
 1 

 
 
 
 
 
 
ReClustOR User’s Guide 

 Re-Clustering tool using an Open-Reference method that improves OTU definition 
 

 
 
 
 
 
 
 
 
 
 
 

ZENODO repository: http://doi.org/10.5281/zenodo.2597403  
Version 1.0; September 2019 

 
 
 

Sébastien TERRAT, Christophe DJEMIEL, Corentin JOURNAY 
UMR 1347 Agroécologie, AgroSup Dijon, INRA,  

Univ. Bourgogne Franche-Comté, F-21000 Dijon, France 
Contact: sebastien.terrat@inra.fr 

 
 
 
 
 
 
 
Copyright (C) 2018 INRA/Burgundy University - UMR 1347 Agroecologie. 
 
RECLUSTOR’S source code and documentation are freely redistributable and modifiable under the terms of the 
GNU General Public License (GPLv3), version 3.  

http://doi.org/10.5281/zenodo.2597403
mailto:sebastien.terrat@inra.fr


 2 

CONTENTS 
 
 
INTRODUCTION .......................................................................................................................... 3 

INSTALLATION ............................................................................................................................ 4 

Quick installation instructions ................................................................................................ 4 

Dependencies ......................................................................................................................... 5 

INFERNAL alignment tool ................................................................................................... 5 

Inline module ...................................................................................................................... 5 

SOME DETAILS BEFORE STARTING ............................................................................................. 6 

Multiple Sequence Alignment ................................................................................................ 6 

Homopolymer Errors .............................................................................................................. 7 

Specific Clustering Process in ReClustOR ............................................................................... 8 

INPUT FILE STRUCTURE ............................................................................................................ 10 

Sequence ID structure .......................................................................................................... 10 

Standard FASTA file details .................................................................................................. 10 

Clustering file details ............................................................................................................ 10 

Taxonomic file details ........................................................................................................... 11 

Dereplication file details....................................................................................................... 11 

TUTORIAL .................................................................................................................................. 12 

The Programs in ReClustOR .................................................................................................. 12 

ReClustOR_db ....................................................................................................................... 12 

Usage ................................................................................................................................ 12 

Mandatory options ........................................................................................................... 12 

Example ............................................................................................................................ 13 

Output files produced by ReClustOR_db ......................................................................... 15 

ReClustOR ............................................................................................................................. 17 

Usage ................................................................................................................................ 17 

Mandatory options ........................................................................................................... 17 

Additional options ............................................................................................................ 17 

Example ............................................................................................................................ 18 

Output files produced by ReClustOR................................................................................ 19 

 
 
 



 3 

INTRODUCTION 
  
 ReClustOR is a new post-clustering method (for RE-CLUSTering method using an Open-
Reference approach) to improve OTU consistency. This new strategy combines two 
previously-described clustering methods. Firstly, a classical clustering method (e.g. Swarm, or 
VSEARCH) is used to define OTU centroids and create a reference database. Secondly, a 
closed- or open-reference method (depending on the user’s choice) is computed for all reads 
which are not considered as OTU centroids. 
 
 This software is composed of two different PERL modules (v5.26.1 or higher), 
ReClustOR_db.pl and ReClustOR.pl. The first program ReClustOR_db.pl takes as 
input several files (clustering file, taxonomy file, dereplication details file and FASTA sequence 
file) to create a specific database. Then, you can use the ReClustOR.pl to compare to the 
defined database (or a new one) the given input sequences. 
 
 Main interests of ReClustOR are that it overcomes problems associated with classical 
clustering methods (stability and reliability of OTUs) and consequently increases the quality 
and the congruence of the reconstructed OTUs. Moreover, the OTUs database defined with 
ReClustOR can be used as reference(s) with gradual enrichment of it by merging new studies 
and samples. Finally, this post-clustering step improved the congruence of obtained results 
(alpha-diversity, beta-diversity, composition) whatever the initial clustering method used. 
 
 
 
  



 4 

INSTALLATION 
 

Quick installation instructions 
 
ReClustOR is distributed as PERL source code (v5.26.1 or higher). It comprises two 
independent modules: the first one is dedicated to OTUs reference database development 
(ReClustOR_db.pl), and the second one is used for clustering against a given database 
(ReClustOR.pl). These programs were designed to be used on UNIX platforms. They have 
been developed on Intel GNU/Linux systems, and intermittently tested on a variety of other 
UNIX platforms. They have also been tested on Apple OS/X. However, they were not currently 
tested on either Microsoft Windows, but they should work there, if the system answers to 
required dependencies (see Dependencies paragraph below). 
 
