
dispRity manual

Thomas Guillerme

December 1, 2015

dispRity is a package for calculating disparity in R. It allows to summarise ordinated matrices (e.g.
MDS, PCA, PCO, PCoA) into single values.

Contents

1 Before starting 1
1.1 Glossary . 1
1.2 Installation . 2
1.3 Data . 2
1.4 A quick go through . 4

2 Package specificities 5
2.1 The dispRity objects . 5
2.2 Modular functions . 7

3 Functions 7
3.1 cust.series . 8
3.2 time.series . 9
3.3 boot.matrix . 11
3.4 dispRity . 12
3.5 summary . 14
3.6 plot . 16
3.7 test.dispRity . 20
3.8 utilities . 22

4 Developments 23
4.1 More user defined functions . 23
4.2 Faster! . 23
4.3 Suggestions? . 23

1 Before starting

1.1 Glossary

Because this package is aimed to be multidisciplinary, many names or terms used in this tutorial might be
non-familiar to certain fields. Here is a list of what are the exact meaning of these term:

• Ordinated space: it designates the mathematical multidimensional object studied here. In mor-
phometrics, this one is often referred as being the morphospace. However it can also be the the
cladisto-space for cladistic data or the eco-space in ecology, etc. In practice, this term designates an
ordinated matrix where the columns represent the dimensions of the ordinated space (often – but
not necessarily – > 3!) and the rows represent the elements within this space.

1

• Elements: it designates the rows of the ordinated space, elements can be either taxa, field sites,
countries, etc...

• Dimensions: it designates the columns of the ordinated space. The dimensions can also be referred
to as axis.

• Series: it designates sub-samples of the ordinated space. Basically a series contain the same number
of dimensions as the morphospace but might contain a smaller number of elements. For example, if
our ordinated space is composed of birds and mammals (i.e. the elements) and 50 dimensions, we
can create two series of just mammals or birds as elements (but the same 50 dimensions) to look at
the difference in disparity between both groups.

1.2 Installation

You can install this package easily if you use the latest version of R and devtools.

if(!require(devtools)) install.packages("devtools")
install_github("TGuillerme/dispRity", ref = "release")
library(dispRity)

Note that we use the release branch here which is version 0.1.2. For the piping-hot (but potentially full of
bugs) version, you can change the argument ref = "release" to ref = "master". This package depends
mainly on the ape package and the timeSliceTree::paleotree function.

1.3 Data

In this tutorial we are going to use a subset of the ordinated cladistic data from Beck and Lee (2014) that
contains 50 taxa (elements) ordinated using their cladistic distance (i.e. the distance between their discrete
morphological characters). Note that this data is more oriented towards palaebiology analysis but that
it can apply to other disciplines. Please refer to the GitHub page: github.com/TGuillerme/dispRity for
other vignettes covering some specific example.

Loading the package
library(dispRity)

Loading required package: paleotree

Setting the random seed for repeatability
set.seed(123)

Loading the ordinated matrix containing 50 taxa
data(BeckLee_mat50)
dim(BeckLee_mat50)

[1] 50 48

head(BeckLee_mat50[,1:5])

[,1] [,2] [,3] [,4] [,5]
Cimolestes -0.5319679 0.1117759259 0.09865194 -0.1933148 0.2035833
Maelestes -0.4087147 0.0139690317 0.26268300 0.2297096 0.1310953
Batodon -0.6923194 0.3308625215 -0.10175223 -0.1899656 0.1003108
Bulaklestes -0.6802291 -0.0134872777 0.11018009 -0.4103588 0.4326298
Daulestes -0.7386111 0.0009001369 0.12006449 -0.4978191 0.4741342
Uchkudukodon -0.5105254 -0.2420633915 0.44170317 -0.1172972 0.3602273

2

https://github.com/TGuillerme/dispRity

Loading another ordinated matrix containing 50 tips + 49 nodes
data(BeckLee_mat99)
dim(BeckLee_mat99)

[1] 99 97

head(BeckLee_mat99[,1:5], 2)

[,1] [,2] [,3] [,4] [,5]
Cimolestes -0.6082437 -0.0323683 0.08458885 -0.4338448 -0.30536875
Maelestes -0.5730206 -0.2840361 0.01308847 -0.1258848 0.06123611

tail(BeckLee_mat99[,1:5], 2)

[,1] [,2] [,3] [,4] [,5]
n48 -0.05529018 0.4799330 0.04118477 0.04944912 -0.3558830
n49 -0.13067785 0.4478168 0.11956268 0.13800340 -0.3222785

Loading a list of first and last occurrence data
data(BeckLee_ages)
head(BeckLee_ages)

FAD LAD
Adapis 37.2 36.8
Asioryctes 83.6 72.1
Leptictis 33.9 33.3
Miacis 49.0 46.7
Mimotona 61.6 59.2
Notharctus 50.2 47.0

Loading the phylogeny
data(BeckLee_tree)
plot(BeckLee_tree) ; nodelabels(cex=0.8) ; axisPhylo(root=140)

3

Daulestes
Bulaklestes
Uchkudukodon

Kennalestes
Asioryctes
Ukhaatherium

Cimolestes
unnamed cimolestid

Maelestes
Batodon

Kulbeckia
Zhangolestes

unnamed zalambdalestid
Zalambdalestes
Barunlestes
Gypsonictops

Leptictis
Oxyclaenus
Protungulatum
Oxyprimus

Dasypodidae
Bradypus
Myrmecophagidae

Todralestes
Potamogalinae

Dilambdogale
Widanelfarasia

Rhynchocyon
Procavia

Moeritherium
Pezosiren

Trichechus
Tribosphenomys

Paramys
Rhombomylus
Gomphos

Mimotona
Cynocephalus

Purgatorius
Plesiadapis

Notharctus
Adapis
Patriomanis

Protictis
Vulpavus

Miacis
Icaronycteris

Soricidae
Solenodon

Eoryctes

51

52
53

54

55
56

57

58
59

60

61

62
63

64

65

66

67

68

69
70

71

72

73
74

75

76
77

78

79
80

81

82

83

84

85
86

87
88

89
90

91
92

93

94
95

96

97
98

99

140 120 100 80 60 40 20 0

1.4 A quick go through

Here is a really crude and quick analysis to go through the package, showing some of its features. Note
that all these features will be discussed in more details below.

