

Science data management for the E-ELT: usecase MICADO

Gijs Verdoes Kleijn, MICADO dataflow lead NOVA/ OmegaCEN / Kapteyn Astronomical Institute / Target University of Groningen

MICADO DFS team: Werner Zeilinger, Joao Alves, Oliver Czoske, Helmut Dannerbauer, Robert Greimel, Wolfgang Kausch, Rainer Köhler, Martin Leitzinger, Kieran Leschinski, Michael Mach, John McFarland, Stefan Meingast, Norbert Przybilla, Ronny Ramlau, Thorsten Ratzka, Veronika Schaffenroth, Gijs Verdoes Kleijn, Willem-Jan Vriend, Roland Wagner

Gathering all information in a single system maximizes chance of extracting knowledge

Key Capabilities

Imaging

Astrometric imaging

Spectroscopy

High Contrast imaging 0.8-2.4µm with >30 broad/narrow filters

- 1.5 & 4mas pixels for 19" & 51" FoV at 6-12mas
- Similar sensitivity to JWST, and 6× better resolution
- 50µas precision across full field
- 10µas/yr = 5km/s at 100kpc after 3-4 years
- bring precision astrometry into mainstream
- ideal for compact sources
- fixed configuration for 0.8-1.45μm & 1.45-2.4μm
- R ~ 8000 across slit, higher for point sources
- focal plane coronagraph & lyot stop
- angular differential imaging
- small inner working angle

Time Resolved Astronomy

windowing for frame rates up to ~100Hz

Key Capabilities

Imaging

Astrometric imaging

Spectroscopy

High Contrast imaging 0.8-2.4µm with >30 broad/narrow filters

- 1.5 & 4mas pixels for 19" & 51" FoV at 6-12mas
- Similar sensitivity to JWST, and 6× better resolution
- 50µas precision across full field
- 10µas/yr = 5km/s at 100kpc after 3-4 years
- bring precision astrometry into mainstream
- ideal for compact sources
- fixed configuration for 0.8-1.45μm & 1.45-2.4μm
- R ~ 8000 across slit, higher for point sources
- focal plane coronagraph & lyot stop
- angular differential imaging
- small inner working angle

Time Resolved Astronomy

windowing for frame rates up to ~100Hz

Many science cases

Imaging

Astrometric imaging

Spectroscopy

High Contrast imaging

- cosmic star formation history: resolved stellar populations
- structure of high-z galaxies on 100pc scales
- nuclei of nearby galaxies (stellar cusps, star formation, BHs)
- stellar motions within light hours of Sgr A*
- IMBHs in stellar clusters & dwarf galaxies
- MW formation: proper motion of clusters & dwarf galaxies
- ages, metallicities, masses of first elliptical galaxies at z=2-3
- spectra of first supernovae at z=1-6
- redshifts, velocities, metallicities of SFGs at z=4-6
- Giant/massive planets at a few AU around nearby stars
- Direct detection of planets discovered via RV measurements

Time Resolved Astronomy

- Pulsars & magnetars
- Accreting white dwarfs

- Compact binary systems
- Transits & occultations

Anticipated MICADO data

5-hr K-band simulated exposures on stellar field

Courtesy Falomo, Deep, MICADO consortium

MICADO Dataflow team

Lead: Gijs Verdoes Kleijn, A*-lead: Werner Zeilinger				
Area	Partner	Expertise		
Imaging	NL-NOVA	Surveys, ESO DFS		
Precision Astrometry	NL-NOVA	NL science team		
Spectroscopy	A-Ibk/Graz	Atmosmodels, ESO pipelines		
MICADO monitoring and calibration	NL-NOVA	ESO OmegaCAM long-term monitoring		
Data handling	NL-NOVA	National datacenter, ESO		
Simulator	A-Vienna	Science cases		
PSF reconstruction	A-Linz	AO, ESO deliveries		

Calibration scientist: "Great observations! They will tell me everything about the state of my Observatory"

EELT/MICADO

PSF 0.014"

10

Astronomer: "Great observations! They will tell me everything about the state of my Universe."