Download the source (ReClustOR.zip) from: http://doi.org/10.5281/zenodo.2597403 
(available Zenodo repository). 
Unpack the software:  
 > gzip -d ReClustOR.zip 
 
Then, in the newly created top-level directory, both programs will be available. No compilation 
is needed. However, these programs are based on third-party tools, check the Dependencies 
paragraph below. 
  

http://doi.org/10.5281/zenodo.2597403


 5 

Dependencies 
 The ReClustOR programs (ReClustOR_db.pl or ReClustOR.pl) are based on two 
third-party programs:  

• the Infernal alignment tool (1.1.1 or higher) and, 

•  the Inline PERL module (0.80 or higher).  
 
 By default, the program will check if these two mandatory tools are already installed or 
not. If it is not the case, these two programs are required, and must be installed by you. 
 

INFERNAL alignment tool 
 Infernal ('INFERence of RNA ALignment') is a software package that allows you to make 
consensus RNA secondary structure profiles, and use them to search nucleic acid sequence 
databases for homologous RNAs, or to create new structure-based multiple sequence 
alignments. You can use the defined profile to align a set of unaligned sequences to the profile, 
producing a structural alignment, using the program cmalign. This allows you to build hand-
curated representative alignments of RNA sequence families, then use a profile to 
automatically align any number of sequences to that profile. This seed alignment/full 
alignment strategy combines the strength of stable, carefully human curated alignments with 
the power of automated updating of complete alignments as sequence databases grow. This 
is the strategy used to maintain the RFAM database of RNA multiple alignments and profiles. 
  
 Here, Infernal is used for searching DNA sequence databases for RNA structure and 
sequence similarities. It is an implementation of a special case of profile stochastic context-
free grammars called covariance models (CMs). A CM is like a sequence profile, but it scores 
a combination of sequence consensus and RNA secondary structure consensus, so in many 
cases, it is more capable of identifying RNA homologs that conserve their secondary structure 
more than their primary sequence. 
 
Details and Download: http://eddylab.org/infernal/ 
 

Inline module 
 The Inline module allows you to put source code from other programming languages 
directly 'inline' in a Perl script or module. The code is automatically compiled as needed, and 
then loaded for immediate access from Perl. 
 
 Inline saves you from the hassle of having to write and compile your own glue code using 
facilities like XS or SWIG. Simply type the code where you want it and run your Perl as normal. 
All the hairy details are handled for you. The compilation and installation of your code chunks 
all happen transparently; all you will notice is the delay of compilation on the first run. 
 
 The Inline code only gets compiled the first time you run it (or whenever it is modified) 
so you only take the performance hit once. Code that is Inlined into distributed modules (like 
on the CPAN) will get compiled when the module is installed, so the end user will never notice 
the compilation time. 
 
Details and Download: http://search.cpan.org/~ingy/Inline-0.80/lib/Inline.pod 
 

http://eddylab.org/infernal/
http://search.cpan.org/~ingy/Inline-0.80/lib/Inline.pod


 6 

SOME DETAILS BEFORE STARTING 
 
 ReClustOR software was based on several elements (Multiple Sequence Alignment, 
specific clustering program, etc.) essential to understand before using it. To simply describe 
these elements, their importance, and why we chose to implement ReClustOR and how these 
elements are combined in ReClustOR, we chose to write this specific part of the User’s Guide. 
 

Multiple Sequence Alignment 
 
 All given sequences (those used as references in defined databases, or those compared 
to databases) will be firstly aligned using the Infernal third-party program (see this section for 
more details). Indeed, all sequences are globally aligned against dedicated structures for 16S 
rRNA bacteria and/or archaea, 18S rRNA fungi, or 23S plastidial algae genes depending of their 
origin, using the Infernal alignment program (‘INFERence of RNA ALignment’, v1.1.1). These 
dedicated structures are integrated in the ReClustOR program, in a specific folder (model/)  
 
 The use of a model to structurally align any number of new sequences to your consensus 
structure is very efficient, and allow to maintain representative seed alignments that are 
stable and small enough to be human-curated, while still being able to automatically 
incorporate and align all homologues rapidly. Moreover, the Infernal alignment against a 
structural model allows divergent but valid sequences to persist, whereas stricter methods 
may incorrectly discard such reads (Lynch & Neufeld, 2015) (see example of reads aligned with 
Infernal below). 
 

 
 
 In the aligned sequences, a “.” character indicates an inserted column relative to 
consensus; the “.” Character is an alignment pad. The “-“ character is a deletion relative to 
consensus.  
 