Splitting the data
sliced_data <- time.series(BeckLee_mat99, BeckLee_tree, method = "continuous",

model = "acctran", time = rev(seq(from=0, to=130, by=15)),
FADLAD = BeckLee_ages)

Some tips have no FAD/LAD and are assumed to be single points in time.

Bootstrapping the data
bootstrapped_data <- boot.matrix(sliced_data, 100)
Calculating disparity
sum_of_variances <- dispRity(bootstrapped_data, metric = c(sum, variances))
Summarising the results
summary(sum_of_variances)

series n observed mean 2.5% 25% 75% 97.5%
1 120 5 2.699 2.150 1.376 1.937 2.409 2.493
2 105 11 3.275 3.006 2.634 2.928 3.137 3.239

4

3 90 18 3.534 3.347 3.157 3.284 3.410 3.504
4 75 19 3.660 3.465 3.214 3.352 3.568 3.723
5 60 20 3.805 3.603 3.382 3.525 3.691 3.807
6 45 14 3.956 3.657 3.326 3.575 3.751 3.853
7 30 10 4.055 3.643 3.186 3.546 3.788 3.897
8 15 10 4.055 3.637 3.198 3.537 3.780 3.930
9 0 10 4.055 3.663 3.257 3.557 3.777 3.921

plot(sum_of_variances)
Testing the effect of time on disparity
summary(test.dispRity(sum_of_variances, test = aov, comparisons = "all"))

Df Sum Sq Mean Sq F value Pr(>F)
series 8 199.71 24.964 755.5 <2e-16 ***
Residuals 891 29.44 0.033

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Time (Ma)

c(
su

m
, v

ar
ia

nc
es

)

120 105 90 75 60 45 30 15 0

2 Package specificities

2.1 The dispRity objects

Disparity analysis can involve a lot of shuffling around with many matrices (especially when bootstrapping
the data) which can be a bit impractical to visualise and quickly jam your R console. For example, we can
have a look at the structure of the object created in the quick example:

str(sum_of_variances)
That's a more than 4000 lines of output!

Therefore this package proposes a new class of object called dispRity objects. These objects allow to
easily use a S3 method functions such as summary.dispRity (just called as summary; see section 3.5) or
plot.dispRity (just called as plot; see section 3.6). But also, this allows to use the S3 method for printing
dispRity objects via print.dispRity that allows to summarise the content of the objects similar to the
phylo class objects (see print.phylo::ape).

5

What is the class of the sum_of_variances object?
class(sum_of_variances)

[1] "dispRity"

What is in the object?
names(sum_of_variances)

[1] "data" "disparity" "elements" "series" "call"

Summarising it using the S3 method print.dispRity:
sum_of_variances

Disparity measurements across 9 series for 99 elements
Series:
120, 105, 90, 75, 60, 45 ...
Disparity calculated as: c(sum, variances) for 97 dimensions.
Data was split using continuous method.
Data was bootstrapped 100 times, using the full bootstrap method.

This displays some basic information about the object content

Note however, that it is always possible to recall the full object using the argument all=TRUE:

Displaying the full object
print(sum_of_variances, all = TRUE)

Finally, some utility functions such as get.dispRity or extract.dispRity allows to access to some specific
content of the object:

Extracting some specific series from the disparity object
series_1_and_4 <- get.dispRity(sum_of_variances, what = c(1,4))
series_1_and_4

Disparity measurements across 2 series for 24 elements
Series:
120, 75.
Disparity calculated as: c(sum, variances) for 97 dimensions.
Data was split using continuous method.
Data was bootstrapped 100 times, using the full bootstrap method.

The observed disparity
extract.dispRity(sum_of_variances)

120 105 90 75 60 45 30 15 0
2.698895 3.274613 3.533596 3.660471 3.804800 3.955998 4.054575 4.054575 4.054575

The list of bootstrapped scores of disparity
str(extract.dispRity(sum_of_variances, observed = FALSE))

List of 9
$ 120: num [1:100] 2.41 1.9 2.46 2.24 1.49 ...
$ 105: num [1:100] 2.86 2.83 3.14 2.78 3.07 ...
$ 90 : num [1:100] 3.48 3.51 3.38 3.42 3.31 ...
$ 75 : num [1:100] 3.22 3.45 3.48 3.7 3.44 ...
$ 60 : num [1:100] 3.59 3.76 3.46 3.43 3.5 ...

6

$ 45 : num [1:100] 3.67 3.47 3.53 3.62 3.55 ...
$ 30 : num [1:100] 3.32 3.79 3.7 3.87 3.56 ...
$ 15 : num [1:100] 3.81 3.5 3.86 3.32 3.34 ...
$ 0 : num [1:100] 3.9 3.67 3.59 3.65 3.63 ...