AO

MICADO

Pipeline design phase: question 1

	Outerspace	Atmosphere	Telescope	AO	MICADO
	Science object	Composition model (thermal / non-thermal)	M1	SCAO	Entrance window
Dhusiaal	Galactic extinction	Kinematical model for ~32 layers (AO)	M2	MCAO	Derotator
components	Cosmic rays		М3		Collimator
	Moon, planets, bright stars		M4		Filter
	Zodiacal light		M5		ADC
			M7		Imager optics, reimager
					Pedestal, pixelsensitivity, persistence, crosstalk, dark current, read out

Observables	Astrophysical laws	On-site measurements (T, r, H, P, v)	DM telemetry	WFS telemetry	Detector exposures
-------------	-----------------------	--	--------------	---------------	-----------------------

Pipeline design phase: question 1

	Outerspace	Atmosphere	Telescope		AO	MICADO
	Science object	Composition model (thermal / non-thermal)	M1		SCAO	Entrance window
Physical	Galactic extinction	Kinematical model for ~32 layers (AO)	M2		MCAO	Derotator
components	Cosmic rays		М3			Collimator
MODEL	Moon, planets, bright stars		M4			Filter
	Zodiacal light		M5			ADC
			M7			Imager optics, reimager
				-		Pedestal, pixelsensitivity, persistence, crosstalk, dark current, read-outl

Observables Astrophysica MODEL laws	On-site measurements (T, r, H, P, v)	DM telemetry	WFS telemetry	Detector exposures
--	--	--------------	---------------	-----------------------

Atmospheric composition model

Transmission

Thermal components:

- Transmission (absorption)
- Thermal radiation

taken into account by ([1], [2], [3]):

- Atmospheric composition height profiles
- Radiative transfer code
- Line database

Non-thermal components

• Chemiluminescence by OH, OI, NaD,.....

taken into account by ([4], [5]):

• advanced airglow model

```
[1] Noll et al., 2012, A&A, 543, 92
[2] Smette et al., 2015, A&A, 576, A77
[3] Kausch et al., 2015, A&A, 576,A78
[4] Noll et al, 2014, A&A, 568, 9
[5] Noll et al., 2015, ACP, 15, 3647
```

Emission (airglow)

Telescope model

Pistion, tip, tilt of each segment, Exit pupil wind on M1, RMS = 162nm

Pott, Rodeghiero (MPIA)

SimCADO

Leschinski, Czoske, et al. ADASS 2015, in press

observing an Observatory AND observing a Universe

Pipeline design phase question 2:

([science-pixdata],[observatory-pixdata] | Observables)

observing an Observatory AND observing a Universe

Pipeline design phase question 2:

P([science-pixdata],[observatory-pixdata] | Observables)

Spectroscopic calibration

Photometric / astrometric calibration

Calibration scientist's view:

	Outerspace	Atmosphere	Telescope	AO	MICADO
	Science object	Composition model (thermal / non-thermal)	M1	SCAO	Entrance window
Pixel data =	Galactic extinction	Kinematical model for ~32 layers (AO)	M2	MCAO	Derotator
observatory ®	Cosmic rays		М3		Collimator
science	Moon, planets, bright stars		M4		Filter
	Zodiacal light		M5		ADC
			Μ7		Imager optics, reimager
T					Pedestal, pixelsensitivity, persistence, crosstalk, dark current, read-outl

Observables Ast	strophysical laws	On-site measurements (T, r, H, P, v)	DM telemetry	WFS telemetry	Detector exposures
-----------------	----------------------	--	--------------	---------------	-----------------------

Astronomer's view

		Atmosphere	Telescope	AO	MICADO
	Science object	Composition model (thermal / non-thermal)	M1	SCAO	Entrance window
Pixel data =		Kinematical model for ~32 layers (AO)	M2	MCAO	Derotator
science ®			M3		
observatory			M4		
			M5		
			Μ7		
T					

Model of the data

Identical observables (incl. "raw data") Different metadata

expand All

RawScienceFrame(25)	4AD22A3B715E35
AIRMEND	2.355
 AIRMSTRT 	2.354
 creation_date 	2015-11-24 14:0
DATE	2015-11-24 08:1
 DATE_OBS 	2015-11-24 08:1
 EXPTIME 	150.0
 extension 	32
 filename 	(preview) OMEGAC
 globalname 	None
 is_valid 	1
LST	27823.152
 MJD_OBS 	57350.3427555
NAXIS1	2144
 NAXIS2 	4200
OBJECT	STD, EXTINCTION
OBSERVER	UNKNOWN
OVSCX	48
 OVSCXPRE 	0
 OVSCXPST 	0
OVSCY	100
 OVSCYPRE 	0
 OVSCYPST 	0
 process_status 	1
PRSCX	48
PRSCXPRE	0
 PRSCXPST 	0
PRSCY	0
 PRSCYPRE 	0
 PRSCYPST 	0
 quality_flags 	0
 UTC 	29606.0
⊞filter (up) (link)	
⊞imstat	
) (link)

Derotator angle, temperature, ADC-status,...,...