 This alignment provides also a more intuitive handling of sequencing errors, such as 
homopolymer errors, easily detected, due to the secondary-structure aware aligner. Such 
homopolymer errors can be therefore easily managed and ignored during the clustering step 
Furthermore, as other Multiple Sequence Alignment algorithms, Infernal software is more 
efficient in terms of substitution detection (Rosenberg, 2005; Nguyen et al., 2016). 
(see example of reads aligned with Infernal below, with highlighted homopolymer potential 
difference). 
 

 
 
 In the aligned sequences, a small “a” character in the third line of the global alignment 
indicates a potential error (an insertion here) relative to the defined consensus. Such 
difference can be considered as a homopolymer difference, and it will be considered and 
potentially ignored during the clustering process.  



 7 

Homopolymer Errors 
 
 Homopolymer stretches can be problematic for several sequencing technologies (e.g. 
454, IonTorrent, MinION, etc.). These sequencing platforms suffer from the inaccuracy in 
detecting the length of homopolymers repeats of the same nucleotide. These homopolymer 
errors often lead to the inaccurate local alignment results, and become a critical barrier 
against accurate detection of genomic variations, or during clustering steps of homolog 
sequences. To explain this clearly, check these examples below. 
 
Example 1: 
 

 
  
 Here, two sequences are compared by the clustering program after global alignment 
with Infernal. As Infernal is based also on the secondary structure of the rRNA, it can easily 
detect insertion-deletion errors originated from the sequencing step. As one of the two 
sequences has a high occurrence (here, 43 occurrences, indicated in its ID, see Input File 
Structure section for more details), the difference is ignored by the clustering program. 
Indeed, the sequence with 43 occurrences (after strict dereplication) can be considered as a 
“true” sequence. The difference with the other sequence (with only one occurrence) will be 
ignored during the clustering process.  
 However, such differences cannot be detected on singleton sequences (if the two 
sequences have only one occurrence), as we are unable to confirm if there is a ‘true biological’ 
difference or not. 
 
Example 2: 
 

 
 
 Moreover, homopolymer differences are only evaluated if a stretch of three identical 
bases are present in one of the compared sequences (or at least two bases and a gap, as shown 
in the example 2). 
 
 Ignoring homopolymer differences can drastically reduce the number of defined OTUs 
(between 5 to 20%, depending on the origin of the sequencing, and the quality of the 
sequencing). Such errors are known, and were already considered in other programs, such as 
CRUNCHCLUST (https://code.google.com/archive/p/crunchclust/). To our knowledge, this 
CRUNCHCLUST program was the first to ignore such differences for the clustering step. 
  

A

https://code.google.com/archive/p/crunchclust/


 8 

Specific Clustering Process in ReClustOR 
 
 First of all, both programs (ReClustOR_db.pl or ReClustOR.pl) needs dereplicated 
reads (see Input File Structure section for more details). These dereplicated reads will be then 
aligned using Infernal alignment (Nawrocki & Eddy, 2013), and after a first step of organization 
of input sequences by decreasing abundance, they will be clustered based on the threshold 
chosen by the user.  
 Our clustering program will compare two globally aligned sequences and determine 
their number of differences. To determine this number of differences, the clustering program 
relied on a Levenshtein distance. Levenshtein distance is a metric for measuring the amount 
of differences between two sequences (ie an edit distance). As the amplicon sequences tend 
to start at the same place, Levenshtein distance is the most appropriate and most efficient 
measure for calculating distances between them. 
 Moreover, our clustering process is a is a greedy incremental clustering algorithm 
developed in C (introduced in PERL by the Inline specific module). The first sequence from the 
dataset becomes the seed of the first cluster (this first seed is also the most abundant 
sequences, and potentially the truest one). Then, the distance between the seed and each 
remaining sequence is compared. If the distance of the query to the seed sequence is equal 
or below a given threshold then it is assigned to that cluster. Otherwise, a new cluster is 
defined with that sequence as the seed. For more details, please read the scheme below, 
describing the clustering process: 
 

 
Main process of our clustering program. The OTU list and their corresponding centroids (or 
seeds) will be stored and enriched during the treatment of organized reads (by decreasing 
abundance).  