2.2 Modular functions

This package aims to be a modular package where users can personalise some aspects of the package fairly
easily. In this version 0.1.2 only one function is fully modular (dispRity ; see section 3.4) but more will be
hopefully available in the near future (see section 4).

The modular idea is that users can use implemented tools to help facilitating their own personalised
function. For example, the dispRity function intake a metric argument designating how disparity should
be calculated. This argument can take some already implemented functions such as mean but also some
completely new ones such as the sum divided by length:

Disparity measured as the mean value of the ordinated matrix
summary(dispRity(sliced_data, metric = mean))

series n observed
1 120 5 -0.005
2 105 11 -0.010
3 90 18 -0.010
4 75 19 -0.001
5 60 20 0.005
6 45 14 0.013
7 30 10 0.017
8 15 10 0.017
9 0 10 0.017

A function for measuring the sum divided by the length (the mean!)
sum.divide.by.length <- function(X) sum(X)/length(X)
Disparity measured as the mean divided by the length
summary(dispRity(sliced_data, metric = sum.divide.by.length))

series n observed
1 120 5 -0.005
2 105 11 -0.010
3 90 18 -0.010
4 75 19 -0.001
5 60 20 0.005
6 45 14 0.013
7 30 10 0.017
8 15 10 0.017
9 0 10 0.017

Giving the exact same results!

For more information concerning this modularity, please refer to the GitHub page: github.com/TGuillerme/dispRity
for the vignette about the metric implementation in dispRity .

3 Functions

One of the first steps in disparity analysis is to split the ordinated space into sub-samples of this space
(hereafter series). These series correspond to regions of the ordinated space that we want to compare to

7

https://github.com/TGuillerme/dispRity

each other.

3.1 cust.series

The cust.series function allows to create these series according to factors determined by the user. In
this example, we can split the matrix based on the phylogeny and separate to different groups of taxa:
the crown mammals (all the living mammals and their direct ancestor) and the stem mammals (all the
mammals that have no direct offspring).

We want to separate the species around the node 71 (see phylogeny above).
All the descendant of these node are crown and all the ancestors are stem.
crown <- extract.clade(BeckLee_tree, node = 71)$tip.label
stem <- drop.tip(BeckLee_tree, tip = crown)$tip.label
We then have to feed this information in a data frame with one column
factors <- as.data.frame(

matrix(data = c(rep("crown", length(crown)), rep("stem", length(stem))),
ncol = 1, dimnames = list(c(crown, stem), "Group")))

We then can use the customised series function to create the two series
i.e. the two regions of the ordinated space
crown_stem <- cust.series(BeckLee_mat50, factors)

This created a dispRity object containing two series: crown and stem
class(crown_stem)

[1] "dispRity"

crown_stem

2 custom series for 50 elements
Series:
Group.crown, Group.stem.

This object contains three elements
names(crown_stem)

[1] "data" "elements" "series"

With "data" being the list sub-matrices
str(crown_stem$data)

List of 2
$ Group.crown: num [1:30, 1:48] 0.3079 0.6531 0.5089 -0.1652 -0.0419 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:30] "Dasypodidae" "Bradypus" "Myrmecophagidae" "Todralestes" ...
.. ..$: NULL
$ Group.stem : num [1:20, 1:48] -0.739 -0.68 -0.511 -0.477 -0.473 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:20] "Daulestes" "Bulaklestes" "Uchkudukodon" "Kennalestes" ...
.. ..$: NULL

"elements" being the list of taxa in the original ordinated matrix
str(crown_stem$elements)

chr [1:50] "Cimolestes" "Maelestes" "Batodon" "Bulaklestes" "Daulestes" ...

8

and finally, "series" containing information on the series type (custom)
and names (crown and stem)
crown_stem$series

[1] "custom" "Group.crown" "Group.stem"

3.2 time.series

Another way to split the ordinated space (maybe more relevant to palaeobiologists) is to do it according
to time. The time.series function allows to create series that contain all the elements present at specific
points or during specific periods in time. This functions needs as input an ordinated space and a matching
phylogenetic tree. Two types of time series can be performed by using the method option:

1. discrete time series (or time-binning) using method = "discrete";

2. continuous time series (or time-slicing) using method = "continuous".

For the time-slicing method details see Guillerme and Cooper (in prep.). For both methods, the function
intakes the time argument which can be a vector of numeric values for:

1. defining the boundaries of the time bins (when method = "discrete");

2. defining the time slices (when using method = "continuous").

Otherwise, the time argument can be set as a single numeric value for automatically generating a given
number of equidistant time-bins/slices. Additionally, it is also possible to input a data frame containing
the First/Last Occurrence Data (FAD/LAD) for taxa that span over a longer time than the tips/nodes age.

Here is an example for method = "discrete":

Generating three time bins containing the data present every 40 Ma
time_bins <- time.series(data = BeckLee_mat50, tree = BeckLee_tree,

method = "discrete", time = c(120, 80, 40, 0))

No FAD/LAD table has been provided.
Every tips are assumed to be single points in time.

Note that the function provides a warning saying that tips where single
points in time (no FAD/LAD information). We can fix that by adding the
age data for the taxa that have some longer occurrence spans.
time_bins <- time.series(data = BeckLee_mat50, tree = BeckLee_tree,

method = "discrete", time = c(120, 80, 40, 0), FADLAD = BeckLee_ages)

Some tips have no FAD/LAD and are assumed to be single points in time.

To entirely avoid the warning we could collect the occurrence span data
for all the taxa but that's not necessary. The function automatically
assumes no occurrence span time (i.e. single points in time) for all taxa
by default.
time_bins

3 discrete series for 50 elements
Series:
120-80, 80-40, 40-0.