Data model

(Example from the optical imaging domain with CCDs)

: MICADO dataflow play-ground

Ŧ

• o ⊞ fil ⊡ fra

Quality-V

Astro-WISE Portal View object in:	DBView, CaITS, or Proces	Sci-JMCFARLA
Processi	ng Details	
creation_date	2014-02-23 18:53:29	
is_valid	1	
quality_flags	0	
Privileges	2	
Image Stati:	stics Details	
mean	+9.996e+02	
median	+1.000e+03	
stdev	+1.004e+01	
min	+9.500e+02	
max	+1.050e+03	

(no previous comments comment submission for	m		DBname: awgverdoes	project:
	Observational	Details		Chip MICADO_SIM_CHIP1 of Instrument	
E_OBS	2014-02-22 21:00:34	OBSERVER	NOVA	monoo	
D_OBS	56710.8753935	EXPTIME	0.02		
JECT	NOVA-SIM1_Sum0020.0001	AIRMSTRT	1.22077	-	
os_id	507435	AIRMEND	1.22077	-	
R.A.	0.0	Filter	MICADO_SIM_MULT	(
ec.	0.0	mag_id	SIMULATED multi-band	-	
Re	ducedScienceFrame 4096 × 4096 pixel 0.20 × 0.20 arcmin		V	WeightFrame 4096 X 4096 pixel 0.20 X 0.20 arcmin	

(white = 1. black = 0)

MICADO SIM MULT-MICADO SIM CHIP1-Red Sci-56711.7871011

Quality of SOURCELIST

eaec318c83040e4eb9f7ddd164013e290ce5762b.fits

color map inverted)

ID-MICADO--

DAT

- on-line archive & db
- basic pipeline
- source extraction

Data sets for MICADO simulated images

We have sets of simulated MICADO images that take into account atmosphere, AO and ADC.

atasets are described in more detail in the near	Simulated Images	Catalogs	CSV File
Without ADC, ZD = 0 deg (3 second sampling, 1 wavelength)	Mall 451 images	Sall 451 catalogs	
	@100 snapshots	100 snapshots	200 sour
	@ 2×50 2-stacks	\$3x50 2-stacks	1 <u>300 sou</u>
	0 3×35 2-stacks	@ <u>3x25 4-stacks</u>	150 sou
	0 2×20 5-stacks	\$3x20 5-stacks	120 so
	\$2×10 10-stacks	@3x10 10-stacks	160 source
	0 3×10 10	3x5 20-stacks	30 sourc
	\$2x4 25-stacks	3x4 25-stacks	24 source
	12x2 50-stacks	\$3x2 50-stacks	12 source
	3X2 50 300 m		

Pana All	
⊡SourceList(f3)	ladho4
COMBIN COMBIN Creation filename filters	L8adb04a372174e043c216a9c3a613) telist -1 E_METHOD -1 Ldate 2014-02-23 19:16:15 None None None
is valid	^B None
	1
· IIRA	-9.1218058244-
· IrDEC	0.001389752106
· IrRA	-9.12180582272
• name	8.357747392990 07
• number of a	SL-JMCFARLAND-0000
· OBJECT	ources 2
• sexparam	NOVA-SIM1_SUM0050
SLID	[('XWIN_IMAGE') ('XWIN
UIDEC	9694001 (TWIN_IMAGE',),
UIRA	-8.53892008215e-06
Urdec	0.001389752197
UrRA	-8.53892008802e-06
astrom_params	8.35774739914e-07
chip (up) (link)	
letection_frame	
lter (up) (link)	
ame (up) (link)	
· AIRMEND	
· AIRMSTRT	1.22077
creation date	1.22077
	2014-02-23 18:52:23

time

Everything changes in time

- Physical changes
- Our insight in modeling
- Methods, code, bugs

> time tagging all objects in your system

time

Everything changes in time

- Physical changes
- Our insight in modeling
- Methods, code, bugs

> time tagging all objects in your system

See talk by Edwin Valentijn tomorrow See MuseWise poster by Willem-Jan Vriend before lunch

MICADO Data Flow

Approach to pipeline and information system development

- 1. Translate physical model into observables model
- 2. Use simulated observables for
 - a. science case feasibility
 - b. trade-off study of calibration via hardware vs via software
 - c. capture "observing an observatory" AND "observing a universe" in a SINGLE data model
- 3. Iterate on 1-2 cycle:
 - a. toy simulations -> detailed sims
 - b. toy data model -> detailed data model
- 4. Implement a single information system for calibration scientist and astronomer

Integrate two information systems* :

the calibration scientist
 the astronomer

*An information system integrates archiving & processing: it is a "living" archive