Sort reads by 
decreased abundance

Unique reads
aligned with

INFERNAL

Organized
unique reads

OTU list and 
centroids

Read 
compared to 1st OTU 

centroid

NO positive result

Read 
compared to 2nd OTU 

centroid

NO positive result

Read 
compared to nth OTU 

centroid
NO positive result

Enrichment of 
the OTU list

Read associated
to the OTU

Positive result

Final OTU list
and 

composition



 9 

 Moreover, it is important to note that, against a defined database, the clustering 
program will not be stopped after a positive result is found (see scheme below). 
 

 
Main process of our clustering program of input sequences against the chosen database. Here, 
the clustering process is quite different, as if a positive result is found, the clustering threshold 
is modified to consider this positive result, and to check if a better result will be found with 
other reference sequences, or not. As indicated, the program will be stopped for a specific 
sequence if: (i) No results were found against all reference sequences, (ii) 100% of identity 
was found between a reference sequence and the analyzed sequence, (iii) after all 
comparisons, the closest reference sequence was found. For sequences with no results against 
all reference sequences, a step of de novo clustering is realized to define OTUs with only these 
sequences. These specific OTUs are called “OUTs” and not “OTUs”. This is detailed in the 
Summary_results.txt output file. 

Input reads
aligned with

INFERNAL

Reference 
database of 

aligned reads
Input read

compared to OTU 
reference

NO positive resultIdentity = 100% ?

NO

Result > Chosen
Threshold

Positive result

Merging of both
alignments (ref, query)

Global 
alignment

Next OTU reference
sequence

Modification of the 
threshold

YES

NO

Stop analysis for 
this read

YES

Output files
given by

ReClustOR

End of analysis
of the read against the 

database

Positive result

De novo clustering

NO positive result
against the database



 10 

INPUT FILE STRUCTURE 
 

Sequence ID structure 
  
 All sequence Identifications (ID) must have a specific format to be accepted by the 
Database Definition Program (ReclustOR_db.pl). The format is simple. Each sequence has 
to be defined by an ID, the number of dereplicated reads and its length, all elements separated 
by '_' characters as shown below. 
 
Example:  
M0098755_6_length=374 
 
 This sequence had the ID: M0098755 (specific length not defined, but composed only 
with alphanumeric characters (a-z,A-Z,0-9). This sequence corresponded to 6 reads in the 
dataset, with a length of 374 bases. 
 
 The sequence must be also affiliated to a specific sample ID added to the name 
(separated by a '|' character): 
 
Example: 
00001|M0098755_6_length=374 
 
 Here, this sequence M0098755_6_length=374 came from the sample 00001. The ID 
for a sample must be a number only (0-9). Its length is not defined. 
 

Standard FASTA file details 
 
 All sequence Identifications (ID) must have a specific format to be accepted by the 
Database Definition Program. (see Sequence ID Structure section). The standard FASTA file 
must contain at least sequences considered as representative sequences OTUs, or all 
sequences. For the comparison step, all query sequences will be compared to the chosen 
database. 
 

Clustering file details 
 
 The clustering file had a specific format to be loaded by the PERL program. Each line 
contains four elements, separated by tabulations. The line starts by the OTU number (1 or 
OTU1), then the filename, then the number of reads in the OTU and the IDs of all reads 
associated within this OTU, separated by a space. 
 
Example: 
1 filename 12 00003|M0098755_6_length=374 00001|M0098758_6_length=374 
2 filename 5 00002|HB018GD8_5_length=371 

 
 It is important to highlight that the seed of the OTU (the OTU representative sequence) 
is the first one in the list of each OTU. So, this sequence must be available in the FASTA file 
given in input.  



 11 

Taxonomic file details 
 
 Regarding the taxonomic file, it must have also a specific format to be used by the 
program. For each OTU, five taxonomic levels must be defined (phylum, class, order, family 
and genus), separated by a tabulation. For each taxonomic level, one name must be given, 
with or without the number of corresponding sequences affiliated in this OTU in parenthesis. 
The OTU number and order must be the same for the taxonomic file and the clustering file 
to link both files. 
 
Example: 
OTU32 Actinobacteria(70) Acidimicrobiia(70) Acidimicrobiales(70) Iamiaceae(70) Iamia(70) 

 
 It is also possible to give several names for a taxonomic level, separated by a space (see 
example for the genus level below). In the case where several names are available, the number 
of sequences associated to this taxonomy must be given to select the highest one 
automatically. 
 
Example: 
OTU32 Actinobacteria(70) Acidimicrobiia(70) Acidimicrobiales(70) Iamiaceae(70) Unknown(20) Iamia(50) 

 
 Finally, all not affiliated groups must be called 'Unknown', to be clearly identified by the 
Database Definition Program (ReclustOR_db.pl). All other names will be considered as 
known organisms. 
 