This generated indeed a list of 3 sub matrices. Note that we can also generate equivalent results by just
telling the function that we want three time-bins (series) as follow:

9

Automatically generate three equal length bins:
time.series(data = BeckLee_mat50, tree = BeckLee_tree, method = "discrete",

time = 3)

No FAD/LAD table has been provided.
Every tips are assumed to be single points in time.

3 discrete series for 50 elements
Series:
133.51104-89.00736, 89.00736-44.50368, 44.50368-0.

We now have three time bins of 44.50368 million years each.
When using this method, the oldest boundary of the first bin (or the first slice, see below) is automati-

cally generated as being the root age + 1% of the tree length as long as at least three elements are present
at that point in time. The algorithm adds an extra 1% tree length until reaching the required minimum of
three elements. It is also possible to include nodes in each bin by using inc.nodes = TRUE and providing
a matrix that contains the ordinated distance between tips AND nodes.

For the time-slicing method (method = "continuous"), the idea is really similar. This option intakes a
matrix that contains the ordinated distance between taxa AND nodes and an assumed evolutionary model
via the model argument:

1. "acctran" where the data chosen on each time slice is always the one of the offspring

2. "deltran" where the data chosen on each time slice is always the one of the descendant

3. "punctuated" where the data chosen on each time slice is randomly chosen between the offspring or
the descendant

4. "gradual" where the data chosen on each time slice is either the offspring or the descendant depend-
ing on branch length

Generating four time slices every 40 million years assuming a gradual
evolution model
time_slices <- time.series(data = BeckLee_mat99, tree = BeckLee_tree,

method = "continuous", model = "gradual", time = c(120, 80, 40, 0),
FADLAD = BeckLee_ages)

Some tips have no FAD/LAD and are assumed to be single points in time.

time_slices

4 continuous series for 99 elements
Series:
120, 80, 40, 0.

Note that in the same way as for the discrete method, we can also
automatically generate the slices
time.series(data = BeckLee_mat99, tree = BeckLee_tree, method = "continuous",

model = "gradual", time = 4)

No FAD/LAD table has been provided.
Every tips are assumed to be single points in time.

4 continuous series for 99 elements
Series:
133.51104, 89.00736, 44.50368, 0.

10

3.3 boot.matrix

Once we obtain our different series, we might want to bootstrap and rarefy it (i.e. pseudo-replicating the
data). The bootstrap will allow us to make each subsample more robust to outliers and the rarefaction will
allow us to compare slices with the same number of elements to get rid of eventual sampling problems. The
boot.matrix allows to bootstraps and rarefy ordinated matrices in a fast and easy way. The default options
will bootstrap the matrix 1000 times without rarefaction. The number of bootstrap pseudo-replicates can
be defined using the bootstraps option (see below).

boot.matrix(data = BeckLee_mat50)

Bootstrapped ordinated matrix with 50 elements
1
Data was bootstrapped 1000 times, using the full bootstrap method.

As we can see, the output is also a dispRity object that is summarised
automatically, and gives information on the data as well as the number of
bootstraps and the bootstraps methods.

Additionally, this function allows to control the bootstrap algorithm through the boot.type argument.
Currently two algorithms are implemented:

1. "full" where the bootstrapping is entirely stochastic (all the data is bootstrapped)

2. "single" where only one random elements is replaced by one other random elements each pseudo-
replication

This function also allows to rarefy the data using the rarefaction argument. The default argument is
FALSE but it can be set to TRUE to fully rarefy the data (i.e. remove n elements for the number of pseudo-
replicates, where n varies from the maximum number of elements present in the dataset to a minimum of
3 elements). It can also be set to a fix numeric value (or a set of numeric values). Finally, one last argument,
rm.last.axis allows to remove a certain amount of dimensions (or axis) for the ordinated space. This can
be logical argument where FALSE (default) will not remove any dimension and TRUE will remove the last
dimensions that bear up to 5% of the total ordinated space’s variance.

Bootstrapping with the single bootstrap method
boot.matrix(BeckLee_mat50, boot.type = "single")

Bootstrapped ordinated matrix with 50 elements
1
Data was bootstrapped 1000 times, using the single bootstrap method.

Bootstrapping with the full rarefaction
boot.matrix(BeckLee_mat50, bootstraps = 20, rarefaction = TRUE)

Bootstrapped ordinated matrix with 50 elements
1
Data was bootstrapped 20 times, using the full bootstrap method.
Data was fully rarefied (down to 3 elements).

Or with a set number of rarefaction levels
boot.matrix(BeckLee_mat50, bootstraps = 20, rarefaction = c(6:8,3))

Bootstrapped ordinated matrix with 50 elements
1
Data was bootstrapped 20 times, using the full bootstrap method.
Data was rarefied with a maximum of 6, 7, 8 and 3 elements

11

And removing the last axis (default)
boot.matrix(BeckLee_mat50, rm.last.axis = TRUE)

Bootstrapped ordinated matrix with 50 elements
1
Data was bootstrapped 1000 times, using the full bootstrap method.
The 6 last axis were removed from the original ordinated data.

Or with a fix value (50%)
boot.matrix(BeckLee_mat50, rm.last.axis = 0.5)

Bootstrapped ordinated matrix with 50 elements
1
Data was bootstrapped 1000 times, using the full bootstrap method.
The 35 last axis were removed from the original ordinated data.