Integrate two information systems* : the calibration scientist the astronomer

Explore relations with talks by Steffen Mieske/ Burkard Wolff, Roland Walter, Ivan Zolotukhin, Pascal Ballester, Reinhard Hanuschik,...among others

*An information system integrates archiving & processing: it is a "living" archive

Find out more about MICADO here:

- Leschinski, Czoske et al., 2015, ADASS, in press
- Kausch et al., 2015, A&A, 576,A78

٠	Bibcode Authors	Score Title	Date	List Acc	of Lin	la atrol Help				
1	0 2014SPIE 914SE_6IV Vidal, F.; Gendron, E.; Clenet, Y.; Gratadour, D.; Ronsset, G.; Davies, R.	1.000 Adaptive optics simulations for the	08/2014 MICADO SCAO system	Ā	Ξ	L	I	R		U
2	0 2014SPIE 914SE 33C Cohen, Mathiau; Chemia, Fanny; Buey, Tristan; Gendron, Eric; Hubert, Zoltan; Harti, Michael; Clenet, Yann; Davies, Richard	1.000 Optical design of the relay optics fo	08/2014 or the MICADO SCAO system	A	I	L	I	R		
3	<u>2014SPIE 9147E 9EB</u> Bandon, Pierre, Boccaletti, Anthony: Lacour, Sylvestre; Galicher, Raphaël; Clenet, Yann; Gratadour, Damien; Gendron, Eric, Buey, Tristan, Rousset, Gerard; Hartl, Michael; Davies, Richard	1.000 The high contrast imaging modes of	08/2014 MICADO	A	E	L	I	R		U
+	<u>2014SPIE 914SE_0ZC</u> Claust, Yaam, Bney, Tristan M.; Rousset, Gerard; Cohen, Mathieu; Feautrier, Philippe; Gendron, Eric; Hubert, Zoltan; Chemla, Fanny; Gratadour, Damien; Baudoz, Pierre; and 14 coardiocs.	1.000 Overview of the MICADO SCAO :	07/2014 rystem	Δ	E	L	I	<u>R C</u>		U
5	<u>2014SPIE 9147E_9FL</u> Lacour, S.; Baudoz, P.; Gendron, E.; Boccaletti, A.; Galicher, R.; Clemet, Y.; Gratadour, D.; Busy, T.; Rousset, G.; Hartl, M.; Davies, R.	1.000 An aperture masking mode for the	07/2014 MICADO instrument	Ā	E	L X	I	R		L
6	0 2014SPIE 9145E 4HIK Keck, Alexander, Pott, Jörg-Uwe; Sawoday, Oliver	1.000 Accelerometer-based position reco	07/2014 instruction for the feedforward compensation of	A fast te	E alescop	L e vibration	<u>I</u> is in the	R E-ELT	MICAD	0
7	2013aoel.confE_19C Clenet, Yann, Gratadour, Damien; Gendron, Eric; Rousset, Gerard; Sevin, Arnaud	1.000 First GPU-based end-to-end AO siz	12/2013 militions to dimension the E-ELT MICADO SCA	A to m:	E E ode	L	I			U
8	2012SPIE 8447E 4WK Keck, Alexander, Pon, Jörg-Uwe; Ruppel, Thomas; Sawodny, Oliver	1.000 Development of new concepts to m	07/2012 inimize the impact of fast telescope vibrations se	A sen by	E the E-	L ELT MIC.	I ADO w	R avefror	ut seasors	p.
9	2011sos1comfP_23C Clemet, Y.; Bernardi, P.; Chapron, F.; Gendron, E.; Rousset, G.; Hubert, Z.; Davies, R.; Thiel, M.; Tromp, N.	1.000 The SCAO module of the E-ELT at	09/2011 laptive optics imaging camera MICADO	Å	Ξ					
10	<u>2010SPIE 7736E 3QC</u> Clemet, Y.; Bernardi, P.; Chapron, F.; Gendron, E.; Rousset, G.; Hubert, Z.; Davies, R.; Thiel, M.; Tromp, N.; Genzel, R.	1.000 SAMI: the SCAO module for the E-	07/2010 ELT adaptive optics imaging camera MICADO	Ā	I	L	I	<u>2</u>		
11	<u>2010spie 7735E 5GM</u> Magrin Demetric: Ragazzoni, Roberto: Freeman, David E.; Eisenhauer, Frank; Tromp, Niels; Drost, Marco; Navarro, Ramon; Davies, Richard Genzel, Reinhard	1.000 ; MICADO: optical configuration, pe	07/2010 rformance, and folding	A	E	L	I			
12	<u>2010SPIE 7733E 2AD</u> Davies, Richard; Ageorges, N.; Barl, L.; Bedin, L. R.; Bender, R.; Bernardi, P.; Chapron, F.; Clenet, Y.; Deep, A.; Deul, E.; and 36 coardhors	1.000 MICADO: the E-ELT adaptive opti	07/2010 cs imaging camera	Ā	E	<u>L</u> <u>X</u>	I	RC	-	1
13	© 2010Mener 140 32D Davies, R.; Genzel R.	1.000 MICADO: The Multi-adaptive Opti	05/2010 cs Imaging Camera for Deep Observations	Ā	E	Ŀ		R⊆	<u>s</u>	U
14	0 2010MNRAS 402 1126T Trippe, S.; Davies, R.; Eisenhauer, F.; Schreiber, N. M. Förster, Fritz, T. K.; Genzel, R.	1.000 High-precision astrometry with MI	02/2010 CADO at the European Extremely Large Telesco	A	EE	L X	₽	RC	S	1
15	2010sos1 confE1002D Davies, Richard; Ageorges, N.; Barl, L.; Bedin, L.; Bender, R.; Bernardi, P.; Chapron, F.; Clenet, Y.; Deep, A.; Deul, E.; and 36 coautions	1.000 Science and Adaptive Optics Requi	00.2010 rements of MICADO, the E-ELT adaptive optics	A s imag	E ging ca	L X mera	I	R		