Dereplication file details 
 
 This file is used to detail the composition of dereplicated sequences encompassing 
identical sequences from several samples. To define the database properly, the program must 
know the detailed organization of all samples in all OTUs. The specific format of this file is 
simple, as it is composed of lines starting with the sequence ID encompassing the sequences 
from several samples. The detail is given in the second part of the line, with each sample 
sequence separated by a space. Both parts of the line are separated by a tabulation. 
 
Example: 
00003|M0098755_6_length=374 00003|M0098755_3_length=374 00001|M0012749_3_length=374 

 
 Here, this sequence M0098755_6_length=374 encompass three sequences from the 
sample 00003 and three from the 00001. In the clustering file, only the ID sequence 
00003|M0098755_6_length=374 will be found. 
  



 12 

TUTORIAL 
 
 Here’s a simple tutorial to understand how ReClustOR programs work. The 
subdirectory (Data_example/) in the ReClustOR distribution contains the files used in the 
tutorial, and highlight various file formats that ReClustOR reads and uses. 
 
 Please, create a new directory that you can work in, and copy all the files in 
Data_example/ there. We assume for the following examples that you’ve installed the 
ReClustOR programs in your path.  

If not, you’ll need to give a complete path name to the programs (e.g. something like 
perl /usr/people/terrat/ReClustOR/ReClustOR_db.pl instead of just 
perl ReClustOR_db.pl). 
 

The Programs in ReClustOR 
 
These are two main modules in the ReClustOR package: 
 
ReClustOR_db.pl define new database of reference sequences 
 
ReClustOR.pl compare given sequences to an existing database of reference 

sequences. 
 

ReClustOR_db 
 

Usage 
 
ReClustOR_db.pl [-option] <filename> 
 

Mandatory options 
  -clust  clustering filename needed to create the database 
  -taxo  taxonomy filename needed to create the database 
  -derep  dereplication information filename to create the database 
  -seq  FASTA file containing the sequences analyzed 
 
  



 13 

Example 
 
The given example is based on files available in Data_example/ directory, and more 
specifically, those stored in the Files_For_DB_Definition/ subdirectory. 
 
> perl ReClustOR_db.pl -clust Cluster_file.clust -taxo Taxo_file.txt 
-derep Derep_details_file.fasta -seq Fasta_file.fasta 
 
First of all, the ReClustOR_db.pl will check if the various files have correct structures and 
format.  
 
# Dereplication file format checked and passed 
# Sequence file Fasta_file.fasta format checked and passed 
# Taxonomic file format checked and passed 
# Clustering file format checked and passed 
 
Then, the ReClustOR_db.pl will ask for more information to define efficiently all files for 
the reference database: 
 
Please choose the name of the database (short name whithout spaces 
or special characters). 
==>  
As an answer, we can provide the term ‘EXAMPLE’ 
 
Will you want to keep the single-singletons in the created database 
(yes-no)? 
==> 
As an answer, we can provide the term ‘yes’ as we want to keep all potential OTUs from our 
dataset for further analyses. 
 
Please indicate the similarity level defined for the clustering step 
of your samples? (default: 95)[1-100]. 
==> 
As an answer, we can provide the value by default (95). If no value is given, the value by 
default will be applied. This value is only given for information, no clustering is realized in this 
step. 
 
Please indicate the level used to define the sequence taxonomy of 
your samples? (default: 80)[50-100]. 
==>  
As an answer, we can provide the value by default (80). If no value is given, the value by 
default will be applied. This value is only given for information, no taxonomic assignment is 
realized in this step. 
 
Please indicate the targeted organism (to define the potential model 
used in the global alignment) [bacteria/fungi/archaea/algae] 
==> 



 14 

Here, as file examples are specific of bacteria organisms, it is advised to specify bacteria 
(for 16S structures). 
 
Then, the program will indicate which step of analysis is realized to create the database. 
 