Of course, one could be interested in directly supplying the sub-sampled matrices generated above
directly to this function. In fact, it can also deal with a list of matrices or with a dispRity object output
from the cust.series or time.series functions.

Bootstrap and full rarefaction on the crown/stem series
crown_stemBS <- boot.matrix(crown_stem, bootstraps = 100, rarefaction = TRUE)
Bootstrap on the time binning/slicing series
time_binsBS <- boot.matrix(time_bins, bootstraps = 100)
time_slicesBS <- boot.matrix(time_slices, bootstraps = 100)
Note that all these objects are of class dispRity
crown_stemBS

Bootstrapped ordinated matrix with 50 elements
Series:
Group.crown, Group.stem.
Data was split using custom method.
Data was bootstrapped 100 times, using the full bootstrap method.
Data was fully rarefied (down to 3 elements).

time_binsBS

Bootstrapped ordinated matrix with 50 elements
Series:
120-80, 80-40, 40-0.
Data was split using discrete method.
Data was bootstrapped 100 times, using the full bootstrap method.

time_slicesBS

Bootstrapped ordinated matrix with 99 elements
Series:
120, 80, 40, 0.
Data was split using continuous method.
Data was bootstrapped 100 times, using the full bootstrap method.

3.4 dispRity

This function is a modular function that allow to simply (and quickly!) calculate disparity from a matrix.

12

Because disparity can be measured in many ways, this function is a tool to measure disparity as defined
by the user. In fact, the dispRity function intakes two main arguments: the data and the disparity metric.
The disparity metric is a function or a set of functions that summarises the ordinated matrix to a single
value that represents, in our example, the diversity of morphologies.

The dispRity algorithm decomposes the metrics functions into three levels that correspond to the
dimensions of the output of each metric function. For more details on this algorithm please refer to the
metric vignette.

In practice, the dispRity function intakes one or more functions as a definition of disparity. Several of
these functions will be already implemented in other packages (such as stats::median, base::sum, etc.);
some others are implemented in this package (listed in ?dispRity.metric) and finally some others will
be defined by the users. The make.metric function is designed to help users create and test their own
disparity metric functions. In practice, the use of these metrics in the dispRity function, is pretty easy:

dispRity(BeckLee_mat50, metric = mean)

Disparity measurements across 1 series for 50 elements
1
Disparity calculated as: mean for 48 dimensions.

This defines disparity as the mean value of the morphospace (using
mean::base).

It is also possible to combine multiple functions:
dispRity(BeckLee_mat50, metric = c(sum, variances))

Disparity measurements across 1 series for 50 elements
1
Disparity calculated as: c(sum, variances) for 48 dimensions.

Defining disparity as the sum (sum::base) of the variances
(variances::dispRity) of each dimension of the morphospace.

dispRity(BeckLee_mat50, metric = c(prod, centroids))

Disparity measurements across 1 series for 50 elements
1
Disparity calculated as: c(prod, centroids) for 48 dimensions.

For the product (prod::base) of the distances between each elements and the
centroid of the morphospace (centroids::dispRity).

Or user defined ones:
total.range <- function(X) abs(range(X)[1]-range(X)[2])
dispRity(BeckLee_mat50, metric = c(total.range, centroids))

Disparity measurements across 1 series for 50 elements
1
Disparity calculated as: c(total.range, centroids) for 48 dimensions.

For the range (total.range, user defined) of the distances between each
elements and the centroid of the morphospace (centroids::dispRity).

Or more complex ones:
vars1 <- dispRity(BeckLee_mat50, metric = c(sd, variances, var))
For the standard deviation (sd::stats) of the variance (variances::dispRity)
of each column of the variance/covariance matrix (var::stats).

13

https://github.com/TGuillerme/dispRity

Note that the order of the function is not important since the levels of
each function are automatically detected by the dispRity algorithm.
vars2 <- dispRity(BeckLee_mat50, metric = c(variances, var, sd))
all(summary(vars1) == summary(vars2))

[1] TRUE

Note that these functions do not directly output the disparity values but only the summary of the dispRity
objects. To display the results, see the section 3.5.

In these examples we used only simple ordinated matrix but of course, it might be more interesting to
directly use the dispRity objects we generated in the steps above. Thus we can calculate the bootstrapped
and rarefied disparity in each sub-sample of the morphospace. In this example we are going to define
disparity as being the sum of the variances in each dimension)=.

Disparity in crown and stem mammals:
disp_crown_stemBS <- dispRity(crown_stemBS, metric = c(sum, variances))

Disparity through time:
disp_time_binsBS <- dispRity(time_binsBS, metric = c(median, centroids))
disp_time_slicesBS <- dispRity(time_slicesBS, metric = c(median, centroids))

Note that the computational time was longer for the rarefied data (crown_stemBS) since it had to calculate
the disparity on all the rarefied matrix, each bootstrapped 100 times. A faster parallel version will be
implemented in future releases (see section ??).

3.5 summary

This function is a S3 function (summary.dispRity) allowing to summarize the content of dispRity objects
that contain disparity calculations. This function intakes a dispRity object plus various options namely
the quantile values for the confidence intervals levels; the cent.tend for the central tendency to use for
summarising the results and two visual options which are whether to recall the dispRity options and how
much digits are wanted in the results.

summary(disp_time_binsBS)

series n observed mean 2.5% 25% 75% 97.5%
1 120-80 8 1.203 1.103 0.895 1.057 1.178 1.236
2 80-40 27 1.344 1.322 1.275 1.306 1.339 1.366
3 40-0 16 1.353 1.323 1.265 1.304 1.346 1.368

By default, the 50 and 95 quantiles and the mean are calculated.
Note that the function also displays the observed disparity
(non-bootstrapped).

