on a finished job
	6.5 Interactive jobs
	6.6 Exercises

	7 Good scripting practices, structured programming and data management
	7.1 Code layout
	7.1.1 Indentation
	7.1.2 Line length
	7.1.3 Spaces

	7.2 Comments
	7.3 Variable names
	7.4 File and directory names
	7.5 Summary

	8 Where to go from here?
	8.1 More advanced topics
	8.2 Further reading

	A Answers to the exercises
	B Reference Card of Basic Linux Commands
	C List of acronyms
	Bibliography
	Index
	Colophon