LAUNCHING THE EXTRACTION OF CLUSTERING DATA 
END OF EXTRACTING CLUSTERING DATA 
12 Seconds of treatment 
LAUNCHING THE ANALYSIS OF THE CLUSTERING DATA 
END OF ANALYSIS OF THE CLUSTERING DATA 
13 Seconds of treatment 
LAUNCHING THE ANALYSIS OF SAMPLE DISTRIBUTION 
END OF ANALYSIS OF SAMPLE DISTRIBUTION 
14 Seconds of treatment 
LAUNCHING THE DEFINITION OF OTU SEQUENCE FILE 
END OF DEFINITION OF OTU SEQUENCE FILE 
15 Seconds of treatment 
LAUNCHING THE ANALYSIS OF TAXONOMIC DATA 
END OF ANALYSIS OF TAXONOMIC DATA 
16 Seconds of treatment 
LAUNCHING THE DATABASE DEFINITION FILES 
END OF DATABASE DEFINITION FILES 
17 Seconds of treatment 
LAUNCHING THE ALIGNMENT OF DATABASE SEQUENCES 
19 Seconds of treatment 
END OF ALIGNMENT OF DATABASE SEQUENCES 
200 Seconds of treatment 
 
The ReClustOR_db.pl created a specific folder based on the given answers here: 
DB_EXAMPLE_BACTERIA_C95_T80_G/ to store the output files. 
 
  



 15 

Output files produced by ReClustOR_db 
 
Three output files can be found in the database folder: 
 
dbreads_EXAMPLE_BACTERIA_C95_T80_G FASTA file containing reference sequences 

of each OTU 
 
database_EXAMPLE_BACTERIA_C95_T80_G Complete description (OTUname, number 

of sequences, composition, taxonomy) of 
each OTU 

 
dbalign_EXAMPLE_BACTERIA_C95_T80_G Alignment file (in Stockholm format) of 

reference sequences of each OTU 
 
 
The dbreads_EXAMPLE_BACTERIA_C95_T80_G contains FASTA sequences, for each 
OTU (see example below). 
 
>OTU000002798 
GAAGGGTGCAAGCGTTACTCGGAATTACTGGGCGTAAAGCGTGCGTAGGTGGTTCGTTAAGTCTGATG
TGAAAGCCCTGGGCTCAACCTGGGAATTGCATTGGATACTGGCGAGCTAGAGTGCGGTAGAGGATGGC
GGAATTCCCGGTGTAGCAGTGAAATGCGTAGAGATCGGGAGGAACATCTGTGGCGAAGGCGGCCATCT
GGACCAGCACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC
GCCGTAAACGATGGGTGCTAGGTGTCGCGGgctttgacccCTGCGGTGCCGTAGCTAACGCATTAAGC
ACCCCGCCTGGGGAGTACGGCCGCAAGGCTAAA 
>OTU000001372 
GAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGTGCGTAGGCGGGTTTTTAAGTCAGAGG
TGAAATCCTGGAGCTCAACTCCAGAACTGCCTTTGATACTGAGAATCTTGAGTATGGGAGAGGTGAGT
GGAACTGCGAGTGTAGAGGTGAAATTCGTAGATATTCGCAAGAACACCAGTGGCGAAGGCGGCTCACT
GGCCCATAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC
GCTGTAAACGATGAGTGCTAGGTATCGGGAgaatttcTTTCGGTTCCGTAGTTAACACGTTAAGCACT
CCGCCTGGGGAGTACGATCGCAAGATTAAA 
 
The database_EXAMPLE_BACTERIA_C95_T80_G contains all information available for 
each OTU (see example below). 
 
OTU000002798 1
 1.00_Proteobacteria|1.00_Deltaproteobacteria|1.00_Myxococcales|
1.00_Haliangiaceae|1.00_Haliangium 1_000000001 
 
Here, each element is separated by a tabulation. The first element is the name of the OTU 
(OTU000002798), then, the number of sequences in this OTU (here, 1). Then, its complete 
taxonomy, with for each level the percentage of sequences with this taxonomy, and the 
taxonomic name. Finally, the last element describes the sharing of this OTU between samples, 
based on information stored in IDs of each sequence. 
  



 16 

Finally, the dbalign_EXAMPLE_BACTERIA_C95_T80_G file stored the global alignment of 
all reference sequences from the defined database (see example below). 
 