These arguments can be changed easily as follow
summary(disp_time_binsBS, quantile = 88, cent.tend = sd, rounding = 1)

series n observed sd 6% 94%
1 120-80 8 1.2 0.1 1.0 1.2
2 80-40 27 1.3 0.0 1.3 1.4
3 40-0 16 1.4 0.0 1.3 1.4

If on happens to forgot what was calculated in the summarised object,
it is possible to recall the different steps details using recall:
summary(disp_time_binsBS, recall = TRUE)

14

Disparity calculated as: c(median, centroids) for 48 dimensions.
Data was split using discrete method.
Data was bootstrapped 100 times, using the full bootstrap method.
series n observed mean 2.5% 25% 75% 97.5%
1 120-80 8 1.203 1.103 0.895 1.057 1.178 1.236
2 80-40 27 1.344 1.322 1.275 1.306 1.339 1.366
3 40-0 16 1.353 1.323 1.265 1.304 1.346 1.368

Note that the information with each different number of elements is
displayed for rarefied data:
summary(disp_crown_stemBS)

series n observed mean 2.5% 25% 75% 97.5%
1 Group.crown 3 NA 1.894 1.245 1.863 2.058 2.190
2 Group.crown 4 NA 1.932 1.591 1.874 2.034 2.145
3 Group.crown 5 NA 1.919 1.634 1.816 2.029 2.087
4 Group.crown 6 NA 1.928 1.616 1.862 2.014 2.101
5 Group.crown 7 NA 1.937 1.753 1.865 1.998 2.057
6 Group.crown 8 NA 1.927 1.769 1.865 1.991 2.043
7 Group.crown 9 NA 1.940 1.789 1.902 1.995 2.045
8 Group.crown 10 NA 1.936 1.822 1.904 1.971 2.024
9 Group.crown 11 NA 1.914 1.762 1.879 1.963 2.029
10 Group.crown 12 NA 1.931 1.818 1.899 1.962 2.024
11 Group.crown 13 NA 1.941 1.840 1.915 1.981 2.028
12 Group.crown 14 NA 1.931 1.843 1.901 1.962 2.015
13 Group.crown 15 NA 1.936 1.849 1.914 1.968 2.008
14 Group.crown 16 NA 1.935 1.849 1.909 1.971 2.009
15 Group.crown 17 NA 1.923 1.829 1.891 1.959 1.992
16 Group.crown 18 NA 1.929 1.842 1.908 1.954 1.988
17 Group.crown 19 NA 1.930 1.860 1.907 1.957 1.986
18 Group.crown 20 NA 1.925 1.842 1.895 1.950 2.005
19 Group.crown 21 NA 1.930 1.838 1.914 1.957 1.977
20 Group.crown 22 NA 1.929 1.854 1.911 1.954 1.984
21 Group.crown 23 NA 1.929 1.869 1.915 1.948 1.968
22 Group.crown 24 NA 1.927 1.855 1.908 1.951 1.978
23 Group.crown 25 NA 1.932 1.876 1.914 1.950 1.984
24 Group.crown 26 NA 1.927 1.877 1.910 1.946 1.977
25 Group.crown 27 NA 1.932 1.874 1.917 1.948 1.973
26 Group.crown 28 NA 1.929 1.872 1.915 1.946 1.970
27 Group.crown 29 NA 1.929 1.876 1.914 1.946 1.977
28 Group.crown 30 1.99 1.931 1.875 1.914 1.949 1.981
29 Group.stem 3 NA 1.634 1.093 1.554 1.790 1.930
30 Group.stem 4 NA 1.607 0.934 1.505 1.753 1.861
31 Group.stem 5 NA 1.644 1.407 1.578 1.723 1.817
32 Group.stem 6 NA 1.619 1.311 1.557 1.712 1.794
33 Group.stem 7 NA 1.622 1.390 1.572 1.698 1.780
34 Group.stem 8 NA 1.642 1.443 1.590 1.710 1.785
35 Group.stem 9 NA 1.637 1.494 1.592 1.685 1.760
36 Group.stem 10 NA 1.631 1.454 1.581 1.693 1.739
37 Group.stem 11 NA 1.642 1.493 1.610 1.689 1.739
38 Group.stem 12 NA 1.626 1.467 1.584 1.678 1.733
39 Group.stem 13 NA 1.625 1.494 1.586 1.668 1.724
40 Group.stem 14 NA 1.626 1.504 1.596 1.662 1.709
41 Group.stem 15 NA 1.627 1.518 1.595 1.671 1.714

15

42 Group.stem 16 NA 1.629 1.517 1.605 1.663 1.708
43 Group.stem 17 NA 1.625 1.548 1.594 1.655 1.703
44 Group.stem 18 NA 1.631 1.513 1.599 1.668 1.712
45 Group.stem 19 NA 1.625 1.557 1.601 1.649 1.697
46 Group.stem 20 1.72 1.632 1.539 1.600 1.665 1.696

The observed disparity is NA for rarefied data.

3.6 plot

A nicer way to summarise the data is to plot the results using the S3 method plot.dispRity. This function
intakes the same options as summary.dispRity along side with various graphical options described in the
function manual (see ?plot.dispRity).

Two main categories of plots can be displayed: discrete plots with the argument type = "discrete"
and continuous plots with the argument type = "continuous" (see below). Note that this argument can
be left missing. In this case, the algorithm will automatically detect the type of series from the dispRity
object.