Atmospheric / Sky Background papers

Refereed:

Lakicevic et al, 2015, in prep Jones et al. 2015, A&A, subm Noll et al., 2015, acpd-15-30793-2015 Noll et al., 2015, ACP, 15, 3647 Smette et al., 2015, A&A, 576, A77 Kausch et al., 2015, A&A, 576,A78 Moehler et al, 2014, SPIE, Volume 9149, id. 91490L Moehler et al, 2014, A&A, 568, 9 Noll et al, 2014, A&A, 568, 9 Jones et al., 2013, A&A, 560, 91 Noll et al., 2012, A&A, 543, 92

Non-Refereed:

Kimeswenger et al., 2015, AtmoHEAD 2014, EPJ Web of Conferences, Vol. 89, id.01001 Unterguggenberger et al., 2015, EGU2015-8662 Noll et al, 2015, EGU2015-2554 Kausch et al., 2015, EGU2015-3807 Moehler et al., 2014, The Messenger, vol. 158, p. 16-20 Jones et al., 2014, The Messenger, vol. 156, p. 31-34 Jones et al., 2014, AAS Meeting #224, #405.03 Noll et al., 2014, ASPC, 485, 99 Kausch et al, 2014, EGU2014-13979 Noll et al., 2014, EGU2014-12008 Unterguggenberger et al., 2014, EGU2014-11548 Jones et al., 2014, EGU2014-11013 Noll et al., 2014, ASPC, vol. 485, 99 Kausch et al., 2014, ASPC, vol. 485, 403 Jones et al., 2014, ASPC, vol. 485, 91 Noll et al., 2013, EGU2013-7980 Jones et al., 2013, EGU2013-8478 Kausch et al. 2013, EGU2013-7425 Noll et al., 2012, EGU2012-9813 Kausch et al, 2012, EGU2012-9239

END (auxiliary slides after this)

Timeline

Date	Milestone	Comments
2015, Oct	Kick-Off	Preliminary Design Phase (B) begins with a 1.5-year baseline & interface consolidation phase.
2017, Apr	System Requirements Internal Review	Once the system baseline is defined, the design will be developed more fully over the following 1.5 years
2018, Oct	Preliminary Design Review	Following this review, the project can begin the Final Design Phase (C).
2020, Oct	Final Design Review	Following this review, project will enter Manufacturing, Assembly, Test, and Integration Phase (D).
2022, May	MAIT Mid-term Meeting	Progress will be formally assessed half-way through the MAIT Phase.
2023, Oct	PAE Document Review (= Test Readiness Review, start of PAE process)	This will take place 6 months before the scheduled date for the European Acceptance Review, to confirm the instrument is ready to begin formal testing during that period
2024, Jun	Preliminary Acceptance Europe	This will take place once testing is completed and the reports are written. The instrument will be shipped to the observatory once this review is passed.
From 2025	Provisional Acceptance in Chile	Telescope technical first light with ~480 segments early 2024; Telescope commissioning with all segments from Dec 2024; MICADO commissioning 1 with SCAO module; MICADO commissioning 2 with MAORY.

Eline Tolstoy MICADO Project Scientist Joerg-Uwe Pott MICADO Calibration Scientist

Ramon Navarro NOVA PM / hardware