# STOCKHOLM 1.0 
#=GF AU Infernal 1.1.2 
 
OTU000002798         -----------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------
--------------------------------------------------------------------
-----------------------------....-----------------------------------
-----...-------------------------------......-----------------------
---------------------........----------
GAAGGGTG.CAAGCGTT...ACTCGGA..ATTACTGGGCGTAAAGCGT.GCGTAGGTGGT.T.C.G.T
TAA.G.TCT.G..A.T.GTGAAAGCC.CT.G.GGCTCAA.............................
...................................CCTG.G.GAATTGCATTG.GA.TACTGG.C.G.
AGCT.A.G.AGTGCGGTA..GAGGATGGC.....G.GAATTCCCGGTGTAGCAGTGAAA.........
........TGCGTAGAGATCGGGAGGAA..C.ATCTG...T...G.GCGAAGGCGGCCATCTG.....
..........GAC.CA.G...................C..ACTGACACTGAG.G.C.ACGAAAGCGTG
GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGGTGCTAGGTG.T.CGCGG.
...............gcttt........................................gacccCT.
GC.GGTGCCG.T.A.GCTAACGCATTAA..GCACCC.CGCCTGGGGAGTACGGCCGCAA.....GGCT
AAA 
#=GR OTU000002798 PP 
....................................................................
....................................................................
....................................................................
....................................................................
....................................................................
....................................................................
....................................................................
..................********.********...*******..*******************.*
**********.*.*.*.****.*.***.*..*.*.*********.**.*.*******...........
.....................................................****.*.********
***.**.******.*.*.****.*.*.*********..*********.....*.**************
*********.................********************..*.*****...*...*.****
*************...............***.**.*...................*..**********
**.*.*.*************************************************************
*********.*.*****................*****..............................
..........*******.**.*******.*.*.*************..******.*************
*********.....******* 
  



 17 

ReClustOR 
 

Usage 
 
ReClustOR.pl [-option] <filename> 
 

Mandatory options 
 
  -db  Database folder containing the database definition files 
  -th  Threshold chosen by the user for the comparison with the database 
  -cl  Chosen clustering type [infern/needle] 
  -sq  input FASTA file that will be compared to the database 
 
 By default, the program will be based on a comparison of input sequences against the 
database given as a mandatory option (-db). The user must also give a specific threshold level 
for the clustering step to avoid the selection of too many results. 
 
The clustering type is also mandatory. Two choices are available for the user: 
 - infern   Based on a global alignment of all reads against the database using the 

Infernal program. 
 - needle   Using also a global alignment of reads, but with an algorithm closed to 

the Needleman-Wunsch Algorithm (low, and not optimized). 
 

Additional options 

 
Computing and parallelization analysis 
 -cp <i>  Number of cpus that the program will be able to use (default: 1). 
 
Optional output filename 
 -o <f> Results will be written in the <f> folder and not in the Results folder 
 
Optional clustering parameters 
 -c  ignoring uncommon parts of compared reads at both extremities (default: not 

activated) 
 -h  ignoring homopolymer errors between reads (default: not activated) 
 -hc  ignoring both uncommon parts of compared reads at both extremities and 

homopolymer errors between reads (default: not activated) 
 -ad  add sequences with no similarities (at the defined threshold) against the database 

as new OTUs of the database. More precisely, the sequences will be integrated to 
the chosen database (-db option) to enrich it after de novo clustering. BE CAREFUL 
WHEN USING THIS OPTION, AS THE DATABASE WILL BE MODIFIED, BUT WILL 
KEEP ITS INITIAL NAME. 

 
  



 18 

Example 
 
The given example is based on files available in Data_example/ directory, and more 
specifically, those stored in the File_For_Clustering/ subdirectory. 
 
> perl ReClustOR.pl -db DB_EXAMPLE_BACTERIA_C95_T80_G -th 95 -cl 
infern -sq Fasta_file.fasta 
 
First of all, the ReClustOR.pl will check if the various files have correct structures and 
format.  
 
# Sequence file Fasta_file.fasta format checked and passed 
# Sequence file dbreads_EXAMPLE_BACTERIA_C95_T80_G format checked 
and passed 
1 seconds of treatment 
# Temporary and Results/ folders checked and cleaned 
 
Then, the program will realize the treatment and the comparison of the sequences given in 
the FASTA file to the dedicated database. 
 
STARTING GLOBAL ALIGNMENT OF THE DATABASE AND THE SEQUENCES 
END OF GLOBAL ALIGNMENT AND EXTRACTING DATA 
1 Seconds of treatment 
END OF ORGANIZING DATA 
2 Seconds of treatment 
STARTING CLUSTERING DATA AGAINST THE DATABASE 
2 Seconds of treatment 
END OF CLUSTERING DATA AGAINST THE DATABASE 
2 Seconds of treatment 
STARTING CLUSTERING DATA USING A DE NOVO APPROACH 
2 Seconds of treatment 
END OF CLUSTERING DATA USING A DE NOVO APPROACH 
2 Seconds of treatment 
STARTING RESULTS FORMATTING 
2 Seconds of treatment 
ENDING RESULTS FORMATTING 
2 Seconds of treatment 
 
The ReClustOR.pl created a specific folder (Results/) to store the output files. 
 