The type = "discrete" argument plots superimposed boxes that represent the different levels of con-
fidence intervals and a dot representing the central tendency. It is also possible to display the number of
elements per series (has a horizontal doted line) using the option elements = TRUE. Additionally, when
the data is rarefied (see section 3.3), one can also indicate which level of rarefaction to display (i.e. display
the results for a certain number of elements) by using the rarefaction argument.

Graphical options
quartz(width = 15, height = 5) ; par(mfrow = (c(1,3)), bty = "n")

Plotting the disparity for both groups
plot(disp_crown_stemBS, type = "discrete")
Same plot but with the number of elements on the right. Note that the type
argument is not necessary since the "discrete" type is automatically detected
from the input dispRity object.
plot(disp_crown_stemBS, elements = TRUE)
Rarefied version of the same plot (20 elements per series)
plot(disp_crown_stemBS, elements = TRUE, rarefaction = 20)

Group.crown Group.stem

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Series

c(
su

m
, v

ar
ia

nc
es

)

●

●

Group.crown Group.stem

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Series

c(
su

m
, v

ar
ia

nc
es

)

●

●

20
22

24
26

28
30

E
le

m
en

ts

Group.crown Group.stem

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Series

c(
su

m
, v

ar
ia

nc
es

)

●

●

15
20

25
E

le
m

en
ts

It is also possible to easily look at the behaviour of the disparity metric with the rarefied data (i.e. how
does the disparity score change when the number of elements goes down) by using the rarefaction =
"plot" argument:

16

Graphical options
par(bty = "n")
The rarefaction curves
plot(disp_crown_stemBS, elements = TRUE, rarefaction = "plot")

0 5 10 15 20 25

1.
0

1.
4

1.
8

2.
2

Group.crown

Elements

c(
su

m
, v

ar
ia

nc
es

)

5 10 15

1.
0

1.
4

1.
8

2.
2

Group.stem

Elements

c(
su

m
, v

ar
ia

nc
es

)

The different dashed lines represent the different confidence intervals around each rarefaction curve. We
can see that the disparity metric becomes stable after more than 10 elements.

It is also possible, when using the type = "discrete" argument, to plot lines rather than box by
switching the discrete_type from "box" to "line" to display one dimensional boxplots. This option can
be useful when displaying many series. Additionally, it is possible to plot the observed data when existing
(i.e. not when the data is rarefied) by using the option observed = TRUE.

Graphical options
par(bty = "n")
The disparity-through-time data in a time-binned way (with lines rather than
boxes) with the observed data as crosses
plot(disp_time_binsBS, discrete_type = "line", observed = TRUE)

17

120−80 80−40 40−0

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Series

c(
m

ed
ia

n,
 c

en
tr

oi
ds

)

●

● ●

The type = "continuous" argument plots superimposed continuous (along the x axis) polygons that
represent the confidence intervals and a continuous line that represents the central tendency of the data.
Note that, as a S3 method function, plot.dispRity can take the classic graphical options from the plot
function or even to add other plots to the previous ones.

Graphical options
par(bty = "n")

First, plotting the continuous data with a y axis limit
plot(disp_time_slicesBS, type = "continuous", ylim = c(0.5,2))
Note that the type = "continuous" argument is not mandatory here.

Second, adding the discrete data
par(new = TRUE)
plot(disp_time_binsBS, discrete_type = "line", ylim=c(0.5,2), xlab="", ylab="")

18

0.
5

1.
0

1.
5

2.
0

Time (Ma)

c(
m

ed
ia

n,
 c

en
tr

oi
ds

)

120 80 40 0120−80 80−40 40−0

0.
5

1.
0

1.
5

2.
0

●

● ●

I encourage you to play with the graphical options to have some prettier results. Note that most of the
options from plot can be passed to plot.dispRity via

Graphical options
par(bty = "n")
A plot with many options!
plot(disp_time_slicesBS, quantile = c(seq(from=10, to=100, by=10)),

cent.tend = sd, type = "continuous", elements = "log",
col = c("black", rainbow(10)), ylab = c("Disparity", "log(Diversity)"),
xlab = "Time (in in units from past to present)", time.series = FALSE,
observed = TRUE, main = "Many options...")

19

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

Many options...

Time (in in units from past to present)

D
is

pa
rit

y

1.
5

2.
0

2.
5

3.
0

lo
g(

D
iv

er
si

ty
)

3.7 test.dispRity

Finally, the dispRity package allows to apply some tests to the data in order to properly test hypothesis.
The function test.dispRity works in a similar way as the dispRity function: it intakes a dispRity object
(containing disparity measurements), a test and a comparison argument. The test argument can be
any statistical or non-statistical test to apply to the disparity object. It can be common test function (e.g.
t.test::stats) or some functions implemented in dispRity (see dispRity.test) or even user defined
functions. The comparison argument must indicate the way the test should be applied to the data:

• "pairwise" (default): to compare each series pairwise

• "referential": to compare each series to the first one

• "sequential": to compare each series to the following one

• "all": to compare all the series together (like in analysis of variance)

It is also possible to input a list of pairs of numeric values or characters matching the series names to
create personalised test. This function also allows to correct for type I error inflation when using multiple
comparisons via the correction argument. This argument can be empty (no correction applied) or can
contain one of the corrections from the p.adjust::stats function (see ?p.adjust).

Note that the test.dispRity algorithm deals with some classic tests outputs (h.test, lm and numeric
vector) and summarises the test output. It is however possible to get the full detailed output by using the
options details = TRUE.