  



 19 

Output files produced by ReClustOR 
 
Four files are produced by the main program (ReClustOR.pl). 
 
Data_from_db_database.txt  Complete description of the given dataset against 

the defined database (OTUs, abundances, 
taxonomies, etc) 

 
Matrix_data.txt OTU matrix defined using the given dataset of 

sequences against the database 
 
Raw_clust_results.clust  Description of each clustering result for each 

sequence against the database 
 
Summary_results.txt   Summary results after clustering 
 
 
 
The Data_from_db_database_EXAMPLE_BACTERIA_C95_T80_G.txt file summarize 
the results for the treated dataset of sequences against the database. It will give all OTU 
names with at least one sequence matching, the number of sequences associated to this OTU 
in your dataset, the number of sequences associated to this OTU in the defined database, its 
taxonomy when you constructed the database, and also its representativity when the 
database was defined (see example below). 
 
OTU Number of reads from your sample Number of reads for this OTU in 
the database Defined taxonomy Sample representativity 
OTU000000007 1 167
 1.00_Actinobacteria|0.99_Thermoleophilia|0.99_Solirubrobacteral
es|0.89_Solirubrobacteraceae|0.89_Solirubrobacter
 18_000000001|13_000000002|26_000000003|17_000000004|11_00000000
5|11_000000006|18_000000007|11_000000008|20_000000009|8_000000010|7_
000000011|7_000000012 
 
Here, the OTU000000007 is found in your dataset. More precisely, 1 sequence matched with 
the reference sequence of this OTU, composed of 167 sequences when the database was 
defined. This OTU was mainly composed of Actinobacteria microorganisms (100% of 
sequences), mainly Solirubrobacter (89% of sequences). This OTU was found in various 
samples, with various abundances when the database was defined 
(18_000000001|13_000000002|26_000000003|17_000000004|11_000000005|11_
000000006|18_000000007|11_000000008|20_000000009|8_000000010|7_00000
0011|7_000000012). 
 
  



 20 

The second file is the Matrix_data.txt file. This file is only a file containing the contingency 
of all sequences for all defined ‘OTUs’ (and ‘OUTs’ if any). It will be useful for further analyses 
(statistical analyses in R for example). OTUs are organized in columns, and samples in lines, 
separated by tabulations. 
 
The third file is the Raw_clust_results.clust file. It compiles the results obtained for 
each sequence given as input against the defined database. More precisely, each line 
describes the results: the first element is the ID of the input sequence, the second result the 
percentage of similarity against the third element, the OTU name of the database. For 
example, the sequence AACJA1110712441192911N028_1_length=372 is 99.46% 
identical to the reference sequence of the OTU000000774 from the defined database. For 
sequences that did not match to OTUs of the database, they will be also printed in this file, 
but associated to ‘OUT’ OTUs (see last line of the example below). They will be considered as 
the OTU seed of the new ‘OUT’ OTUs is they 100% of similarity with this OTU, or associated to 
this new OTU if they have an identity score below 100%. 
 
AACJA1110310453223441N028_1_length=373 96.25 OTU000000007 
AACJA1110712441192911N028_1_length=372 99.46 OTU000000774 
AACJA1110716895155501N028_1_length=373 96.25 OTU000000072 
AACJA111072141102431N028_1_length=369 100.00 OTU000001377 
AACJA111079999103525N028_1_length=372 100.00 OUT000000001 
AACJA111074119203525N028_1_length=371 99.55 OUT000000001 
 
Finally, the last output file (Summary_results.txt) summarize all the results for the user, 
as seen below in the example. 
 
Total number of reads: 12 
Number of reads associated to OTUs from the database: 10 
Number of reads associated to OTUs de novo 2 
Total number of OTUs (database and de novo): 11 
Number of OTUs associated to OTUs from the database: 10 
Number of OTUs defined de novo: 1 


	INTRODUCTION
	INSTALLATION
	Quick installation instructions
	Dependencies
	INFERNAL alignment tool
	Inline module


	SOME DETAILS BEFORE STARTING
	Multiple Sequence Alignment
	Homopolymer Errors
	Specific Clustering Process in ReClustOR

	INPUT FILE STRUCTURE
	Sequence ID structure
	Standard FASTA file details
	Clustering file details
	Taxonomic file details
	Dereplication file details

	TUTORIAL
	The Programs in ReClustOR
	ReClustOR_db
	Usage
	Mandatory options
	Example
	Output files produced by ReClustOR_db

	ReClustOR
	Usage
	Mandatory options
	Additional options
	Example
	Output files produced by ReClustOR