20

Performing a pairwise t-test to the test a difference in disparity between
crown and stem mammals (note that "pairwise" is default)
test.dispRity(disp_crown_stemBS, test = t.test)

t df p.value mean of x mean of y
Group.crown - Group.stem 57.47314 171.6445 4.843833e-114 1.930688 1.631595

The same test but with the detailed output
test.dispRity(disp_crown_stemBS, test = t.test, details = TRUE)

$`Group.crown - Group.stem`
##
Welch Two Sample t-test
##
data: data[[list_of_comp[[1]]]] and data[[list_of_comp[[2]]]]
t = 57.473, df = 171.64, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.2888207 0.3093650
sample estimates:
mean of x mean of y
1.930688 1.631595

A wilcoxon rank test applied to sliced disparity the data sequentially with
the Bonferroni correction.
test.dispRity(disp_time_slicesBS, test = wilcox.test,

comparisons = "sequential", correction = "bonferroni")

W p.value
120 - 80 0 7.457311e-34
80 - 40 4448 5.334298e-01
40 - 0 1600 2.961960e-16

An analysis of variance (aov) applied to the same data
test.dispRity(disp_time_slicesBS, test = aov, comparisons = "all")

Call:
test(formula = data ~ series, data = data)
##
Terms:
series Residuals
Sum of Squares 33.50243 10.79609
Deg. of Freedom 3 396
##
Residual standard error: 0.1651147
Estimated effects may be unbalanced

Note that in this case, the output is the regular aov output:
slice_aov <- test.dispRity(disp_time_slicesBS, test = aov, comparisons = "all")
class(slice_aov) ; summary(slice_aov)

[1] "aov" "lm"
Df Sum Sq Mean Sq F value Pr(>F)
series 3 33.5 11.167 409.6 <2e-16 ***
Residuals 396 10.8 0.027

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

21

Measuring the overlap between distributions in the time bins (using the
implemented Bhattacharyya Coefficient function - see ?bhatt.coeff) with a
personalised series comparisons and some additional arguments to pass to the
test function (bw = bw.nrd)
test.dispRity(disp_time_binsBS, test = bhatt.coeff, bw = bw.nrd,

comparisons = list(c(1,2), c(1,3), c(2,1), c(3,1)))

bhatt.coeff
120-80 - 80-40 0.04472136
120-80 - 40-0 0.03741657
80-40 - 120-80 0.04472136
40-0 - 120-80 0.03741657

3.8 utilities

tree.age

This function allows to calculate the age of each individual nodes and tips in a tree. It can either use the
root age of the tree (if present as $root.time) or else calculate the age using a user defined root age via the
age argument. Also, it is possible to decide whether the time is calculated towards the past (e.g. million
years ago) or towards the present (e.g. in time since the origin).

This tree has a root age
BeckLee_tree$root.time

[1] 139.074

So we can get the age of each tips and nodes directly
head(tree.age(BeckLee_tree), 5)

ages elements
1 90.00 Daulestes
2 90.00 Bulaklestes
3 90.00 Uchkudukodon
4 77.85 Kennalestes
5 77.85 Asioryctes

But we can also decide to make the age relative (between 1 and 0)
head(tree.age(BeckLee_tree, age = 1), 5)

ages elements
1 0.647 Daulestes
2 0.647 Bulaklestes
3 0.647 Uchkudukodon
4 0.560 Kennalestes
5 0.560 Asioryctes

Or even relative, but from the root (i.e. how far are the nodes/tips
from the root)
head(tree.age(BeckLee_tree, age = 1, order = "present"), 5)

ages elements
1 0.3528637 Daulestes
2 0.3528637 Bulaklestes
3 0.3528637 Uchkudukodon
4 0.4402271 Kennalestes
5 0.4402271 Asioryctes

22

4 Developments

As stated at the start of the demo, this version 0.1.2 is still in development and many parts are missing.
Here are the new functionalities that will be implemented in further versions.

4.1 More user defined functions

I intend also develop functions to help users to develop their own algorithms for the bootstrap method
(via make.boot) or the evolutionary models (via make.model). Both functions will provide similar testing
as the make.metric function.

4.2 Faster!

Finally, for long analysis, I intend to develop a parallel running version of the package. In fact, most of the
internal functions are base on lapply functions that can be easily passed to snow::parLapply or similar
parallel functions.

4.3 Suggestions?

If you have any extra suggestions or comments on what has already been developed or will be developed,
please send me an email (guillert@tcd.ie) or if you are a GitHub user, directly create an issue on the GitHub
page (github.com/TGuillerme/dispRity).

References

Beck, R. M. and M. S. Lee. 2014. Ancient dates or accelerated rates? Morphological clocks and the antiquity
of placental mammals. Proceedings of the Royal Society B: Biological Sciences 281:1–10.

Guillerme, T. and N. Cooper. in prep. Mammalian morphological diversity does not increase in response
to the cretaceous-paleogene mass extinction and the extinction of the (non-avian) dinosaurs. .

23

mailto:guillert@tcd.ie
https://github.com/TGuillerme/dispRity
https://github.com/TGuillerme/dispRity

	1 Before starting
	1.1 Glossary
	1.2 Installation
	1.3 Data
	1.4 A quick go through

	2 Package specificities
	2.1 The dispRity objects
	2.2 Modular functions

	3 Functions
	3.1 cust.series
	3.2 time.series
	3.3 boot.matrix
	3.4 dispRity
	3.5 summary
	3.6 plot
	3.7 test.dispRity
	3.8 utilities

	4 Developments
	4.1 More user defined functions
	4.2 Faster!
	4.3 Suggestions?

